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Preface 

The mandate of ISRIC - World Soil Information is to collect, increase and disseminate, worldwide 
knowledge of the land, its soils in particular, and to support their sustainable use and management. 
Mapping land degradation and assessment of its impact on functions of land and soi l has been a foca l 
activity of ISRIC over the years. 

This study is a further elaboration, towards implementation of modell ing at the global scale, of the 
studies done by ISRIC at National level on quantification of the impact of soil erosion on crop production 
for the United Nations Environment Programme (UNEP) in collaboration with the National Institute of 
Public Health and Environment (PBU of the Netherlands, that were published between 1997 and 2001 . 
It links with other ISRIC studies done in collaboration with PBL and other, international, partners. In this 
report methods are explored for quantification of soil quality decline in modelled scenarios of socio­
economic or environmental changes. It focusses on methods for quantification of the soil erosion by 
water, its projected impact on soil properties and on crop production at broad scales (1 and 10 km 
resolution of elevation data). A review and evaluation of regional to global soil erosion models was made 
first. Subsequently, and two models were tested for consistency of their output at two data resolutions . 
A possible pathway for implementation of the method, integrating more quantified modelling of soil 
erosion in the global modelling framework of IMAGE, Integrated Model to Assess the Global 
Environment, is provided. 

Improved quantification of land degradation and its impact on land functions, among which productivity 
and water conservation, will contribute to a better understanding of human impact on the environment 
and may contribute to formulation of possible pathways towards a more sustainable society . 

..,,---.., 

Dr. ir. Hein van Holsteijn 
Director a.i. ISRIC-World Soil Information 
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Summary 

This document discusses soil information needs in support of studies of environmental, societal and 
economic sustainability at an increasingly fine spatial resolution . First, the need for appropriately scaled, 
consistent and quality assessed soil information in support of studies of food productivity, soil and water 
management, soil carbon dynamics and greenhouse gas emissions, and the reduction or avoidance of 
land degradation are discussed. Soil variables considered most critical for current and likely future 
model-based assessments are identified and new, cost-effective measurement methods that may 
reduce the need for conventional laboratory methods are evaluated. Following on from this, the status 
and prospects for improving the accuracy of soil property maps and tabular information at increasingly 
detailed scales (finer resolution) for the world is addressed. Finally, the scope for collecting large 
amounts of 'site specific' and 'project specific' soil (survey) information, possibly through crowd­
sourcing, and consistently storing, screening and analysing such data are discussed within the context 
of ISRIC's emerging Global Sot! Information Factltfies (GSIF), together with the institutional implications. 
GSIF-related activities are currently being embedded in global initiatives such as the FAO-led Global Sot! 
Partnership, GlobalSot!Map.net, the /CSU World Data System, and the Global Earth Observation System 
of Systems (GEOSS) that promote participatory approaches to data sharing. 

ISRIC Report 2013/06 7 
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1 Project description 

1.1 Rationale 

The PBL (Netherlands Environmental Assessment Agency, Bilthoven) project "Ecosystem services and 
biodiversity" (project nr S550028) assesses, among others, trends in ecosystem services, how these 
are affected by human interference and how policy interventions could influence trends . Particularly 
important are the socio-economic consequences of changes in ecosystem service delivery (Figure 1). 

The awareness of the urgency to assess these consequences has increased as a result of a number of 
high-key initiatives and studies such as the Mi llennium Ecosystem Assessment (MEA, 2005) and the 
TEEB (The Economics of Ecosystems and Biodiversity) project (TEEB, 2008). 

drivers 

socia l 
economic 
environmenta l 

Figure I 

abiotic factors 
cl imate 
soil structure 

------+ product 
use 
human well-being 

ecosystem services 

I 

Relations between global change, land use/ management change and ecosystem services . 

., '' 
Soils have a key role in the delivery of several ecosystem services, including carbon storage, water 
regulation, soil fertility and food production (Figure 2). To account for this role in assessments of future 
changes in ecosystem services, impacts of land use change and other biotic, abiotic and socio­
economic factors on soil structure, nutrient availability, hydrology and soil organic matter dynamics 
should be included in the models used for such assessments. Also , the feedbacks of changes in soil 
characteristics into crop production and other ecosystem services should be included. This would not 
only c()ncern on-site effects, but also effects on the wider environment, such as river basin hydrology or 
conversion of natural areas into agriculture as a consequence of degradation of agricultural areas 
elsewhere. So fa r, however, these aspects are hardly considered in global change models. This also 
applies to the current PBL modelling suite, i.e. IMAGE (Integrated modelling of global environmental 
change) (Bouwman et al., 2006; Alkemade et al. , 2009) and the LP J (Lund-Potsdam-Jena) 
vegetation/ crop modelling suite (Sitch et al. , 2003; Bondeau et al. , 2007) that has been linked with 
IMAGE 1

. 

1 Some aspects related to feedback between greenhouse gas emissions, climate change and carbon storage are 
accounted for in IMAGE. 

ISRIC Report 2013/ 06 9 



climate, slope soil type and structure land use/land cover 
- management 

!~ / 
decay input 

erosion ~ ~ 1/ 
soil organic matter ~ + 

carbon sequestrati;- j+ ~ 
water infiltration 
and retention 

soil fertility 

pollination + pest control \ 
/ water regulation 

food production 
Figure2 

Relations between land use, soil processes and ecosystem services. 

About a decade ago, a first attempt was made to model water-induced soil erosion in IMAGE, in a joint 
project with ISRIC (Batjes, 1996; Hootsman et al. , 2001). A simple methodology was used for 
assessing the risk of water erosion at the global level. That semi-quantitative methodology might be 
improved by: 
- Using improved quality and higher resolution soil data; 

Dynamic modelling of soil changes; .,., 
- Quantitative modelling of the impact of soi l changes on ecosystem services, including crop 

production , water regulation and carbon sequestration. 
- Improved modelling of processes and impacts of soil degradation will be of great va lue for the 

Ecosystem Services project as well as for other PBL initiatives. 

1.2 Goals 

; In this project we assessed the possibilities for improving erosion modelling in the IMAGE framework. 
We focused on water-induced soil erosion and its impacts on crop production. After that, it would be 
possible to address other important forms of soil degradation may also be considered. The latter could 
include, for example, compaction , salinization, nutrient depletion and wind erosion. 

1.3 Study set-up 

A literature review was made to identify and evaluate all erosion risk assessment models that have been 
previously used at national scale or broader. Models that seemed to yield a significant improvement 
relative to the erosion model currently used in the IMAGE framework were evaluated more carefully and 
in a more quantitative manner. Also, the possibi lities for simulating feedbacks with crop production and 
coupling degradation with the supply of ecosystem services were evaluated. Finally, practical 
recommendations were given for the improvement of degradation risk modelling within the PBL 
integrated assessment methodologies. 
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2 Model review 

2.1 Introduction 

In th is chapter, we present an inventory of erosion models that have been applied at the national scale 
or broader. Based on a literature review, we describe the structure, outputs and applications of the 
models and evaluate their adequacy for use within the IMAGE framework. 

The IMAGE framework is an ecological-environmental framework that simulates the consequences of 
human activities worldwide (Bouwman, 2006). It consists of a set of interlinked models to simulate 
factors such as global circulation patterns, economic changes, land allocation and crop growth. 
Currently, the LPJ dynamic global vegetation model is being incorporated in the IMAGE framework to 
replace the existing vegetation and crop growth models. Both the basic LP J model for natural 
vegetation and the LP JmL (Lund-Potsdam-Jena managed Land Dynamic Global Vegetation and Water 
Balance Model) model for managed land are used. 

A model for simulation of soil erosion at the global level , suitable for use in the IMAGE framework, 
should meet the following requirements: 
- Provide quantitative outputs that can be used for simulating changes in carbon stock and the soil 

water holding capacity. 
- Be applicable at the global scale. This restricts the spatial resolution to about 5 arc minutes 

(approx. 10 km) with the current model settings and data availability. 

Four groups of models were assessed: models based on the Universal Soil Loss Equation (USLE) , 
the Pan European Soil Erosion Risk Assessment (PESERA) model, regression-based approaches and 
factd; ~ ring methods. In paragraph 2.2, these groups of models are described and evaluated. Other 
soi l erosion risk models, including LAPSUS (LandscApe Process modell ing at mUlti-dimensions and 
Scales; Schoorl et al., 2002), WEPP (Water Erosion Prediction Project, Gilley et al. , l 988)and LISEM 
(Limburg Soil Erosion Model, De Roo et al., 1996) do not provide possibilities for use at scales larger 
than a catchment because they are event-based models and simulate sediment flow and re­
sedimentation through the landscape. These models require a high resolution, especially for the digital 
elevation model , which is not feasible at larger scales. 

2.2 

2.2.1 

2.2.1.1 

USLE 

Evaluation regional and global erosion models 

USLE-based models 

2.2.1.1. Description 

The Universal Soil Loss Equation (USLE, Wischmeier and Schmidt, 1978) is an empirical model, 
developed by calibrating a conceptual model for soil loss on plot-scale experimental data from the 
United States. The USLE calculates soil loss by water (sheet) erosion as: 

A= R*K*LS *P *C (equation 1) 
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Where 
- A = predicted soil loss (ton ha-1 yr-1 ); 
- R = Rainfall erosivity factor. This is a measurement of the erosive force of rainfall in MJ mm ha-1 

h-1 yr-1 and expresses the mean annual sum of individual storm erosion rates; 
- K = soil erodibility factor, which is a function of soil texture and organic carbon content (t h MJ-1 

mm-1); 
- LS = factor for slope angle and length (dimensionless); 
- P = factor for management practices, including cultivation and soil conservation methods 

(dimensionless), and 
- C = factor for vegetation density and structure (dimensionless). 

USLE was designed to predict long-term average soil losses caused by sheet water erosion. It was 
based on statistical relationships specifically established for croplands in the Eastern US that may not 
apply elsewhere. It works theoretically best for medium-textured soils, slopes of 3-18 %, slope lengths 
<400 feet (122 m) and management consistent with measurement plots. 

SLEMSA 
The Soil Loss Estimation Model for Southern Africa , SLEMSA (Stocking et al. , 1988), is based on a 
combination of factorial scoring methods (Section 2.2.2) and empirical relations with drivers of erosion. 
It was developed primarily for use at the field scale in Zimbabwe, but with possibilities for application at 
large scale in mind, with focus on tropical areas. The model formulation is comparable to that of USLE, 
although the way of combining the inputs is different. While in the USLE all inputs are given the same 
weight, in SLEMSA more weight is given to the crop factor. When estimating erosion risk with SLEMSA, 
first an initial erosion hazard index (lb) is calculated, that combines the rainfall energy (E) and the soil 
erodibility class (F). lb is defined as the erosion hazard for bare soil at a 4.5 % slope of 30m long and 
increases exponentially with increasing rainfall energy and increasing soil erodibility. The final erosion 
hazard index is calculated by multiplying lb with a cover factor (C) and a slope factor (X): 

.., , , Erosion Hazard Index = lb * C * X (Equation 2) 

Inputs for the model at large scale are: 
- Seasonal rainfall energy, which is derived from mean annual rainfal l through an empirical regression 

equations for accumulated and individual rainstorm (Kowal and Kassam, 1976; Stocking et al., 
1988; Lal, 1982; Marx, 1988). 

- Soil type (F-factor). Each soil type-texture combination is classified into a soil erodibility class, 
ranging from 1 to 10. The erodiblility of most (of Zimbabwe's) soils vary with land use and 
management (Elwell, pers comm.). The F-factor can therefore be modified on the basis of several 
factors, such as soil management, internal drainage, lithic contact, abrupt soil textural change, 
and/or the sensitivity to capping. SLEMSA is very sensitive to these modifiers. More details on this 
and the modifiers are found in (van den Berg and Tempel 1995). 

- Vegetation: A crop-specific cover percentage is used to estimate the proportion of rainfall that is 
intercepted by vegetation. It is calculated as a non-linear function of rainfall interception and is 
related to a cover factor that expresses the soil loss ratio relative to bare ground (C). 

- Average slope in % and slope length. This is recalculated into a slope factor (X). 

The Erosion Hazard Index (EHi) is expressed in Erosion Hazard Units on a scale of 0-1000. According to 
Stocking et al. (1988) these should not be interpreted as soil loss in tons per ha. 

12 ISRIC Report 2013/06 



The main differences between SLEMSA and USLE are that in SLEMSA, the management factor (P) of 
USLE is left out, because it was felt that the effect of local conservation practices can be allowed for in 
the slope factors (L or S) within the topography system, or in the erodibility (F) in the soil system. The 
other factors are quantified by methods which are simpler to calculate or require less data. The rain 
erosivity factor (R) in USLE is replaced by a measure of the total annual kinetic energy of the rainfall , 
which is easier to calculate from rainfa ll records (Stocking et al., 1988). In the USLE, the cover factor 
(C) is expressed as a ratio of the soil lost from a vegetated plot to the soil loss of an identical plot under 
clean-tilled, continuous fallow. Average annual values are available for different crop and management 
systems. In SLEMSA, the cover factor is instead defined as the percentage or rainfall intercepted. 
This is exponentially related to the cover percentage (i). The soil erodibility factor based on texture and 
organic carbon content (K in USLE) is replaced by a soil erodibility index (F) in SLEMSA based on soil 
type and texture. The relief factors (LS in USLE and X in SLEMSA) are calculated in a very similar 
manner. 

2.2.1.2 Applications 

The USLE is the most widely used model for predicting water erosion hazard because it is an easy to 
use and transparent model with low data requirements (Sonneveld and Nearing, 2003). On a large 
scale, USLE has been used for assessing spatial patterns of soil erosion in Australia (Lu et al., 2001), 
Europe (Eickhout etal., 2008) and on global scale (Hootsmans etal., 2001; Pham etal., 2001). 
Dependent on the scale of analysis and the data availability, it has been simpl ified or extended. In hill 
slope or plot-scale studies, parameters are derived from measurement-based calibration. At larger 
scale, the parameters are derived from aggregated data. Slope characteristics, for example, are 
derived from large-scale digital elevation models (DEM's) and the K factor is estimated using a 
continental soil map and pedotransfer functions (Hootsmans et al., 2001). The study for Australia 
accounts for the large intra-annual variabil ity of precipitation by calculating erosion per month using 
monthly rainfall and month ly vegetation cover data (Lu et al. , 2001). At national and regional scale, the 
USLE or USLE-based methods have been used for risk assessments in Germany, Spain, Finland, 
Hungary, Belgium, Norway, Europe (Geraedts et al., 2008) and in Kenya, Zimbabwe, Uruguay and 
Ar~e,rni.Q.a (Mantel and Van Engelen, 1999 and Mantel et al., 2000), and Indonesia (Tyrie and Gunawan, 
1999). 

