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The creation of reference-quality, species-level assemblies from 
metagenome communities is exceedingly difficult. In par-
ticular, generating a complete genome assembly of a microbe 

closely related to a more abundant member of the community has 
been an elusive goal. Previous short-read studies have resulted in 
high-quality MAGs1 only after extensive polishing and manual cura-
tion of initial contigs2. However, if a community contains thousands 
of organisms at different levels of abundance, manual curation of 
each MAG to achieve reference quality is extremely laborious. The 
prevalence of structurally variant strains in a sample might also 
impede contiguous assembly of microbial chromosomes3. To com-
pensate, multiple samples may be sequenced with the idea that the 
prevalence of a unique strain is higher in one sample, thereby allow-
ing disambiguation from other lineages3,4. Recent metagenome 
assembly improvements based on long reads5–7 or linked reads8 have 
resulted in some successes in the creation of closed circle MAGs, but 
the goal of assembling all distinct members of complex microbial 
communities as circular contigs has been elusive. A major source 
of discontinuity in metagenome assembly appears to be from the 
prevalence of high-sequence-identity orthologous genes and oper-
ons that can inhibit complete assembly8. Furthermore, nearly all 
short-read and long-read assembly algorithms typically collapse 
the variant features into a single representation that does not reflect 
the true strain- or species-level diversity of a subpopulation within 

the community9,10. For example, the metaFlye assembler improved 
reconstruction of complex environmental metagenomes using long 
reads10 but produced collapsed representations of similar bacterial 
strains. These consensus assemblies might include various arti-
facts arising from the variation collapsing procedure—for exam-
ple, frame shifts—complicating downstream analysis11. Ambiguity 
resulting from the metagenomic assembly of both short reads and 
error-prone long reads12 has precluded first-pass characterization of 
microbial strains.

Microbial lineages are frequently defined using standard tax-
onomy terms, but genetic variation within related populations of 
microbes can cause substantial differences in observed phenotypes, 
such as pathogenicity or virulence. Thresholds of average nucleo-
tide identity (ANI) among sequenced genomes have been proposed 
to differentiate between species (97%) and strains (99.999%)13, 
but these estimates are based on comparisons of shared sequence 
that might not always reflect actual inherited genomic DNA. We, 
therefore, adopted the term ‘lineage’, similarly to another study14, 
to describe a clonal subpopulation derived from a single ancestral 
genotype that can be distinguished from other populations in the 
same sample using discrete haplotypes.

Binning methods were developed to address issues with 
assembly fragmentation and to organize contigs into candidate 
MAGs based on assumptions of shared sequence composition15 
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or orthologous linkage data16. The presence of single copy genes 
(SCGs) expected to be in all bacterial and archaeal lineages has 
been proposed as a measure of the completeness and redundancy 
within these bins17. High-quality draft MAGs have been defined as 
having over 90% of the expected count of SCGs with less than 5% 
redundancy of their prevalence and containing assemblies of ribo-
somal RNA (rRNA) and transfer RNA (tRNA) genes1. However, 
bacterial and archaeal lineages might contain substantial accessory 
gene content18 that is not assessed using these metrics. Bins are 
often generalized to represent distinct microbial taxonomic units 
in a sample, but they are rarely assumed to accurately represent 
true, genetically distinct microbial populations in a sample14,19, and 
precise definitions for individual, highly resolved MAGs remain 
contextual to each study. Similarly to one of these studies14, we 
focused on generating separate representative reference genomes 
for distinct microbial lineages within an individual metagenome, 
which we define as ‘lineage-resolved MAGs’1,20. We further extend 
the term to ‘lineage-resolved complete MAGs’ for assemblies that 
have high degrees of SCG completeness (>90%) and low degrees 
of SCG redundancy (<10%). Tools have been developed to identify 
or separate lineage-resolved complete MAGs from metagenomic 
bins post hoc, but these tools often rely on co-assembly data, 
assembly graphs or various statistical methods to overcome biases 
in read alignments to estimate strains from observed genetic vari-
ant data and, therefore, require more curation to properly disen-
tangle lineages from MAGs3,14,21,22. Furthermore, these workflows 
are designed primarily to identify strain lineages from alignments 
of short-read data and do not capture variant linkage data from 
longer-read datasets. A recent attempt to adapt uncorrected long 
reads to this purpose requires the use of manual curation and 
a priori estimates of strain numbers to achieve optimal results23. 
An intuitive and automated method to generate lineage-resolved 
high-quality MAGs is needed for analysis of more complex metage-
nome communities to reduce the time required to validate results.

Highly accurate HiFi reads from the Pacific Biosciences plat-
form have error rates below 1%24, providing an opportunity to 
improve assembly quality25 and resolve both haplotypes of diploid 
genomes26,27. They were used to generate the first complete human 
genome assembly and opened the era of ‘complete genomics’28. 
This technology could be suitable for assembling the highly repeti-
tive orthologous genomic features present in metagenomes into 
lineage-resolved high-quality MAGs, enabling ‘complete metage-
nomics’. Here we present a proof-of-principle study for the applica-
tion of HiFi sequencing to complex microbiomes using extremely 
deep sequencing of a fecal sample from a parasite-infested lamb, 
combined with Hi-C data from the same sample. We document and 
quantify the improvement in assembly of MAGs with HiFi reads 
and present a computational approach called MAGPhase to phase 
alternative single-nucleotide polymorphism (SNP) haplotypes in 
these MAGs to provide finer resolution of descendant lineage varia-
tion in the sample. We further show that HiFi assemblies greatly 
improve precision in assigning mobile genetic elements to host 
genomes and inference of complete biosynthetic gene clusters from 
metagenomic data.

results
Assembly of the sheep gut microbiome. HiFi and short-read data 
were generated from a fecal sample of an adult sheep (Methods). 
The short and HiFi reads comprised 154 and 255 total Gbp in 
1,024,375,790 and 22,118,393 reads, respectively, with the latter 
representing higher depth of coverage than most previous reports 
of long-read metagenome assembly. Classification of reads with 
Kaiju29 revealed a slight decrease in representation of Gram-negative 
lineages in the HiFi dataset compared to short-read data, although 
the subreads from which the HiFi data were generated did not 
reflect this decrease, suggesting that the process of HiFi filtering 
might be responsible for the effect30. Assembly of HiFi reads with 
metaFlye resulted in a total of 57,259 contigs with a contig N50 of 
279 kb, including 127 contigs that fit the criteria of a high-quality 
draft1 MAG, among which 44 (35%) represented closed circles in 
the metagenome assembly graph (Table 1).

