
The mission of Wageningen U niv ersity and Research is “ To ex plore the potential of
nature to improv e the quality of life” . U nder the banner Wageningen U niv ersity &
Research, Wageningen U niv ersity and the specialised research institutes of the
:aJeninJen 5eVeaUFK)oXndation KaYe Moined IoUFeV in FontUiEXtinJ to findinJ
solutions to important questions in the domain of healthy food and liv ing
env ironment. With its roughly 3 0 branches, 5 ,000 employees and 10,000 students,
Wageningen U niv ersity & Research is one of the leading organisations in its domain.
The unique Wageningen approach lies in its integrated approach to issues and the
FollaEoUation EetZeen diϑeUent diVFiSlineV�

Wageningen Food & Biobased Research
Bornse Weilanden 9
6708 WG Wageningen
The Netherlands
www.wur.eu/wfbr
E info.wfbr@wur.nl

Report 1879

Requirements for implementation

A quality prediction system for soft fruit based on a Bayesian Belief Network

dr. R.J. Vlek, dr. D.J.M. Willems, dr. H. RijgersbergConfidential

Requirements for implementation

A quality prediction system for soft fruit based on a Bayesian Belief Network

Authors: dr. R.J. Vlek, dr. D.J.M. Willems, dr. H. Rijgersberg

Institute: Wageningen Food & Biobased Research

This research project has been carried out by Wageningen Food & Biobased Research commissioned by the Dutch
Ministry of Economic Affairs and funded by Driscoll's B.V., in the context of GreenCHAINge project
(project number 6239090303).

Wageningen Food & Biobased Research
Wageningen, November 2018

Report 1879

Version: final
Confidential until: December 2021
Reviewer: dr. N.J.J.P. Koenderink
Approved by: dr.ir. H. Wensink
Client: Driscoll's B.V.
Sponsor: the Dutch Ministry of Economic Affairs

© 2018 Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen
Research.
Confidential report. Nothing from this publication may be reproduced and/or made public without prior
written permission by the director of Wageningen Food & Biobased Research. This report can be
downloaded for free from December 2021 at https://doi.org/10.18174/563391 or at www.wur.eu/
wfbr (under publications).

PO box 17, 6700 AA Wageningen, The Netherlands, T + 31 (0)317 48 00 84, E info.wfbr@wur.nl,
www.wur.eu/wfbr. Wageningen Food & Biobased Research is part of Wageningen University &
Research.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any
nature, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, without the prior permission of the publisher. The publisher does not accept any liability
for inaccuracies in this report.

mailto:info.wfbr@wur.nl
https://www.wur.nl/en/Research-Results/Research-Institutes/food-biobased-research.htm
https://www.wur.nl/en/Research-Results/Research-Institutes/food-biobased-research.htm
https://doi.org/10.18174/563391

 Confidential Wageningen Food & Biobased Research-Report 1879 | 3

Contents

1 Introduction 6

2 Front end – User Interface 7

3 Back end – Architecture 12

4 Back end - Requirements 14

4.1 User interaction 14
4.2 Model interaction 14
4.3 Data sources 14
4.4 Model learning and improvements 15

5 Conclusion 16

 4 | Confidential Wageningen Food & Biobased Research-Report 1879

Definitions

In this document, the following definitions and abbreviations are used.
• API: Application Programming Interface; this is the software interface of the software library in

which the Bayesian network has been developed and is loaded. The API is necessary to
communicate between the different software components and the Bayesian network library.

• BBN: Bayesian Belief Network, see Model
• Client: The fruit company, i.e. Driscoll's B.V.
• GUI: graphical user interface; the part of the software that displays information on a screen for

the user to interact with.
• Model: The Bayesian Belief Network that predicts the quality of fruits.
• Software provider: The company that develops the integration of the model in the software

environment.
• Web API: Web-based API that can be used to input and output data to and from the Bayesian

network in a web-based interface.
• WFBR: The research institute, part of Wageningen Research, that has developed the Bayesian

network.

