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ABSTRACT

Lameness in dairy cows is a major animal welfare 
concern and has substantial economic impact through 
reduced production and fertility. Previous risk factor 
analyses have focused on housed systems, rather than 
those where cows were grazed for the majority of the 
year and housed only for the winter period. Therefore, 
the aim of this observational study was to identify a 
robust set of cow-level and herd-level risk factors for 
lameness in a pasture-based system, based on predic-
tors from the housing and grazing periods. Ninety-nine 
farms were visited during the grazing period (April 
2019–September 2019), and 85 farms were revisited dur-
ing the housing period (October 2019–February 2020). 
At each visit, all lactating cows were scored for lame-
ness (0 = good mobility, 1 = imperfect mobility, 2 = 
impaired mobility, 3 = severely impaired mobility), and 
potential herd-level risk factors were recorded through 
questionnaires and infrastructure measurements. Rou-
tine cow-level management data were also collected. 
Important risk factors for lameness were derived though 
triangulation of results from elastic net regression, and 
from logistic regression model selection using modified 
Bayesian information criterion. Both selection methods 
were implemented using bootstrapping. This novel 
approach has not previously been used in a cow-level 
or herd-level risk factor analysis in dairy cows, to the 
authors’ knowledge. The binary outcome variable was 
lameness status, whereby cows with a lameness score of 
0 or 1 were classed as non-lame and cows with a score 
of 2 or 3 were classed as lame. Cow-level risk factors 
for increased lameness prevalence were age and genetic 
predicted transmitting ability for lameness. Herd-level 
risk factors included farm and herd size, stones in pad-

dock gateways, slats on cow tracks near the collecting 
yard, a sharper turn at the parlor exit, presence of digi-
tal dermatitis on the farm, and the farmers’ perception 
of whether lameness was a problem on the farm. This 
large-scale study identified the most important associa-
tions between risk factors and lameness, based on the 
entire year (grazing and housing periods), providing a 
focus for future randomized clinical trials.
Key words: dairy cow, lameness, risk factor, pasture-
based, machine-learning

INTRODUCTION

Lameness is a debilitating problem in the dairy sector, 
representing a major welfare challenge and negatively 
impacting the economic sustainability of the industry 
(Huxley, 2012). Lameness is a painful condition that 
can lead to behavioral changes in dairy cows, including 
increased lying and decreased feeding time (Galindo 
and Broom, 2002). Lameness is commonly considered 
to be one of the 3 most costly diseases in dairy herds 
(Bruijnis et al., 2010), with financial losses attributable 
to decreased milk production and fertility as well as 
treatment and culling.

Risk factor studies are critical to identifying asso-
ciations between potential risk factors and lameness, 
thus creating an important foundation for future inter-
vention studies. Risk factors for freestall-housed cows 
included increased time away from the pen, decreased 
cow comfort, tiestall brisket boards, and no routine 
trimming (Espejo and Endres, 2007). In a fully housed 
Canadian system, herd-level risk factors included small 
herd sizes, slippery flooring, and reduced lying surface 
comfort, whereas cow-level risk factors included high 
parity, low BCS, and the presence of hock injuries and 
overgrown claws (Solano et al., 2015). Additional risk 
factors for cows with no pasture access include feed rail 
and alley design and water trough design (Sarjokari et 
al., 2013).
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Risk factors associated with lameness for cows that 
are grazed year-round differ from those that are fully 
housed. In a large-scale study in New Zealand, cow 
track maintenance and stockman behavior when mov-
ing animals on cow tracks were the most prominent risk 
factors for lameness (Chesterton et al., 1989). In an 
Australian pasture-based system, risk factors included 
rainfall levels, collecting yard stocking rate and con-
crete smoothness, feed-pad stocking rate, and rough 
handling of cattle on cow tracks (Ranjbar et al., 2016). 
Lameness incidence in Brazil was greater for cows that 
were moved faster along the cow tracks, Holstein Frie-
sian cows compared with Jersey cows, cows with hoof 
abnormalities, and cows with higher parity and lower 
BCS (Bran et al., 2018).

Many dairy production systems are neither fully 
housed nor involve year-round grazing. For example, 
Irish dairy farms are almost entirely spring calving and 
pasture based (Dillon et al., 1995); however, cows also 
spend approximately 4.5 mo/yr in housed facilities be-
fore calving (Dillon et al., 2019). Cows in these hybrid 
systems may therefore be exposed to risk factors for 
both systems, which may alter the relative importance 
of each factor. For cows in this system type, white 
line disease and sole hemorrhages have been reported 
as the most common causes of lameness (Somers and 
O’Grady, 2015). This is similar to cows in fully grazed 
systems, such as New Zealand, where noninfectious le-
sions were most prevalent (Chesterton et al., 2008). In 
contrast, cows in fully housed systems tended to have 
a higher prevalence of infectious lesions, such as digital 
dermatitis (Solano et al., 2016).