Complete MAGs enabled by assembly with HiFi reads. We 
hypothesized that the use of HiFi reads decreased ambiguity in 
resolving structural complexity in microbial genomes and led to 
improved assembly completeness. We confirmed this hypothesis 
using an experimental design (Extended Data Fig. 1a) that allowed 
for an apples-to-apples comparison of HiFi and CLR reads by 
extracting subreads from the original HiFi reads to generate a series 
of ‘pseudo-CLR’ (pCLR) datasets (Methods). The average pCLR 
contig was longer than the average HiFi contig in all superkingdoms 
except the eukaryotes (Extended Data Fig. 1b). However, the total 
assembly length of pCLR contigs was lower than the HiFi assembly 
in all categories except the unassigned, ‘no-hit’ lineage (Extended 
Data Fig. 1c). In the archaea and bacteria annotated contigs, the 
pCLR assemblies had an average of 61 high-quality draft genomes 
with an average of 22 predicted circular high-quality genomes, rep-
resenting a 48% and 50% reduction, respectively, compared to the 
HiFi assembly (Table 1 and Extended Data Fig. 1d).

Binning the HiFi contigs with Hi-C linkage data (Methods) 
resulted in 428 complete MAGs (defined as MAGs with >90% SCG 
completeness and <10% SCG contamination), which is the largest 
number of reference-quality MAGs reported from a single sample, 
to our knowledge (Supplementary Table 1). Of the HiFi assembly 
complete MAGs, 319 fit all of the criteria for high-quality draft 
MAGs specified by Bowers et al.1 (Supplementary Note, ‘pCLR 
assemblies’ provides further comparisons between pCLR and HiFi 
assemblies). A cumulative assembly length plot suggested that a 
larger proportion of complete MAGs in the HiFi dataset were of 
low relative abundance (with coverage below 10×) compared to 
MAGs in the pCLR assemblies (Fig. 1a). Comparisons of bin SCG 
completeness and average depth of coverage also indicated that the 
HiFi assembly had more low-coverage complete MAGs than the 
pCLR assemblies (Fig. 1b). The contrast between HiFi and pCLR 
assemblies was more pronounced in bins that had more than 90% 
SCG completeness (Fig. 1c), where the pCLR assemblies contained 
mainly bins with more than 10× coverage and as much as 1,000× 
coverage compared to the HiFi complete MAGs. The distribution 
of coverage for complete MAGs is consistent with the hypothesis 

Table 1 | Assembly quality statistics

Assembly contigs Assembly length 
(Mbp)

contig N50 
(Kbp)

High-quality
draft contigsa

circular contigsb circular + high-quality
draft contigs

HiFi 57,259 3,424 280 123 49 44

pCLR1 48,338 2,985 185 54 21 18

pCLR2 48,790 3,008 187 65 28 26

pCLR3 56,456 2,978 181 64 26 22
aContigs that were determined to have more than 90% SCG completeness and less than 5% SCG redundancy. bContigs larger than 1 Mbp in size that were predicted to be circular by the metaFlye assembler.
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that HiFi assembly resolved pCLR bins into higher-resolution, 
lower-coverage bins that had been compressed into single bins in 
the pCLR assembly.

Identification of resolved lineages within MAG bins. We tested 
the hypothesis that HiFi metaFlye assembly had increased the 

total number of MAGs (as compared to pCLR assemblies) in part 
by separating distinct lineages into individual assemblies within 
metagenomes. HiFi and pCLR complete MAGs were classified into 
predicted phylogeny using GTDB-TK31, resulting in 197 and 187 
distinct genera classifications and 15 and 14 distinct phyla classifi-
cations, respectively (Extended Data Fig. 2). There were 22 genera 
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unique to the HiFi dataset, compared to eight among all three pCLR 
datasets, and one phylum unique to HiFi bins (Supplementary 
Figs. 1–3). Several cases where the HiFi assembly had more assem-
bled bins for a taxon than the pCLR assemblies were also identi-
fied (Supplementary Table 2), including the Clostridia class, which 
had a single bin in the pCLR MAGs but three assembled bins in 
the HiFi assembly. These three bins had estimated average nucleo-
tide identity (eANI) between 93% and 95%, suggesting that they 
are separate assemblies of related organisms within this class and 
possibly represent different species within genus or strains within 
species (Supplementary Tables 3 and 4). Separation of MAGs 
within the HiFi dataset was evident in comparisons of alignments 
of contigs to the assembly graphs (Fig. 2a), which identified heter-
ogenous regions of alignment in the pCLR collapsed MAGs and in 
Mash32 k-mer profile comparisons that revealed that all three HiFi 
MAGs had greater than a 90% predicted eANI from a single bin in 
each pCLR assembly. This suggested that the pCLR assemblies had 
collapsed the distinct components of the separate HiFi MAGs into 
single bins. This conclusion was supported by read depth cover-
age plots, which indicated very uneven coverage in the pCLR bin, 
averaging approximately 45-fold consistent with a collapse of mul-
tiple related strains present at variable abundance (Extended Data 
Fig. 3). In contrast, the resolved HiFi bins had very even coverage 
at approximately 10×, 20× and 33× (Extended Data Fig. 4), which 
suggested that the assembly had resolved species- or strain-level 
lineages across this range of abundance. This outcome has consid-
erable implications in the use of read coverage in resolving strain 
lineages from metagenomes.