 Confidential Wageningen Food & Biobased Research-Report 1879 | 5

Summary

The GreenCHAINge project is carried out in consortium with various companies, and supported by the
Dutch Ministry of Agriculture. It is financed by this ministry through a Topsector subsidy and by the
participating companies in the consortium through their cash and in kind contributions. The
GreenCHAINge project comprises several sub-projects, each focussing on a different fruit or vegetable
product. The work reported in this document resides under the sub-project dedicated to soft fruit, and
is carried out – independently - by Wageningen Food & Biobased Research (WFBR) in collaboration
with Driscoll’s B.V.

The Wageningen Food & Biobased Research institute has developed a Bayesian model for quality
prediction of soft fruit, specifically strawberries, based on a variety of input data. The model was
developed in the Netica environment and requires the Netica library to be executed. Integration of the
model in the existing workflow at Driscoll’s B.V. requires it to be encapsulated by additional software,
such as an interface to the user, interfaces to available data sources, and to the model itself. This
document describes the requirements and proposed architecture for deploying the model at Driscoll’s
B.V., and while requirements and architecture are described in a generic fashion, this report is
primarily targeted at stakeholders within Driscoll’s B.V.

 6 | Confidential Wageningen Food & Biobased Research-Report 1879

1 Introduction

The GreenCHAINge project is carried out in consortium with various companies, and supported by the
Dutch Ministry of Economic Affairs. It comprises several sub-projects, each focussing on a different
fruit or vegetable product. The work reported in this document resides under the sub-project
dedicated to soft fruit, and is carried out by Wageningen Food & Biobased Research (WFBR) in
collaboration with Driscoll’s B.V.

It has been one of the goals of the ‘soft fruit’ sub-project (named DP3) to develop a model capable of
predicting quality in soft fruit. Research and development of the model was conducted independently
at Wageningen Research. The model allows to predict the expected quality of soft fruit down the
chain, given a set of input parameters and known conditions for storage and transportation.

The model itself - a Bayesian Belief Network (see Annex 4 for a glance at its content) - was developed
in Netica, a dedicated software environment, and requires the Netica library to be executed and
generate quality predictions1. In order to deploy this model in a corporate environment, additional
software development and integration efforts are required. This primarily concerns establishing an
interface to the user (GUI), and providing interfaces to available data sources, and to the model itself.
These activities are not in the scope of the GreenCHAINge project, but transfer of required knowledge
and requirements to achieve deployment of the model is part of this project2.

This document describes requirements and accompanying (proposed) architecture for the software to
be developed, realising an in-company quality prediction system based on the developed Bayesian
Belief Network. The proposed approach aims at a user-friendly interaction between the model and
dedicated company personnel, and at integration with existing business processes at the client
company. While requirements and architecture are described in a generic fashion, this report is
primarily targeted at stakeholders within the client company.

This report starts by discussing the front end, including guidelines for a user interface (Chapter 2).
The architecture of the back end that encapsulates the actual model is discussed in Chapter 3. Finally,
Chapter 4 discusses requirements on different areas of this back end in more detail. When combined,
the proposed front and back end make up the complete quality prediction system for soft fruit.

1 Although running the model in Netica is the most obvious choice requiring least effort, the model could be ported – using a

tool developed by Wageningen Research - to other implementations of Bayesian Networks, such as Huggin or Weka. Each
of these alternatives has its own advantages and disadvantages, mainly concerning computational performance, memory
use, and license cost.

2 Detailed low-level requirements concerning which data at the client company should be connected to which model input
parameters, and exactly how these data should be pre-processed before feeding to the model, are not part of this
document. In order to formulate such requirements, more detailed insights are needed regarding the client’s software
environment and properties of available data. During implementation Wageningen Research could play an advisory role in
this process.