Only limited research has investigated risk factors for 
lameness in a part-grazed, part-housed system. Doherty 
et al. (2014) derived a list of potential risk factors from 
previous research and established how common they 
were in Irish herds. Somers et al. (2019) also reported 
cow-level risk factors as part of the same study and 
included higher parity, BCS loss postpartum, and lower 
BCS at calving. O’Connor et al. (2020) reported that 
herd-level factors included footbath use and holding 
cows in the collecting yard until milking was complete, 
with cow-level risk factors including stage of lactation 
(>120 DIM), PTA for lameness, and BCS. However, 
O’Connor et al. (2020) focused on the grazing period 
only and did not consider the housing period or evalu-
ate directly measured farm infrastructural features as 
potential risk factors for lameness. Risk factors for 
lameness in England and Wales, where cows were out to 
pasture full-time in the summer, included routine trim-
ming, use of automatic scrapers, passageway widths <3 
m, and stall curb heights <15 cm (Barker et al., 2007). 
However, compared with the farms studied by Barker 
et al. (2007), Irish farms tend to be less intensive, with 

lower-yielding and smaller cows and a longer grazing 
season. Moreover, previous research involving part-
grazed, part-housed systems was undertaken before 
or the year of the abolition of European Union milk 
quotas in 2015 (Barker et al., 2007; Somers et al., 2019; 
O’Connor et al., 2020). Therefore, opportunities have 
arisen for dairy farmers to undergo expansion since 
then (Ramsbottom et al., 2020), and potential risk fac-
tors may be altered as a result. In addition, sample 
sizes in these studies ranged from 10 to 49 herds; a 
larger-scale study would provide a more representative 
sample and allow a smaller effect size to be detected.

The aim of this study was to identify a robust set 
of the most important cow- and herd-level risk factors 
for lameness in a pasture-based system where cows are 
also housed for part of the year, using a large number 
of potential predictors from the grazing and housing 
periods. Identifying associations between risk factors 
and lameness will contribute to lameness prevention 
and deliver a focus for future intervention studies.

MATERIALS AND METHODS

Ethical approval was granted by the Teagasc Animal 
Ethics Committee (Cork, Ireland) before the com-
mencement of the study (review number: TAEC202-
2018). All animal measurements were carried out in 
compliance with the European Union (Protection of 
Animals Used for Scientific Purposes) Regulation 2012 
(S.I. 543 no. of 2012) and the European Directive 
2010/63/EU. The study involved 2 visits: one during 
the grazing period (April 2019–September 2019) and 
one during the housing period (October 2019–February 
2020). The median difference between the 2 visits was 
168 d [interquartile range (IQR) = 127–217], ranging 
from 65 to 262 d. This study was part of a larger study 
assessing dairy cow welfare in pasture-based systems 
(Crossley et al., 2021).

Farm Selection

Before recruitment of farms, selection criteria were 
determined to ensure that study farms represented 
the predominant dairy production system in Ireland; 
pasture based, nonorganic, and spring calving. Herds 
recruited had a target of ≥30 and ≤250 cows, which 
accounts for 95% of farms that meet the selection cri-
teria described. Herds enrolled were registered with the 
Irish Cattle Breeding Federation (ICBF; Bandon, Co. 
Cork, Ireland); the database for all Irish-born dairy 
and beef cattle. Herds recruited were located within 
2 h of Teagasc Moorepark for practicality reasons, 
and were within the main dairy farming counties of 
Ireland (Cork, Tipperary, Limerick, Kerry, Kilkenny, 
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Waterford, and Wexford); 69% of all dairy cows in the 
country were located in these 7 counties (ICBF, 2018).

To determine the number of farms required to detect 
a risk factor for lameness, a simulation-based power 
study was performed. Multiple different scenarios were 
evaluated; 100 herds of 100 cows produced an estimated 
93% power to detect a risk factor with a relative risk 
of 1.4, and 62% power to detect a risk factor with a 
relative risk of 1.25. A target of 100 farms was therefore 
deemed to be an adequate number of farms to visit.

From a list of herds provided by ICBF, 518 farms 
were randomly selected using SAS version 9.4 (SAS 
Institute Inc.), and farmers were contacted via letter 
or telephone to invite them to participate in the study. 
In total, 131 farmers responded (response rate of 25%), 
and 102 of these farmers were willing to participate and 
were deemed suitable for the study. All 102 herds were 
visited during the grazing period (99 farms included in 
statistical analysis), and 87 farms were revisited dur-
ing the housing period (85 farms included in statistical 
analysis).

Data Collection

Details on farm management practices and facilities 
were collected via questionnaires and on-farm infra-
structure measurements.

Farmer Questionnaire

A questionnaire was conducted with the farmer at 
both the first and second visit; questionnaires can be 
viewed as supplemental material (Browne, 2021). The 
questionnaire was split between the 2 visits to ensure 
it was not too time consuming for the farmer. Both 
questionnaires gathered information on the grazing and 
housing periods. The questionnaire at the first visit 
gathered information on farm background and man-
agement, cow track maintenance and grazing practices, 
milking practices, and lameness prevention (including 
routine trimming and foot bathing), detection, and 
treatment methods. The second questionnaire focused 
on housing characteristics and management, nutrition, 
producer demographics, and the farmers’ perception of 
hoof health on the farm.

Infrastructure Measurements

Infrastructure measurements were taken via direct 
observation for the milking facilities, cow tracks, and 
housing facilities. Categorical scales used as part of the 
infrastructure measurements can be viewed as supple-
mental material (Browne, 2021).

Milking Facilities

Collecting yard stocking rate, presence of a slope, 
entrance widths, presence of a backing gate, and floor-
ing type were recorded. The milking parlor type, size, 
and flooring were also recorded. At the parlor entrance 
and exit, the floor slipperiness (de Vries et al., 2015) 
and the presence of steps, slopes, sharp turns, narrow 
doors, and obstructions were noted. The flooring type 
at the parlor exit was recorded, as was the distance 
from the first milking unit to the end wall of the parlor, 
to determine the space cows had to turn after milking. 
The presence, type, and length of footbaths were also 
included in this section.