A total of 15, 10 and 11 pCLR MAGs were found to be condensed 
orthologs of 31, 23 and 25 HiFi bins in the pCLR1-3 assemblies, 
respectively (Supplementary Figs. 4–6). We identified 18 MAGs 

within the HiFi assembly that are likely species- or strain-resolved 
assemblies using a nearest neighbor distance analysis with a low 
eANI pairwise distance cutoff (≥93% distance) compared to six in 
the pCLR assemblies (Supplementary Table 5). These HiFi MAGs 
had solitary representatives in the pCLR assemblies, suggesting that 
differences in sequence content and structural variation are likely to 
be lost in assemblies of error-prone reads.

MAGPhase separation of lineage-resolved high-quality MAGs. 
The demonstration that HiFi assembly can resolve some sub-
lineages even at the stage of initial contigs motivated us to 
investigate whether we could resolve additional HiFi bins into 
lineage-resolved complete MAGs using SNP variant data, as 
attempted previously21. We identified MAGs that had SNP varia-
tion above that expected from read error rates within SCG regions. 
Alignments of short reads could not distinguish true polymorphic 
sites, particularly in highly repetitive or orthologous gene regions 
(Fig. 2b), so we developed a computational approach to resolve 
lineages in metagenomes. The ability to distinguish structural 
variant subtypes within a MAG required an ability to simultane-
ously consider depth of coverage and haplotype information. This 
problem has similarities to phasing isoforms of transcripts in the 
context of variable expression from parental alleles in gene expres-
sion studies, so we adapted the phasing algorithm of the IsoPhase 
workflow33,34 into a tool called MAGPhase to identify SNPs, detect 
reads supporting these SNPs and use these reads for phasing SNPs 
across identified SCG regions in each MAG (Fig. 2c). To avoid 
potential false-positive SNP haplotypes due to errors in reads, we 
only call variants in SCG regions that have at least ten spanning 
HiFi reads and are prevalent at substantial proportions of read 
depth (Methods).
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Phased SNP haplotypes were identified in each target region, and 
the maximum number of haplotype alleles was counted for each 
MAG to assess the upper boundary for SCG variation in each MAG. 
Most MAGs in pCLR bins had multiple haplotype alleles (average 
of 219, 65% of total; Supplementary Table 6), suggesting that they 
represent confounded lineages. By contrast, most HiFi MAGs (220, 
two-fold more than pCLR assemblies) had zero identified alternate 
haplotype alleles, suggesting that many lineages were well resolved 
by the HiFi assembly or did not have detectable polymorphic sub-
populations in the sample (Table 2). Polymorphic HiFi MAGs were 
found to exhibit as many as 25 unique haplotype alleles within SCG 
regions, suggesting that MAGPhase can identify localized regions 
of genetic drift. This is further supported by the fact that, among 
48 HiFi haplotype loci with more than ten unique alleles, we found 
that 40% (122/305 haplotypes) differed from the original reference 
sequence by three or fewer bases, suggesting fixation of neutral 
mutations in subpopulations35. Median coverage of the alternative 
alleles in these hotspot regions was an average of five HiFi reads 
across the length of the haplotype, suggesting that these are likely 
true variable sites rather than artifacts of coincidental alignment of 
erroneous positions in HiFi reads to these loci. However, we cannot 
rule out the possibility that some putative variant sites result from 
inaccurate read alignment.

Comparisons of aligned short reads to polymorphic HiFi MAGs 
revealed limitations in the use of short reads for strain heteroge-
neity assessments. For example, alignment of the lineage-resolved 
Clostridia MAGs identified 7, 1 and 0 alternative haplotype 
loci on HiFi bins 451, 452 and 471, respectively (Extended Data  
Fig. 4). Clear variant patterns in individual HiFi reads aligning to 
these regions showed the power of using these reads for phasing 
haplotypes from metagenome bins (Fig. 2b). These patterns were not 
readily apparent or were heavily fragmented in the short-read align-
ments to the HiFi bins (Fig. 2b). Read pileups in lineage-resolved 
complete HiFi MAGs and orthologous pCLR collapsed MAGs were 
instructional in determining how read mapping could be used  
in downstream variant calling workflows. For example, visual 
determination of haplotypes was trivial when comparing ortholo-
gous regions of HiFi and pCLR MAGs 451 (Fig. 2b), where a large 

insertion identified by MAGPhase is clearly visible in read pileups 
in the region. The pCLR1 MAG has four distinguishable haplotype 
alleles that are difficult to resolve, consistent with the properties of 
a collapsed assembly, whereas HiFi MAG 451 can be separated into 
two lineage-resolved complete MAGs using these identified haplo-
types. We identified 35 and 32 additional complete HiFi MAGs that 
had only 1 or 2 identified alternative SNP haplotypes that could be 
separated into an additional 70 and 96 lineage-resolved complete 
MAGs, respectively. However, 220 of our complete MAGs had zero 
identified haplotypes without any need for manual curation and, 
therefore, fit the criteria of lineage-resolved complete MAGs by 
default (hereafter referred to as ‘de novo lineage-resolved’). The 220 
de novo lineage-resolved complete MAGs show the lack of need 
for extensive post hoc editing. We emphasize that short-read align-
ments failed to consistently identify variants within identified hap-
lotype alleles, regardless of the quality of the underlying MAG.

