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A B S T R A C T   

Frequent biomass measurement is a key activity for optimal perennial ryegrass (Lolium perenne) management in 
intensive forage-based dairy operations. Due to the necessary high-frequency (i.e., weekly or monthly) pasture 
monitoring and continuous trend of larger dairy farms, such activity is perceived as an operational bottleneck. 
Consequently, substantial effort is directed to the development of accurate and automated technological solu-
tions for biomass assessment. The popularization of unmanned aerial vehicles (UAVs) combined with multi-
spectral cameras should allow for an optimal observational system able to deploy machine learning algorithms 
for near real-time biomass dry-matter (DM) mapping. For successful operation, these systems should deliver 
radiometrically accurate orthomosaics and robust models able to generalize across different periods. Never-
theless, the accuracy of radiometric calibration and generalization ability of these models is seldom evaluated. 
Also, such pipelines should require minimum processing power and allow for fast deployment. This study has 
established a two-year experiment comparing reflectance measurements between a handheld spectrometer and a 
commercial multispectral UAV camera. Different algorithms based on regression-tree architecture were con-
trasted regarding accuracy, speed, and model size. Model performances were validated, providing error-metrics 
for baseline accuracy and temporal validation. The results have shown that the standard procedure for multi-
spectral imagery radiometric calibration is sub-optimal, requiring further post-processing and presenting low 
correlation with handheld measurements across spectral bands and dates. Nevertheless, after post-calibration, 
the use of spectral imagery has presented better baseline error than the point-based sensors, respectively dis-
playing an average of 397.3 and 464.2 kg DM/ha when employed alongside the best performing algorithm (i.e., 
Cubist). When trained and validated across different years, model performance was largely reduced and deemed 
unfit for operational purposes. The Cubist/M5 family of algorithms have exhibited advantageous characteristics 
such as compact model structure, allowing for a higher level of model interpretability, while displaying a smaller 
size and faster deployment than the Random Forest, Boosted, and Bagged Regression Trees algorithms.   

1. Introduction 

Efficient pasture production and utilization are often the most crit-
ical components in a dairy operation (Wilkinson et al., 2020), directly 
impacting the overall profitability and carbon footprint associated with 
dairy systems. The recent widespread adoption of Unmanned Aerial Ve-
hicles (UAVs) as a precision agriculture tool offers unprecedented op-
portunities for pasture biomass assessment (Michez et al., 2019). Such 
activity, which has historically been a bottleneck on forage-based dairy 
systems, can now conveniently capitalize on Remote Sensing (RS) tech-
niques and semi-autonomous aerial platforms for biomass assessment. 

In the past decades, substantial progress has been achieved in 
determining key biophysical attributes of pastures (e.g., biomass) 
through the analysis of spectral data, particularly through the use of 
field spectrometers (Mutanga and Skidmore, 2004). Although demon-
strating the potential of in-situ reflectance analysis, handheld in-
struments do not address the necessary automated data collection 
sought in an operational farm scenario. This challenge, however, can be 
surpassed through the use of UAVs and imaging systems (i.e., multi-
spectral cameras) which are becoming ubiquitous in precision agricul-
ture practices (Aasen et al., 2018). 

Ideally, UAVs can fulfill an observational gap, providing the 
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necessary spatial, spectral and temporal resolution for farm operations, 
translating the accuracy achieved by handheld point-based methods to 
farm-scale aerial mapping. The difference in measured reflectance 
values due to data acquisition scale (i.e., from ground to low-level flight) 
has been shown negligible (Burkart et al., 2014), yet subject to sensor 
quality and design as well as environmental illumination conditions and 
appropriate radiometric calibration workflow (Olsson et al., 2021; 
Suomalainen et al., 2021). Such equivalence between spectral data 
collected at canopy and low-level flight (i.e., below 120 m height) in-
dicates the transferability of methods, providing an effective tool for 
measurement and monitoring of pasture attributes. 

Currently, the most popular UAV imaging systems (i.e., multi-camera 
arrays as per Aasen et al. (2018)) are limited to a small number of 
spectral bands and often rely on the use of Vegetation Indices (VIs) as 
enhanced predictors. Many of these indices, however, are prone to 
saturation, displaying an asymptotic response to high levels of biomass 
(Tucker, 1977), limiting model performance. Yet, saturation and poor 
model fit have been shown to be reduced when using a small subset of 
VIs and non-parametric regression models (Togeiro de Alckmin et al., 
2021), further improving the potential and competitive advantage of 
UAVs imaging systems. 

The technical widespread adoption of UAV imaging systems is 
limited due to data size and processing power requirements, leading to 
onerous scalability to large areas, as well as an absent automated 
pipeline from raw data to end-products (e.g., biomass maps). These 
constraints require predictive algorithms which can be quickly deployed 
for the generation of end-products from radiometrically corrected 
orthomosaics, either in a cloud-based system or on a personal computer. 
Both of these research-gaps (i.e., radiometrically accurate orthomosaics 
and scalable robust predictive models) are still challenging and are 
under active research (Pranga et al., 2021; Suomalainen et al., 2021). 

From a sensing perspective, spectral data quality is subject to sensor 
design, data collection protocol and image processing from raw data to 
radiometrically corrected orthomosaics (Poncet et al., 2019). Recently, 
distinct studies have reported systematic measurement errors intro-
duced by sensor design (Barker et al., 2020; Mamaghani and Salvaggio, 
2019) and imagery processing workflow (Suomalainen et al., 2021). 
Consequently, despite a substantial demand, end-user products such as 
quantitative biophysical maps, which are dependent on radiometric 
accuracy, are not (yet) in place. Inevitably, to ensure a quantitative 
solution, imaging systems must provide accurate radiometric data for 
reliable deployment of predictive models (Fawcett and Anderson, 2019). 