Cow Tracks

Due to time constraints, it was not possible to col-
lect data on every cow track on each farm. Therefore, 
measurements were taken on the cow track in use on 
the day of the first visit; at the estimated halfway point 
between the collecting yard and the paddock, at the 
end point of the cow track, and at the paddock gateway. 
At all 3 locations the width, surface material, surface 
condition, presence of loose stones, and presence of a 
drainage ditch were recorded. The presence of loose 
stones was measured by placing a quadrat (0.5 m × 0.5 
m), divided into 25 smaller squares, in the center of the 
cow track. The number of quadrat squares containing 
at least one loose stone was recorded. In addition, the 
cow track slope and camber (measured using a spirit 
level), the verge width, and the presence of deep wheel 
tracks, water erosion, and a clear channel in the road 
surface, suggesting a single-file path made by cows, 
were recorded at the end point and the halfway point.

Measurements were also taken in the segment be-
tween the collecting yard entrance and 50 m from the 
collecting yard along all cow tracks utilized; this was 
to obtain information on cow track characteristics in 
areas that were most regularly used by cows. At 50 m 
from the collecting yard, the cow track width, verge 
widths, and presence of loose stones were measured. 
The surface material, surface condition, and gradient of 
the steepest slope within the first 50-m segment from 
the collecting yard were also recorded, as well as the 
presence of a drainage ditch, visible slope, consistent 
width, sharp turns, and a single-file path made by cows.

Housing Facilities

The presence or absence of loose housing (straw 
yards and slatted pens) and stall housing on each farm 
was recorded. Housing measurements were taken in 
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each pen that housed dairy cows. Loose housing and 
stall housing measurements included number of cows 
present at the time of the visit, accessible feed barrier 
length, passageway widths, flooring type, and pres-
ence of automatic scrapers and dead-ends. Lying area 
dimensions and the presence or absence of bedding 
were also noted for loose housing. For stall housing the 
number of stalls, overall stall condition (percentage of 
stalls in disrepair), and proportion of each stall type 
(e.g., cantilever) and direction (head-head, wall-facing, 
or passage-facing) were recorded. Bedding type, mat 
thickness, and stall hardness (McFarland and Graves, 
1995) and cleanliness were also recorded for 5% of stalls 
(stalls randomly selected; minimum of 2 stalls). Ad-
ditionally, presence of brisket board, curb height, total 
length, bed length, lunge space, diagonal length, neck 
rail height, and width were recorded for 5% of the 2 
most common stall types (stalls randomly selected; 
minimum of 2 stalls per type).

Herd Lameness and Body Condition Scoring

All scorers undertook training with an experienced 
body condition scorer from Teagasc. Scorers also 
attended and passed a Register of Mobility Scorers-
approved course in England, ensuring that lameness 
scoring was standardized and consistent. A total of 6 
scorers were trained in body condition scoring and 4 
scorers in lameness scoring. Using weighted kappa coef-
ficients, inter- and intraobserver agreement scores were 
calculated for lameness scoring and body condition 
scoring. The mean lameness score (LS) interobserver 
agreement at the beginning of the first visit was 0.73 
[standard deviation (SD) = 0.07], and the mean LS 
inter- and intraobserver agreements before the begin-
ning of the second round of visits were 0.85 (SD = 0.06) 
and 0.77 (SD = 0.05), respectively. The mean BCS in-
terobserver agreement at the beginning of the first visit 
was 0.74 (SD = 0.06), and the mean BCS inter- and 
intraobserver agreements before the second visit were 
0.81 (SD = 0.06) and 0.87 (SD = 0.05), respectively.

Herd scoring was carried out after milking at each 
visit; cows were retained in a crush (chute) to enable 
tag number identification and body condition scoring. 
At both visits, the number of cows in the milking herd 
to assess for BCS was calculated based on herd size 
using the Welfare Quality sample size protocol (Welfare 
Quality Consortium, 2009). The cows were scored using 
a scale from 1 to 5, in 0.25 increments (Wildman et al., 
1982), by one observer. All cows in the milking herd 
were subsequently individually scored for lameness as 
they left the crush, by a single observer using the Ag-
ricultural and Horticultural Development Board Dairy 
4-point scale (Archer et al., 2010).

Herd Management Data

Cow-level data were provided by the ICBF for all 
herds enrolled in the study. Date of birth and date of 
first calving were classified into age at visit (yr) and 
age at first calving (mo), respectively. Days in milk 
on the day of the visit, calving interval (between 2018 
and 2019 calving), and days until next calving were 
calculated based on calving dates provided. Based 
on the 2019 lactation, the parity, calving difficulty, 
whether the cow had twins or a single calf, average 
SCC, 305-d milk recording prediction, and dry-off date 
were provided for each cow. Breeds were classified into 
Holstein Friesians, other purebreds (excluding Holstein 
Friesians), and crossbreeds. Purebreds were defined as 
cows that were ≥87.5% of a single breed. The 2019 
Economic Breeding Index, maintenance subindex, and 
health subindex values were extracted for each cow; 
explanations of these indices can be found in Berry et 
al. (2007). The lameness trait within the health subin-
dex, in the form of a PTA, was also provided. In terms 
of lameness, a positive PTA indicates that the progeny 
are more likely to become lame than the base popula-
tion (Berry et al., 2007).