 Confidential Wageningen Food & Biobased Research-Report 1879 | 7

2 Front end – User Interface

The purpose of the BBN is to predict the quality of specific batches of fruit based on various
parameters. Practical application of the model requires a software environment. This software
environment would need to consists of a user interface, that allows a user to interact with the model
(entering parameters and visualising the resulting predictions). It would also need to consist of a back
end that implements the model, and facilitates a connection between the model and the user
interface, as well as to available sources of data (if not all data is provided via the user interface). In
this chapter, the user interface is discussed. In the next chapter, the software requirements for the
back end are discussed.

The user interacts with the user interface in various ways. We distinguish the following use-cases:

• The user would like to make a quality prediction for a specific batch of fruit using the model.
• The user would like to run ‘what-if’ scenario’s with the model, to explore how parameters and

conditions affect quality, and to optimize these to obtain the desired fruit quality.

Based on these two use cases, we envision a user interface with two dialogs. The first dialog (see
Figure 1 and associated flow-chart in Figure 2) allows the user to enter a batch number and prediction
period (up to 20 days ahead). Based on this information the model predicts quality over time (days),
using data (obtained from databases) associated with the batch number. The second dialog (see
Figure 3 and associated flow-chart in Figure 4) allows the user to define a fictive (or real) scenario
without a batch number, for which the model predicts the quality.

There are several ways to go about implementing the user interface. The proposed interface could be
developed as a standalone (browser) application3, or as an extension to already existing enterprise
software. The latter approach seems preferable from a user perspective, since it enables the user to
access the BBN functionality within an already familiar software environment. Depending on decisions
made during detailed design of the user interfaces, training for users of the interface is required. In all
cases users require understanding of the predicted quality as displayed via the user interface, as well
as of the parameters they are supposed to enter via the interface.

Of course there are alternative approaches to interfacing with a user, such as providing the model with
input via a database (interfaced to the user elsewhere) containing all required data, and collecting the
resulting predictions from the model in the same (or another) database.

3 Facilitating display on PC, tablet or smart-phones

 8 | Confidential Wageningen Food & Biobased Research-Report 1879

Figure 1 Mock-up of a screen where the user is allowed to make a quality prediction for a specific
batch of fruit using the model. The batch number is used to look up associated data from a database,
such as harvest day, region, cultivar. These data are provided as input to the model for generating a
quality prediction. In these mock-ups, the resulting prediction is visualised as a bar graph with
predicted BRIX and T2-condition values over a period of 14 days. The mock-up also shows how the
user can reveal more detailed information from the BRIX graph by a mouse click on a specific date. A
pop-up window shows the predicted likelihood (percentage) that the BRIX values of this batch reside
in BRIX class 5-7 or 7-15 on this date.

 Confidential Wageningen Food & Biobased Research-Report 1879 | 9

Batch Data

User selects
Batch

User selects
Prediction Period

[1,14] days
(P)

Get Data for Batch
Get Weather

Data for Period
P

Quality Data

Pre-
processed
Weather

Data

Run BBN

Predicted
Quality Data
for Period P

Present Quality
Predictions to user

in GUI

End

Pre-process
Weather Data

Weather Data
Service

Figure 2 Flow chart associated to the user interface in Figure 1. The user (top) selects a prediction
period and batch number. The batch number is used to look up quality data associated to the batch in
a database, and passed to the model as input. Weather data regarding the period entered by the user
is obtained from a weather service database. Weather data is pre-processed and stored, and then
passed to the model as input. Resulting predictions (output) from the model are stored and visualized
in the user interface.

 10 | Confidential Wageningen Food & Biobased Research-Report 1879

Figure 3 Mock-up of a screen in which the user is enabled to run ‘what-if’ scenario’s with the model,
to explore conditions that result in the desired fruit quality. The screen shows how the user is allowed
to construct various scenarios by entering different values for a set of input parameters (e.g. latitude,
variety, plant type and growing system), and generate predictions from these.