In IMAGE (Bouwman et al., 2006, Hootsmans et al., 2001) a USLE based 0.5o x 0.5o assessment of 
erosion sensitivity is included. The USLE is simplified by aggregating the soil erodibility and slope factor 
into one terrain factor (Section 3.3.1). Erosion risk is translated into categorical output (no/low -
moderate - high - very high). 

The SlEMSA model was developed for Zimbabwe (Stocking and Elwell 1973a; Stocking and Elwell 
1973b; Stocking, Chakela et al. 1988; Elwell 1990; Grohs and Elwell 1993) and was applied to assess 
erosion in Lesotho (Chakela et al., 1988). SLEMSA has been applied in (Southeast) Africa only. In the 
Lesotho case (Chakela et al, 1988), the erosion hazard is reclassified into classes 4 
(high; EHU = 51-100) to 8 (extremely high; EHU > 1000) using an exponential scale. 

2.2.1.3 Quality issues 

Sonneveld and Nearing (2003) investigated the robustness of the USLE using cross-validation 
techniques . Cross-validation of USLE simulations against the original calibration dataset resulted in an 
R2 of 0.57. Model parameters were not very robust; the cross-validation indicated deviations of up to 
15% for the slope (LS) factor and up to 100% for the management (P) factor . When all six input 
parameters are combined by multiplication with equal weights , large errors may be propagated in the 
final outputs. 
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Albaladejo Montoro (1989) compared plot-scale USLE and SLEMSA erosion assessments with measured 
erosion rates. In his study, USLE estimated erosion rates were of the right order of magnitude, but with 
a too low spread of values, while SLEMSA was better in predicting spatial patterns of differences, while 
underestimating the quantity of erosion. Also Stocking et al. (1988) point at the underestimation of 
erosion. This is probably due to the aggregation of slope and rainfall data by using mean values. The 
approach of SLEMSA seems to be applicable for a somewhat wider range of soils than the USLE, and 
also works for slopes up to 20%. 

The global-scale spatial patterns of erosion risk as simulated with the USLE-derived model used in 
IMAGE have been compared with GLASOD, a global, expert-judgement based, assessment on the 
human-induced status of soil erosion and degradation. Visually, the agreement seems to be quite well 
(Hootsmans et al. , 2001). GLASOD represents the actual status of soil degradation (in '80-'90), while the 
global USLE assessment indicates the risk of soil erosion under actual conditions and therefore results 
are not necessarily compared. 

Conceptual flaws in the USLE, as indicated by Kirkby et al. (2004), include mainly the proper distinction 
of soil and climatic conditions in the infiltration process. Most of these limitations would also apply to 
SLEMSA, because the soil and rainfall factors are combined in a similar way. 

2.2.2 Factor scoring methods 

2.2.2.1 Description 

Factor scoring methods are empirical models that estimate an erosion risk index based on expert 
knowledge. In a factor scoring method, parameters that influence the erosion risk are scaled into a 
semi-quantitative index for their importance for erosion risk. By combining indices for all parameters 
relevant in the area under study, a general indication of the erosion risk is obta ined. Genera lly, factor 
scoring methods result in qualitative or semi-quantitative indications of erosion risk. Four main inputs are 
genera lly considered in modelling of erosion: soil , topography, land cover and rainfall. Indices can be 
combined by ca lcu lating a (weighted) average, multiplying separate factors or using a decision tree. 

2.2.2.2 Applications 

Factorial scoring methods are commonly used for country-scale assessments of erosion risk (Geraedts 
et al. , 2008). The French Agronomical Research Institute (INRA) developed a factorial scoring method 
for erosion risk (Le Bisonnais et al., 2002) that has been applied in France and in the EURURALIS 
project (Klijn et al. , 2005). With this method, a soil map is classified into three classes of erodibility and 
four classes of crusting risk. A DEM of Europe is classified into eight slope classes based on average 

; elevation differences with the eight neighbouring cells. Current and future land use is simulated with the 
CLUE model , distinguishing nine classes of land use (Verburg et al. , 2006). Each class is given an 
erosion sensitivity rating. Annual average rainfall and frequency of exceeding 15 mm d-1 are simulated 
using the IMAGE framework and classified into five erosivity classes. Indices for erodibility, crusting, 
slopes, land cover and rain erosivity are then combined into a single index using a decision tree. The 
index was used to visualize potential changes of erosion risk upon changes of climate and land use (Kl ijn 
et al. , 2005). 

De Vente et al. (2008) compared sediment yields observed in 61 catchments throughout Spain with 
those simulated with different models, including the Spatial Distributed Scoring (SPADS) model. This is a 
factorial scoring model that simulates sheet, rill , gully, channel and landslide erosion. Factor scorings 
for different factors influencing erosion are translated into a range of soil loss. 
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2.2.2.3 Quality issues 

A common criticism to factor scoring methods is that model formulation is subjective. Parameters may 
be given more weight, depending on the goal of the study and therefore predictions may be 
inconsistent. Prediction of uncertainty can be done when the uncertainty in the input parameters is 
known. Generally, factor scoring methods provide qualitative outputs although for specific case studies 
a factor scoring model can be calibrated so that soil loss can be estimated (De Vente et al., 2008). In 
spite of the criticisms named above, in the study by De Vente et al., the SPADS model explained 67% of 
variation in sediment yield in the studied catchments and outperformed the other models under study. 

2.2.3 Regression-based methods 

2.2.3.1 Rationale 

Regression-based models are empirical models to estimate erosion rates based on a statistical relation 
between sediment yield or soil loss and site characteristics. A regression equation is fitted to the data 
on sediment loss and site characteristics and the equation is then used for upscaling. Common 
independent variables included in such regression models are land use, topography and lithology, and 
climatic conditions . 

2.2.3.2 Applications 

In the NEWS-PNU model (Beusen et al. , 2005) sediment yield at the outflow of watersheds is modelled 
as a function of watershed characteristics. Sediment yields from a global-scale dataset were used for 
calibration and validation. The model aims at predicting fluxes of suspended sediment, organic carbon, 
particulate N and particulate P to coasta l waters. Independent variables include fractions of the basin 
covered by certain land use systems, soil texture and slopes. The model estimated sediment yields with 
an R2 of 0.60. Lithology of the catchment was the main factor influencing sediment yields. 
A regression approach allows analysis of the factors that influence sediment yield in a catchment. Such 
information could be used directly for upscaling in space and time or serve as a basis for the 
development of an empirical model. With the use of input data for scenarios of envi ronmental change, 
the lmi)fflct on sediment yield may be estimated (Syvitski et al. , 2003). Upon application of the NEWS­
PNU model in future scenario simulations one should note that the impact of factors may change when 
the model is appl ied for conditions other than those for which the model was developed. 

2.2.3.3 Quality issues 

The robustness of NEWS-PNU was tested with cross-validation. The NEWS-PNU model prediction for the 
total suspended sediment flux for 3107 rivers across the globe, as calculated by Beusen et al. (2005), 
is: 
12.9 Pg y-1. The 97 .5% upper boundary is 18.9 Pg y-1, which is a factor of 1.5 of the prediction 
(Beusen et al., 2005). Probably, presence of interaction between the factors is included in the 
regression model , which is often not explicitly accounted for . The output of NEWS-PNU represents total 
suspended sediment fluxes out of a basin. The results cannot be downscaled with in the basin, so the 
results are not really spatial ly explicit. 

2.2.4 

2.2.4.1 

PESERA 

Rationale 

PESERA (Pan-European Soil Erosion Risk Assessment) is a physical ly based spatially explicit erosion 
model. It was developed for quantifying soil erosion in environmentally sensitive areas relevant to a 
European scale and for defining soil conservation strategies (Kirkby et al , 2004). 
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; 

Two version of the PESERA model exist: a point model and a regional model. PESERA was first 
developed to simulate the sediment transport for a single storm at the scale of a single hill slope. 
Thereafter, PESERA has been scaled up to simulate long-term average soil loss at the European scale. 
For this, daily rainfa ll rates are integrated over the frequency distribution of daily rainfall events. Then, 
sediment loss is calculated using a power law, corrected for vegetation cover and soil erodibility. Output 
of PESERA is the long-term average soil loss from runoff discharge and gradient, at the base of a 
hillside. 

PESERA uses mean monthly climate data for reasons of data availability and to simulate long-term 
average conditions. With a gamma function, the monthly frequency distribution of rainfall is simulated. 
The coarse temporal resolution of climate data, excludes the use of infiltration calculations based on 
Richards' equation and a runoff threshold approach (bucket model) was chosen instead (Kirkby, et al. , 
2008). 

In the PESERA model concept first stable hydrological and vegetation conditions are assessed under 
given cl imate. These conditions are subsequently used to calculate mean monthly erosion rates. To this 
end, equations are solved iteratively to calculate hydrological and vegetation-related parameters in an 
annual cycle until stable conditions are reached. These equations are solved independently for each 
raster cell. Neighbourhood relationships are not considered (Kirkby et al., 2008). 
The PESERA model runs on climate, soil , land use, and relief data. The standard input and output 
variables for the PESERA model are summarized in Tables 1 and 2, respectively. 

Table I 
PESERA lnputlnput Source Explanation 
Parameters . Parameter Data base 

(1km) 
Climate Mean Monthly Rainfall (mm) BADC•/ Preferably, data extracted from 

Mean monthly MARSb extended record of daily ra infall , 
Rain/rainday (mm) PET and climate data from weather 

Coeffic ient of Variation of rain/ rainday stations within and around the 
Mean monthly temperature target areas are used 
Mean monthly Temperature range 
Mean monthly Potential evapotranspiration (PET) 

Soil Soil water storage capacity SGDBEC Currently, soil parameters are 
(this is the maximum capacity of soil before runoff) derived from texture and physical-
Profile depth of soil textures (Zm) chemical data from pedotransfer 
Crusting rules 
Erodibility 

Land Use Planting month, harvest month Water Use Efficiency SGDBEC, Corine Land-use-classification 
Land cover 
Root depth 
Initial surface storage 
Surface roughness reduction per month 

Relief Standard deviation of elevation in 1.5km radius Gtopo30 OEM 30m global OEM 

Source: (Kirkby, Irvine et al. 2003; Kirkby, Irvine et al. 2007) 
• British Atmospheric Data Centre, UK Natural Environment Research Council (http://badc.nerc.ac.uk/) 
b Monitoring of Agriculture with Remote Sensing, EU Joint Research Centre (http://mars.jrc. it/) 
c Soil Geographical Data Base of Europe (Ref) 
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Climate data preferably consist of a record of up to 50 years of daily values for individual stations. A 
high density of actual rainfall station data is particularly important. For producing the PESERA map, the 
MARS agro-meteorological data were used, interpolated to 50 km resolution. 

The soil parameters for PESERA may be derived from soil mapping units, interpreted as textural data 
and converted to parameter va lues using pedo-transfer rules. Soil parameters required include soil 
moisture variables (soil water storage (Surface storage is equal to soil roughness storage in mm water 
that remains on surface of soil plus soil storage in mm, which is the internal water storage capacity) and 
scale depth (the depth of soil textures in the profile), soil surface properties (crust storage), and 
erodibility. Surface storage is equal to soil roughness storage (mm); water that remains on surface of 
soil plus soil storage (mm), which is the internal water holding capacity. Scale depth is an indicator of 
the depth in the profi le of the soil texture class. For creation of the Pan-Europe erosion risk map the soil 
geographic database of Europe (SGDBE) was used that provides a harmonised and spatial coverage of 
soil types and descriptions at a resolution of 1 :500,000 (c . 1 km x 1 km) (European Soil Database: 
JRC, 2001). 

As input for land use, the land cover percentage and the type of crop are used. From this, a rooting 
depth and a surface roughness is specified. 
As rel ief input, PESERA uses the standard deviation of elevation in a rad ius of 1.5 km around each grid 
cell. A Digital Elevation Model, Gtopo30, provides the required relief data for PESERA at approximately 
1 km resolution with global coverage. 

Output of the PESERA model includes hydrologica l, erosion and vegetation parameters, summarized in 
Table 2.2. This provides a wider range of properties to be used in analyses of ecosystem services then 
just the output of risk of soil loss. 

Table 2 

TyRic'tfklJ.onth/y output variables for each cell in the PE SERA model. 

Output parameter 
Description 

Erosion (monthly) 

Overland flow runoff (monthly) 
Soil water defic it (monthly) 
Percentage interception (monthly) 
Vegetation biomass (monthly) 

Cover (i17onthly, if not pre-set by land use) 
Soil organic matter (monthly) 

Source: (Kirkby et al. 2003; Kirkby et al. 2007). 

2.2.4.2 Applications 

Units 

ton ha-1 

mm 
mm 
% 
Kg m2 

% 
Kg m2 

The PESERA regional model has been used to calculate long-term average erosion rates over Europe 
(Kirkby et al., 2004). It was developed for use at the 1 km resolution. Where local data are available at 
higher resolution, these can be utilized at the user's discretion. However, as data resolution is refined(< 
100 m grid resolution), assumptions applied in the development of the PESERA model may not hold 
(Kirkby, Irvine etal. 2007). Although PESERA was developed for Pan-European conditions, it has also 
been tested and applied in North African conditions and 16 sites in dry land test areas test areas around 
the globe (Fleskens et al., subm.). 
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2.2.4.3 Model evaluation 

Although the lack of direct soil erosion measurements for large areas (supra-national) hampers a 
thorough validation or cross-validation , PESERA was applied and tested at various scales for areas in 
the European Union. Van Rompaey et al. (2003) assessed the accuracy of PESERA, USLE and a factor 
scoring model developed by the INRA. Soil erosion data derived from sedimentation volumes in 
reservoirs in Belgium, the Czech Republic , Ita ly and Spain were compared with the model outputs. This 
study showed that the PESERA model did not produce accurate erosion predictions for all European 
environments at 1 km resolution. The relative pattern of soil loss from agricultural areas in central 
Belgium and the Czech Republic was modelled adequately. The model could however not accurately 
predict the observed soil erosion patterns in Italy and Spain (Van Rompaey et al. , 2003). The main 
reasons mentioned were: 
1. Uncertainty involved in the indirect va lidation method (i .e. sedimentation data in reservoirs); 
2. Low resolution of the input data used for model applications at European scale; 
3. Simplified internal model structures that do not take into account all sediment producing and 

transporting processes. 

Van Rompaey et al. (2003) state that past research has shown that some models perform much better 
for areas when higher resolution input data are used. Runoff was based on a l xl km grid in their study. 
De Vente et al., (2008) compared the performance of PESERA, SPADS (section 2.2.2) and the USLE­
based WATEM-SEDEM model in 61 catchments across Spain. In this study, PESERA soil erosion rates 
are of the same order of magnitude as erosion rates measured in erosion plot studies. Yet, for many 
basins sediment yield could not be explained by PESERA erosion output. This is probably mainly 
because PESERA does not include erosion through stable long-term gullies. De Vente et al. (2008) also 
expect that model performance of PESERA can improve by using better soil data and a OEM with higher 
resolution. 