Statistical Analysis

All data cleaning, pre-processing of data, descriptive 
statistics, and statistical modeling were executed in R 
software version 3.3.1 (R Core Team).

Data Cleaning

A total of 22,164 LS were recorded across 102 farms. 
Three farms, comprising 262 LS observations, were 
excluded from the data set due to robotic milking (1 
farm) or once-a-day milking (2 farms). A further 1,694 
LS observations were removed due to wrongly recorded 
tag numbers, accidental scoring of pre-calving heifers, 
and scoring of non-spring-calving cows.

Pre-Processing

Before statistical analysis, all housing predictors were 
weighted by the number of cows in each pen, to account 
for varying number of cows being subjected to the 
conditions of each pen. Continuous cow-level variables 
with missing values were split into quartiles, and an 
additional category was made for both continuous and 
categorical variables, to represent missing data points 
(<1% of data set). Nonparametric methods based on 
random forest algorithms were employed to impute 
missing values (3.2% of data set) from the surveys and 
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on-farm measurements, using the missForest package 
(Stekhoven, 2013). Thirty-five predictors with near-zero 
variance were removed (Kuhn, 2020), leaving a final data 
set consisting of 197 predictors (cow-level predictors = 
16; herd-level predictors = 181). These predictors can 
be viewed as supplemental material (Browne, 2021). 
Continuous predictors were subsequently centered and 
scaled (to SD units relative to overall mean). Each cow 
was assigned a lameness outcome at each visit: LS of 
0 or 1 was classified as non-lame, and a score of 2 or 3 
was classified as lame.

Variable Selection Models

Triangulation (Lawlor et al., 2017; Lima et al., 2021) 
of results from elastic net regression (Enet), a form 
of regularized logistic regression, and logistic regres-
sion using modified Bayesian information criterion 
(mBIC) was used to establish important risk factors 
for lameness. These methods were chosen due to the 
large number of predictors and the need to avoid over-
fitting. The outcome variable was lameness status (0 
= not lame, 1 = lame); lameness scores from both the 
grazing and housing visits were included in the models. 
All covariates described previously were offered to each 
model.

Elastic Net Regression

Elastic net regression combines the ridge penalty (pe-
nalizing the sum of squared coefficients) with the lasso 
penalty (penalizing the sum of coefficients). The elastic 
net penalty term is shown in Equation [1]:

 λ
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j j
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where λ is a model tuning parameter providing coef-
ficient penalization; α is the mixing parameter to deter-
mine the proportion penalty applied as ridge or lasso, 
where α = 0 represents a full ridge model and α = 1 
represents a full lasso model; j represents a predictor 
variable and P represents the total number of predic-
tors; β represents the sum of coefficients.

Elastic net regression was performed using the pack-
ages caret (Kuhn, 2020) and glmnet (Friedman et al., 
2010). An Enet model was fitted using a large tuning 
grid of α values (α = 0, 0.2, 0.4, 0.6, 0.8, 1) and λ val-
ues (λ = 0.0001, 0.001, 0.003, 0.004, 0.01, 0.015, 0.02, 
0.03, 0.04, 0.05, 0.1). Five-fold cross validation with 10 
repeats was used to evaluate model performance and 
select the best-performing model based on accuracy.

Selection Using Modified Bayesian  
Information Criterion

Any predictors not correlated with the outcome vari-
able (Pearson correlation test, P > 0.3) were removed, 
and stepwise logistic regression model selection based 
on minimizing mBIC was performed using the bigstep 
package (Szulc, 2019). The model was fitted to best 
balance the penalty term against a measure of model 
fit. The mBIC penalty term can be described as follows 
(Equation [2]):

 − −
−⎛
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1k n k p
pi ilog log     , [2]

where ki represents the number of predictors in the ith 
model, n is the number of observations, and p repre-
sents the probability that a predictor, chosen at ran-
dom, influences the outcome variable (lameness status).

Bootstrapping

Bootstrapping was used for both the Enet and mBIC 
model selection processes. One thousand bootstrap 
repeats were performed for each model type; this was 
deemed sufficient to obtain an accurate 95% bootstrap 
percentile confidence interval (Efron and Tibshirani, 
1993). For each bootstrap repeat, the coefficient for 
each predictor was returned, and the mean of the 
nonzero coefficients and the 95% bootstrap confidence 
interval for each predictor was calculated. Coefficient 
means were subsequently unstandardized by dividing 
by the SD, and odds ratios (OR) calculated using these 
values.

Stability Selection and Model Triangulation

A stability value was calculated for each predictor for 
each model selection method (elastic net regression and 
selection based on mBIC), defined as the proportion of 
bootstrap repeats in which the coefficient for that pre-
dictor was nonzero. A nonzero coefficient implied that 
the predictor was selected in the model. A bootstrap 
P-value was also determined for each predictor based 
on the distribution of nonzero coefficients. The P-value 
was calculated as the proportion of coefficients on the 
minority side of zero.

Drawing on the principles of stability selection, for 
which it is known that variables with the highest stabil-
ity values are least likely to be false positives (Lima 
et al., 2021; Meinshausen and Bühlmann, 2010), and 
triangulation, for which it is accepted that use of mul-
tiple analyses reduces bias in results (Lawlor et al., 
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2017), final model selection was based on high-stability 
variables that occurred in both model types. Predictor 
variables that had a bootstrap P-value of <0.05 and 
were ranked in the top 24 by stability (number of pre-
dictors that had a stability of >80% in the Enet model, 
a previously established technique: Lima et al., 2020) 
for each method were deemed likely to have important 
associations with lameness. The final subset of results 
was not found to be sensitive with the arbitrary choice 
of selecting predictors ranked in the top 24 by stability. 
An identical subset of predictors was found if selection 
was based on the top 30 predictors ranked by stability.