 Confidential Wageningen Food & Biobased Research-Report 1879 | 11

User selects
Prediction Period

[1,14] days
(P)

Get Weather
Data for Period

P

Pre-
processed
Weather

Data

Run BBN

Predicted
Quality Data
for Period P

Present Quality
Predictions to user

in GUI

End

Pre-process
Weather Data

Weather Data
Service

User changes input
data (Variety,

Latitude, Growing
System,...)

Selected
Quality Data
input by the

user

Figure 4 Flow chart associated to the user interface in Figure 3. The user (top) selects a prediction
period and can freely play around with various input parameters to compose a scenario. The prediction
period data is used to look up detailed weather data from a weather service, which is pre-processed
and stored before being fed to the model as input. The parameters comprising the scenario are also
passed as input to the model. Resulting predictions (output) from the model are stored and visualized
in the user interface.

 12 | Confidential Wageningen Food & Biobased Research-Report 1879

3 Back end – Architecture

In this chapter we discuss the back end that implements the model, and the software architecture
around it (see Figure 5), that allows the model to connect to the user interface, as well as to available
sources of data (if not all data is provided via the user interface). The back end allows the model to be
provided with parameters obtained from the user interface, allows the model to be executed, and
hands over the resulting predictions back to the user interface for display (for example via the API
specification in Annex 3). We will assume that a user interface as described in Chapter 2 (or a similar
interface) is in place. Whether this user interface is implemented as an extension to existing enterprise
software, or as a standalone (browser) application, does not matter for the back end architecture.

The heart of the back end consists of two parts:

1. The BBN.dne file that contains information on both structure and content (values resulting
from training) of the Bayesian Belief Network developed for this project4.

2. The Netica API environment5 that uses the BBN.dne file to generate predictions on fruit
quality. A special Netica license is required for this.

Surrounding this heart, software needs to be developed for turning the model into a web service and
allow it to run on a server. This facilitates multiple instances of the model to be approached from user
interfaces on different remote computers at the same time (e.g. different users) via a web API. This
approach also brings the freedom to run the web service - with the model inside it - on premise, or
out-source it in a private cloud.

Data
Weather/

Quality

Bayesian
Belief

Network

3rd party
Weather services

Back end
(web service)

Netica
API

Stand-alone (browser)
application

OR
Enterprise software

extension

Front end

Figure 5 Visual representation of the proposed architecture.

4 The intellectual property of this model will reside under a shared license between Wageningen Research and Driscoll’s B.V.
5 https://www.norsys.com/netica_api.html ; Versions of the Netica API are available for most popular platforms, including

Microsoft Windows 95/98/Me/NT4/2000/XP/Vista, Linux, Sun Sparc, Mac (68000, PPC: OS 6 to 9 & OS-X), Silicon Graphics

and DOS.

https://www.norsys.com/netica_api.html

 Confidential Wageningen Food & Biobased Research-Report 1879 | 13

The web service can fulfil several other purposes as well:
1. It can handle interfacing to existing sources of data to be used as input to the model, in case

not all data is entered via the user interface.
2. It can take care of pre-processing of data, for instance calculating the sum over multiple

values, before feeding it to the model.
3. It can store resulting predictions of the model in a database for later recall and/or push them

to the user interface for directly presenting them to the user.

Wageningen Food & Biobased Research has in fact developed web services and interfaces for similar
situations. License costs to both Wageningen Food & Biobased Research and the provider of the Netica
library would be incurred in this case.

Alternative architectures are of course possible, but seem less suitable for the intended use of the
model. For the remaining chapters we will therefor assume the proposed architecture is used.

 14 | Confidential Wageningen Food & Biobased Research-Report 1879

4 Back end - Requirements

4.1 User interaction

The back end should facilitate a connection from and to a user interface (see Chapter 2). The back end
will receive data from the user interface and return the resulting model predictions to it. In Annex 3,
an example of an API definition is provided for communication between front end and back end.
Alternatively, or additionally, a database approach to input and output for the model could be
considered. This is recommended as an addition in case quality predictions generated in the past need
to be recalled. These alternatives pose a different requirement to the back end, namely a connection
for writing model predictions to these destinations.