From a modeling perspective, the use of interpretable models, rather 
than black-boxes, should allow end-users to assess a key management 
parameter (e.g., biomass) while simultaneously indicating the drivers 
for that estimation (e.g., chlorophyll concentration or leaf-area index) 
through links between spectral predictors and biophysical inputs 
(Roscher et al., 2020). Such type of information may be employed to-
wards model diagnosis, establishing under which conditions (e.g., LAI 
⩾5) models tend to under perform, and in which conditions specific 
spectral predictors are of greater importance. In summary, the deploy-
ment of prediction algorithms should ideally conjugate fast computa-
tion, strong generalization ability and interpretability. 

However, there is usually a trade-off between (i) accuracy, (ii) model 
complexity and (iii) interpretability (Carvalho et al., 2019). For such 
reason, rule-based models such as decision trees, are an interesting 
compromise between these three factors due to its interpretability and 
accuracy provided by its non-parametric nature. Given the broadband 
spectral features measured in the context of field spectroscopy (Baret 
and Guyot, 1991), the fit between the canopy spectral-response (in the 
visible to near-infrared range) and biomass should not display a complex 
pattern, thus not requiring black-box models for optimal fit. 

Furthermore, the prediction performances of machine learning 
models are typically communicated via k-fold cross-validation esti-
mates, possibly providing an optimistic assessment. A more far-reaching 
evaluation of performance explores spatial and temporal assessments 

(Meyer et al., 2018), providing insights to end-users about performance 
under different circumstances. 

In summary, the triad of sensing, modelling and validation poses 
additive challenges in the understanding of achievable benefits of this 
technology in the context of pasture biomass estimation. For such 
reason, the objectives of this study are to (i) assess the correlation be-
tween reflectance measurements of a commercially available UAV 
multispectral camera at low-level flight and reference ground-based 
measurements of perennial ryegrass (Lolium perenne), (ii) assess the 
difference in accuracy, size and speed when employing gradually more 
complex tree-based regression algorithms and (iii) validate model per-
formance through different strategies: (a) k-fold cross-validation, and 
(b) validation in different years. The findings from this study provide a 
foundation for the assessment of UAV remote sensing for precision 
pasture management applications as well as a strong framework for 
biomass monitoring. 

2. Methods 

2.1. Data collection 

The experimental field trial was undertaken at the Tasmanian Dairy 
Research Facility in Elliot (TAS, Australia — 41◦45′7.3′′ S, 145◦46′21.8′′

E). The experimental layout was an array of 30 rainfed perennial 
ryegrass plots (dimensions of 2.0 × 7.5 m, with 0.35 m border at each 
side of the plot’s longitudinal axis, Fig. 1 - (IV)), arranged as two rows by 
15 columns. Plots were grouped in three main blocks (10 plots per block, 
Fig. 1 - (IV)). 

Prior to spring (second half of August) and prior to installing the 
experiment, phosphorus (P), potassium (K) and sulfur (S) were broad-
cast throughout the trial area according to soil analysis to ensure that the 
lack of macronutrients would not impede plant growth. Within the 
blocks, plots were randomly allocated a different nitrogen (N) fertilizing 
regime (0, 25, 50, 75 or 100 kg N/ha). The fertilizer was manually 
applied (i.e., top-dressing) on each plot at the start of each regrowth 
cycle, having urea as N source. 

For the 2017 data collection campaign, each block was split in two 
different growth intervals: long and short or approximately 30 and 15 
days, respectively. For the 2018 data collection campaign, each block 
had a single growth period (Fig. 1 - (III)). 

All plots in the 2018 campaign were initially mown and fertilized in 
October 21st, 2018. In the next two subsequent data collection cam-
paigns, a single block was harvested and mown (at 21 and 27 days 
regrowth, respectively). In the third and final campaign, all three blocks 
were harvested. Consequently, for the final data collection campaign, 
there were three different growth periods (7, 14 and 34 days) (Fig. 1 - 
(III)). 

Data collection campaigns consisted of three subsequent stages: 
aerial multispectral imagery acquisition, (2) proximal hyperspectral 
measurements, and (3) biomass determination. Spectral data was 
collected by a field spectrometer (ASD Handheld 2 or ASD FieldSpec 4, 
CO, Boulder, USA, in 2017 and 2018, respectively) and a UAV mounted 
multispectral camera (Parrot Sequoia - ̂Ile-de-France, France, Fig. 1 - (II) 
Instruments). Four collection campaigns were performed under clear- 
sky conditions and around solar noon: November 28th, 2017 and the 
11th, 17th, and 24th, November of 2018 (Table 1). 

For the proximal measurements, no fore-optics were attached to the 
field spectrometers. Both instruments displayed an equivalent field of 
view (FOV - 25◦), and a 1 nm bandwidth across the 400–1100 nm 
spectral range. Total time spent to obtain all spectral measurements (180 
data points) ranged from 1.5 to 2 hours per field campaign with mini-
mum warm-up of 30 minutes. The instrument setup follows the manu-
facturer’s recommendation: 30 scans for spectrum averaging, 60 scans 
for dark current and white reference. In total, 720 sample-sites were 
measured (i.e., 180 per data collection campaign - Table 1). 

Within each plot, six sample-sites were randomly chosen (Fig. 1 - (I) 
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Data Collection Workflow). Before the start of the data collection 
campaign, markers were placed next to each sample-site to serve as vi-
sual references for the orthomosaics. Each sample-site was measured 
five times by the handheld spectrometers. The final sample-site spectral 
value was the average value of these five measurements. The sequence 
of measured plots was randomized to minimize any systematic effect of 
solar position across the plots during data collection. In addition, after 
finishing measuring the samples of each plot, a spectral measurement of 
the white reference (Spectralon®) was recorded. 