Potential Clustering Effect

The effect of accounting for clustering at herd level 
and cow level were evaluated by estimating parameters 
for random effects logistic regression models using Mar-
kov chain Monte Carlo via the brms package (Bürkner, 
2017). One model included a random effect represent-
ing herd, and a second model included random effects 
terms at cow and herd level. A subset of covariates 
was included in the logistic regression models based on 
those selected in both the Enet and the mBIC models. 
Coefficients from each model were assessed to ensure 
that direction of association was the same as (and effect 
size similar to) the results from triangulation of the 
Enet and mBIC models.

RESULTS

Cow Characteristics and Lameness Prevalence

The median age across all cows scored was 5 yr 
(IQR 3–7) with a median parity of 3 (IQR 2–5). The 
median 305-d milk yield was 6,638 kg per cow (IQR 
5,750–7,597) with a median calving interval of 369 d 
(IQR 354–388). The median BCS during the grazing 
visit and the housing visit were 3 (IQR 3–3.25) and 
3.25 (IQR 3–3.5), respectively. Of all cows scored, 51% 
were Holstein Friesian, 28% were crossbreeds, and 21% 
were other purebreds. The final data set consisted of 
20,208 LS recorded across 99 farms. Cow-level lameness 
prevalence (LS2 and LS3) was 9.3% during the grazing 
period and 8.9% during the housing period. Lameness 
prevalence across farms ranged from 0.9% to 31.4% 
during the grazing period and from 0% to 28.0% during 
the housing period.

Model Results

Figure 1 shows the stability and bootstrap P-value 
for each predictor in both Enet and mBIC models, il-
lustrating variables selected in the triangulation pro-

cess. Twenty-four predictors were selected in the final 
Enet and final mBIC models. Of these predictors, 11 
were selected in both models and therefore represented 
a robust set of risk factors for lameness. Figure 2 shows 
the standardized mean coefficient and 95% confidence 
intervals for each predictor that was selected in both 
models (for comparison of effect size). Table 1 reports 
full results for predictors selected in both the Enet and 
mBIC models. Random effects logistic regression mod-
els suggested that accounting for the clustering effect 
of (1) herd and (2) cow nested within herd did not 
substantially influence the results from the Enet and 
mBIC models.

Cow-Level Risk Factors

Age had the largest standardized effect size of all 
cow- and herd-level predictors (based on the average of 
the standardized mean coefficients from the Enet and 
mBIC models); as age increased by 1 yr, the odds of a 
cow being lame increased by approximately 20% (Enet 
OR = 1.19; mBIC OR = 1.21; mean OR = 1.20). A 
positive lameness PTA increased the odds of lameness 
by approximately 37.5% (Enet OR = 1.14; mBIC OR 
= 1.61) compared with those with a negative PTA.

Herd-Level Risk Factors

Five herd-level factors were associated with an in-
creased risk of lameness. In both the Enet and mBIC 
models, “farmers who considered lameness to be a 
problem in their herd” had the largest standardized 
effect size of all herd-level predictors. When farmers 
considered lameness to be a problem in their herd, odds 
of lameness increased by approximately 47% (Enet OR 
= 1.17; mBIC OR = 1.77) compared with when farm-
ers did not consider lameness to be a problem. When 
≥10% of the herd had been treated for lameness in the 
year before the study, the odds of lameness were in-
creased by approximately 27% (Enet OR = 1.08; mBIC 
OR = 1.46) compared with those herds where <10% 
were treated. Additionally, when >5% of the herd had 
digital dermatitis during the current lactation, accord-
ing to the farmer, the odds of lameness were increased 
by approximately 30% (Enet OR = 1.08; mBIC OR = 
1.52) compared with a herd with ≤5%. A 10% increase 
in the proportion of slats in the first 50 m of cow tracks 
following the collecting yard increased the odds of lame-
ness by approximately 6.5% (Enet OR = 1.04; mBIC 
OR = 1.09). Also, a 10% increase in the percentage of 
the gateway surface material that was stones increased 
the odds of lameness by approximately 7% (Enet OR = 
1.03; mBIC OR = 1.11).
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Four herd-level predictors reduced the risk of lame-
ness. As herd size increased by 100 cows, the odds of 
lameness decreased by approximately 23% (Enet OR = 
0.90; mBIC OR = 0.64). Similarly, as the grazing plat-
form size increased by 100 ha, the odds of lameness de-
creased by approximately 45% (Enet OR = 0.74; mBIC 
OR = 0.36). Herds with no digital dermatitis cases 
during the current lactation, according to the farmer, 
had decreased odds of lameness of approximately 20.5% 
(Enet OR = 0.91; mBIC OR = 0.68) compared with a 
herd with >0% and ≤5%. Also, as the distance to turn 

after milking increased by 1 m, the odds of lameness 
decreased by approximately 8.5% (Enet OR = 0.97; 
mBIC OR = 0.86).