The paucity of consistent signal and the reduced power to link 
variants into haplotypes limits the use of short reads for variant 
phasing in metagenome communities. The prevalence of many 
ambiguous short-read alignments with a mapping quality score of 0 
(MapQ0) in haplotype regions suggests that they are highly repeti-
tive in the overall assembly and do not provide sufficient unique 
sequence for short-read alignment. The percentage of short-read 
MapQ0 alignments out of the total were 7%, 9% and 17% for bins 
451, 452 and 471, respectively, suggesting that large portions of these 
bins would be otherwise intractable to short-read variant profiling. 
Analysis across the entirety of the HiFi assembly in 5-kb windows 
identified that 18% of the assembly is covered by windows that have 
ratios of MapQ0 alignments to total alignments greater than 0.5. 
Naturally occurring variation is unlikely to be detected in these win-
dows by short-read alignments due to mapping ambiguity. By con-
trast, only ~2% of the length of the HiFi assembly had high MapQ0 
windows, suggesting that 98% of the assembly contains sufficient 
unique sequence for HiFi read alignment (Supplementary Fig. 7).

Effect of HiFi accuracy on the generation of complete MAGs. 
The proportion of lineage-resolved complete MAGs in this com-
plex sample was estimated by counting the number of HiFi reads 
aligning to each MAG completeness category of the HiFi assem-
bly. These alignments revealed that 5.7% of all HiFi reads mapped 
to lineage-resolved complete MAGs, with 18% and 7% aligning 
to complete MAGs and other, lower-quality MAGs, respectively  
(Fig. 3a). Most reads (83%) mapped to contigs assigned to bacterial 
taxonomy (Fig. 3b), among which 7% of HiFi read alignments were 
to lineage-resolved complete MAGs. However, most alignments 
(63%) were to bins that did not meet minimal standards (>50% 
SCG completeness) for MAG generation. These data suggest that 
our de novo lineage-resolved complete MAGs do not represent 
the most abundant lineages in our dataset and might, instead, be 
stratified by homogeneity of genome sequence in the sample that 
enables these lineages to be more easily assembled at lower depths 
of coverage.

The depth of sequence required to characterize the genomes 
extracted from a complex sample is not usually known a priori. Our 
study design employed unusually deep HiFi sequencing to reduce 
the limitation of sequence depth on the analysis of the microbiome 
while supporting an analysis of the relationship between sequence 
depth and the generation of lineage-resolved complete MAGs. To 
explore this, we performed multiple assemblies of downsampled 
read sets. Total assembly size continued to increase up to the full 
dataset, possibly reflecting assembly of lower abundance microbes 
or eukaryote genomes, but the rate of accumulation diminished as 
the total depth was approached (Fig. 3). The number of total MAGs 
and complete MAGs continued to increase with depth, although 
the count of complete MAGs was less constrained by depth (45% of 
the count at 40-Gbp depth) (Supplementary Note, ‘Analyzing effect 

Table 2 | MAGPhase haplotyping results

HiFi pcLr1 pcLr2 pcLr3

Total complete MAGs 428 345 345 315

Average contig count 
per MAG

8.3 10.8 11.4 11.9

Zero haplotype MAGsa 220 130 136 89

Percent polymorphic 
MAGsb

48.5% 62.3% 60.6% 71.7%

Average haplotype 
variant lengthc

20.1 27.1 24.1 34.0

Average haplotype 
genomic lengthd

1,151.3 1,106.1 1,057.8 961.2

Maximum haplotype 
genomic length

336,899 463,082 480,257 493,333

Average haplotype 
alleles per locuse

4.18 4.72 4.43 5.06

Maximum haplotype 
alleles per locus

25 59 54 60

aMAG that did not have detectable SNP haplotypes that could be linked with HiFi reads. bNumber of 
MAGs that had at least one detectable alternative SNP haplotype allele. cHaplotype variant length 
represents the count of polymorphic SNP loci within an identified haplotype. dHaplotype genomic 
length was defined as the distance in bases on the assembled contig from the first polymorphic 
SNP site to the final site. eA haplotype allele was defined as a unique permutation of polymorphic 
SNP variants that were found to be linked by direct observation on consensus overlap of HiFi reads.
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of HiFi accuracy and sequencing depth’; Supplementary Tables 8 
and 9). We also tested the efficacy of polishing HiFi assemblies 
using short reads, finding that it does not substantially improve 
sequence accuracy and suggesting that this step can be omitted in 
the future (Supplementary Fig. 8).

Improvements in functional genetics analysis. The advantages of 
HiFi reads in functional annotation of a metagenome were assessed 
by predicting biosynthetic gene clusters (BGCs) that are notori-
ously difficult to identify in fragmented assemblies36. We identified 
1,400 complete and 350 partial BGCs in the HiFi assembly using 
antiSMASH37. To our knowledge, this represented the largest num-
ber of complete BCGs ever reported in metagenomic assemblies 
(Extended Data Fig. 5). Nearly all identified BGCs were classified 
as novel, illustrating the capabilities of long reads for exploration 
of novel natural products (Supplementary Note, ‘Identification of 
biosynthetic gene clusters’).