The intention of this procedure was twofold: (a) to monitor the sta-
bility of the instrument and (b) detect any possible change in atmo-
spheric conditions. The instrument was recalibrated (against the white 
reference) after seven minutes of continuous usage or whenever the 
white-reference measurement deviated from 100% reflectance, which-
ever occurred first. Proximal spectral measurements were taken from 
approximately one-meter height, thus, yielding a circular footprint 
equal to 0.15 m2 (or 0.44 m diameter). Given the rigorous protocol, 
these spectral measurements are considered the benchmark to be 
compared against the multispectral camera. 

Pasture biomass was mechanically defoliated above a residual height 
of 50 mm from the 0.15 m2 spectrometer footprint. Harvested material 
was dried for a minimum of 48 h at 60 ◦C in a forced-air oven 

immediately following each harvest. Samples dry-matter (DM) were 
weighed using a digital scale (MassCal, 30 kg ±0.5 g). In total, 480 
biomass-samples were collected (Table 1). 

2.1.1. Mission planning 
UAV flights path ensured a minimal of 75% overlap between images, 

using a survey-grid flight path, flight-height of 35 m and speed of 3 m/s, 
with a north-south flight-track orientation, and a camera time-lapse 
interval set to one second. Flights were performed within ±1 h of 
solar-noon, following the procedure detailed in Fallet and Domenzain 
(2018). 

Prior to the flight, the multispectral camera settings were optimized 
through the camera’s web interface, using the spectral calibration target 
provided by the manufacturer. The total area surveyed was 0.1 ha (25 ×
40 m), and flight characteristics ensured a ground-sampling distance 
below 5 cm. Flight duration was less than five minutes. No warm-up 
period was used to avoid thermal instability and dark current effects. 

Five aluminum-made reference panels with dimensions 0.4 × 0.4 m, 
were laid out next to the experimental area. These were painted using 
different gray level coatings from off-the-shelf Mankiewicz Nextel® 
(Hamburg, Germany) Suede Coatings 3101 (Anthracite, Stone Gray, 
Light Gray, Pearl and Cream) with average reflectance values from 6% 
to 65% (across the 400–900 nm range). The reflectance values of these 
panels were measured in laboratory using a ASD FieldSpec 4, and a 
contact probe. Measurements were taken across the panels. 

Ground control points were acquired for each plot, using a RTK GNSS 
(Reach RS - Emlid, Saint-Petersburg, Russia). Yet, provided the large 
number of images in a flat small area, the photogrammetric (SfM) pro-
cess was sufficient for accurate corregistration of bands and spatial ac-
curacy without the use of ground control points (Pricope et al., 2019). 

2.1.2. Imagery radiometric correction 
Imagery was processed in Agisoft Metashape Pro (Agisoft LLC, St. 

Petersburg, Russia) following the guidelines provided in Fraser and 
Congalton (2018) and Agisoft (2020). The raw imagery was 

Fig. 1. General Overview of the Experimental Design. (I) Data Collection Workflow, (II) Instruments, (III) Experimental Layout for the 2017 and 2018 campaigns, 
and (IV) Plot Dimensions. In (III), the numbers within each block correspond to the number of growth days since last mowing event. 

Table 1 
Description of data collected in distinct campaigns.  

Dates Biomass 
Samples (n) 

Spectral 
Samples (n) 

Blocks 
Harvested 

Sample 
Regrowth (days) 

Nov-28- 
2017 

180 180 B1, B2, B3 15 and 30 

Nov-11- 
2018 

60 180 B1 21 

Nov-17- 
2018 

60 180 B2 27 

Nov-24- 
2018 

180 180 B1, B2, B3 7, 14, 34  
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radiometrically corrected using both the irradiance sensor and the 
known reflectance targets (i.e., the panel provided by the manufacturer 
plus the five reference panels - Method “B” of Poncet et al. (2019), yet 
employing additional reference panels rather than the single Parrot 
panel). The orthomosaic was generated using the MosaicMode as 
blending mode and pixel size to 5 cm. This method is referred to as the 
Pre-Calibration method. 

A second and subsequent correction was performed against the 
output of the Pre-Calibration method. This Post-Calibration method con-
sisted in applying a linear function to the orthomosaic (i.e., empirical 
line method). This linear function was derived from the average 
reflectance of the known-reflectance targets as displayed in the ortho-
mosaic and their (true) reflectance measured value in laboratory. 
Differently from the classic empirical line method, the linear function 
was applied after the proprietary Agisoft calibration was performed (i.e., 
modified Method “B” Poncet et al. (2019)) so to include the corrections 
derived from the irradiance sensor. 

2.2. Data analysis 

Data analysis was performed in RStudio/R (versions 1.2.5 and 4.0.2, 
respectively). For reproducibility purposes, data analysis operations are 
introduced by the corresponding package::function format (i.e., 
typewriter typeface and accompanied by the double colon operator, i.e., 
the scope resolution operator). 

2.3. Reference observations 

To ensure comparability between modelling techniques, a post hoc 
analysis, the Dunn’s Multiple Comparison Test (FSA::dunnTest, 
Dinno (2015)) was performed over the biomass observations, having 
Year as the comparison factor. Additionally, a Principal Component 
Analysis (PCA) was performed over the spectral benchmark responses (i. 
e., those collected using the handheld spectrometer) and Year was used 
as the attribute for comparison (factoextra::fviz_pca_ind). Both 
analyses serve the purpose of testing whether biomass distributions and 
spectral observations from different years (i.e., 2017 and 2018) were 
comparable. 