Predictors Selected in Individual Models  
but Excluded in Triangulation

A larger set of predictor variables were selected in one 
or the other of the individual models (Enet or mBIC), 
but not in both, and were therefore not reported in the 
previous triangulated results. Thirteen of the predictors 

Browne et al.: LAMENESS IN PASTURE-BASED DAIRY COWS

Figure 1. The stability rank and bootstrap P-values for each predictor in the elastic net regression model (Enet) and from the logistic 
regression model using modified Bayesian information criterion (mBIC), based on data from 99 spring-calving, pasture-based herds during the 
grazing period (April 2019–September 2019) and in 85 of these herds during the housing period (October 2019–February 2020). As indicated by 
the shaded area, predictors selected in each model had a P-value of <0.05 (dashed line) and were ranked in the top 24 by stability (dotted line). 
The red dots indicate the 11 predictors that were selected in both the Enet and mBIC models.
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that were selected in the final Enet model (within the 
top 24 ranked by stability) were not also selected in the 
final mBIC model. These predictors, which showed in-
creased risk for lameness, included a higher proportion 
of cubicles of recommended width, higher proportion 
of cow track surface material measurements recorded 
as stones, and longer walking distance to the furthest 
paddock. Predictors that showed decreased risk for 
lameness included higher economic breeding index, 
genetic health and maintenance subindexes, greater 
days in milk, first-parity cows (i.e., no calving interval, 
compared with cows with a calving interval of 353 to 

369 d), higher proportion of cubicles with thick mats, 
higher proportion of collecting yard that was grooved 
concrete, higher proportion of cow track measurements 
with a gradient >10%, higher proportion of cows tracks 
in the first 50 m from the collecting yard with a ditch, 
and higher proportion of cow tracks where the transi-
tion from concrete to other surface material was within 
50 m of the collecting yard entrance.

Similarly, 13 of the predictors for lameness that were 
selected in the final mBIC model were not also se-
lected in the final Enet model. Predictors that showed 
increased risk for lameness included high number of 

Browne et al.: LAMENESS IN PASTURE-BASED DAIRY COWS

Figure 2. Standardized mean coefficients and 95% confidence intervals for the 11 predictors that were selected in both the final elastic net 
regression model (Enet) and from the logistic regression model using modified Bayesian information criterion (mBIC), ordered by the average 
standardized mean coefficients across both models. These risk factors were established from data collected on 99 spring-calving, pasture-based 
herds during the grazing period (April 2019–September 2019) and in 85 of these herds during the housing period (October 2019–February 2020).
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stones in paddock gateway, dry cow cubicles cleaned 
once per day (compared with less than once per day), 
cows housed based on parity, cow tracks repaired less 
than once per 2 years (compared with once per year 
or more frequently), PTA of 0 for lameness (compared 
with negative PTA), mobility scoring visit carried out 
in May (compared with April), BCS <3 (compared 
with BCS 3), all cow track points measured as wide 
enough based on herd size (compared with farms with 
a combination of cow tracks measured that were wide 
and narrow), and herds that were routinely trimmed. 
Predictors that showed decreased risk for lameness in-
cluded second-parity cows (compared with first-parity 
cows), third-parity cows (compared with first-parity 
cows), copper sulfate and formalin used in foot bathing 
routine (compared with copper sulfate only), and BCS 
>3.25 (compared with BCS 3).

DISCUSSION

From a cohort of approximately 200 potential cow-
level and herd-level predictors in the final model, 11 risk 
factors were deemed highly likely to have important as-
sociations with lameness in partly housed pasture-based 
dairy cows. To the authors’ knowledge, this is the first 
time important lameness predictors have been found 
based on the entire year, in this particular system, and 
the first time this novel statistical approach (mBIC and 
Enet triangulation with bootstrapping) has been used 
to identify risk factors in dairy cows.

Cow-Level Risk Factors

In agreement with previous studies, the risk of 
lameness increased with age (Rowlands et al., 1985; 
Haskell et al., 2006). This may be explained by changes 
in the functional anatomy of the hoof with age, such 
as the degeneration of the digital cushion (Räber et 
al., 2004). Irreversible bone development on the distal 
phalanx has also been reported to increase with age, 
history of lameness, and previous cases of sole ulcers, 
sole hemorrhages, and white line disease (Newsome et 
al., 2017). Additionally, older cows are more likely to 
have a history of lameness, and previous lameness has 
been shown to be a major predictor of future lameness 
(Randall et al., 2018). In contrast to the current study, 
the study by Randall et al. (2018) had a longitudinal 
study design and therefore provides much stronger evi-
dence for causality. However, the study included only 
2 UK dairy farms and may not be comparable to Irish 
dairy farms, where all cows have prolonged pasture ac-
cess and cows are generally lower yielding. Aging is 
inevitable; however, the effect of aging on lameness can 
be minimized through prevention of first-time lameness 

events, early detection of lameness, and effective treat-
ment of lesions (Randall et al., 2018).

Cows with a positive lameness PTA exhibited a high-
er risk for lameness than cows with a negative PTA. 
Lameness PTA is a specific genetic index, in which a 
higher lameness PTA indicates the progeny will have a 
higher susceptibility to lameness (Berry et al., 2007). 
O’Connor et al. (2020) reported similar findings: a 
positive lameness PTA compared with a negative PTA 
increased the odds of lameness by 41%. Similarly, the 
current study showed an increased odds ratio of 44%. 
These results add support for the lameness PTA and 
emphasize that genetic selection is influential for reduc-
ing lameness at cow level. The choice of bulls used for 
breeding may be more important as a long-term lame-
ness reduction strategy than previously realized.