4.2 Model interaction

The back end should interact with the model via the Netica API, for which detailed documentation and
license information can be found online6. After the model file (BBN.dne) is loaded into Netica, it
requires initialisation (Netica command) before quality predictions can be generated. After each
prediction the model state should be reset (purging content from previous predictions). Depending on
the specified workflow for the user interface, the model can be invoked in two ways:

1. The model can automatically recalculate predicted fruit quality triggered by changes of its
input parameters.

2. All input parameters can be changed freely (without recalculations), and a separate command
can trigger recalculation of the predicted fruit quality using all current parameters.

In order to run the model, specific input parameters will have to be communicated to the model via
the Netica API. Annex 1 (Table 1) provides an overview of the input parameters the model is capable
of accepting. For instance, climate conditions (e.g. weather or greenhouse climate) during cultivation
of the product should be provided to the model for making a quality prediction. Many variables,
including climate conditions, require a form of pre-processing to turn them into suitable input for the
model (for details see Annex 2). Pre-processing typically consists of calculating an average, minimum
or maximum value over a certain period of time or growing degree hours. Pre-processing should also
address the units of measurement for each variable, and provide conversion if required. It is critical
that pre-processing in the back end takes place according to the same algorithms involved when the
model was trained (see Annex 2). These algorithms are developed by Wageningen Research and are
available on request.

Depending on decisions made in the design process of the final user interface, the model’s output
variables need to be interpreted for visualisation in the user interface (e.g. a graph or pop-up with
details on likelihood of a prediction). This interpretation can take place in the back end, or in the user
interface. Annex 1 (Table 2) provides a description of the model’s raw output variables, for this
purpose.

4.3 Data sources

When data sources with relevant input for the model exist (e.g. weather, grower, supply chain, and
quality data) it seems preferable to access these directly, rather than require the user to enter these
data via the user interface. Data in these sources can be dynamic in the following ways:

1. Automatically updated by a measurement system, for instance in case of weather data

6 https://www.norsys.com/netica_api.html

https://www.norsys.com/netica_api.html

 Confidential Wageningen Food & Biobased Research-Report 1879 | 15

2. Automatically updated by other business processes, for instance data/measurements from the
supply chain

3. Manually updated, by providing data in an Excel sheet or by entering data in a user interface,
for instance by quality officers who use an app to provide their quality assessment for a
specific batch of fruit.

If databases for these types of data do not exist yet, it is recommended to create them.

Weather data is probably most easily pulled from an external weather data web service (not applicable
in greenhouse conditions). It is recommended that a copy of relevant weather data is stored in a client
owned database, to be able to recall weather parameters if required. Raw weather data obtained this
way requires pre-processing to obtain a calculated parameter for a specific period, before it can be fed
to the model (see also Section 4.2). This should take place in the back end on raw weather data that
is already stored in a local database. The result can be used with the model to generate quality
predictions.

In certain cases – i.e. when the product has not yet been harvested - quality predictions can be made
beyond the (presumed) harvest date, using a mixture of measured (up to current date) and predicted
climate data (e.g. weather service forecast from current date). Pre-processing should take place on
these mixed data, to be able to provide the model with one climate parameter for the time span of the
requested prediction. When time passes and measured data becomes available where predicted data
was previously used, these can be pre-processed and used to update model predictions, hereby
improving prediction accuracy.