Spectral Accuracy Assessment - Hyperspectral data was convolved 
(hsdar:: spectralResampling) to the same specifications as the 
commercial multispectral sensor (i.e., Parrot Sequoia). This camera has 
four dedicated imaging sensors, corresponding to the green (B1, 
530–570 nm), red (B2, 640–680 nm), red-edge (B3, 730–740 nm) and 
near-infrared (B4, 770–810 nm), an irradiance meter compatible with 
the imaging sensors, and provides a spectral calibration target of known- 
reflectance target for camera optimization and radiometric correction. 
The spectral resolution and the spectral responsivity were extracted 
from the manufacturer’s technical sheet using WebPlotDigitizer 
(Rohantgi, 2020), as it is not made officially available yet disclosed by 
the manufacturer’s technical team. 

For the multispectral imagery, polygon layers were generated to 
match the location of all handheld point measurements through a 
parametric script. The accuracy of the polygon layers was checked 
against the markers (visible in the imagery) and its known location 
within the plot. These polygon layers were then used to extract 
(raster::extract) the spectral data related to the sensor footprint 
(n = 720, Table 1). 

2.4. Biomass modelling 

Five different regression algorithms were employed: Classification 
and Regression Trees (CART) (Breiman et al., 2017), Cubist (Quinlan, 
1992), Bagged Trees (Breiman, 1994), Boosted Trees (Schapire, 1990), 
and Random Forest (Breiman, 2001). These models share the same 
decision-rule architecture, employing strategies that are able to pro-
gressively map more complex fits, while employing techniques for 

balancing both model bias and variance. However, these techniques 
render an increasing level of complexity to each model, reducing the 
interpretability (Fig. 2 - (III) Modelling). 

Both CART and Cubist are more interpretable than the remaining 
models. CART develops a regression-tree in which its end-leaf is 
computed as the mean of the observations selected through the rules 
associated with that branch. With a slight modification, Cubist computes 
linear-functions rather than averages; thus, each end-leaf is a piecewise 
linear model (Fig. 2 - Modelling. Decision Trees and Cubist), what 
should considerably increase its computational speed. 

Both bagging and boosting are ensemble techniques (Opitz and 
Maclin, 1999). The concept of boosting refers to the weighted sum of a 
one-level regression tree (i.e., one predictor regression tree, also known 
as a “weak learner”) to create an sequential and additive model, further 
improving (i.e., boosting) model performance (i.e., “strong learner”). 
The concept of bagging (bootstrap aggregating, also refers to a meta- 
learner concept), explore the use of many models generated through 
resampling with replacement (i.e., bootstrap), the prediction is weighted 
average (i.e., aggregate) of all models (Fig. 2 - Modelling. Bagging). The 
bagging prediction is, thus, an average results of large number models. 

The model performance was evaluated using a nonparametric pair-
wise multiple comparisons post hoc test: Dunn’s test (Dinno, 2015). This 
analysis provides an insight into whether different algorithms have 
performed significantly different from others, while grouping algo-
rithms of similar performance. 

Similarly to the regression trees, the Cubist algorithm may also 
employ a technique similar to boosting named “committees,” by which 
several model trees are created in sequence. Also, a smoothing technique 
named as “instances” may be employed to further improve model per-
formance (Quinlan, 1993). The trade-off between these additional 
techniques and interpretability can be taken into account when opting 
for a final model. The predictors employed for modelling were: 
Normalized Difference Vegetation Index (NDVI), Green Normalized Differ-
ence Vegetation Index (GNDVI), Transformed Vegetation Index (TVI), 
Normalized Difference Red Edge Index (NDRE), Leaf Chlorophyl l Index 
(LCI) and Modified Chlorophyll Absorption Ratio Index (MCARI), gener-
ated as per the equations and references available in 
RStoolbox :: spectralIndices. 

All the indices employed (Table 2) are compatible with the bands 
available in the multispectral camera and commonly employed for 
precision agriculture purposes (Franzini et al., 2019; Lu et al., 2020). 
Additionally, these indices were employed in Togeiro de Alckmin et al. 
(2020), allowing for model performance comparison between studies. 

2.5. Validation strategies 

Validation strategies allow for insights in model performance under 
different circumstances, evaluating the applicability of boundary con-
ditions of the models training stage. Two different validation strategies 
were employed to measure performance across different scenarios: (i) 
repeated k-fold cross-validation (Stone, 1974); and (ii) temporal- 
validation (Fig. 2 - (II) Validation Strategies). 

3. Results 

3.1. Reference observations 

Biomass observations - For the complete DM data set, observations 
ranged from 132 to 4025 kg DM/ha, with an average value of 1356 and 
median 1125 kg DM/ha (Fig. 3 - I). 

Both years presented similar ranges, however, Dunn’s test indicated 
that distribution between both years were not comparable. The biomass 
values observed in 2017 presented a broader distribution of quartiles 
(mean = 1646, maximum = 3762, minimum = 401 kg DM/ha), in 
comparison the 2018 observations (mean = 1182, maximum = 4025, 
minimum = 132 kg DM/ha), as seen in Fig. 3 - I. 
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Spectral observations - The results of the PCA were able to sum-
marize 99.2% of total variance of the original data set in the two first 
Principal Components (Biplot. Fig. 3 - II). To a large extent, the PCA 
indicates that the spectral observations were dissimilar: observations for 
both years are clearly projected in different areas of the biplot, as shown 
in (Fig. 3 - II). As a reduced feature space, the PCA biplot indicated the 
2017 data displayed a wider spectral variability than 2018, encircling 

observations of the first year within both Principal Components. 