Improved resolution of mobile DNA association analysis. Contigs 
assigned to viral (Fig. 4a and Extended Data Figs. 6–8) or plasmid 
(Fig. 4d) taxonomy were evaluated for putative bacterial hosts using 
Hi-C links and partial long-read alignments by application of a pre-
viously published workflow6, described in detail in Supplementary 
Note, ‘Mobile DNA association analysis’. Using the SCAPP38 plas-
mid assembly tool, we identified 5,528 candidate plasmid contigs 
within the HiFi assembly and identified 298 plasmid–contig associa-
tions. We predicted six plasmid contigs and 25 candidate bacterial 
hosts (Supplementary Fig. 1), in which one plasmid was predicted 
to inhabit members of 13 different bacterial genera, suggesting 
inter-genera mobility of this plasmid. We also predicted associations 
between plasmid contigs and three genera of archaea, including 
Methanobrevibacter and Methanosphaera, which were previously not 
known to carry naturally occurring plasmids30. These results under-
score the value of combined HiFi assembly and Hi-C contact map-
ping for assignment of mobile genetic elements to host organisms.
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Fig. 3 | MAG representation and assembly at different depths of coverage. HiFi read alignment percentages (a) were tabulated based on the underlying 
quality category of MAGs. This revealed that a small proportion of the reads were unmapped (dark green) or mapped to unbinned contigs (brown). Most 
reads aligned to contigs that were placed into discrete bins by Bin3c but did not meet minimal completeness criteria (they had <50% SCG completeness) 
for analysis (orange). Alignments to lineage-resolved complete MAGs (pink) were a smaller proportion of total alignments than originally expected, 
with complete MAGs (>90% completeness and <10% contamination; blue) and other MAGs (>50% completeness; green) representing a substantial 
percentage of alignments instead. Breakdowns of read alignments to different contig-level taxonomic assignments (b) revealed that most lineage-resolved 
complete MAGs were of bacterial origin, as expected. Downsampling of HiFi reads in 20-Gbp portions (c) revealed that smaller target depths of coverage 
could still result in substantial counts of complete and lineage-resolved complete MAGs. Each downsampled dataset is compared to the full HiFi dataset 
(dark orange) in each category. LR, lineage-resolved.
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Discussion
The goal of metagenome assembly is to generate reference genomes 
for the majority of organisms that comprise the sample. Our data 
suggest that both short and long error-prone reads produce col-
lapsed assemblies that require extensive manual curation to resolve 
into reference-quality resources. By contrast, metaFlye assemblies 
using HiFi reads generate many lineage-resolved complete MAGs 
from complex metagenomes without the need for curation (Fig. 2), 
including organisms prevalent at lower relative abundance in the 
community (Fig. 1a,c). Compared to recent work using assemblies 
of long-read sequence data polished with short reads, we found 
proportional improvements in recovery of rRNA and tRNA genes 
(319 MAGs containing full complements in our dataset) and cir-
cular high-quality contigs (44 in our dataset) from a single sample 
without the need for curation4. These complete MAGs appear to 
be resolved with respect to structural variation and orthologous 
gene sequence compared to closely related (>90% eANI) lineages. 
Sketch-based comparisons revealed that HiFi MAGs (23–31 MAGs, 
6–7% of total) that were condensed into collapsed assemblies in the 
pCLR datasets were found to be poor representatives of the actual 
genomic sequence of the organisms based on read alignment met-
rics and variant phasing analysis (Fig. 2b). The data suggest that 
metagenome assemblies of long error-prone reads most likely col-
lapse contigs of closely related genomes present in the sample into 
single inaccurate representations.

MAGPhase detects discrete haplotypes and identifies vari-
ant lineages more efficiently and correctly than existing 
short-read-based strain-resolution algorithms that rely on mul-
tiple sample observations and statistical variant linkage analysis 
to determine potential microbial lineages13,14. HiFi reads provide 
suitable accuracy and length that enabled identification of phased 
haplotypes of up to 309 SNPs and phase variants across segments 
as large as 300 kbp in our HiFi MAGs (Table 2). Rather than limit-
ing analysis of microbial lineages to ANI thresholds that might be 
biased due to short-read alignment inaccuracy, HiFi reads allow 
for detection of haplotypes segregating in a sample that have as 
low as 2% (five reads out of 300) relative abundance of the refer-
ence MAG haplotype. The MAGPhase workflow uses HiFi reads 
for haplotype analysis on metagenome assemblies (https://github.
com/Magdoll/MagPhase) and enables visual scrutiny of discov-
ered haplotypes, as illustrated by IGV alignment diagrams. We 
have included tools to label these diagrams and enable visual 
verification of predicted SNP haplotypes (https://github.com/
njdbickhart/SheepHiFiManuscript). Even when using MAGs 
produced by long error-prone reads (pCLR assemblies) as a ref-
erence, MAGPhase can still produce discernable SNP haplotypes 
that could be used to identify descendant lineages (Fig. 2b), sug-
gesting that it might have value applied to existing non-HiFi 
long-read assemblies. Recent work has attempted to realize 
strain-separated MAGs using post hoc, short-read linkage statis-
tics dereplication13,39. This approach might be more cost-effective, 
but it comes at the cost of accuracy and effort in post hoc derep-
lication, whereas our method generates a large proportion of 
lineage-resolved MAGs de novo.

The ability to assemble low-abundance members of the micro-
bial community and to resolve highly related, descendant lineages 
present in the same sample is dependent on the depth of sequenc-
ing. We performed deep sequencing of a complex community to 
set a benchmark for comparing lower depth coverages (Fig. 3c). 
Subsequent downsampling experiments evaluated the tradeoff of 
coverage versus resolution of species and strain-level assembly, 
revealing that over 300 complete MAGs can be assembled from 
our sample with only 100 Gbp of HiFi reads. We found that a large 
proportion of these MAGs are de novo lineage-resolved complete 
MAGs in our sample (93–210 MAGs in all replicates). This tally 
might vary based on differences in sample composition in other 
environments, but it reveals a constraint on genome variation in 
these lineages that was previously difficult to identify. The de novo 
assembly of lineage-resolved MAGs with HiFi reads is more likely 
to occur in lineages without large structural variants or genomic 
islands that cannot be spanned by current HiFi reads, such that 
lineages containing features like phage integrations will likely still 
produce collapsed representations of multiple genomes. We hypoth-
esise that better strain-level resolution of MAGs could be achieved 
before assembly by combining the structural variation information 
from the metaFlye assembly graph with phased SNP haplotypes 
generated by MAGPhase.