Herd-Level Risk Factors

The results of this study provide no evidence that 
farm expansion increases the risk of lameness in a part-
grazed, part-housed system. As reported previously, a 
larger herd reduced lameness risk (Dippel et al., 2009; 
Chapinal et al., 2013). Solano et al. (2015) reported 
that a herd size of more than 100 cows reduced the odds 
of lameness by one-third, compared with a herd size of 
less than 100. Despite cows walking longer distances 
on larger pasture-based farms (Beggs et al., 2019), 
improved management and facilities could explain the 
reduced lameness prevalence. In contrast, Alban (1995) 
reported that lameness was positively correlated with 
herd size, which may be explained through more cows 
per staff member (Sundrum, 2015) and poorer recogni-
tion of individual cows (Dippel et al., 2009) in larger 
herds. Other studies have also reported that herd size 
was not significant in relation to lameness (Espejo and 
Endres, 2007; Barker et al., 2010; Beggs et al., 2019). 
The varied results highlight the lack of clarity regard-
ing the association between herd size and lameness, 
and the interplay with other factors that influence this 
relationship.

Lameness risk was reduced when cows had a longer 
distance to turn at the parlor exit. All parlors in this 
study were herringbone or parallel, meaning that cows 
exited the parlor in single file, usually making a 90- or 
180-degree turn onto a passageway to return to their 
pasture or pen. Similarly, Barker et al. (2010) reported 
that sharp turns at the parlor entrance or exit increased 
the risk of lameness. Similarly to the current study, 
the cross-sectional study design used by Barker et al. 
(2010) does not prove a causative relationship between 
sharp turns and lameness; however, it can be used to 
establish causal hypotheses. One commonly posited 
theory is that shearing forces on the hoof when cows 
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turn sharply can lead to white line disease, potentially 
explaining the negative correlation between turning 
distance and lameness prevalence. Sharp turns may 
also reduce cow flow, instigating crowding and pushing 
of cows at the parlor exit. Rubber matting has been 
proven to increase friction and compressibility, in turn 
reducing slipping and improving mobility (Rushen and 
de Passillé, 2006). Therefore, introducing rubber mat-
ting where sharp turns are present at the parlor exit 
may be beneficial in improving cow flow and reducing 
claw trauma. Randomized clinical trials proving the 
effectiveness of this intervention are currently lacking; 
further research in this area is required.

Slats in the first 50 m of cow track following the 
collecting yard increased the risk of lameness in this 
study. Slatted flooring has previously been linked to 
increased lameness prevalence (Dippel et al., 2009) 
and claw health problems (Burgstaller et al., 2016) 
in housed cattle; however, limited information exists 
on the implications of slats on cow tracks. Concrete 
slats are more slippery compared with solid concrete 
flooring (Rouha-Mülleder et al., 2009), leading to a 
reduced pace and shortened strides (Telezhenko and 
Bergsten, 2005). Slatted flooring also creates uneven 
weight distributions across the claws, predisposing to 
white line disease (Hinterhofer et al., 2006). Installing 
rubber matting over the slats could reduce slipperiness, 
hoof lesions, and overall lameness prevalence (Hultgren 
and Bergsten, 2001; Telezhenko and Bergsten, 2005).

Stones in the gateways to pasture also presented a risk 
for lameness. It is hypothesized that stones penetrate 
the hoof horn, causing separation of the white line, and 
subsequently lead to an infection of the dermal tissue 
in more severe cases. An uneven stony surface may also 
result in shearing forces on the hooves. Although this 
study provides no evidence for causality, the association 
identified between stones in gateways and lameness 
supports these theories. Gudaj et al. (2012) reported 
that cows required more blocks during trimming when 
stones were present on cow tracks. However, in contrast 
to the current study, all cows in the study by Gudaj et 
al. (2012) were Holstein Friesian, and only cows on 14 
farms, out of 25 farms visited, had access to pasture. 
Gateways may be more high-risk areas due to cows 
pushing through a narrow entrance and being unable 
to avoid stones. Where finances are limited, it may be 
beneficial to prioritize maintenance of commonly used 
gateways, to ensure minimal stones are present, before 
general cow track maintenance.

Three of the risk factors identified are subjective 
impressions of the farmer: the presence of digital der-
matitis in the herd, the percentage of the herd treated 
for lameness, and farmers who consider their herd to 
have a lameness problem. Although these results are 

not entirely unexpected, they indicate that farmers in 
this study acknowledge lameness as an issue and can 
therefore work toward eliminating the disease. This is 
in contrast to previous studies, which have generally 
shown that a low proportion of farmers perceive lame-
ness to be a problem in their herd (Leach et al., 2010; 
Sadiq et al., 2019).

Based on predictors identified by both the final 
mBIC and the Enet model, no characteristics specifi-
cally linked to housing infrastructure and management 
were found to be important risk factors for lameness in 
a typical Irish dairy system. This emphasizes that the 
housing period did not seem to have a large influence 
on lameness, in contrast to the grazing period. Cows 
are only housed for approximately one-third of the year 
in Ireland; therefore, cows are exposed to the effects of 
grazing for a more prolonged period of time, and thus 
the grazing period appears to have the greatest influ-
ence on lameness development. However, although the 
grazing period was shown to have the greatest influence 
on lameness development, some housing features and 
management were selected in one or another of the Enet 
and mBIC models (although excluded by triangulation 
as not selected in both), such as cubicle mat thickness 
and frequency of cubicle cleaning for dry cows. Due to 
these variables not being selected in both the Enet and 
mBIC models via triangulation, it is less likely that 
these are generalizable for the target population; these 
predictors may have smaller effect sizes and may be 
very important on some farms and not in others.