4.4 Model learning and improvements

Up to this point the model has been described as a static part within the architecture. When used
statically, the model in its current state - as supplied by Wageningen Research - is already capable of
predicting quality of strawberries. However, it can be improved via a learning mechanism. Presenting
new data to the model allows it to learn. These data may be new batches of the given varieties from
the given countries. In this case a growing variation of measured values will be obtained – both in the
field of quality variables and climate conditions. Hence, when these data will be fed to the BBN, the
predictions will be more accurate and cover a broader domain (for example, more extreme climate
conditions). Netica supports this learning functionality – new data can be loaded into the model using
the library of the Bayesian network tool. In this case, re-validation of the model is not necessary, but
may be interesting as to find out how much performance was gained in the learning process. If
learning is desired, the back end web service should support this, by facilitating means to supply a file
with training data to Netica. Netica learning requires training data - new cases with quality data - to
be provided in a specific file format7.

More extensive changes, such as extending the model for use with a different fruit (e.g. raspberry), or
incorporating new types of data, requires more scientific efforts. Such changes require the model to be
re-validated, especially for the concerned quality variables, as the changes and new data affect the
performance. Reassurance is needed that performance on different quality variables is still sufficiently
high. At the end of this scientific process a new version of the model would be obtained that can
replace a previous version of the model in the back end of the client.

7 The training data file should be formatted as a tab-delimited text (ASCII) file. The file requires a header opening at the

first line with // ~->[CASE-1]->~, followed by column names for each input and output variable. Following the header,
each column can contain multiple values (in rows) for a variable. A * symbol can be used in place of missing values. More
details (e.g. how to invoke learning) are described on the Netica website: https://www.norsys.com/netica_api.html.

https://www.norsys.com/netica_api.html

 16 | Confidential Wageningen Food & Biobased Research-Report 1879

5 Conclusion

A model for predicting quality in soft fruit, specifically strawberries, has been developed. In the
previous chapters various aspects of a front end and back end for this model have been discussed.
This information combined allows to take the next step in deploying the model at the client’s company.
To summarize, the following resources are required to incorporate the model in daily workflows:

• Netica or other BBN implementation to run the model
• The model itself (BBN.dne)
• Databases that supply input parameters for the model (environmental conditions, growing

conditions)
• Database that collects model output (predictions)
• Front end software containing user interface
• Back end software to invoke model, connect to data sources, perform pre-processing, connect

to user interface
• IT support / maintenance for front and back end as well as data sources
• Personnel trained to operate the model via the user interface

Some of these resources are readily available, others - namely front and back end, and (some)
databases - need to be developed. This requires involvement of a software developer, and possibly a
UI designer, and software tester. Detailed decisions about connecting model input parameters to
available data at the client company are best made with Wageningen Research involved, as are
detailed decisions about interpretation and visualisation of the model output in the user interface.

 Confidential Wageningen Food & Biobased Research-Report 1879 | 17

 Model input and output
 parameters

 Model input parameters.
Type Parameters Indication of pre-processing

Dynamic growing parameters

 Temperature, rel. humidity, vapour-pressure deficit (VPD) Maximum/minimum/average during day/night/both

for several periods of growing degree hours. VPD

needs to be calculated, based on temperature and

humidity.

 Temperature difference (between min and max) For several periods of growing degree hours

 Radiation, CO2 Average for several periods of growing degree hours

Static growing parameters

 Growing system, growing medium, plant density -

 Variety -

 Grower -

 Planting type -

 Water source -

 Latitude -

Time related parameters

 Duration of growth Production date minus planting date

 Planting date -

 Day number, week number, year (all of production date) Date to day/week number conversion

 Average time between picking and cooling Average difference

Quantity parameters

 (Corrected) Week production Week production including culls

 Uncorrected week production Week production excluding culls

 Cumulative week production Cumulating

 Model output parameters.
Parameter

T2-condition

T2-appearance

PFQ-score

PFQ-score (calculated)

BRIX

Dry bruising

Wet bruising

Rot

Not fully coloured

Cracked skin

Overripe

Severity score

Severity score (calculated)

Visibility score (8th day)

Percentage Rot Fruit

Percentage Wet Fruit

Percentage Medium Defects

Percentage NTL (none to light)

 18 | Confidential Wageningen Food & Biobased Research-Report 1879

 Pre-processing of climate data

Author: dr. S.K. Schnabel
Affiliation: Mathematical and Statistical Methods, Wageningen Plant Research

Goal
The goal is to summarize the climate related variables (temperature, relative humidity, radiation, CO2
level, water damp deficit, difference between the lowest night temperature and the highest day
temperature) into mean/minimum/maximum values during daytime/night/whole day for different
periods of (cumulative) growing degree hours (GDHs) preceding the harvest date: 500 GDHs, 2000
GDHs, 5000 GDHs, 7500 GDHs, 10000 GDHs, 12500 GHDs, 15000 GDHs.