Long-read technologies are capable of generating reads many 
kilobases in length and might eventually be able to encompass entire 
microbial genomes in single reads. HiFi reads are presently limited 
to an average of 20 kbp or fewer and are more expensive to generate 
than equivalent amounts of short reads and long error-prone reads. 
However, the principal limitation of read length in metagenomic 
assembly is currently the DNA extraction methodologies used to 
ensure comprehensive representation of the microbial community, 
which generally produce DNA fragments fewer than 10 kbp6,7, mak-
ing the read length capability of other platforms moot. We also 
showed that HiFi assemblies are not substantially improved by pol-
ishing with short reads, so the complexity and cost relative to other 
experimental designs are reduced (Extended Data Fig. 1). We noted 
a modest (~20%) depletion in representation of Gram-negative taxa 
in HiFi reads compared to short reads; however, this difference did 
not appear in the subreads from the cells that generated the HiFi 
reads, indicating that the effect is related to the conversion of sub-
reads to HiFi reads30. We show that MAGPhase is capable of resolv-
ing lineages using HiFi read alignments to assemblies of differing 
quality (Fig. 2c), so low-pass sequencing with HiFi reads could 
potentially be used in tandem with previously assembled references 
in future surveys. We note that improvements in long-read accuracy 
have extended to other platforms40 and that our methods should be 
equally applicable to these datasets. However, issues imposed by 
current methods for metagenome DNA extraction will continue to 
limit the size of reads achievable by all sequencing technologies.

Several biological insights were made possible by the use of HiFi 
reads. Use of the antiSMASH37 detection tool identified 40% more 
BGCs in the HiFi assembly than the highest count in the next best 
pCLR assembly. The antiSMASH results identified 19 BGCs that 
show high similarity to a recently identified class of gene clusters 

Fig. 4 | HiFi reads improve associations of mobile genetic elements with candidate host species. A network plot of predicted host-virus associations 
(a) identified through HiFi read overlaps (blue), Hi-C links (green) and both data types (red) revealed viral genomes that have broad host specificity. 
In addition, the HiFi assembly was better able to identify candidate viral–archaeal associations than those detected in the pCLR datasets. Viral–host 
associations were predominantly identified through HiFi read alignments (b), and the HiFi assembly had a higher proportion of this evidence (356 
associations) compared to the average pCLR assembly (mean, 251.34). Each pCLR bar (n = 3) indicates the mean value for each category (Read: 251.34; 
Hi-C: 43.09; Both: 16.21), and error bars indicate the standard deviation (Read: 25.10; Hi-C: 19.93; Both: 6.84). Highlighting the difference in domain 
detection between the assemblies, more viral–archaeal links (c) were identified in the HiFi assembly than in the pCLR assemblies. Each pCLR bar (n = 3) 
indicates the mean value for each category (Archaea: 7.67; Bacteria: 251.25; Eukaryota: 16.14; Viruses: 20.40; no-hit: 23.86), and error bars indicate 
the standard deviation (Archaea: 2.07; Bacteria: 35.06; Eukaryota: 1.77; Vruses: 11.22; no-hit: 4.02). Using Hi-C link data, we were also able to identify 
candidate hosts for assembled plasmid sequence (d) in the HiFi assembly.
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encoding the production of proteasome inhibitors from the human 
gut microbiota41, indicating that these functions might be of simi-
lar importance for host colonization in ruminants as they are in 
humans. Additionally, we identified several novel associations 

of mobile genetic elements in our sample using a combination of 
Hi-C linkage data and HiFi read alignment overlaps. We detected 
archaeal–virus association links (n = 60) with high complexity 
(diameter = 7) primarily through HiFi read overlaps. Host–plasmid  

0

50

100

150

200

250

0

50

100

150

200

250

300

350

Edge read
Edge Hi-C
Edge both

Virus ackermannviridae

Virus herelleviridae

Virus microviridae

Virus mimiviridae

Virus myoviridae

Virus phycodnaviridae

Virus podoviridae

Virus siphoviridae

Virus viruses

Host no-hit
Host bacteria
Host eukaryota
Host archaea

a

b

HiFi pCLR HiFi pCLR

Viral–host components by edge category

Read

Hi-C

Both

Viral–host components by host kingdom

Viruses
Bacteria
No-hit
Archaea
Eukaryota

c

Plasmid

Host bacteria

Host archaea

Edge Hi-C

d

V
ira

l-h
os

t c
om

po
ne

nt
s

V
ira

l-h
os

t c
om

po
ne

nt
s

NATUrE BIoTEcHNoLoGy | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


ArticlesNATUrE BIoTECHNoloGy

analysis using Hi-C links also identified broad host specificity for 
assembled, circular plasmids. In total, we identified 424 and 298 
potential host–viral and host–plasmid links, respectively, which 
represents one of the most substantial associations of mobile  
element activity in a single sample to date.

To our knowledge, no previous study has reported 
lineage-resolved high-quality MAGs at the strain level in a  
complex metagenome. Our analysis suggests that biological insights 
can be gained through the use of long (>5-kb) reads with suitably 
low (~1%) error rates capable of spanning orthologous genomic 
regions and resolving species-level and strain-level haplotypes 
into separate assemblies. Assembly with metaFlye, binning with  
Hi-C and phasing with MAGPhase can produce strain-level  
MAGs with minimal manual curation. Resulting lineage-resolved 
complete MAGs are a step toward ‘complete metagenomics’—
isolate-quality genome assemblies for microbial organisms from 
complex metagenome samples.
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Methods
Long-read DNA sequencing and subread extraction. A fecal sample was taken 
from a young (<1 year old) wether lamb of the Katahdin breed. The animal died 
while on pasture and was diagnosed postmortem with combined Strongyloides and 
coccidial infection. The sample was acquired postmortem following the USDA ARS 
IACUC protocol 137.0 during routine necropsy to determine cause of death. The 
sample had a watery texture consistent with diarrhea, and apparent parasite eggs 
were observed within the sample, which was transferred to a 50-ml tube, mixed 
to make as homogenous as possible and aliquoted into 1.5-ml microfuge tubes. 
DNA was extracted in small batches from approximately 0.5 g per batch using 
the QIAamp PowerFecal DNA Kit, as suggested by the manufacturer (Qiagen), 
with moderate bead beating and sheared using a Digilab Genomic Solutions 
HydroShear instrument. The sheared DNA was size-selected to approximately 
9–18 kb on a SageELF instrument to a final target size that varied from 9 kbp to 
16 kbp, followed by library preparations using the SMRTbell Template Prep Kit 
version 1.0, as described20. Sequence data were collected over time and included 
46 SMRT cells on a Sequel instrument using ten library preparations, with 24 cells 
of v2 chemistry and average inserts of 9–10 kbp and 22 cells of v3 chemistry and 
average inserts of 14 kbp. An additional eight cells representing individual library 
preparations were sequenced on a Sequel II instrument using v1.0 chemistry and 
average inserts of 14 kbp. Subreads and circular consensus sequencing (CCS) reads 
were generated using SMRTLink software version 6.0 CCS protocol and default 
settings. An average of 35% of subreads per cell were converted to CCS-corrected 
reads (range, 1–63%). This resulted in 255 Gbp of total CCS reads from both the 
Sequel I (45 Gbp of the total) and Sequel II (210 Gbp) sequencing runs. A subset 
of these data (46 Sequel I SMRT cells) representing 18% (45 Gbp) of the total 
dataset was previously assembled as validation data in the metaFlye assembler 
publication10. The Sequel II dataset was filtered after CCS correction to retain only 
reads that fit HiFi quality standards (3+ full length passes and average read quality 
scores >Q20). A small proportion of our Sequel I dataset (4,350 reads, 0.02% of 
the total number of CCS reads) consisted of reads that did not meet HiFi read 
quality standards (average Q scores above 20), as this dataset had been filtered with 
a previous version of the SMRTLink software. These reads were retained as they 
comprised a very small proportion of the total dataset.