Geraedts et al. (2008) compared 11 methods that have been used for assessment of soil erosion risk in 
Europe. They evaluated if the scale of processes included in the model are commensurate with the 

., , '"""' avai lable data, model transparency, complexity, cost efficiency and reliability of the results. PESERA is 
considered transparent because of the physics-based approach, i.e. process based equations that are 
based on the relation between runoff and sediment detachment. Scale and complexity are rated 
intermediate, while cost efficiency and ambiguousness of the results are rated low in this study. 

Licciardello et al. (2009) evaluated the performance of PESERA using field data from 30 plots in Italy 
and The Netherlands and assessed the effect of all model components on prediction accuracy. They 
evaluate the prediction of annual average erosion rates by PESERA as adequate, especially at rates > 1 

; ton ha-1 yr-1. Short-term temporal variations are not captured well. Major causes are the unrealistic 
simulation of runoff and cover but also the erosion prediction itself causes errors. Variability between · 
land covers and climates is well captured, but the model generally strongly underestimates actual 
erosion rates. The authors propose further calibration of the model. The underestimation is also found 
by Meusburger et al. (2010). 

Meusburger et al. (2.Ql_Q) compared PESERA and USLE erosion estimates with in situ measurements of 
erosion rates in alpine grasslands. In this study a 25 m OEM was used (OEM ©swisstopo). The study 
uses fractiona l vegetation cover (FVC) which is the fraction of the surface covered by vegetation. While 
the USLE uses an empirical factor for the effect vegetation cover (C = 0.45 x e-0.0456xcv), PESERA 
uses a vegetation growing module to estimate cover fraction. Both models were appl ied at 0% and 
100% FVC and atthe observed FVC. 
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Both models underestimated the erosion rates . PESERA estimations were far too low, even lower than 
the USLE predictions, despite the fact that PESERA takes snow accumulation and snow melt into 
account (peak erosion occurs during snow melt). Compared to USLE, PESERA underestimated the 
importance and influence of vegetation cover on soil erosion in alpine grasslands. Both the spatial 
pattern of erosion was poorly reproduced and the absolute amount of erosion was underestimated 
compared to the in situ measurements and lower than predicted with the USLE. Input of high resolution 
vegetation cover data significantly improved erosion rate estimations. 

Possible reasons for underestimation of erosion rates by PESERA under low FVC are (Meusburger, 
etal. 201 0): 
4. Lower sensitivity of PESERA to differences in FVC, which results in a very narrow range of erosion 

estimates; 
5. Low erosivity resulting from monthly averaged climate input data in PESERA that smoothes out 

extreme events . Even though a coefficient of variation for the monthly precipitation is considered , 
its impact on soil erosion estimates is small. The empirical basis of USLE, where the impact of FVC 
is implemented via the C factor seems more suitable than the vegetation growing module of PESERA 
on the site researched (Meusburger, Konz etal., 2010). 

In a study done for Zakynthos in Greece (Tsara et al. , 2006), the measurement from erosion plots under 
various forms of cover and management were compared with PESERA outputs. Existing erosion data 
from the same area were used for comparison. Data were collected at two locations, but along various 
transects and plots on each of the locations, amongst other for various land uses. Model performance 
was best for the erosion plots on bare, stony land. Comparison between the outputs obtained from the 
PESERA model and the measured values in the various soil erosion plots generally showed a 
satisfactory performance by the model. Rates of soil erosion were better predicted for the abandoned 
bare land with a maximum error of 0.65 t ha-1 yr-1. Overall predictions of the PESERA model seemed to 
be in reasonable agreement with the measured values of soil erosion for the test sites in Greece. The 
overall efficiency of the model (Nash and Sutcliffe, 1970), was assessed using the available erosion 
data.,~ model efficiency2 was relatively good (0.69), even though the maximum error3 of 
1.4~ t ha-1 yr-1 may be considered high, depending on the purpose of modelling and the land 
vulnerability. 

Kirkby et al. (2004) indicated in that the coarse spatial resolution of climate data was the most critical 
shortcoming of the Pan-European Erosion risk assessment. 

2.3 Conclusions 
; 

In Table 3, strengths and weaknesses for all four types of models are summarized. With a 
focus on global-scale applications. For such applications, low data requirements are an 
asset and the model should be able to handle the global range of vegetation types, 
slopes, climate- and soil conditions. 

2 A statistical measure of model forecasting efficiency introduced by Nash and Sutcliffe (1970) and proposed by Loague 
and Freeze (1985) that is based on predicted values, observed va lues, and overall mean va lues. Based on a sum of 

squares criterion, the maximum value for model efficiency is one. A va lue that would be reached only if the observed 
and computed runoff variables were identical. A negative efficiency indicates that the models predicted values is worse 
than simply using the observed mean (Loague, 1982) 

3 The maximum error represents the single largest difference between a pair of predicted and observed va lues. 
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Table 3 

Strengths and weaknesses of erosion models. 

USLE / 

SLEMSA 

FACTOR SCORING 

Strengths Weaknesses 

- Data requirements are low - Based on regressions of local conditions 
- Representation of infiltration process 

- Versatile: Can be easily adapted to the data - Not robust: when used outside the standard 
available, or to a specific case study boundary conditions the outputs may strongly 

- Can provide quantitative outputs deviate 
- USLE is a well-established often used model , - Quantitative outputs cannot always be 

also at global scale interpreted as such, especially at larger scales 
- Data requirements are low - Qualitative outputs only or extensive calibration 
- Simple and versati le . E.g.; easy to adapt to needed 

the available data and a specific model can be - Choice of model parameters is subjective and 

easily made to assess specific kinds of erosion therefore inconsistent 
- No global-scale applications available 

REGRESSION BASED - Helps in providing insight in factors controlling - Low resolution: Generally only catchment-
MODELS the sediment load in a basin specific at large scale 

PESERA 

- Versati le data requirements - Difficult to make universally applicable 
- Sensitive to over-parameterization 

- Transparent - Generally underestimates erosion in case 
- Good representation of effect of climate and studies throughout Europe, indicating 

land cover: good for simulating future changes incomplete representation of erosion 
processes 

- High data requirements, time-consuming 
calculations. 

- Sensitive to DEM and climate data resolution . 
- No global-scale applications ava ilable 

The IMAGE framework comprises a USLE-based index for assessing erosion risk (Section 2.2.1). 
., , ' Currently, it is not possible to estimate soil loss rates and effects on plant productivity for different 

water erosion processes at the scale of IMAGE calculations. Another problem is that it is not possible to 
translate soil loss rates into effects on soil productivity as a result of loss of physical stability or 
chemical fertility (Hootsmans et al., 2001). Spatially explicit high-resolution simulations of erosion risk 
are needed for this and the feedback of soil loss on productivity should be explicitly included. 

; 

Regression-based models typically provide outputs per catchment and thus have a too coarse resolution 
to be suitable for our goals. A main problem of factor scoring methods is that they either provide a 
categorical output that cannot be translated into quantitative estimates of soil loss and changes of 
productivity, or need data-intensive calibration which is not feasible at global scale. Therefore, this 
method is not considered an improvement compared to the USLE. SLEMSA has not been used outside 
of Africa and has not been used by the scientific community after 2000. In a comparison with the USLE, 
it did not perform better. Therefore, SLEMSA is not considered an improvement relative to the USLE. 
PESERA has the advantage of a process-based approach that might be globally applicable. Although the 
model has never been used outside Europe and tends to underestimate erosion risk. Nonetheless, due 
to the structure and outputs of the model we considered that it might be an improvement relative to the 
USLE. Therefore, the possibilities for applying PESERA at global scale within the IMAGE framework are 
assessed in more detail and a comparison with the USLE as currently used in the IMAGE framework was 
made. 

20 ISRIC Report 2013/06 



,s 
on 

--

3 Effect of DEM resolution scale on 
model output 

3.1 DEM aggregation 

3.1.1 Introduction 

Topography defines the effects of gravity on the movement of water and sediments in a catchment. 
Therefore, digital elevation models play a considerable role in hydrologic simulation, soil-erosion and 
landscape-evolution modelling (Zhang et al., 1999). Slope is a key factor in hydrological and erosion 
modelling (Beven and Kirkby, 1979; Freedman et al., 1998) and is commonly derived from DEMs. 
Consequently, erosion models are known to be sensitive to DEM resolution (Zhang et al. , 1999, 
Claessens et al., 2005); estimates of slope values and slope variability change with DEM resolution. 
Zhang et al. (1999) found that slopes calculated for a specific area from DEMs with varying resolution 
are inversely related to DEM grid size, meaning that slopes estimated from coarse resolution data can 
be considered to produce significant underestimates of the true slope. The critical parameter in the 
PE SERA model is local relief, which has been estimated from DE Ms as the standard deviation of 
altitude. Comparisons with DEMs at resolution from 1000 m down to 30 m showed that this measure is 
insensitive to DEM resolution, and can therefore be used reliably with the best DEMs available for each 
area (Kirkby et al., 2004). The standard deviation of altitude is estimated from DEMs within a square of 
3 km around each 1 km x 1 km cell (3x3 window). The latter is what is called focal statistics: it analyses 
adata raster using a moving neighbourhood region . It returns a raster, each cell value expressing a 
summary of the data grid for the neighbourhood centered on that cell (Tomlin, 1990). 

", ,.,,...._ 
3.1.2 Methods 

No studies are available of the PESERA model applied to global scale data. Therefore a comparison was 
made of different methods of DEM aggregation and their impact on model output. The PESERA model 
was run on DEMs of different resolutions. These DEMs were developed using two different methods. In 
this way, the effect of DEM scale difference on PESERA output was studied. Furthermore, the impact of 
the different methods of DEM aggregation on the model output was assessed. 
The 99m DEM was aggregated to 1km by calculating the mean altitude per grid cell for a 1 km mesh. 
Two methods, A and B, were tested to derive the 1 and 10 KM DEM grids. 

Method A 
From the 90 m SRTM DEM, three DEMs were created: 1 km, 5, 10 km resolution. First, a bilinear 
resampling4 was done on the SRTM 90 m. Then the grids where aggregated to a 5 and 10 km 
resolution. The standard deviation of altitude was calculated for all surrounding cells of one pixel from 
the 90 m DEM (3X3 cell block; 3x3 km, l 5xl 5 km and 30x30 km. This procedure results in weighted 
average values, based on distance 
(Figure 3). 

4 bilinear resampling is a method for geometric correction. A regular grid of desired dimensions is overlaid and based on 

the values of the original grid, values are calculated for the new output grid. The new values are derived from a 

distance weighted average of the values from the four nearest pixels in the original input grid. 

ISRIC Report 2013/06 21 



Method A: 

SRTM 90 m 

§dJ 
• bilinear resampli ng 

aggragation 

1 km DEM 5 km DEM 10 km DEM 
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output 

output 

; 
FigureJ 

Creation of DEMs at 3 resolutions using method A. 
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Method B 
This method differs from method A, in that the standard deviation for the 10 km grid was calculated by 
averaging the standard deviation of all 100 pixels of 1 km2 in a 10 km x 10 km grid cell (Figure4) . 

Method B: 

SRTM90m 

Em 
1 

1 km OEM 

Em 
I 

1 km OEM 

~ 
I 

IPESERA 

I 

~ 
output 

Figure 4 

bilinear resampling 

standard deviation of the altitude 

averaging 

~ 

10km OEM 

filj 
I 

IPESERA 

I 

fffl 
output 

Creation of DEMs at 3 resolutions using method B. 

ISRIC Report 2013/ 06 23 



3.1.3 Results: OEM Aggregation on PESERA output 

In this section the results using method A is discussed. 
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., . , Comparison of PE SERA output run of DEMs of 1, 5 and 10 km resolution (method A). 

; 

The correlation coefficient between the outputs of PESERA for the three different resolution DEMs 
(method A) are high (approximately 80%). When comparing histograms of the 5 and 10 km DEM with 
that of the 1 km (Fig 5 A: 1 :5 km and Fig 5B: 1: 10 km) it is noted that the ' belly' of the 5 km is higher 
than that of the 1 km grid indicating that the 5 km DEM has more grid cells with higher PESERA erosion 
output values. The 1 km has most values in the lower to middle erosion classes , while the run on the 10 
km DEM has a more evenly distributed frequency over the classes with the highest in the lower class, 
but also more high values as compared to the 1 km DEM. 

Figure 6 shows a detail of three DEMs in three different resolutions. 
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Figure 6 

Detail of DEMs of different resolutions (10, 5, and 1 km). 

Figure 7 represents the value of sediment output of PE SERA run on the 10 km OEM, minus those for 
the 1 km OEM. The former are clearly higher in the Mediterranean and mountainous areas of Europe. 
The standard deviation of the altitude is higher in the mountainous areas and in transition zones between 
land units. In a larger grid the standard deviation of the altitude is then even higher. 

Fig4r.e,,~shows the kappa statistics of the comparison between the PESERA runs on the three different 
OEMs. The figure shows that the 1: 1 line is visible but with a cloud of deviating values. A second line is 
visible that shows a range of values where the PE SERA outputs on the 5 and 10 km OEM are higher and 
the run based in the 1 km OEM are in the lowest class. Alternatively, between the 1 km and 5 km grid 
the reverse trend is also visible (higher 1 km based PESERA outputs for lowest class 5 km grid) but less 
clear for the 10 km based run . This shows that with the coarser resolution OE Ms there is a systematic 
error towards higher values. As shown in Figure 5 that shows erosion calculated based on the 1 and 10 
km OEM in kg.m-2.yr-l. 
When wmparing the two maps (figure 9) it is clear that the patterns are the same for the two maps, 
but thal the intensity of the predicted erosion is higher for the 10 km map. 
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Comparison of PE SERA output using a 10 km DEM with that run on a 1 km DEM 
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Figure 8 

Kappa statistics diagram of PE SERA output based on three resolution DEMs. 
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PE SERA estimated soil erosion (kg.m2.yr1 J based on 1 and 10 km DEM. 
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In conclusion, with method A, the mean altitude is aggregated over 1 km and 10 km grid cells, after 
which the focal standard deviation is calculated using surrounding 3x3 cell grid blocks. The advantage 
of this method is that both the 1 km and the 10 km grids are created following the same methodology. 
A systematic error is however created in the lower resolution OEM, when the standard deviation of the 
altitude is calculated for larger grid cells . The standard deviation is calculated of larger areas as 
compared to the higher resolution grid. As the same OEM source is used for both resolution grids the 
standard deviation will generally be higher when assessed over larger block (grids). This trend is visible 
in the resu lts of PESERA run on the two grids and most clearly visible in figure 9 . ..,,, 
Method B 
Using method B, only 1 km and 10 km resolution OEMs were compared. Figure 10 presents the spatial 
distribution of the standard deviation of altitude. It shows that the pattern is similar with a smoothened 
surface for the 10 km grid as a consequence of the resolution effect. Magnitude and pattern seem 
consistent with each other. 