3.2. Imagery radiometric correction 

Pre-Calibration - Following the radiometric calibration performed 
exclusively through Agisoft Photoscan (i.e., Method “B”), the analysis of 
the radiometric response for reference targets showed a non-linear 
response in all four bands (Fig. 4 - Pre-Calibration). Particularly, a 
complete saturation of the Green and Red bands (B1 and B2, respec-
tively) was evident past the range of 20–30% reflectance. In addition, 
the multispectral camera did not consistently under- or overestimate the 
reflectance values, displaying no systematic error across dates (Fig. 4 - 
Pre-Calibration). Such is made explicit through the comparison of 1:1 
line between spectrometer and multispectral camera. In different dates 
and for different bands, the camera has displayed slopes which were 
either smaller or larger than one. 

Post-Calibration - The reflectance values were further corrected 
through a linear regression against the reference targets. Due to the 
saturation displayed for both the Green and Red Bands, only the darker 
targets (i.g. Dark-Anthracite, Stone-Gray and Light-Gray) were 
employed as data points in the empirical line calibration(Fig. 4). For the 
remaining bands, all targets were used in the linear regression (Fig. 4). 

Without taking into account the errors due to saturation of the Green 
and Red Bands (B1 and B2, respectively), the average RMSE for all bands 
across all dates was equal to 5.89% and 1.28% for pre and post- 
calibration, respectively (Fig. 4). 

Radiometric Assessment - An assessment between the convolved 
handheld spectrometer data (i.e., the benchmark instrument) and the 
corrected orthomosaic (n = 720) is presented in the Table 3. For all dates 
and bands the determination coefficient was below 0.90. In absolute 
values, the range of root mean square error (RMSE) was equal to 1%– 
19%. The normalized root mean square error (NRMSE), express the RMSE 
value as a fraction of the range of reflectance values for each band. The 
range of reflectance measurements per date (maximum, mean and 
minimum) are presented in Fig. 5. 

Particularly for the date of November 28th 2017, the difference be-
tween handheld measurements and spectral imagery is found to be the 
largest. The date with best agreement between sensors is found in 17th 
November 2017. Across the bands, the red-edge (B3) is the band with 
lowest correlation between both sensors, with maximum and minimum 
determination coefficients equal to 0.53 and 0.16, respectively. The 
highest level of error is found for the near-infrared (B4), reaching 19% in 
the 28th November, 2017. 

Overall, all bands displayed a poor performance, presenting a 

Fig. 2. General Overview of Sensing, Modelling and Validation. In (I) Ground Truthing, the sensor footprint is harvested, dried and weighed. In (II), both validation 
strategies are presented: (A) Temporal Validation, where a single date is set as validation set and (B) k-fold cross-validation, where no temporal constraint is imposed 
to the training and validation sets. In (III) Modeling, the structure of all modeling techniques is presented graphically. 

Table 2 
Vegetation indices employed for biomass modeling. Formula and Authorship are 
presented.  

Index Formula Author (Year) 

NDVI (B4 − B2)/(B4 + B2) Rouse et al. (1973) 
GNDVI (B4 − B1)/(B4 + B1) Gitelson et al. (1996) 
NDRE (B4 − B3)/(B4 + B3) Haas et al. (1975) 
TVI ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(B4 − B2)/(B4 + B2) + 0.5)
√ Gitelson and Merzlyak (1994) 

LCI (B4 − B3)/(B4 + B2) Zebarth et al. (2002) 
MCARI (B3 − B2) − (B3 − B1)*(B3/B2) Daughtry (2000)  

Fig. 3. Biomass and Spectral Observations - (I) Boxplot biomass values per year 
and (II) PCA biplot of ASD spectral measurements (benchmarh for spectral 
measurements). In (I) a Dunn’s Test was performed and the observations were 
considered different (groups a and b) when aggregated by the factor extitYear. 
In (II), the ellipses represents 90% of the corresponding observations for the 
2017 (red circles) and 2018 (blue triangles). 
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Fig. 4. Scatterplot of Multispectral Camera and Handheld Sensor Measurements of Reference Panels Spectral. Pre-Calibration refers to the radiometric calibration as 
per the manufacturer’s guidelines and extra reference panels (a variation of Method “B” described in Poncet et al. (2019)). Post Calibration refers to the sequential 
calibration employing a procedure analogous to the empirical line method. 

Table 3 
Correlation and Error Metrics between handheld sensor and post-calibrated multispectral camera.   

R2 RMSE NRMSE  

28 Nov 11 Nov 17 Nov 24 Nov 28 Nov 11 Nov 17 Nov 24 Nov 28 Nov 11 Nov 17 Nov 24 Nov 

550 0.19 0.30 0.75 0.59 0.03 0.03 0.01 0.01 20.4 20.7 13.2 21.8 
660 0.64 0.48 0.86 0.63 0.03 0.03 0.01 0.01 23.0 21.7 11.2 15.3 
735 0.16 0.23 0.51 0.53 0.14 0.03 0.02 0.03 105.7 18.8 13.5 19.1 
790 0.28 0.56 0.80 0.78 0.19 0.04 0.04 0.06 71.9 18.5 18.2 16.5  

Fig. 5. Average, Maximum and Minimum Spectral Response per Date and per Instrument. ASD Fieldspec spectral response (left-side, blue). Parrot Sequoia spectral 
response (right-side, red). The coefficient of determination (R2), RMSE and NRMSE, between both instrument is presented in Table 3. 
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median NRMSE equal to 19% Fig. 5. 

3.3. Biomass modelling 

The results of k-fold cross validation are presented in Fig. 6. Dunn’s 
Test were used to identify which specific means are significantly 
different from the others (i.e., different groups). 