Subreads were extracted from the converted CCS reads to provide a suitable 
comparison between uncorrected and corrected long-read datasets. First, all of the 
constitutive subreads of the CCS reads were identified from subread BAM files. 
Using a custom script (https://github.com/njdbickhart/SheepHiFiManuscript/blob/
main/downsampling/extractPacbioCLRFromCCSData.py), the second, third and 
fourth subreads were separately extracted into FASTQ files designated pCLR1, 
pCLR2 and pCLR3, respectively (the first subread does not typically encompass 
the complete DNA fragment, so it was discarded). Statistics on subread lengths 
from the Sequel I and Sequel II datasets are shown in Supplementary Figs. 10 and 
11, respectively. Due to sequence read falloff in later subreads, the pCLR3 dataset 
was truncated relative to the pCLR1 and pCLR2 datasets. In the Sequel I dataset, 
a small proportion of reads (51 reads, ~0.001%) did not have a fourth (pCLR3) 
subread, making the third replicate dataset smaller than the others. This resulted 
in a reduction of 104 Mbp of sequence in this dataset (48.763 Gbp) compared to 
the pCLR1 or pCLR2 extracted subreads (48.830 Gbp). The original CCS reads 
were organized into a dataset hereafter referred to as the ‘HiFi’ reads, and the three 
subread replicates were labeled pCLR1-3 in the chronological order in which they 
were sequenced in the subread BAM files.

Short-read sequencing and Hi-C library preparation. An approximately 2-g 
subsample of frozen homogenized fecal material was provided to Phase Genomics 
for Hi-C contact map construction using their ProxiMeta service. The restriction 
endonucleases Sau3AI and MluCI were used to generate separate Hi-C sequencing 
libraries, as previously described42. Using a total of 107 million paired-end reads 
from both, Hi-C libraries were generated for analysis. A separate portion of the 
fecal sample was saved for short-read ‘whole genome shotgun’ (WGS) DNA 
sequencing, which was performed by Phase Genomics using their ProxiMeta 
service. TruSeq PCR-free libraries were created from this sample as previously 
described43 and were sequenced on an Illumina NextSeq 500. A total of 149 Gbp of 
WGS short reads were generated from this sample.

Genome assembly, read alignment and binning. Reads from the HiFi and pCLR 
datasets were assembled into contigs using the metaFlye10 genome assembler, 
version 2.7-b1646 for HiFi reads and version 2.7.1-b1590 for pCLR reads. The 
assembler was run in metagenome mode (‘—meta’) flag, and the ‘—pacbio-hifi’ 
and ‘—pacbio-raw’ data prefix flags were used for input HiFi reads and the pCLR 
reads, respectively. We note that the ‘—pacbio-hifi’ input designation only uses 
reads that have average error rates below 1% for the disjointig and contig phases 
of the metaFlye workflow. This means that only HiFi quality reads (Q20+) were 
used to generate the initial graphs and final contigs of the HiFi assembly. However, 
all input reads were used in the consensus polishing step of metaFlye. The 
pCLR assemblies were polished with two rounds of Pilon44 correction using the 
previously generated short-read dataset. The HiFi assembly was compared against 
the pCLR assemblies without post hoc polishing. Contigs shorter than 1,000 bp in 
all assemblies were removed from further analysis. Circular contigs were identified 

from metaFlye assembly reports. Short reads were aligned to the assemblies using 
BWA MEM45 using default settings. HiFi reads were aligned using minimap2 
(ref. 46) with the ‘-x asm 20’ preset setting as recommended by the developers. 
Window-based alignment analysis was conducted by using custom Python scripts 
(https://github.com/njdbickhart/SheepHiFiManuscript/blob/main/magphase_
workflow/getBAMMapQ0Ratios.py).

Hi-C read pairs were aligned to each assembly using BWA MEM with 
the ‘-5SP’ flag to disable attempts to pair reads according to normal Illumina 
paired-read settings. Resulting BAM files from Hi-C reads were sorted by read 
name. Hi-C alignments were used in the bin3c47 binning pipeline to generate a set 
of bins for each assembly.