; 
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Figure 10 

Pesera - Eudem2 (Stand.dev) 
MASKED (1 km grid ) 

Pesera - Eudem2 (Stand.dev) 
MASKED [10km grid ) 

Spatial distnbution of the average standard deviation of altitude calculated for two resolutions 

(1 km, above and 10 km, below). 
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In method B, the mean of the standard deviation of altitude was calculated for the 1 km DEM for all 
surrounding cells of one pixel (3X3 cell block). The relief intensity for the 10 km grid was calculated by 
averaging the standard deviation of altitude for all cells of 1 km resolution grids in a 10km grid cell. 
The method delivers reasonable results when applying PESERA at 10 km grid. The comparison of 
the output results presented on the map and the histogram, suggests that the 10 km values are 
systematically lower. This is likely related to the lower spatial extent of the values for the different 
classes. 

When comparing histograms of the output of PESERA (soil loss) based on the 1 and 10 km resolution 
DEM Figure 11 it is noted that the erosion rate estimates for 10 km grid are lower in all classes, except 
for the lowest class (that includes 0) . 
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Histogram of PE SERA output run of DEMs of 1 and 10 km resolution. 
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This is also visible in Figure 12 that shows the kappa statistics of the comparison between the PESERA 
runs on the two different DEMs. The values show a clear linear trend with no major deviations, except 
for the obvious deviation of the lower class values between the two approaches. 
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Kappa statistics diagram of PESERA output based on two resolution DEMs. 
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The PESERA output for the 1 and 10 km (Fig 13), is in agreement when comparing spatial patterns. The 
.., '"'- 10 km grid has generally lower estimates (systematic error). The difference is most noticed in the 

spatial extent of the erosion classes. While the pattern and the classes seem to agree, especially lower 
class values have less extent (area per output class). 

; 
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PESERA estimated soil erosion (ton.ha-1.yr-1}, annual output, based on 1 (A) and 10 km (8) DEM, compared at the 10 

km resolution. Correlation: 0.45 
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; PESERA estimated soil erosion (ton.ha-1.yr-JJ, annual output, based on 1 and 10 km DEM, compared at the 1 km 

resolution. Correlation: 0.947 

While creating the 1 and 10 km resolution output grids of erosion from the PESERA model, several 
transformations are done in the process. First, the 1 and 10 km grids are produced from the 90 m DEM 
by spatial aggregation to the two resolutions. Then , for the 10 km resolution run, there are two options: 
1) aggregate all other data layers required to run PE SERA to 10 km resolution grids and run the model 
at the 10 km resolution, or 2) overlay a 1 km mesh grid on the 10 km DEM and thereby creating a 1 km 
grid with 100 identical values for each block of l0xl0 km's , The latter method was chosen , here as the 
assessment of the influence of the DEM resolution was the objective of the study. In that way the other 
data layers were kept at the base resolution, that was used for the original Pan-European erosion study, 
of 1 km. Within the l0xl0 mesh grid different results are obtained for the 100 cells within the original 
10 km grid, because the other data layers are still kept at 1 km resolution and have variable values in 
the lOxlO blocks. Aggregating back to the original 10 km resolution, therefore also involves a process 
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of averaging. When comparing the 10 km resolution run with the 1 km run , the data layers have been 
averaged to the 10 km resolution (Figure 13). The correlation is 0.45 for the PE SERA output results 
based on the 10 km grid (run at 1 km resolution using the mesh grid overlay and results then averaged 
to 10 km), and the original 1 km run that was averaged to the 10 km resolution. The output results of 
PESERA using the 10 km OEM, but disaggregated to 1 km (using the 1 km mesh grid) and with 100 
identica l va lues for the 1 Oxl O blocks, was also compared to the PE SERA run at 1 km (all data layers), 
(Figurel 4). Then the correlation was much higher: 0.947. 

Figure 15 a scatterplot of the 1 km versus 10 OEM resolution PESERA runs, shows that values are 
within the same range for predictions based on the two resolution scale OEMs. This is especially so for 
the lower sediment output predictions. In the higher sediment rates , values deviate more. The 10 km 
OEM based predictions of erosion appears higher than those of the 1 km OEM based predictions . 

Figure 15 
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Scatterplot of sediment output (PE SERA) for two resolution DEMs: 1 km (Sedi_l km) and 10 km (DEMI O_to_l, subdivided in 

1 km grid cells). 

3.1.4 Conclusions 

DEM Jompilation method 
There are theoretical problems with the use of both methods for generation of a grid with the standard 
deviation of altitude. In both methods a systematical error is introduced. In method A, the (standard 
deviation of the) altitude systematically increases with grid cell size. Although this may be theoretically 
correct, as the internal variation of altitude will increase as the cells of the grid increases in size, yet for 
modelling erosion this means that all values systematically increase with OEM upscaling, the parameter 
is not scale independent for modelling erosion. Method B, the method where the higher resolution 
values (of standard deviation) are averaged in a 10 km grid block, produces systematically lower values. 
The output of the 10 km grid, produced using method Bis closer, in pattern and intensity, to the 
erosion estimation based on the 1 km grid then when generated using method A and is therefore more 
adequate for use with PESERA. 
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; 

PESERA output for different resolution DEMs (1-10 km, method B) 

PESERA runs have been done using a 1km resolution and using a 10km resolution. For comparing 
the resulting erosion risk maps, two methods have been applied . 
1. The 1 km resolution outputs were aggregated to a 10km resolution . Next, a correlation between 

the aggregated 1km resolution map and the 10km PESERA output was calculated. 
2. The 10km resolution outputs were disaggregated to a 1 km resolution. Next, a correlation between 

the disaggregated 10km resolution map and the 1km PESERA output was calculated. 

Both methods have disadvantages. in method (1), variation in the 1km map is averaged out. In method 
(2), the data map data are duplicated: the value for each 10km grid cell is used 100 times to ca lculate 
a correlation. The data duplication in method 2 leads to overestimation of the correlation and the results 
are therefore less re liable. 

We conclude that differences between running PE SERA at 1 and 10 km resolution DEMs does not have 
significant influence on the calculated sediment yield output. The aggregation and averaging does affect 
the output markedly. Several papers (e.g. Van Rompaey et al., 2003; De Vente et al. , 2008) point to the 
sensitivity of PESERA for resolution of topography data, in effect DEM. Most of the authors claim or 
suggest that PESERA will perform better with resolutions higher (more detailed) than 1 km. Our 
comparison shows that PESERA output does not change when run on coarser resolution DEM data 
(10 km), when all other d-ata are kept at the higher resolution (1 km) . 

3. 1.5 Spatial patterns and scale sensitivity of IMAGE-USLE output 

Method 
The results of IMAGE-USLE simulations at 1km input resolution were aggregated to 10km by calculating 
a mean value for each 10km grid cell. Then , for 10% of the 10km resolution grid cel ls, simulation 
results for all model runs were extracted into a database and correlations between the simulation 
results were ca lculated. A sample of 10% was used for assessing scale sensitivity and consistency to 
avoid spatial auto-correlation. 

Results 
At 1 km resolution, IMAGE-USLE predicts a pattern of erosion risks with low erosion risks in nature areas 
and high erosion risks in cropland areas, particularly in France and Southwest Spain. Although England 
is dominated by croplands, projected erosion risks are very low. Low erosion risks are also mainly 
found in mountain areas, that are characterized by natural or pasture land cover (Figure 16). The results 
at 10km resolution are very consistent with this, reflected by an agreement (r2) between the 1 km and 
10km model outputs of 0.84. The spatial patterns are very similar, but at 10km resolution the simulated 
erosion risks are lower and differences throughout the map are less pronounced (see histogram, Figure 
17). Model outputs are very similar in mountain areas with large relief differences (Alps, Pyrenees, 
Carpathes) and in very flat areas (Netherlands). Especially in areas with a moderate relief the 10km 
model simulates a lower erosion risk. This is because in the 10km model the relief index is calculated 
using a threshold of elevation differences of 200m while in the 1 km version differences up to 20 m are 
considered. This has been done to compensate for the larger elevation differences occurring at larger 
areas. Differences between the model output are, however, very small. 
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3.1.6 Conclusions 

We conclude that the IMAGE-USLE is consistent across scales, and that better calibration of the relief 
index might further improve the consistency of the model across scales. 
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4 Evaluation of IMAGE-USLE and 
PESERA 

4.1 Introduction 

When substituting a sub-model within IMAGE, insight is needed in the differences between the outputs of 
the existing sub-model and the potential new version . Also, to be able to evaluate if applying PESERA at 
global scale within the IMAGE framework is expected to improve erosion risk simulations, we need to 
evaluate how PESERA behaves at a resolution feasible for global-scale simulations. We compared 
patterns of erosion risk simulated with both PESERA and the IMAGE-USLE and compared model outputs 
with existing global-scale data on several indicators of erosion and land degradation. 
Because of the importance of OEM resolution for erosion modelling, and because other input data for 
the erosion models originate from coarser-resolution input, we focused on the effect of OEM resolution 
on the output of PESERA and IMAGE-USLE. For application at global scale, a resolution of 10 km or 
coarser is feasible. As PESERA was developed for a resolution of 1 km x 1 km, we simulated erosion 
risk with PE SERA and with the IMAGE-USLE model, at a resolution of 1 km and of 10km, resulting in four 
model runs. Simulations were done for the European Union excluding Sweden and Finland. A consistent 
dataset was used for al l model runs. Model outputs were compar~d and evaluated with several datasets 
that provide an indication of spatial patterns and magnitude of erosion . 

4.2 Methods 

., , , 4.2.1 Models 

The USLE-IMAGE is currently used at PBL for global-scale simulations of erosion risk to calculate an 
erosion index ranging from zero (no erosion risk) to 100 (high erosion risk) (Hootsmans et al. , 2001). 
The simplified formulation of the USLE in IMAGE, expresses erosion hazard as a function of terrain 
erodibility, rainfall erosivity and land use / cover index. The erosion index is arrived at through different 
steps. 

Indices for texture (based on clay content and silt content), bulk density and soil depth are calculated 
using equations 4.1-4.3). For each grid cell, the maximum and second largest of these three indices 
were identified. The index is calculated as the average of these two indices: 

ltexture = 100 * ((-0.005 * Clay content)+ (0.005 * Silt content)+ 0.5) (3) 

lbulkdensity if(Bulkdensity < 1.16: 0, if(Bulkdensity > 1.54: 100 
else((Bulkdensity * 250) - 287.5))) (4) 

ldepth = 100 for soil depth < 25cm, 90 for soil depth < 50 cm, 
60 for soil depth < 100 cm, 25 for soil depth < 150 cm, else zero (5) 

The relief index is set at 100 when elevation range within a grid cell exceeds 2%. Below 2%, the relief 
index is proportional to the elevation range . All elevation ranges larger than 2% are considered to result 
in maximum erosion risk. 
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The terrain index (VUI) is calculated as the average of the soil index and relief index. 
Rainfall erosivity (REI) is calculated using maximum monthly rainfall (mm) per ra inday. It is assumed to 
be proportional to the erosivity between 2 mm/day and 20 mm/day. Below 2 mm/day, REI is set at 
zero and above 20mm, REI is 100. 
Hootsmans et al. (2001) specify global indices for the amount of protection provided by different crop 
types. These are multiplied with cover percentages for each crop into a Land Use Index (LUI). 
Finally, the erosion risk index is ca lculated as 

(VUI + REI) / 2) * LUI (6) 

4.2.2 Input Data 

Both the IMAGE-USLE and PESERA approach need input data on soil, land use /cover, elevation and 
weather. Basically, the data from standard PESERA runs were used here (Table 4), but some 
adaptations were necessary, as described in Table 4. 

Table 4 

Inputs and edits of data for model comparison. 

Weather 

Land use 

Data sources Adaptations at 1km resolution Adaptations at 10km resolution 
(resolution) 
MARS (from PE SERA Interpolation to 1 km resolution (original Mean of original PESERA inputs 
datasets; point dataset, PESERA input dataset) aggregated over 10 km block 
50km grid 
Corine land cover 

0 00ml 

SRTM (90ml 

Reclassified to PESERA land cover 
classes. 
Aggregated to 1 km resolution by 

Reclassified to PESERA land cover 
classes. 
Aggregated to 10km reso lution by 

calculating fractional cover for all land calculating fractional cover for all land 
cover and crop types 
Aggregated to 1 km resolution 
(see Chapter 3) 

cover and crop types 
Aggregated to 10 km resolution 
(see Chapter 3) 

Soil European Soil Clay, silt, sand content, Mean over lOxlO km block 
Geographical Database Erodibility, depth, crusting, bulk density 

4.2.3., 

(scale 1: 1 million) extracted and converted to 1 km 
resolution raster 

Map comparisons, assessment of credibility of results 

To analyse model scale sensitivity and the consistency between PE SERA and IMAGE-US LE in calculating 
erosion risk, the same datasets were used. First, the results of IMAGE-USLE and PESERA simulations at 
1km input resolution were aggregated to 10km by calculating a mean value for each 10km grid cell . 
Then, for 10% of the 10km resolution grid cells, simulation results for all four model runs were 
extracted into a database and correlations between the simulation results were calculated . A sample 
of 10% was used for assessing scale sensitivity and consistency to avoid spatial autocorrelation. 
To demonstrate the impact of different behaviour of the model parameters, we selected four small 
sample areas in Spain, UK, Greece and Austria (Figure 18a), representing areas with large elevation 
differences (Greece, Austria) versus areas with small elevation differences (UK, Spain) and areas with 
high erosion risk (Spain , Greece) versus areas low erosion risk (UK, Austria). For these sample areas, 
the differences in outputs between the models are analysed in more detail here. 
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a. Sample areas; b. Degree of water erosion as indicated by GLASOD; c. Changes in NPP from GLADA; d. Total suspended 

sediment load (TSSJ from EEA observations. 