Multispectral camera - for the multispectral camera dataset (Fig. 6 - 
I), within the five different models, both Cubist and Random-Forest have 
the lowest and equivalent error distributions as per the results of Dunn’s 
test (Fig. 6 - Group b) with an average RMSE of 397 kg DM/ha. The three 
remaining regression algorithms, bagged-trees, boosted trees and CART 
(Group a), presented a similar average RMSE of 441.5, 446.4 and 463.4 
kg DM/ha, respectively. 

Both CART, bagged trees and random forest have presented a bi- 
modal distribution. Conversely, both Cubist and Boosted Trees dis-
played an unimodal distribution of errors. The difference between 
Groups a and b is equivalent to 53.3 kg DM/ha. 

Handheld sensor - when the handheld spectral data was employed 
(Fig. 6 - II), the best performing regression algorithm was Cubist (464.2 
kg DM/ha), followed by Random-Forest (519.5 kg DM/ha), Bagged 
Trees (540.9 kg DM/ha), Boosted Trees (572.8 kg DM/ha) and CART 
(613 kg DM/ha). 

As per the Dunn’s Test results, only Cubist (Group b) do not share a 
similar error-distribution with any other algorithm. Both Random Forest 
(Group c) and Bagged Trees are equivalent. Similarly, both Bagged Trees 
and Boosted Tree (Group d) are equivalent as well as Boosted Trees and 
CART (Group a). 

Overall, for the best performing regression algorithm was Cubist and 
the differences in average RMSE for both sensors was equal to 66.9 kg 
DM/ha. Also, the multispectral camera presented lower levels of error 
than the handheld spectral sensor. 

Model Size and Prediction Time - When deployed for prediction, 
using a off-the-shelf laptop (Dell Precision 3530 - Windows 10) the 
fastest regression algorithm was CART and the slowest was Cubist 
(Table 4), taking nearly 11 times more time to fulfill the same task. 
When compared against the second slowest algorithm (i.e., Random- 
Forest), CART was 4 times faster. In terms of model size, the smallest 

model was Cubist (98.5 kB) and the largest Random-Forest (5706.9 kB). 
Model Tuning and Selection - All models hyperparameters were 

tuned based on the set of parameters for the minimal RMSE. In the best 
performing model (i.e., Cubist) both the number of ‘committees’ and 
‘instances’ were optimized. For the multispectral camera, minimal 
RMSE was found using nine instances and ten committees (Fig. 7 - I). 
However, without the use of a committee or instances, the mean RMSE 
was equal to 428.6 kg DM/ha, a decrease of 31.3 kg DM/ha. 

The same optimal tuning characteristics were found for the handheld 

Fig. 6. Root Mean Square Error (RMSE) distribution for k-fold cross validation: (I) error-distribution for using a handheld spectrometer; (II) error-distribution using 
the multispectral camera data. A Dunn’s test (”Group”) was applied for each corresponding sensing instrument to determine whether error distributions were 
equivalent. Models size and processing times are presented in Table 4. 

Table 4 
Model sizes and Prediction Time (based on the raster file from November 28th, 
2018).   

CART Cubist Bagged Trees Boosted Trees Random Forest 

Time (s) 5.0 55.1 5.8 8.0 18.1 
Size (Kb) 1033.6 98.5 4244.2 1746.7 5706.9  

Fig. 7. Hyperparameter tuning for the Cubist regression algorithm. Sub-figures 
I and II corresponding to the model tuning using the handheld and the multi-
spectral camera, respectively. 
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measurements (i.e., nine instances and ten committees). However, 
without the use of committees or instances the decrease in performance 
is smaller (12.3 kg DM/ha, Fig. 7 - II). 

The use of committees had a larger effect on model performance than 
instances, indicating that sequential models (i.e., boosting techniques) 
focusing in poorly predicted observations were beneficial for model 
performance. 

Model Interpretability - A Cubist regression-tree was generated, as 
an example of model interpretability using the its M5 version (RWeka:: 
M5P), for both the handheld and multispectral camera data sets (Fig. 8). 
For the purpose of brevity, only the Figure concerning the multispectral 
camera is presented, while the handheld is provided as an annex. The 
performance of the algorithm was equivalent to the values found within 
the tuning of hyperparameters (i.e., lowest values of committees and 
instances). For both sensors the number of splits were small, the first 
rule-based split used on the MCARI and the worst performing group was 
that associated with a low response in MCARI. Particularly for the 
handheld sensor, additional splits were based on NDVI and NDRE. 
Noticeably, for all linear models (LMs), all coefficient values are high, 
possibly indicating overfit within each model. 

Temporal Validation - In the temporal validation strategy, Cubist 
was the only model assessed as all other algorithms had been found sub- 
optimal through the repeated k-fold cross-validation, thus, rendering an 
extensive analysis futile. 

Regardless of the sensor, predictions were always highly biased. The 
prediction results of 2017 were underestimated, while the results for 
2018 were over-estimated (Fig. 9). When the validation set was the 
2017 year, the RMSE was equal to 1087 and 797 kg DM/ha, for the 
handheld and multispectral camera, respectively. Conversely, for the 
year of 2018 the RMSE was equal to 1258 and 1432 kg DM/ha, 
respectively. 

Regarding the stability of the error-metrics, the handheld sensors 
were shown to be more consistent, with a difference between years 
equals to 171 kg DM/ha, whereas the multispectral camera has a wider 
variation between both years (635 kg DM/ha). 

Interestingly, across sensors, the bias introduced by either under or 
overestimation inflated RMSE values, generating results that have 
comparatively higher RMSE and higher coefficient of determination. 
This is noticeable through the visual inspection of more compact or 
elongated data point-clouds which, although having higher RMSE, 
presented a higher coefficient of determination (R2 - Fig. 9). 