Modeling Methods

The multifactorial nature of lameness and the need to 
construct a statistical model based on a large number of 
predictor variables would likely lead to problems with 
overfitting in simple regression models (Vatcheva et 
al., 2016); this is increasingly recognized as a potential 
feature in a large proportion of previous work across 
a range of disciplines. This is especially problematic 
where the sample size is small relative to the number of 
potential predictors; in this case, the sample of lame-
ness scores was relatively large, but the vast majority 
of predictors varied only at farm level. To overcome this 
issue, regularized regression (Zou and Hastie, 2005) and 
selection using mBIC (Bogdan et al., 2008) have both 
been proposed for variable selection. As the ability to 
capture large amounts of data on-farm improves and 
data sets become wider, these methods will become 
increasingly important in statistical analysis. Using 
conventional methods such as stepwise selection based 
on Akaike’s information criterion, a larger set of risk 
factors would likely have been identified that were false 
positives and likely to have inflated coefficients (Hastie 
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et al., 2015; Lima et al., 2021). In this study, a relatively 
conservative analytical approach was chosen, to mini-
mize the chances of reporting false-positive risk factors. 
The additional predictors included in one or the other 
of the 2 models represent a set of factors that can more 
speculatively be associated with the outcome, and it is 
worth noting that these would have been reported as 
significant predictors had a single modeling approach 
been chosen. The aim of this study was to identify a set 
of risk factors that are the most important in a pasture-
based system and are most likely to be generalizable 
across a high proportion of similar farms.

Between-model variation was also accounted for 
through triangulation (Lawlor et al., 2017) of the Enet 
and mBIC models. Triangulation combines results from 
multiple statistical methods to obtain reliable results, 
because the bias from each model type is discounted 
(Lawlor et al., 2017; Lima et al., 2021). Elastic net 
regression has a tendency toward a higher false-positive 
rate and deflated coefficient values, whereas mBIC has 
a higher false-negative rate and inflated coefficient val-
ues (Lima et al., 2021), displaying opposing biases. The 
difference in effect size between the Enet and mBIC 
models observed for some predictors is therefore not 
unexpected, and it is likely that the true effect size 
lies in between the 2 estimates. These methods have 
allowed identification of a robust list of risk factors and 
direction of effect, and have given an indication of likely 
effect size.

Within-model variation was also accounted for 
through bootstrapping, a resampling technique for 
statistical inference (Dixon, 2002). Bootstrapping is 
beneficial to assess variable stability and coefficient dis-
tribution (Sauerbrei and Schumacher, 1992; Meinshau-
sen and Bühlmann, 2010). To the best of the authors’ 
knowledge, regularized regression and model selection 
using mBIC, with the use of bootstrapped selection 
stability, have not previously been used in a cow-level 
or herd-level risk factor analysis among dairy cows.

Study Limitations

This study may be susceptible to some bias due to 
farmers having the opportunity to choose whether to 
participate in the study. However, a selection criterion 
was established before recruiting participants, to ensure 
farms were representative of a typical Irish dairy farm. 
Additionally, several of the observations and measure-
ments were slightly subjective, therefore leading to 
potential bias. This study has a cross-sectional design, 
and, as such, the associations found do not imply causa-
tion. This study design is valuable for assessing a large 
number of potential risk factors at once, without the 
logistical challenges of running multiple expensive ran-

domized clinical trials. Lameness typically occurs after 
exposure to a risk factor; therefore, exposure to a risk 
factor during the end of the grazing period may result 
in lameness during the subsequent housing period, and, 
similarly, exposure to housing risk factors may result in 
lameness during the subsequent grazing period. This is-
sue was acknowledged by including lameness scores and 
potential predictors from both the housing and grazing 
periods in the same model. This also allowed the most 
important risk factors, based on the entire year, to be 
identified. Findings from this study provide a base of 
knowledge and deliver a focus for future lameness inter-
vention studies in Irish pasture-based systems.

CONCLUSIONS

Both cow-level and herd-level risk factors were as-
sociated with lameness in a part-grazed, part-housed 
system. Triangulation of bootstrapped regularized re-
gression and logistic regression model selection based on 
modified Bayesian information criterion proved a robust 
way to identify a subset of important risk factors from 
a very large number of potential predictors. Cow-level 
risk factors included increased age and a positive PTA 
for lameness. Herd-level risk factors included smaller 
herd size and grazing platform, increased presence of 
digital dermatitis, presence of stones in gateways and 
slats on cow tracks, a tighter turn following milking, 
farmers who treated a higher proportion of their herd 
for lameness, and farmers who considered lameness to 
be a problem in their herd. Based on this study, farm-
ers may benefit from a breeding program that places 
greater emphasis on lameness traits, taking measures to 
mitigate the effect of tight turns at the parlor exit and 
slats on the cow tracks, and removing stones from pad-
dock gateways. Applying a package of measures across 
multiple herds in a randomized clinical-type trial, such 
as putting matting at the milking parlor exit and re-
placing slats on the cow tracks, might be useful for 
determining effective methods for decreasing lameness 
in Irish dairy cows.
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