To evaluate PE SERA and IMAGE-US LE simulations at 1 km and 10km resolution, model outputs were 
compared with several datasets that provide an indication of spatial patterns and amount of erosion 

.., , , throughout Europe. For a proper validation, a dataset is needed that provides quantitative data of actual 
observed data on sheet erosion throughout Europe. In the absence of such a dataset, the fo llowing 
several proxies were used to assess the credibility of the model outputs: 

; 

- GLASOD ( Oldeman, et al. 1991) 
- GLADA (Bai , et al. , 2008); and 
- a dataset on total suspended sediment (TSS) delivered at the mouth of several drainage basins 

throughout Europe (EEA, 1998) • 

GLASOD 
GLASOD is an inventory of expert judgements on the extent and severity of erosion and degradation 
worldwide (Figure 4.1 b). Based on physiographic units, a large and diverse group of experts rated the 
extent (percentage of the polygon affected) and degree (strongly, moderately or slightly degraded) of 
past erosion and degradation (Oldeman et al. , 1991). Several types of erosion are evaluated: namely 
sheet erosion, rill and gully erosion, wind erosion, loss of nutrients, salinization , acidification, pollution, 
compaction, sea ling, crusting, waterlogging and subsidence. The GLASOD represents the state of 
degradation that has occurred until 1990, thus over 20 years ago. The subjectivity of the map and the 
coarse spatial resolution is another weakness. When comparing the simulation results with GLASOD, we 
hypothesize that areas with a high extent or degree of sheet erosion corresponds with areas with high 
simulated erosion risks. 
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GLADA 
GLAOA provides an indication of more recent, inferred degradation than GLASOO. Based on remote 
sensing images from 1981-2003, areas with a change in NOVI and associated change in Net Primary 
Productivity (NPP) are identified (Figure 18c). Areas with a decreased NPP over the timeframe assessed 
are assumed to have been degrading over the observed period, with the strength of the NPP decrease 
being taken as a measure of the severity of degradation (Bai et al., 2008). Advantage of GLAOA is that 
the map provides an up-to date overview of the status degradation, with a global coverage and a high 
spatial resolution. GLAOA is an objective map, in the sense that it is reproducible and verifiable. 
Furthermore, GLAOA indicates trends in both directions, decline and increase of NPP, as a proxy for 
land degradation and improvement respectively. However, GLAOA rather indicates estimates the effects 
of degradation (assumed to correspond with a NOVI decrease) in general; different possible causes for 
degradation cannot be distinguished. We do expect that areas with a higher projected erosion risk in 
our simulations are more likely to be degraded and therefore expect an overlap between degraded 
areas in GLAOA and areas with a high erosion risk. 

Total Suspended Sediment delivery 
The European Environmental Assessment Agency (EEA) provides data on total suspended sediment 
(TSS) output at basin scale throughout Europe in 2000 (ton/ year) (EEA, 1998), (Figure 18d). 
We recalculated this into TSS delivery per km2 over each river basin and compared the numbers with 
average (and ranges of) erosion risk simulated in each basin. Also several basin characteristics 
including elevation range, percentages cover by certain crops and distribution of soil texture classes 
were considered here. With this dataset, several statistics were calculated to relate the erosion outputs 
to the TSS load. We expect that a higher TSS delivery is associated with a higher erosion risk. The 
dataset however provides a lumped erosion risk for each river basin (Figure 18d) and therefore does 
not account for spatial patterns of erosion and sedimentation within a basin. 

Although these datasets differ in the indicators mapped and all three maps actually do not match the 
outputs of the erosion models that represent sheet erosion risk, one would expect some correlation 
witp t~ erosion risk simulations. To quantify the match, several parametric and non-parametric 
statistics were used, depending on the data. 

4.3 Results: Model coniparison and scale sensitivity 

4.3.1 Comparison IMAGE-USLE/PESERA 

USLE llnd PESERA result in different patterns of erosion risk throughout Europe. While the USLE 
estimates high erosion risks in croplands and slightly sloping areas and intermediate risks in 
Mediterranean areas, PESERA estimates high erosion risks throughout the Mediterranean areas and 
intermediate risk in the rolling cropland areas of central Europe. Correlations between PESERA and 
USLE are very low (Table 5) and the frequency distribution of erosion risk is completely different 
(Figure 19). 
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Several reasons can be found for these differences. First, there are differences in effect of soil 
sensitivity to erosion. While in the USLE the sensitivity to the soil for erosion is based on clay content, 
silt content and bulk density, in PESERA physico-chemical stability is accounted for in determining 
the erosion sensitivity. Especially in the Northwest European sand area, this results in higher erosion 
sensitivity in PESERA. In the four sample areas, the sensitivity to erosion matches those of the study 
areas. 

Second, the models differ in how they simulate the effect of relief on erosion. In IMAGE-USLE, elevation 
differences within a grid cell of >2% are considered to result in a maximum erosion risk due to relief, 
while below 2% the erosion risk is linearly related to the elevation difference. In PESERA, the relief is not 
cut-off beyond a threshold, but the complete elevation range (standard deviation, see section 2.2.4) is 
used to calculate sediment transport. Consequently, small elevation differences have relatively less 
impact on the erosion risk than in IMAGE-USLE, while more differences in erosion risk are simulated in 
mountainous or hilly areas. The relatively low erosion risks in flat areas in PESERA can be most clearly 
observed in the Netherlands and the Baltic Countries. In Greece, Spain and Italy the effect of large 
elevation differences in different model simulations can be observed. 

Third , the impact of precipitation is simulated differently. IMAGE-USLE works with the maximum monthly 
rain intensity within a year. This is, for example, high in Ireland and France and is partly causing the high 
erosion risks in these areas. Maximum rain intensity is low in the Mediterranean, being partly causing 
the lower, simulated erosion risk simulations. In PESERA however, the temporal distribution of 
precipitation throughout the year is taken into account; this is reflected in the four examples. 
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Finally, although IMAGE-USLE and PESERA use a similar land cover and land use classification , the 
parameterization of the effect of land use and land cover is different (Table 6). Particularly in areas with 
much grassland cover, this can be a reason for the relatively lower erosion risks in PESERA compared 
with the IMAGE-USLE simulations. Under European conditions, the parameterization of grassland in 
PESERA might be more realistic while the parameterization in IMAGE-USLE might be more 
representative for global conditions. 

Table 6 

Comparison of land use/ land cover effect on erosion in IMAGE-USLE and PE SERA. 

Land use / cover 
IMAGE-USLE index 

(converted to 100 = full 
protection, zero = no 

protection) 
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Table 7 
Comparison of USLE and PE SERA inputs and outputs in selected sample areas in four countries. 

Parameter UK Greece Austria Spain 
IMAGE-USLE 

Erosion risk (0-100) 1.02 2.52 6.26 18.94 
Land use index (0-100) 97 .43 99.97 88.38 67.53 
Rain intensity index (0-100) 11.70 53.00 28.00 35.40 
Landscape vulnerability (0-100) 66.00 89.00 82.91 81.75 
PESERA 
Erosion risk (ton.km2 per year) 0.22 324.66 0.04 113.54 
Erodibility (O=low, 5=high) 2.15 2.84 2.95 4.9 
Stdev OEM (m) 0.50 225. 11 435.26 15.67 

Sample areas 
In the sample area in Austria, IMAGE-USLE estimates a high landscape vulnerability which is reflected in 
PESERA by the high elevation differences and intermediate erodibility. IMAGE-USLE estimates a lower 
land use index, indicating low protection by the vegetation cover. This matches the low cover 
percentages in PESERA. The rain intensity is moderate and constant through the year. Also in the 
IMAGE-USLE the rain erodibility is low. Consequently, both models simulate a low erosion risk. 

In the UK sample area, both models indicate a low vulnerability of the landscape and a low ra in intensity. 
The land use index in the IMAGE-USLE (in agricultural land) is parameterized in such a way that it 
matches the interaction between rain intensity and cover through the year as used in PESERA the 
highest rain intensity is found in a month with a very high vegetation cover (Figure 20). 

Greece has variable topography and a precipitation surplus with high rain intensity in a month with a low 
cover percentage. Erosion predictions for Greece resulted in high erosion, although the sensitivity of the 
soils to erosion is not too extreme. In this area the effect of ra in and landscape match well with the 
IMAGE-USLE, but the USLE estimates a completely different effect of vegetation (high index). Although 

" ' ' there is a year-round vegetation cover, the fractiona l amount of cover is very low, particularly in the 
month with the highest rain intensity. 

; 

In the Spain sample area, both models indicate highly sensitive landscapes. In PESERA, the sample area 
has a precipitation surplus with high rain intensity in a month with a low cover percentage, resulting in 
high erosion. The land cover parameterization in agricultural landscapes in the USLE does capture this 
well (lowest land use index). Also, the high rain intensity is captured relatively well in the USLE. 
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4.4 

4.4.1 

Results: Credibility of erosion risk simulations 

GLASOD 

GLASOD 
Degree of 
water erosion 

LJ No water erosion 

LJ Little water erosion 
Moderate water erosion 

- Severe water erosion 

Figure21 

Erosion risk 

Low 

High 

Comparison of GLASOD and erosion model outputs. 

When visually comparing IMAGE-USLE outputs with GLASOD, in Central Europe, there seems to be some 
overlap between patterns of simulated erosion risks and expert based patterns of sheet erosion degree. 
Ar~~th moderate water erosion in GLASOD in Bulgaria, Romania, Czech Republic, Slovakia and 
France overlap with areas with a higher erosion risk in the USLE simulations. In the Mediterranean, the 
map patterns almost contradict. 

For PESERA, only in the Czech Republic, Poland and Germany there is some overlap between areas with 
a higher degree of erosion in GLASOD and more erosion risk in PE SERA. This applies both for the 10km 
and the 1 km outputs of PE SERA. 

Table 8 shows the results of a non-parametric rank test (Jonckheere-T erpstra test, JT test) to assess if 
' the erosion risk model output increases through the erosion degree classes of GLASOD. For PESERA at 

1 km and 10km resolution, the positive JT statistics indicate that there is indeed a trend of increasing 
erosion risk within classes of increasing GLASOD erosion degree. For the IMAGE-USLE, a reverse trend 
is observed, both at 1 and 10 km resolution (sign <0.05). 

The extent of sheet erosion in GLASOD was compared with the areas of high erosion risk in the model 
output. For this, erosion risk in the model output was classified for the IMAGE-USLE following the 
classes given by Hootsmans et al. (2001). Indices < 15 are interpreted as no or low erosion risk, 15-30 
as moderate erosion risk, 30-45 as high erosion risk and >45 as very high erosion risk. The PESERA 
outputs were classified into four classes using similar percentual class sizes as for the USLE. The 
classes were compared with GLASOD using a Chi squared test, assuming that classes of higher erosion 
risk in the modei output should overlap with a larger extent of erosion in GLASOD. The high and 
significant (<0.05) Chi square values (Table 8) show that the classes of GLASOD erosion extent are 
indeed related to the classes of erosion risks of all model outputs. A check of the cross-tables indicated 
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; 

that, for both models, indeed GLASOD classes with a small extent of erosion have larger areas with little 
erosion risk, while GLASOD classes with a large extent of erosion have larger areas with high erosion 
risk. The low V values (Table 8), around 0.10, indicate however that the effects are weak. 

Table 8 
Comparison of model outputs with indicators for erosion risk. 

Model IMAGE USLE PESERA 
1km 10km 1km 10km 

standardized JT statistic - GLASOD degree -5 .493 -2.604 4.706 2.289 

ChiSquare - GLASOD extent 109.57 73.1 100.88 91.36 
Cramers V - GLASOD extent 0.109 0.089 0.095 0.096 

Spearman's correlation coefficient vs.GLADA NPP -0.2 -0 .16 0.01 ns -0.03 
change (r) 
Correlation (r) ln-transformend average 

erosion @ basin level with TSS data 
Whole Europe -0 .147ns -0.098ns 0.238 0.34 

Northern Europe 0.521 0.559 -0.160 -0.248 

Southern Europe -0.31 5 -0.282 0.327 0.469 

4.4.2 GLADA 
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Figure2? 

Comparison of GLADA and erosion model outputs. 

Visually, higher USLE-simulated erosion risks in Southwest Spain , the Po plain in northern Italy and 
southern Germany match areas of NDVI loss in GLADA, while areas of low erosion risks simulated with 
the IMAGE-USLE in the French and Italian Alps , the Pyrennees and Carpathes match areas of NPP 
increase in GLADA. 
For PESERA, at both 1km and 10km resolution , in Spain and Portugal the patterns of GLADA and the 
model output seem to overlap well , both for the areas with high erosion risk and the areas with low 
erosion risk. Also in Italy and France the patterns of erosion risk and NPP change seem to match well. 
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The low erosion risks simulated in Hungary and the Alps contrast with the large NPP losses observed in 
GLADA. This could be caused by the fact that GLADA observes NPP losses in several mountain areas 
due to other causes than sheet erosion wh ile PESERA simulates low erosion risks due to the low 
erodibility of the rocks and/ or to the vegetation cover. 

According to the statistical analysis, however, IMAGE-USLE model outputs show a significant, but weak 
negative correlation with the NPP change (Spearman's r), indicating that higher simulated erosion risks 
match with areas with a larger NPP loss. For the PESERA model outputs correlations are even weaker 
(Table 8). 

4.4.3 Total Suspended Sediment load data 

TSS load 
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The TSS load per km2 produced in drainage basins is high in the Mediterranean, intermediate in France 
and Germany and low in northern Europe (Figure 4.10). In comparison, this, IMAGE-US LE shows the 
reverse.,patterns in southern Europe, while in the northwestern half of France and in northern Europe the 
patterns seem to overlap. The patterns of PESERA outputs broadly match the TSS patterns in southern 
Europe and look contrary in the northwestern half of France and in northern Europe. 
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If the model outputs are averaged per basin and compared with the TSS load, we observed that all over 
Europe, the IMAGE-USLE outputs showed no significant correlation with the TSS loads while the PESERA 
outputs showed a better correlation if the model outputs were first In-transformed. Non-transformed 
data did not show a significant or meaningful correlation with the TSS load data. When the dataset is 
split-up in northern Europe and southern Europe, IMAGE-USLE-outputs showed a significant positive 
correlation with the TSS loads in northern Europe, while in southern Europe correlations were negative. 
PESERA showed opposite patterns: Positive correlations, as expected, in southern Europe and negative 
correlations in northern Europe. 

For a more detailed analysis of the PESERA outputs, Sediment Delivery Ratios (SDR) were calculated 
using the PESERA outputs and the observed TSS loads. SDR's are defined as the amount of erosion 
simulated with the PESERA model, divided by the observed TSS loads. An SDR < 1 means that total 
erosion simulated with PESERA is lower than the amount of sediment delivered at the mouth of the 
basin. This can indicate that in these basins sediment delivery to the river is dominated by processes 
not described in PESERA, e.g. gully erosion or mass movements. An SDR > 1 indicates that PESERA 
simulates more erosion than loads reach the mouth of the basin. This can indicate that erosion is 
redistributed within the basin and does not reach the stream system. 

SDR's are calculated to range between 0.012 and 165 for the PESERA-lkm outputs and between 
0.015 and 720 for PESERA-lOkm outputs. Both PESERA-lkm and PESERA-lOkm tends to 
underestimate erosion in basins with a high TSS load and overestimate erosion in basins with a low 
TSS load (Figure 24). Underestimations of the erosion by PESERA are also found by several authors in 
several case studies. 
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A SDR PESERA-1km 

··-·--Trendline; R2 = 0.37 

TSS load (kg/km2 per year) 
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A SOR PESERA-10km 

-- Trendline; r{2 = 0.59 

TSS load (kglkm2 per year) 

; Sediment Delivery Ratio (SOR) of PESERA simulations compared with total suspended sediment load (e.g. (Van Rompaey et 

al., 2003, De Vente et al., 2008). 