Remark
Some of these steps might be obsolete or different depending on the software implementation. We did
some data cleaning, including making sure that data from different sources follow the same date/time
format, etc.

Additional data
In addition to the sensor data from the locations we also needed the daily sunrise/sunset moment of
the respective location (or the closest place available).

Calculations

A. Temperature/Relative Humidity/Radiation/CO2:

1. Determine per batch based on the production date (= harvest date) the GDHs
respective period.
2. Determine which climate measurements are falling into this period.
3. Use the sunrise/sunset variable to sort out which measurements are taken during
daytime and which are during night.
4. Summarize these subsets of the data into the mean (all climate variables above),
minimum and maximum (only temperature and relative humidity) for the given period and
part of the day.

For one batch this will result in 7*3*3 variables for temperature/relative humidity alone: we
used seven GDHs periods, we summarize into mean/minimum/maximum and for
daytime/night/whole day.
For radiation/CO2 we limited the creation of variables to only the mean for the whole day,
resulting in seven variables per batch each.

B. Vapour pressure deficit (VPD)/Water Damp Deficit (WDD):

As a first step for every time point with data for temperature and relative humidity we
calculated the vapour pressure deficit/water damp deficit as:

Xsat=exp(23.4795-(3990.56/(T+233.833)))/162
X=Xsat*RH/100
WDD = Xsat –X

With T the temperature in °C and relative humidity RH measured in g(water)/kg(air) (formula
from an internal communication).
Then we proceeded with the same steps as mentioned for temperature above resulting in as
mentioned for temperature above, resulting in 7*3*3 variables per batch.

 Confidential Wageningen Food & Biobased Research-Report 1879 | 19

C. Temperature difference (night/day):

1. Determine per batch based on the production date the respective period.
2. Determine per day that falls into the respective GDHs period the difference between
the maximum day temperature and the minimum night temperature.
3. Summarize these subsets of the data into the mean for the given period.

This will result in seven variables per batch for temperature difference.

Alternative approaches are also possible, e.g. creating all variables for all dates in a time period of
production and then assign to the respective batches.

 20 | Confidential Wageningen Food & Biobased Research-Report 1879

 Example API

The following API definition gives two possible definitions for API methods needed for communication
between front end (GUI) and back end (running the BBN). Additional API methods will be needed to
request the climate variables from the database containing weather measurements and predictions,
and from the database containing data for each batch.

GET predictQuality

Request body; a JSON map with the following key values:
• startPeriod: Date – optional - The first date of the period for which predictions are

requested. If no start date is specified, the current date is used.
• period: Int – optional - The length of the period in number of days (between 1 and 14

days). If no period length is specified, the maximum length (14 days) will be used.
• batch: String – optional - A string identifying the batch for which the quality prediction is

requested. The batch number is used to get the growing conditions (e.g. latitude, variety,...)
that should be used as input to the model.

• inputVariables: [variableID : Any] – optional - If no batch is specified, input variables
such as latitude and variety can be defined and set using the API. The format should be a
map containing the IDs of the variables as keys and the value of the variable. The format of
the value can be either a Float, Double, Integer, or String (as stateID).

• outputVariables: [variableID] – optional - An array containing the variable identifiers for
which the predicted value is requested. If no output variables are specified, the predictions for
all output variables will be returned.