To allow a better comparison of model performance, a third statis-
tical error-metric was added: the Concordance Correlation Coefficient 
(CCC) (Lin, 1989). Through it, we can infer that none of these models 
has an optimal performance (Fig. 9). All models presented a CCC lower 
than 0.5. Under this metric, however, the model associated with the 
inputs of the multispectral camera displayed a stable metric (CCC ≈
0.45–0.48), while not displaying an accentuated level of saturation at 
high biomass-levels. 

4. Discussion 

This research aimed to assess the (i) equivalence between spectral 
data acquired at top-of-the-canopy and low-level flight, (ii) evaluate the 
impact of increasingly complex tree-based models, and (iii) estimate 
model performance under a repeated k-fold cross-validation and a 
temporal validation. Our results have shown that a thorough examina-
tion of the radiometric quality of the multispectral camera is necessary. 
Firstly, the camera has clearly indicated a response-saturation both in 
the Green and Red bands at levels above 20–30% reflectance (Fig. 4). 
Consequently, the camera is limited to spectral observations of vegeta-
tion, for which most targets are within such range (i.e., reflectance 
below 20–30%). In summary, the reflectance measurements provided by 
the multispectral camera were not compatible to the reference handheld 
instrument. 

Additionally, although our experimental design did not aim to 
measure it, the analysis (Fig. 4) indicates a lack of dynamic range of the 
multispectral camera in comparison to the handheld sensor (Fig. 5). This 
can be seen in wider amplitude of values present in the near-infrared 
band (B4) of the handheld sensor in comparison to the camera. 
Furthermore, the red-edge band (B3) has shown little correlation with 
the measurements made by the handheld sensor (Table 3). Finally, as the 
median NRMSE (19%), shows that the multispectral camera has a poor 
performance in its operational range when assessed against the hand-
held instruments. 

Although the Post-Calibration method was able to correct the panel 
spectral responses, reducing the average RMSE to a fifth of its initial 
value, the spectral observations across the orthomosaic presented a poor 
correlation between the handheld measurements and the multispectral 
imagery. The source of this error cannot be elucidated based on the 
information available, but is likely to be related to several shortcomings 
of the multispectral camera: (a) absence of a open-source radiometric 
correction pipeline, where researchers could check, adjust and improve 
the workflow; (b) the irradiance sensor has a single and fixed field-of- 
view, which may not be sufficient to provide suitable tilt-correction as 
discussed in Suomalainen et al. (2018). As is, the radiometric correction 
workflow based solely on the irradiance meter and reflectance-target 
provided by the manufacturer is most likely not sufficient for accurate 
quantitative purposes, as thoroughly discussed in Suomalainen et al. 
(2021) and Olsson et al. (2021). 

Regarding model interpretability and performance (Carvalho et al., 
2019), the Cubist algorithm has shown to be a satisfactory option, out-
performing other methods evaluated. Although its speed has not been 
satisfactory, this can be attributed to its implementation in the R-lan-
guage. The original versions of the algorithm were coded in the C++

language, resulting in a fast implementation which should outperform 
other models. A useful proxy for its speed is model-size, in which Cubist 
was the smallest. Additionally, as seen in the Fig. 8, these models are far 
from complex and are a small number of linear models embedded in a 

Fig. 8. Cubist Regression (multispectral camera and k-fold cross validation strategy). Terminal leaves present both the number of observation and coefficient of 
determination for its respective linear model (LM). 
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CART algorithm, consequently, its deployment should be optimal in an 
operational scenario and comparable to standard linear models. 
Furthermore, its minimal size may also prove itself advantageous as an 
embedded technology in low-cost, low-processing power equipment 
such as handheld devices or embedded in agricultural machinery. 

An additional desirable characteristic of these models is its inter-
pretability. From Fig. 8, one can identify terminal-leaves with poor 
performance (e.g., observations with low MCARI responses) and further 
investigate the reasons for such. In comparison with black-box models, 
Cubist has great potential as a simple technique and able to provide 
insights about the inner-workings of the model. 

The idea of boosting through committees, may prove itself worth-
while, if the subsequent-level boosted tree can be examined, analogous 
to the analysis of subsequent components or latent structures in Principal 
Component Analysis and Partial Least Squares Regression, respectively. 
The linear models within Cubist may benefit from feature selection and 
regularization (such as Lasso, Ridge Regression and Elastic Nets), as high 
values of model coefficients indicated overfitting or multicollinearity, 
which would further improve the model’s interpretability. These rec-
ommendations can be implement in future studies and result in a more 
interpretable models, which are consequently more likely to be under-
stood and adopted by the larger precision agriculture community. 

The ability to accurately predict a different year was also evaluated, 
showing poor results. This is most likely due to the non-overlapping 
characteristics of both biomass and spectral observations, as presented 
in Fig. 3. Such results, indicate the necessity of a wide training set of 
observations both spectrally and in the biomass domains. Also, due to 
the large bias, both in under and over-estimation of errors, the analysis 
and deployment of the models presented should be carefully evaluated 
and most likely avoided. This, however, shows the shortcomings of 
reporting achievable accuracies in short-term studies. 

Regarding the performance of instruments, the post-calibrated mul-
tispectral camera has presented a better performance than the handheld 
sensor. Several factors may have contributed to such: (i) the non-optimal 
directional response function (DRF) associated with both the ASD 
Handheld and FieldSpec, which is non-homogeneous across the sensors 
footprint (Mac Arthur et al., 2007), (ii) the averaging of the bidirectional 
reflectance distribution function introduced by Agisoft blending 
mode; (iii) the smaller data collection interval from the multispectral 
camera, consequently controlling for differences in illumination 

geometry. 
It is important to stress that these results were possible due to the 

introduction of additional known reference panels and further calibra-
tion of reflectance values. In this sense, given the low level of correlation 
found in the pre-calibration stage, it seems reasonable to advocate for the 
use of additional reference targets whenever radiometric accuracy is a 
relevant factor. 