For both PESERA-1 km and PESERA-10km, basins where PE SERA overestimates erosion (SDR> 1; 
probably a lot of re-sedimentation within the basin) are characterized by (t-test, p<0.05) a significantly 
lower elevation, higher clay content and higher silt content than the basins where PESERA 
underestimates erosion. 

A basin with a lower average elevation is generally less hilly and has less steep slopes. In such a basin, 
re-sedimentation is more likely to occur. Soils with a higher silt content are more sensitive to erosion. 
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This effect might be exaggerated in PESERA, causing an overestimation of the erosion. Higher clay 
contents can have two effects: lower infiltration rate and higher crusting risk, resulting in higher runoff, 
and their effects may be poorly parameterized in PESERA. On the other hand, higher clay contents also 
stabilize the soil. 

4.5 Conclusions 

The effects of vegetation cover and relief are interpreted differently by the models. Considering the 
interaction between timing of vegetation cover and rain intensity through the year in PESERA versus 
using values aggregated over a year resulted in large differences especially in areas with highly variable 
vegetation and rain over time. 

For a solid validation of the erosion risk simulations with PESERA and IMAGE-USLE, data on water­
induced sheet erosion over the past decades throughout Europe are needed. Because of lack of such 
data, we compared the model results with several maps that provide an indicator of the amount of 
erosion and degradation. Although comparing the output of a model that simulates long-term average 
erosion risk with a map of an indicator of past or current degradation status cannot be expected to fully 
align as we compare different variables, some correlation between the model outputs and the 
degradation indicators might be expected, underpinning the credibility of the models. In the end, the 
"sensitivity to erosion" as estimated with the models may compare to the status (GLASOD) and rate of 
erosion (GLADA, TTS). 

Compared with GLASOD erosions status, PESERA calculated erosion risk is higher in areas where more 
severe erosion is observed until 1990, as is expected, while IMAGE-USLE simulates the reverse pattern. 
Both PESERA and IMAGE-USLE predict larger areas of high erosion risk in areas where GLASOD 
indicates a large extent of erosion status. The statistical trends are however not strong, and because of 
the very large polygons used in GLASOD the results of the comparison are very coarse, there is a large 
chance that any overlap is coincidential (Shown by the low Cramer's V values). "' ·, 
IMAGE-USLE outputs are negatively correlated with those of GLADA, so areas with an NDVI decrease 
due to degradation are facing higher erosion risk. PESERA simulates a reverse pattern. This could, 
however, mean that the degradation observed in GLADA is caused by other processes than water­
induced erosion. 

Compared to the TSS dataset, IMAGE-USLE outputs show a comparable pattern in northern Europe 
while P,ESERA outputs show a reasonable correlation with TSS loads in southern Europe. Also, all over 
Europe' PE SERA has a somewhat better correlation with the TSS dataset. PESERA does however 
underestimate erosion. The underestimation is larger in basins with a higher TSS load. 
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5 Options for PESERA and IMAGE/LPJ 

5.1 Introduction 

Within the global change integrated assessment framework IMAGE, water erosion is simulated with 
a simplified version of the IMAGE-USLE (as described in section 4.2). Currently, the vegetation growth 
module and water module of the IMAGE framework is being replaced by the global dynamic vegetation 
models LP J and LP Jml. 

When adding PESERA to the IMAGE framework, PESERA should be run using inputs or outputs from 
scenarios simulated with IMAGE or IMAGE/LP J. In section 5.2 we describe the data requirements for 
PESERA in more detail and evaluate the use of IMAGE/ LP J inputs and outputs as alternatives. Then , 
in section 5.3 the application of PESERA in feedback with IMAGE / LP J to simulate impacts of erosion 
on crop production is evaluated. Section 5.4 provides a script for running PESERA using IMAGE or 
LP J inputs and outputs and evaluates the steps needed for this . 

5.2 Data match between PESERA and IMAGE/LPJ 

Tables 9-11 describe the input data for a standard PE SERA run for the European union, and data used 
or generated by IMAGE and LP J that could be used as an alternative. Table 9 describes weather and 
water data , Table 10 describes soil and topography data and table 11 describes land cover and use 
data. 

" , r,weather 
Both IMAGE and LP J use and simulate monthly weather data. The models are based on a global 
dataset of climate data with a 50km resolution. Algorithms are available for downscaling monthly 
weather data to daily data, enabling calculation of the temperature range and variation in precipitation 
needed for PESERA. Thus, technically speaking, weather data from the IMAGE framework suffice for 
running PESERA. 

Alternatively, instead of fully running PESERA using IMAGE or LP J data, runoff as simulated with IMAGE 
; or LP J could be used directly as input to simulate soil loss with PE SERA. Both IMAGE and LP J calculate 

runoff with a tipping bucket model that is quite comparable with the approach used in PESERA. 
Drawback of directly using the runoff simulated by IMAGE and LP J is that both IMAGE and LP J use a 
poor representation of limitations to infiltration due to depth and crusting. In both IMAGE and LP J, runoff 
thus probably is underestimated (Sitch et al. 2003), making the IMAGE / LP J runoff simulations probably 
unsuitable for simulating water-induced erosion. 

Soil and topography data 
Both in IMAGE and in LP J, highly generalized soil data are used that are not sufficient for running 
PESERA (Table 10). For global-scale applications, additional soil data are needed to run PESERA. The 
PESERA input parameters are derived from the Soil Geographical Database of Eurasia (SGDE) through 
a set of pedo-transfer rules. To derive these input parameters from a global-scale database, such as 
the Harmonized World Soil Database (HWSD), pedo-transfer rules need to be developed to fit such a 
database. Input data needed for this are however incomplete in the HWSD, especially indicators for 
soil depth. 
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With respect to topography, both IMAGE and LP J use a map indicating areas considered unsuitable for crop production due to relief. To run PE SERA on global scale, additional 
.J 

data on elevation is needed. Several global-scale OEMs are available that woqld suffice for this goal, including the SRTM 90m resolution OEM and the GTOP030 1km 
resolution OEM. -· / 

Table 9 

Weather/ Water data comparison. 

PESERA inputs 
Description, unit 

Mean monthly rainfall (mm mo-1) 

Mean monthly rainfall per rain day, by month (mm d-1) 

Coeffic ient of variation of rainfall per rain day (by month, 
computed for rain days only) 
Mean monthly temperature, corrected for altitude (°C) 
Temperature range (Mean daily max -mean daily min) (°C) 
Mean monthly potential evapotranspiration PET (mm mo-1) 

Closest Alternative from IMAGE 
Model boundary inputs / outputs 

conditions 
0-300 Monthly precipitation (mm yr-1) 

0-50 Monthly number of wet days (yr1) 

-20-21 Mean monthly temperature (°C) 
2.4-18.4 

0-300 Precipitation surplus (mm yr1) 

PET (mm yr1). 

Closest Alternative from LP J / LP Jml 
inputs / outputs 

Monthly precipitation (mm mo-1) 

Stochastic downscal ing of monthly 
precipitation to daily precipitation 

Monthly transpiration (mm mo 1) 

Monthly soil evaporation (mm mo-1) 
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Table JO 

Comparison of soil and topography data needed for running PESERA, IMAGE and LPJ(mLJ models. 

PESERA inputs 
Description, unit 

Erodibility 

Crust storage 
Soil storage 

Scale depth (Parameter to calculate soil water storage as a 
function of texture 

Initial surface storage 
Surface roughness reduction per month 

Maximum Rooting depth (cm) 

All soil parameters are derived from the Soil Geographical 
Database of Europe through a set of pedotransfer rules. 

Effective soil water storage capacity (SWAP) in 0-30 and 30-
lOOcm soil layers 

Standard deviation of elevation in a 1.5km radius, derived 

from GTOP030 OEM. 

Model boundary 
conditions 

1-5 

1-5 
24-109 

5, 10, 15,20,30 

0, 5, 10 
0, 50 

5,30,50,100 

Closest Alternative from IMAGE inputs / 
outputs 

Reduction factor of potential production (-) 

based on: 
- Fertility (5 classes) 
- Salinity (2 classes) 
- Rooting depth limitations (4 classes) 
- Acidity (3 classes) 

Drainage (2 classes) 
These limitations are specified in n classes 
for FAO main soil types. (Leemans 1994) 

0-64lm Map of rel ief classes indicating where crop 

production is not possible due to steep 
slopes. 

Closest Alternative from LP J / LP Jml 
inputs / outputs 

9 texture classes, derived from the FAO soil 

map of the world. Per texture class are 
specified: 
o Percolation rate; 
o Water holding capacity; 
Texture Classes are: Coarse; Medium; Fine, 
non-vertisol; Medium-coarse; Fine-coarse; 
Fine-medium; Fine-medium-coarse; Organic 

Fine, vertisol 
0 

o All soils are 100 cm deep and consist of 
two layers: 0-50 cm and 50-100 cm. 

Map of relief classes indicating where crop 
production is not possible due to steep 
slopes. 



Table 11 
Land cover and land use comparison 

Land cover representation/ variables 
PESERA inputs Closest Alternative from IMAGE 

inputs/ outputs 
Closest Alternative from LP J / LP JmL 
inputs/ outputs 

Land cover type/management option 
(see below) 

Surface roughness reduction per month 
by vegetation (0, 50 %) 

Rooting depth (5, 30, 50 or 100 mm) 

Cover(%) 

Planting and harvesting month of 

dominant and secondary crop (Jan-Dec) 

Water use efficiency 

Main land cover types 
PESERA inputs 

Artificial land 

Arable land 
Vineyards 

Fruit trees and berry plantations 
Olive groves 

Pastures and grassland 

Heterogeneous agricultural land 

Forest 

Scrubs 

Bare land 

Degraded natural land 

Water surfaces and wetland 
; 

Crops/ CFT's 
PESERA inputs 

Spring cereals 

Winter cereals 

Maize 

Root crops 

Oil seeds 

Forage 

Fallow 

Pulses 

Land cover type and crop type 
(see below) 

Closest Alternative from IMAGE 
inputs/ outputs 

Agriculture 

Extensive Grassland 

Grassland / steppe 

Plant functiona l type, crop functional type 

(see below) 

Closest Alternative from LPJ / LP JmL 
inputs/ outputs 

Plantations, Regrowth forest (abandoning), Tropical broadleaved evergreen, Tropical 

Regrowth forest (timber), Biofuel, Boreal broadleaved ra ingreen, Temperate needle-
forest, Cool conifer forest, Temperate mixedleaved evergreen, Temperate broadleaved 

forest, Temperate deciduous forest, Warm evergreen, Temperate broadleaved 

mixed forest, Tropical Forest Summergreen, Boreal needle-leaved 

Tundra, Scrubland, Savanna, Tropical 

Woodland, Wooded Tundra 

Hot desert, Ice 

Closest Alternative from IMAGE 
inputs/ outputs 
Temperate cereals 

Tropical cereals 

Maize 

Root and tuber crops 
Oil crops 

Rice 

Pulses 

Evergreen , Borea l needle-leaved 

Summergreen, Boreal broad-leaved 
Summergreen, 

Temperate herbaceous, Tropical 

herbaceous 

Closest Alternative from LPJ / LPJmL 
inputs/ outputs 
Temperate cereals 

Tropical cerea ls 

Maize 
Temperate roots 

Sunflower, Rapeseeds 

Rice 

Pulses 

Tropical roots 
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Spatial distribution of vegetation 
PESERA can be run using actual land cover data or simulate crop growth. The actual land cover data can be 
replaced by land cover simulations by IMAGE or LP J. IMAGE and LP J simulate spatial distribution of vegetation 
and crops at a 0.5° resolution. Outputs provided are dominant land cover in each grid cell (Upper part of Table 
11 ), and fractional cover of 19 agricu ltural crops in agricultural land (Lower part of Table 11 ). Land cover and 
land use classifications differ between PE SERA and IMAGE and LP J, because of the difference in focus of the 
models and differences in the spatial extent of the model. Technically speaking, land use and land cover types 
from IMAGE or LPJ can however be translated into forest, grassland or scrubs as used in PESERA (Table 11). 
For all land use and land cover types used as input in PESERA, crop-specific parameters are set (Table 11 ). 
Several vegetation or crop types simulated in IMAGE and LP J are not parameterized in PE SERA because they 
either do not occur in Europe, or were not relevant for the goals of PESERA (degrading areas in Europe, 
focusing on agricultural land). Consequently, natural land cover types are subdivided in some broad classes 
that are probably not representative for the variation of vegetation at global scale. Thereby, the 
parameterization of crops in PESERA is specific to European conditions that often will not apply outside 
Europe. Several new crops thus need to be specified , parameterized and calibrated when upon using PESERA 
at global scale. 
Finally, the models differ in how land use in agricultural land is represented. PESERA uses a dominant and 
secondary crop whi le IMAGE uses cover percentages for 19 crops. These can be translated into dominant and 
secondary crops, but this should be done carefully, especial ly with cells with a large variety of crop types. 

5.3 Simulating erosion impact on crop production using IMAGE/LPJ 

Spatial allocation of agriculture and the production of crops is strongly dependent on soil characteristics, 
including water holding capacity and fertility of the topsoil. These factors are influenced by erosion but are 
currently considered in IMAGE using a static input map. Theoretically, feedbacks between erosion and crop 
production could be included in the IMAGE framework (Figure 25). 

,, 
IMAGE land cover & PESERA Soil loss (mm): 

crop production year t ~ 

" 
erosion ~ change in WHC and 

simulation soil fertility 

'~ 

,. 

IMAGE land cover & 

i 
crop production year t+1 

Figure25 

Potential linkage IMAGE with PESERA. 

This poses two conceptual problems. First, PESERA is not a dynamic model, but simulates long-term average 
erosion risk under continuous vegetation and climate over 50 years. This cannot be interpreted as actual 
erosion rates under changing vegetation. Erosion rates are not influenced by the spatial pattern of vegetation 
in a certain year, but vegetation is assumed to be representative for the past fifty years . 
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A second issue concerns data on and simulations of soil depth. PESERA simulates erosion risk in tonnes/km2 

per year. This can be translated into millimetres soil loss using data on bulk density. However, in most cases 
this calculation will result in a soil loss of a few millimetres. As soil depth is extremely variable in space and 
data on soil depth are scarce (see Chapter 6.2), uncertainties in soil depth maps at a resolution suitable for 
global-scale simulations (10xl0 km or coarser} are large. Data on bulk density are scarce as well. Bulk density 
is however strongly correlated with soil texture and could be calculated from more abundant soi l texture data. 
This however introduces an additional uncertainty in soil depth loss calculations. Consequently, soil loss in mm 
simulated with PESERA will generally be smaller than the uncertainties in soil depth. Presenting PESERA 
outputs as mm soil loss thus would give a false impression of precision of the results that is not supported by 
the input data and the model structure. 
When running PESERA, soil depth is classified into five classes as a best apporiximationof the variation of soil 
depth at this scale of analysis. In the current version of PESERA, soil depth losses as could be expected 
annually thus cannot be captured by a PESERA input map for a simulation for a next year. 