Result:
A map with the following structure:

• day – The day number (after the start date).
• outputValues – A map with the following structure:

o The identifier of the variable as key with the following map as value:
 value – The prediction when the value is a number. This is the average of

the normal distribution fitted onto the probability distribution.
 states - A map with the state identifier as key and the likelihood (a

percentage) as value.

Each day in the specified period will have an entry containing its predicted values.

Example:
Request Body:
{
 "startPeriod": "2018-12-04",
 "period": 3,
 "batch": "XX=XXXX=XX",
 "outputVariables": ["BRIX", "T2Condition"]
}
Result:
{
 "day": 1,
 "outputValues": {
 "BRIX": {
 "value": 5.8,
 "states": {
 "5-7": 70,
 "7-15": 30
 }
 },
 "T2_Condition": {
 "value": 40,
 "states": {
 "0-60": 70,
 "60-80": 30
 }

 Confidential Wageningen Food & Biobased Research-Report 1879 | 21

 }
 },
 "day": 2,
 "outputValue": {
 "BRIX": {
 "value": 5.8,
 "states": {
 "5-7": 70,
 "7-15": 30
 }
 },
 "T2_Condition": {
 "value": 30,
 "states": {
 "0-60": 93,
 "60-80": 7
 }
 }
 },
 ...
}

GET inputVariables

Returns a list of variables containing the identifier of the variable, its human-readable name, and the
possible states of that variable. The request does not accept parameters, it just returns a list of the
input variables.
Result:
The result consists of an array of a map for each input variable. The map has the following keys:

• id: String – The identifier of the variable.
• name: String – The human readable name of the variable.
• unit: String - The unit of the variable if applicable.
• states: [String] – An array containing the identifiers of the different states possible for the

variable.

Example:
[

 {

 “id”: “Latitude”,

 “name”: “Latitude”,

 “unit”: “degrees north”,

 “states”: [“35-36”,”36-50”,”50-51.55”,”51.55-51.6”]

 },

{

 “id”: “Variety”,

 “name”: “Variety”,

 “states”: [“Lusa”,”Scarlet”]

 },

...

]

 22 | Confidential Wageningen Food & Biobased Research-Report 1879

 A glance at the model

The complete BBN model is too large and complex to visualize easily, but a small portion of it is
displayed in the figure below. It shows various nodes and the interconnections (arrows) between
them. It shows how input parameters determine the value (state) of some nodes, for instance the
parameter for week production named WeekProd, and how the state of some nodes is determined by
their connections to others. It also shows several output nodes containing the resulting prediction, for
instance the one predicting the BRIX value (bottom left).

The mission of Wageningen U niv ersity and Research is “ To ex plore the potential of
nature to improv e the quality of life” . U nder the banner Wageningen U niv ersity &
Research, Wageningen U niv ersity and the specialised research institutes of the
:aJeninJen 5eVeaUFK)oXndation KaYe Moined IoUFeV in FontUiEXtinJ to findinJ
solutions to important questions in the domain of healthy food and liv ing
env ironment. With its roughly 3 0 branches, 5 ,000 employees and 10,000 students,
Wageningen U niv ersity & Research is one of the leading organisations in its domain.
The unique Wageningen approach lies in its integrated approach to issues and the
FollaEoUation EetZeen diϑeUent diVFiSlineV�

Wageningen Food & Biobased Research
Bornse Weilanden 9
6708 WG Wageningen
The Netherlands
www.wur.eu/wfbr
E info.wfbr@wur.nl

Report 1879

Requirements for implementation

A quality prediction system for soft fruit based on a Bayesian Belief Network

dr. R.J. Vlek, dr. D.J.M. Willems, dr. H. Rijgersberg C O NFI DENTI ALConfidential

	Contents
	Definitions
	Summary
	1 Introduction
	2 Front end – User Interface
	3 Back end – Architecture
	4 Back end - Requirements
	4.1 User interaction
	4.2 Model interaction
	4.3 Data sources
	4.4 Model learning and improvements

	5 Conclusion