The absence of a open workflow for radiometric correction, from 
digital number to radiance and reflectance measurements is a significant 
handicap. As a consequence, end-user are left without any form of data 
quality-assurance or trust-worthiness of the end-products. Conse-
quently, laborious procedures, such as those described in Poncet et al. 
(2019), are required to ameliorate radiometric accuracy in spite that 
these measurements and procedures are embedded in the manufac-
turer’s pipeline. 

The absence of consistent correlation levels with handheld mea-
surements, if introduced by poor camera performance, will significantly 
decrease the potential of promising techniques for biomass assessment, 
such as time-series analysis. Since our data-collection campaigns, a new 
irradiance-meter has been introduced by manufacturers of multi-camera 
arrays, in a similar design as the one introduced in Suomalainen et al. 
(2018), which may have improved the radiometric quality of mosaics 
processed through the commercial pipeline. Provided that the irradiance 
meter is continuously collecting data during the mission, it may prove 
itself worthwhile to provide “irradiance” map, so possible measure-
ments error may be corrected or the illumination conditions may be 
examined a posteriori, similarly to our white-reference scans in our 
handheld data-collection protocol. 

Yet, the saturation of the Green and Red Bands, may have been 
intentional, allowing a higher radiometric sensitivity (i.e.,wider-dy-
namic range) for reflectance levels which are commonly found for 
vegetation (i.e., from 0% to 25% reflectance). However, the absence of 
control of the dynamic-range prevents the full assertion of this claim, 
while also limiting the use as a scientific-instrument for target with a 
wide range of values in the Red and Green Bands. The shortcoming of 
this sensor have also been discussed in Franzini et al. (2019) and more 
broadly in Suomalainen et al. (2021). 

The performance of spectral models when assessed through the 
temporal-validation strategy was likely handicapped by the distinct 
training sets, as shown in PCA biplot (Fig. 3 - (II)). Alternatively, the k- 

Fig. 9. Predictions for temporal validation strategy. Scatterplots on the left and right side, present the validation results for the handheld and camera data, 
respectively. Accordingly, the top and bottow row refer to the years used as validation sets, either 2017 or 2018, respectively. 
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fold cross-validation illustrates achievable accuracies and similar results 
as previous studies (Karunaratne et al., 2019; Pranga et al., 2021; 
Togeiro de Alckmin et al., 2020) as well as improvement from the results 
presented in Michez et al. (2019), where the authors employed the same 
multispectral camera for pasture biomass assessement. This RMSE range 
(300 –400 kg DM per ha) is admissible for rotational grazing where pre- 
grazing biomass range from 1,500 –2,500 kg DM per ha (Roca-Fernan-
dez et al., 2011). 

Finally, data collection employing a multispectral camera and UAV 
were considerably faster (i.e., five minutes) than the use of a handheld 
sensor (one and half to two hours), providing a clear evidence of the 
usefulness of unmanned platforms for data collection. 

5. Conclusion 

This study successfully compared matching spectral measurements 
of observations (n = 720), using both a multispectral camera and 
handheld sensors. Correlation levels between UAV multispectral camera 
and handheld sensors was not satisfactory, presenting low-levels of 
correlation (R2). Yet, after radiometric post-correction, model perfor-
mances (n = 480, biomass observations) were similar, with an average 
RMSE ranging from approximately 400 to 460 kg DM/ha for camera and 
handheld sensors in, respectively. Given that the time necessary for data 
collection using UAV is a fraction than that reliant in manual data- 
collection, this result indicates a large potential for the use of multi-
spectral cameras at low-level flight for perennial ryegrass biomass 
estimation. 

The workflow for radiometric correction of the multispectral imag-
ery was significantly improved by the method described in Poncet et al. 
(2019), reducing average RMSE from 5.89% to 1.28%, clearly indicating 
the need for an improved automated pipeline, making use of additional 
reference targets. The current proprietary closed pipeline prevents 
further improvement and, as is, the radiometric quality of orthomosaics 
solely employing the commercial method is of limited value. Although 
this particular camera has not shown a satisfactory process, superior 
methods have been proposed (Suomalainen et al., 2021), allowing for a 
direct radiometric calibration suitable for an operational farm scenario. 

This study has also shown that a simple type of regression-trees al-
gorithm, namely Cubist, has great potential both to minimize the model- 
prediction error as well as increase model interpretability when 
compared to other tree-based algorithms. If implemented in a faster 
processing language (such as C++), it may also prove itself ideal for fast 
deployment. Further improvements were discussed to enhance its 
interpretability, although the algorithm output is significant improve-
ment more interpretable than black-box models such as the popular 
Random-Forest algorithm. 

Finally, this study has shown model performance inconsistencies 
when using a temporal-validation strategy, indicating the need for 
caution evaluation of results based in short-term studies. 

Our results and analysis suggest the need for improvements in the 
radiometric correction workflow for multispectral cameras, both 
through a higher-level of user ability to set up camera parameters as well 
as control of the current proprietary pipeline. As is, the lengthy period 
required for an improved radiometric-calibration of the multispectral 
imagery offsets the benefits of a short data collection period, as also 
remarked in De Rosa et al. (2021). 

Nevertheless, the necessary improvements have already been 
examined (Suomalainen et al., 2021) and are surpassable. If imple-
mented, as our results show, there is strong reason to believe that UAV 
multispectral cameras can replicate the accuracy achieved by field 
spectrometers in previous studies, while automating data-collection. 
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