A practical consideration upon a full coupling via modelled change of the soil depth through erosion as 
described above, is that the allocation and production of crops in IMAGE or LP J should be influenced by these 
factors. Currently, IMAGE and LP J are unable to cope with changes in soil depth. LP J assumes a standard soil 
consisting of two layers (0-50 cm and 50-100 cm} which is static in time while in IMAGE a reduction factor is 
applied on the potential production, that incorporates limitations by soil fertility , soil depth, drainage, salinity 
and acidity. This reduction factor is also static in time. For modelling full feedbacks with erosion, the model(s} 
should be adapted to using a soil depth that can change over time. 

Alternatively, a somewhat looser link could be established (Figure 26). Such a linkage would be possible with 
both the PESERA model as with the USLE-derived model currently used within the IMAGE framework. Based on 
IMAGE simulations, erosion risk can be simulated. Subsequently, areas projected to have severe erosion risk 
can be excluded from crop allocation, or may be rated less suitable for allocation of crops that aggravate 
erosion by e.g. changing the appropriate reduction factor in IMAGE. In a next simulation year the spatial 
allocation of crops will then be influenced by changes erosion risk patterns. Soil processes are not explicitly 
simulated, only changes in the projected impact of land use allocation on erosion. ~,?, 

IMAGE land cover & Erosion Identification of risk areas: 

crop production year t ~ simulation ~ no crops can be allocated - -
here. 

• l 

; 
1r 

IMAGE land cover & 
crop production year 

t+1 

Figure26 

Possible linkage IMAGE-erosion module. 
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5.4 Procedure for running PESERA at global scale 

5.4 .1 Basis data and model adaptations 

Table 12 describes basis data needed for PESERA at global scale and model adaptations that are needed for 
PESERA, IMAGE or LP J. 

Table 12 

Data and model adaptations needed for simulating feedbacks between erosion and crop production with PE SERA and IMAGE/7...P J 

at global scale. 

1. Create elevation dataset 

2. Create soil data set 

4. Create vegetation data 

5. Model adaptations ., 

Based on a global-scale OEM, derive a map of standard deviation of elevation (m) at the 
model run resolution . Alternatives are 90m SRTM OEM or GTOPO OEM (1km resolution). 
In the SRTM OEM, there are no data North of 60 degrees. GTOPO might therefore be the 

best alternative 

Develop pedotransfer rules to derive 
- Sensitivity to crusting (5 classes) and 
- Erodibility (5 classes) from Harmonized World Soil Database, 
- Derive Effective soil water storage capacity (value range 0-250 mm); 
- Soil water available to plants in top 300mm (value range 0-90 mm); 
- Soil water avai lable to plants (300mm and 1000mm depth, value range 0-154 mm) 
- depth to rock (4 classes). 
The Harmonized World Soil Database (HWSD) currently seems to be the best dataset for this 
application (see chapter 6) 

- Parameterize PESERA parameters for IMAGE crops rice and other crops. 
- Assess accuracy of PE SERA natural land cover type parameterization for global' scale; 

if necessary, parameterize natural land cover types. 
- Assess accuracy of PESERA crops parameterization for global scale; if necessary, 

parameterize crop types for global scale. 

- Assess behaviour of PESERA outside current boundary conditions. 
Adapt PESERA to run with global-scale land cover types: Add new land cover types as 
needed 

- Adapt IMAGE for running with reduction factor that can change in time, and/ or 
- Adapt LP J for running with map indicating unsuitable areas that can change in time. 
- Develop translation of PESERA erosion risk into changes of IMAGE reduction factor/ 

suitability in LP J. 
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IMAGE / LPJ 
climate and land 
use simulation 

Figure27 

Output: 
■ Monthly weather 
■ Dominant vegetation 
■ In agricultural land: 

Dominant and 
secondary crop 

Translate PESERA outputs 
to modified IMAGE 
reduction factor I LPJ 
suitability 

Technical overview of simulating feedbacks wtfh IMAGE/f_PJ and PESERA. 

5.4.2 Estimate uncertainties 

Downscaling of weather 
data to daily values; 

calculate temperature 
range and variation in 

precipitation 

PESERA erosion 
risk simulation 

The PESERA regional model was developed for the European extent with a spatial resolution of lkm2
. A test 

for a global-scale application at 10km resolution within the European extent showed that simulation results at 
10km resolution showed a reasonable match with those at 1km resolution (Table 5). Also, the 10km resolution 
results showed a somewhat better match with data on suspended sediment load (Table 8). The global 
covernge"'&{ a 1 km2 DEM assures a topographic base line for modelling, from which coarser resolutions DEMs 
can be created. This will lead to added uncertainty in model outputs at global scale . Also, the regionalisation of 
soil and climate data will introduce much more variability and uncertainty in model output, especially in areas 
that have climatic , relief or land cover conditions that fall outside the model boundary conditions (Figure 28). 
For instance, how will the model perform for climate zones, in combination with specific terrain conditions, 
that are not found in Europe or in semi-arid zones? For instance, mountainous areas in the humid tropics , or 
the cold areas in Canada or Russia. Also in areas with low data availability, low quality data areas and on highly 
heterogeneous terrain (soil) conditions uncertainties in input data and uncertainty propagation in the model 
structure r,eed to be considered. 
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Figure28 

Areas where climatic and land cover/ land use condlfions are outside the PE SERA boundary conditions as desmbed in Tables 5.1-

5. 3. Indicated in red. Red areas in Europe indicate locations where the use of other data in IMAGE/ LP J causes exceedance of the 

boundary condlfions. 

5.5 Possibilities for improving IMAGE-USLE 

As an alternative to including PESERA in the IMAGE framework, several improvements on the USLE approach 
currently used in IMAGE are possible. 

Better parameterization of vegetation / management types: Especially in natural land cover, the 
parameterization is highly generalized. Based on a literature review, protection factors could be estimated for 
the complete range of land use and land cover types used in the GLOBIO biodiversity model. For several 
er?~ protection factors could be adapted for each biome or different management types. 
The relief index used in IMAGE-USLE is based on altitude ranges as provided by the 1 :5 M scale FAO soil map 
of the world. In this report, we ca lculated the relief index based on a global-scale DEM. With the global DEMs 
currently available it is possible to assess if including larger elevation differences than 2% is appropriate and to 
assess if using an e.g. exponential, logarithmic relation between elevation differences and relief index is 
recommended. 
In southern Europe, inaccurate patterns of IMAGE-USLE-simulated erosion risk might be explained by averaging 
out vegetation cover over the year. Alternatively, IMAGE-USLE could be run with a monthly time-step, so that 
the interactions between rain intensity and vegetation cover can be accounted for more realistically. 

; 
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6 Databases for global modelling and 
validation 

6.1 Introduction 

This chapter describes maps that could be used as inputs for global-scale erosion risk simulations 
(section 6.2) and data that can be used to check the credibility of erosion model outputs (section 6.3). 

6.2 Input soil data 

FAO UNESCO Soil Map of the World 
The 1: 5 M scale Soil Map of the World (FAO-Unesco, 1971-1981) has long been the single harmonized global 
soil information resource. It was digitized in 1995 (FAO, 1995, 2003); with derived soil properties linked to 
the map, it has long been the most common source for global modellers. 

SOTER 
The SOTER project was initiated by ISRIC with support from the IUSS, FAO, and UNEP (ISSS, 1986). 
The SOTER project aims to establish a World Soils and Terrain Database, at scale 1:5 000.000, containing 
digitized map units and their attribute data in standardized format. SOTER databases have been created at 
different scale levels (national SOTERs and regional/supra-national). Space Shuttle Radar Topographic Mission 
(SRTM) digital elevation data are now being used to derive the different landform units and to generate terrain 
information; soil attribute data are largely derived from legacy field data and pedotransfer functions. The 
present global coverage is incomplete. The program continues, but there is no structural program to support 
the el<p~ion of the SOTER database for the entire world . 

WISE 
The ISRIC-WISE global soil profile database (Batjes , 2009) contains 10.000 geo-referenced soil profiles from 
123 countries (Batjes, 1996). It has been used to derive spatial data sets of derived soil properties on a global 
0.5 by 0.5 degree grid include soil pH, organic carbon content, inorganic carbon content, cation exchange 
capacity, and available water capacity at standard depths (0-30, 30-100, and 0-20, 20-40, 40-60, 60-80 and 
80-100 cm), (Batjes, 2012). The WISE database was developed for, and has been a much used resource for, 
global (c~ange) modellers. 

Harmonized World Soil Database v 1.2 
The HWSD was developed by the FAO's Land & Water Development Division, IIASA, ISRIC-World Soil 
Information, Institute of Soil Science, Chinese Academy of Sciences (ISSCAS), and the Joint Research Centre 
of the European Commission (JRC) (FAO/IIASA/ISRIC/ISSCAS/JRC, 2009). The database has a 30 arc-second 
raster resolution and contains over 15000 different soil mapping units. It is based on existing regional and 
national updates of soil information worldwide (SOTERs, European Soil Database, Soil Map of China, and WISE 
profile database) combined with the information contained within the 1 :5 000 000 scale FAO-UNESCO 
Soil Map of the World (FAO and UNESCO 1971-1981). 

The HWSD raster database is linked to a set of harmonized soil property data. These may be linked with 
the raster map which allows provision of information on map composition in terms of soil units and selected 
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soil parameters (organic Carbon, pH, water storage capacity, soil depth, cation exchange capacity of the soil 
and the clay fraction, total exchangeable nutrients, lime and gypsum contents, sodium exchange percentage, 
salin ity, textural class and granulometry) (Rossiter, 2011). Maps in geotiff format are available for the single 
soil data properties. 
Efforts are underway to upgrade the HWSD by adding avai lable datasets to the current data source, 
coordinated by the FAO in the framework of the Global Soil Partnership (GSP). 

Global Digital Soil Mapping Project 
GlobalSoilMap.net is a global consortium that has been formed with the objective to make a new digital soil 
property map of the world using remote sensing and spatial statistics at fine resolution (90 ml( Sanchez et al. , 
2009.). The aim is to compile soil property map that will be supplemented by interpretation and functionality 
options. The project is an initiative of the Digital Soil Mapping Working Group of the International Union of Soil 
Sciences IUSS. Much research work is currently done around the globe to improve standard soil maps 
applying spatial statistics and a range of co-variables including DEMs, climate, relief etc. Current efforts 
concentrate on collecting soil data and developing a soil map for the African continent. The global map will be 
built from regional maps and coordinated by regional nodes. A standard set of soil properties will be estimated 
for standardized depth intervals. In the next coming years property maps will gradually become available for 
countries and regions from various sources. The Global Soil Mapping Project will work towards continental and 
global scale coverage of soil property maps. 

Conclusions 
With respect to global coverage and data availability, the Harmonized World Soil Database and the 
FAO UNESCO soil map of the world are the two main sources for global modelling. Further, a set of 
WISE derived soil property maps of the world are available. 

6.3 Datasets for testing and evaluation erosion risk model outputs 

Introduction 

The proposed IMAGE/LP J-module be developed should be tested and evaluated once available. There may be 
two different objectives in such an exercise: 1) to verify the similarity of predictions of the IMAGE/LP J-module 
with the original model, and/ or to evaluate the output of the module on the basis of measured data or expert 
judgement. 
The comparison of the predictions of the IMAGE/ LP J-module with the original model can provide a check on 
the adequacy of fitting the erosion model in the IMAGE/LP J framework. The latter requires conversions and 
adaptptions to the model and its data flows . Provided that the same data are used, the module built should 
provide comparable outputs . 

The second objective concerns assessing the adequacy of the model for estimation of erosion and other 
hydraulic processes. For Europe, this has been done for the original PESERA regional model under different 
conditions and various scales (e.g. (Meusburger, et al. , 2010), (de Vente, et al. , 2008), (Van Rompaey et al. , 
2003). 

Evaluation of the erosion model/module should not only focus on the adequacy to estimate rate of water 
erosion but also on assessment of the degree to which much of the processes that affect sediment transport 
in the landscape are ignored, are outside the boundary conditions of the model, and what the implication is for 
predictions at regional to global scale. Sedimentation in the plains and valley bottoms are not taken into 
account and much of detached sediment is re-sedimented in another part of the landscape, while the erosion 
models only calculate the potential soil loss at a certain point. Mass movement of soils , such as landslides and 
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soil slips are processes that are not modelled by most erosion models that usually take sheet erosion only into 
account. For test areas in different eco-regions and landscapes an erosion assessment could be done and the 
known soil loss and depositional processes could then be added up and compared with the quantitative 
estimates of the erosion model. A difficulty is that erosion is a process of thresholds and extreme events. 
Slumps and landslides occur when a certain threshold is reached and significant erosion may occur only in the 
extreme ra infa ll that occur once every so many years. With the regional and global modell ing the extremes in 
ra infa ll are not represented in the data. The question then is whether the predicted erosion rate is comparable 
with the long term average measured erosion rates. 

6.3.2 Data sets for evaluation of erosion model output 

WOCAT 
WOCAT (World Overview of Conservation Approaches and Technologies) is a global network of Soil and Water 
Conservation (SWC) specialists. WOCAT makes an inventory of sustainable land management technologies and 
their implementation approaches providing standardized tools and methods (WOCAT, 2002). 
The WOCAT database provides access to 175 case studies on technologies (the activities implemented in the 
field) and 130 approaches (the enabling environment required to implement the technologies successfully), as 
well as geographic data. The technologies database provides information on land management technologies 
and their effectiveness in conservation and/or enhancing productivity. For the purpose of evaluation of the 
erosion model, the WOCAT mapping database seems most appropriate. The case studies from the WOCAT 
technologies data base will be relevant for the definition of soil and land management scenarios and 
conservation strategies and their effect on soil erosion potential. 

The WOCAT mapping database contains spatial assessments of degradation and conservation with qualitative 
indications of impacts on ecosystem services, including agricultural production, organic matter, and water 
availability. The degradation and conservation mapping ranges between local to regional. In the mapping 
approach the basic mapping unit is the land use system (LUS) rather than the landscape or land units. Output 
maps of the erosion model may be compared with the WOCAT land degradation status maps. 

DESIR
1E' 

The DESIRE project has mapped various areas with the WOCAT methodology (Schwilch et al. , 2012). In the 
DESIRE project local level mapping has been done (watershed level). Data to run the PESERA model have been 
gathered for several of the DESIRE study sites. The data and the modelling results from some of these sites 
may therefore be relevant for the evaluation of the erosion proposed model/module for LP J-IMAGE. The areas, 
however, are rather small (sub-watersheds). 

LADA 
The LADA\ref) projects has also mapped various areas with the WOCAT methodology and the GLADA 
methodology. In the LADA project the focus is mainly on the regional and national scale . The national 
degradation maps may be relevant for evaluation of the proposed model/module for LP J-IMAGE. 

USLE test plot database 
The Universal Soil Loss Equation (USLE) was developed from experimental data gathered from plots across 
the USA. In the l 950's the USDA-ARS National Runoff and Soil Loss Data Center was created at Purdue 
University. It became the central location for the soil erosion data that had been collected across the U.S. 
since the 1930s. The Center compiled a wide range of experimental data from across the U.S, and analysed 
the data for further development of erosion prediction equations. A substantial database of the measured 
run off and soil loss data was eventually created from 4 7 research stations in 24 of the 37 states east of the 
Rocky Mountains as well as Pullman, Washington and Mayaguez, Puerto Rico, totalling over 10,000 plot years 
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(Flanagan, 2004). This database is a valuable resource to date for the evaluation and validation of erosion 

prediction models. 

of r-o::_:u:n.M at the catchment scale 
Jn the framework of the DESIRE project work is being done to calibrate/validate/evaluate PESERA. For 
the purpose a database was developed with sediment export rates from river catchments in Europe, 
the Mediterranean World and the regions of the DESIRE study site areas outside Europe. This sediment yield 
(SY) database will allow the calibration and validation of the (adapted) PESERA model and will provide 
a framework to evaluate mitigation strategies at the catchment scale, considering their effects on total 
sediment export. The established sediment export database facilitates the comparison of erosion rates, 
predicted by the PESERA model, with actual sediment export rates. This comparison will serve as a basis 
indication where other sediment sources may be important and where additional attention needs to be given to 
the PESERA model. Results will be presented in a report and in articles (Vanmaercke, et al., 2011). 
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7 Conclusions and discussion 

The Study 
The modified version of the USLE already available in IMAGE and PESERA were evaluated against several 
sources of land degradation and erosion; GLASOD, GLADA and TSS. Although this is problematic, as each of 
the other regional/global datasets on soil erosion has its own boundary conditions, assumptions and 
limitations, the comparison with various sources, provided general information on the performance of the 
models. Also, a study was made on the effect of DEM compilation method on model output and of DEM 
resolution (1 km versus 10 km) on model output. 

What we found 
Approaches currently used for simulating erosion risk at national scale or larger, include models based on the 
USLE (or similar equations such as SLEMSA), factor scoring methods, regression models and the PESERA 
erosion risk model. Based on literature analysis, out of this set of approaches, PESERA was evaluated as most 
suitable for improving erosion estimates within the IMAGE framework, because (1) the range of processes 
considered in PESERA better reflect the actual hydro-ecological processes that influence erosion; (2) the 
output of PESERA is calculated per monthly time-step and with various output variables, other than just soil 
loss, thus allowing for multiple linkages and interactions with the IMAGE model and providing opportunities for 
inputs to scenario analyses; and (3) additional data requirements to run PESERA with IMAGE are very limited 
because most input variables for PESERA are already used in IMAGE/LP J. From the literature analysis, no 
convincing evidence was found , however, that any of the models investigated provides a more accurate 
reflection of water erosion for all conditions (the adequacy of models varied differently for geographic zones). 

IMAGE-USLE and PESERA results for 1km and 10km resolution of the DEM for Pan-Europe, indicate that: 
B01n "ifv'IAGE-USLE and PESERA predictions at coarser resolution (10 km) are consistent with those produced 
at 1 kni resolution. This contradicts the claim made in several studies that PESERA will perform better on 
higher resolution DEM, than at lower resolution (10 km in our study). 

The resampling method and the averaging process when converting between scales appear to have more 
impact on projections than the coarser resolution of the DEM. 

Patterns of erosion risk simulated with IMAGE-USLE are not consistent with those simulated with PESERA. 
Althou~h patterns of erosion risk simulated with IMAGE-USLE are more consistent with patterns of other 
sources for regional and global prediction of degradation/ erosion, the correlations are weak. Spatial patterns 
of erosion risk simulated with both IMAGE-USLE and PESERA show some overlap with observed patterns of 
suspended sediment load in Europe. 

This study cannot give a firm conclusion on the reliability of predictions of the regional erosion models studied. 
The data required for that are not available. We did test the models on their sensitivity in output when different 
resolution data (topography) were used. 

The PESERA model considers a larger number of variables and processes, such as vegetation growth and 
hydrological processes, that are also considered in the IMAGE model. 
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The more process-based approach of PESERA and the more varied outputs, specified in monthly time steps, 
such as surface run-off, soil moisture deficit and soil erosion, and the improved availability of base line data, 
such as for topography, would favour the choice for PESERA as the model towards quantification of soil 
erosion scenarios in the IMAGE-LP J modelling framework. There is need for a continued effort in the further 
application, development and testing of the PESERA model and a possible link with the IMAGE-LP J framework. 
This provides opportunities for continued evaluation of the model and establishing links with the development 
team (University of Leeds). 
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Based on the results and discussion presented above, we recommend PESERA for the quantification of soil 
erosion in the IMAGE-LPJ modelling framework. 

Technical adaptations needed for linkage of PE SERA with the IMAGE framework include: 
- Enabling IMAGE/LP J to run with soil inputs that can change in time; 
- Parameterization of equations that describe the effects of different type of vegetation at a global scale; 
- Creation of global-scale soil and relief data layers as inputs for PESERA application 
- Applying a monthly time-step 
- Introduction of more detailed parameterization of protection against erosion by vegetation. 

Scenario development in the global modeling framework for projections of impacts of conservation and 
erosion could include semi-quantitative indicators of erosion risk in feedback with crop-growth models. One 
way could be the methodology as was developed and tested for national level studies by Mantel, et al. (1997, 
1999, 2000) in which simulated erosion over decades are translated into classes of topsoil lost, soil 
parameters are then adjusted for this loss. For this, the similar, but simpler, model adaptations are needed as 
described above. Simulating such feedbacks are possible with both IMAGE-USLE and PESERA. 
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Appendix 1 RUNNING PESERA MODEL 

Resolution 1km used as the base grids 

Results l0kmDEM reslkm: 

All the grids used with 1km resolution, but only std _ eudem2 10 km grid resampled to 1km resolution 

(bilinear) 

std_eudem2 (10km grid) was made with bilinear resampling from SRTM 4.1 

Input file for running Pesera model: 

FTN_INPUT.DAT: 1 km grids 
2724 

3199 

0.000000E+00 

Number of rows in the analysis window 

Number of colunms in the analysis window 

Predicted change in rainfall intensity 

1000.0 Grid resolution (m) 

-1594713 Lower left x-ordinate 

-1312168 Lower left y-ordinate 

2 

1 

lu_scenario; 2=eul2cropl 

In directory d:\Meteo_grids 1km 

cov _j an - cov _ dee 

swsc eff 2 

crust_0~0~ 
use 

cvrf21 -cvrf2 l 2 

Zill 

erod 0702 

meanpet301 - meanpet3012 

meanrfl301 - meanrfl3012 

meanrf21 - meanrf2 l 2 

mtmeanl ,mtmeanl2 

climate scenario 

newrfl301 - newrfl3012 

mtmeanl - mtmeanl2 

mtrange 1 - mtrange 12 

eul2cropl 

eul2crop2 

cvrf21 - cvrf2 l 2 

itill _ crop 1 

itill_ crop2 

Running the model 

The base files for running model in d:\temp _ ascii 

Arclnfo Grid: 

&workspace d: \meteo _grids 

&run d: \temp_ ascii\xgridascii 0 8 3 .aml 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

ftn_input083.exe (Look for input: FTN_INPUT.DAT) 

ftn combined 083.exe - -

pesera _gridl03.exe 

to _grid083b.exe 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

newtemp 1 - newtemp 12 

itill m 

plxswapl 

p2xswap2 
rootdepth 

rough0 

rough_red 

std eudem2 
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Arcinfo Grid: 
&workspace d:\temp_ascii 
&run xasciigrid083.aml 

Resampling 1 km to 10km 

sedi_tot 1km run resampled to 10km using raster calculator: 

sedi_tot_ 1km * 1 with processing extent of sedi_tot_lOkm; Snap Raster: sedi _tot_lOkm; Raster analysis: 

cell size 

same as sedi tot I 0km and mask of sedi tot I 0km - - - -

Creating point file 

1. sedi_tot_ 1km _resampled to 10km: Conversion-> raster to point 
2. sedi_tot_lkm(lokm DEM) to 10km: Conversion-> raster to point 

Intersecting point files 

These shapefiles: Analysis Tools-> Overlay-> Intersect 

DBF file ofresulting shapefile imported in excel for correlation calculation. 

Results: 
Overlay (Intersect) of I and 2: Correlation sedi_tot_lOkmDEM_reslkm versus lkmresl0 (see: 

result_corrxxx .. xlsx) = 0.45 
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n 

Resolution 1km used as the base grids 

Resolution 10km: All the grids in d:\meteogrids resampled (bilinear) to 10 km 

Results_ l OkmDEM _res I !an: (not used in further analysis) 

All the grids used with I !an resolution, but only std _ eudem2 10 km grid resampled to I !an (nearest) resolution 

std_eudem2 (1km grid) and std_eudem2 (10km grid) were made with bilinear resampling from SRTM 4.1 

Run A: std eudem2 10km bilinear 

Run B: Same as Run A but std_eudem2 1km (DEM) grid with fishnet creating resampled to 10 km 

Creating fishnet for the DEM: 

Data Management Tools-> Feature Class-> Create Fishnet 

Projection: Lambert Azimuthal Equal Area Central Meridian: 9 Latitude of Origin: 48 

X-coordinate: -159713 Y-coordinate: -1312168 
Y-axis coordinate 

X-coordinate: -159713 

Cell Size Width: 10000 

Cell Size Height: 10000 

Number of rows: 272 

Number of columns: 320 

Geometry Type: Polygon 

Result: FISHNET ,.,, -, 

Y-coordinate: 1411832 

Calculating Shape ID from FID -> Fieldcalculator replace ID with values ofFID 

Spatial Analyst Tools-> Zona!-> Zona] Statistics as Table 

Input raster or feature zone data: FISHNET 

Input value raster: std_eudem2 1km 

Zone field: ID 

Ignore NoData 

Statistics: MEAN 

Result: Zoi;ial MEAN ' -
Join table Zona! MEAN to FISHNET 

Converse FISHNET (with join) to raster: 

Conversion Tools-> To Raster-> Polygon to Raster (cell size 10000) 

Result: po! _rast 

Spatial Analyst Tools-> Extraction-> Extract by Mask 

Input raster: po! _rast 

Input raster or feature mask data: std_eudem2 1km grid 

Result: pol_rast_mask 

For running in PESERA model rename pol_rast_mask to std_eudem2 
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Input file for running Pesera model: 
10km 

272 

320 
0.000000E+00 

10000.0 
-1594 713 
-1312168 

2 

FTN_INPUT.DAT: I km grids 
2724 

3199 
0.000000E+00 

1000.0 
-1594713 
-1312168 
2 

1 

Number of rows in the analysis window 
Number of columns in the analysis window 
Predicted change in rainfall intensity 
Grid resolution (m) 

Lower left x-ordinate 
Lower left y-ordinate 
lu_scenario; 2=eu12cropl 
climate scenario 

In directory d:\Meteo_grids the coverages: (ALL these grids were resampled bilinear to 10km in the run for 
the 10km scenarios.) 
cov Jan - cov _ dee 

crust 0702 

use 

cvrf2 l -cvrf2 l 2 

zm 

erod 0702 

newrf1301-newrf13012 

mtmeanl - mtmeanl2 

mtrange 1 - mtrange 12 

eul2cropl 

meanpe1;301 - meanpet3012 eul2crop2 
,,• ·, 

meanrf1301 -meanrf13012 cvrf21 - cvrf212 

meanrf2 l - meanrf2 l 2 

mtmeanl -mtmeanl2 

Run A resp. Run B 

itill_ crop 1 

itill _ crop2 

newtempl - newtempl2 

itill m 

rootdepth 

rough0 

plxswapl 

p2xswap2 

rough_red 

swsc eff 2 

std eudem2 This file to be replaced for 

Running the model 

The base files for running model in d:\temp_ascii 

Arclnfo lirid: 

&workspace d: \meteo _grids 
&run d:\temp _ ascii\xgridascii083 .aml 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
ftn_input083.exe (Look for input: FTN_INPUT.DAT) 

fin combined 083.exe - -

pesera_grid103.exe 

to _grid083b.exe 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Arclnfo Grid: 

&workspace d: \temp_ ascii 
&run xasciigrid083.aml 
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Resampling l km to 10km 
sedi_tot 1km run resampled to 10km using raster calculator: 

sedi_tot_ 1km * 1 with processing extent of sedi_tot_10km; Snap Raster: sedi_tot_l Olm1; Raster analysis: 

cell size 

same as sedi tot 1 0lm1 and mask of sedi tot 10km 
- - - -

Creating point files 

1. sedi_tot_llm1_resampled to 10km: Conversion-> raster to point 

2. sedi_tot_ 1 Olm1 bilinear: Conversion -> raster to point 

3. sedi_tot_IOkm fishnet: Conversion-> raster to point 

4. sedi_tot_llrm_fishnet_resampled 10km: Conversion-> raster to point 

Intersecting point files 
These shapefiles: Analysis Tools-> Overlay-> Intersect 

DBF file ofresulting shapefile imported in excel for correlation calculation. 

Results: 

Overlay (Intersect) of 1 and 2: Correlation bilinear versus lkmreslO (see: Correlations.xlsx) = 0.30 

Overlay (Intersect) of 1 and 3: Correlation fishnet versus lkmreslO (see: Correlations.xlsx) = 0.33 
Overlay (Intersect) of 1 and 3: Correlation fishnet versus lkmreslO (use resampled focalstat 3x3 majority)= 

0.38 

Overlay (Intersect) of 2 and 3: Correlation bilinear versus fishnet (see: Correlations.xlsx) = 0.82 

Overlay (Intersect) of3 and 4: Correlation fishnet versus lkmreslO_fishnet (see: Correlations.xlsx) = 0.57 
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Appendix 3 PESERA output at two resolutions 

PESERA output at two resolutions (DEM = 1 and 10 km) in monthly means. 

Figure JO 

Monthly mean value of erosion sediment 
All grids 10km resolution 
OEM with mean value of stand ,dev 

PESERke'slilhBted soil erosion (ton.ha-l.month-1), monthly mean value, based on 1 and 10 km DEM 
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