Contig and MAG quality assessment. Contig-level quality was assessed by 
CheckM17 run on all contigs longer than 1 Mb in size in each assembly. Bin 
quality was determined by DAS Tool48 SCG metrics generated from the solitary 
input of bin3c binning metrics. The rRNA genes were predicted from each 
MAG using Barrnap (https://github.com/tseemann/barrnap), and tRNA gene 
content was determined using tRNAscan-SE49. MAGs were classified as ‘complete’ 
for bins that had more than 90% SCG completeness and less than 10% SCG 
contamination estimates from the DAS Tool quality assessment data. The MISAG/
MIMAG quality standards1 were assessed from the combined output of DAS Tool, 
Barrnap and tRNAscane-SE where appropriate, with high-quality draft MAGs 
meeting minimal SCG metrics of more than 90% complete and less than 5% 
contaminated, with the presence of the 5S, 16S and 23S genes and at least 18 tRNA 
genes. The total set of MAGs derived from DAS Tool output automatically met 
the Bowers et al.1 criteria for medium-quality draft (≥50% complete and <10% 
contaminated). We refer to this set as ‘MAGs’ (without prefix adjectives) for ease 
of reference in this article.

Optimizing metaFlye for long and accurate reads. The metaFlye algorithm 
was initially designed for assembling long error-prone reads and featured limited 
support of the long and accurate reads10. In this study, we performed several 
modifications of the algorithm and added a new ‘–pacbio-hifi’ option for improved 
assembly of long and accurate reads (incorporated into the updated metaFlye 
package, version 2.8).

First, we added a homopolymer-compressed alignment scoring scheme, 
similarly to the approach implemented in HiCanu50. Because the vast majority of 
errors in HiFi reads are indels inside homopolymer regions, the modified scoring 
scheme computes alignments with higher sensitivity and thus simplifies the repeat 
graph by separating inexact copies of genomic repeats.

Second, we implemented a minimizer indexing scheme46,51 as a replacement 
to the solid k-mer approach10. The minimizer indexing substantially reduces the 
memory footprint and reduces running time (metaFlye took 3,900 CPU hours and 
662 Gb of RAM to assemble the entire HiFi dataset).

Third, we modified the disjointig assembly algorithm to limit the number 
of occasional breaks in contiguity as follows. The original algorithm is using 
only the alignments longer than the MinimumOverlap parameter to assemble 
disjointigs and build a repeat graph. There is a tradeoff in selecting this parameter: 
a higher parameter value results in a less tangled graph and more contiguous 
assembly, whereas a lower value results in a more fragmented graph and breaks in 
assembly (because genomes with low depth of coverage might not have enough 
reads with sufficient overlap length). To address this tradeoff, the modified 
version of the disjointing assembly algorithm may use alignments shorter than 
the MinimumOverlap parameter (as short as 1 kbp) under the following extra 
conditions: (1) there are no alternative alignments longer than MinimumOverlap, 
and (2) the alignment region is not contained inside a repetitive region. Putative 
repetitive regions are determined from the alignment pileup profile.

Taxonomic assignment. We distinguish between contig-level and bin-level 
taxonomic classification to show differences in pCLR/HiFi assembly quality and 
assign representative taxonomy of the final polished bins, respectively. Contigs 
were assigned to candidate taxa using the BlobTools version 1.0 (ref. 48) taxify 
pipeline, using models from the UniProt (release 2017_07) database, as described 
previously6. Contigs that did not meet the BlobTools threshold for taxonomic 
assignment, or were identified as belonging to faulty database entries (for example, 
the ‘Cetacean’ lineage), were labeled as ‘no-hit’ taxa. Viral contigs identified from 
this analysis were used in subsequent virus association analysis (see below). 
Predicted viral contigs were separately verified using the CheckV52 pipeline using 
the ‘end-to-end’ workflow, multi-threaded, and with normal settings.

The GTDB-TK version 1.0 (ref. 31) ‘classify_wf ’ workflow was used to assign 
candidate taxonomic affiliation to all assembled bins. Default GTDB-TK settings 
were used, with the only exception being the setting of the ‘—pplacer_cpus’ 
argument to ‘1’, as recommended by the authors. In cases where GTDB-TK was 
unable to assign a taxonomic lineage, a consensus of contig-level assignments from 
the BlobTools taxify pipeline was used to assign candidate taxonomic affiliation 
for the bin. The prevalence of three or more contigs in the MAG, indicating the 
same species-level taxonomy, were used when possible. In the case of ‘ties’ among 
contig-level taxonomic consensus, the final taxonomic consensus was resolved to 
the lowest possible level (that is, genus or family).
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Read-level classification was performed on the Illumina, HiFi and raw PacBio 
subread datasets with Kaiju29. The ‘kaiju_db_nr_euk_2021-02-24’ database was 
the reference for all classifications, and Kaiju was run with default parameters 
in all cases. Output was converted to tabular format with the ‘kaiju2krona’ 
utility, and KronaTools version 2.8 (ref. 53) was used to visualize this output 
using the ‘ktImportText’ utility. All three classifications were consolidated into a 
single interactive plot for easy comparison, which can be found at the following 
URL: https://zenodo.org/record/5138306/files/hifi_illumina_sub_reads.krona.
html?download=1.

Orthologous MAG identification and read alignment. We first sought to identify 
orthologous bins among each of the pCLR assemblies and the HiFi assembly 
to provide direct comparisons among similar assembled taxonomic groups. To 
identify orthologous bins, we used Mash version 2.2 (ref. 32) sketches of all HiFi 
bins as a reference against queries of all pCLR bins. Mash sketch settings were 
-s 100,000 and -k 21, with all other settings left at the default. The Mash ‘dist’ 
command was used with a cutoff of 0.10 distance to identify orthologous MAGs, 
which is approximately equivalent to an average nucleotide identity of 90% 
between hits. Mash distance values were inverted (1.0 – dist) and relabeled as eANI 
values for consistency in comparisons. Multiple reference and query hits were 
allowed and retained for future comparisons.

HiFi reads were realigned to the HiFi and pCLR assembly bins using minimap2 
(ref. 46) as previously described, and alignment files were converted to BAM file 
format using SAMtools54. To reduce the possibility of supplementary or split-read 
alignments affecting downstream variant calling, we filtered these alignments from 
the HiFi read BAM files. We then used these filtered alignment files for variant 
calling and haplotype identification using MAGPhase.

MAGPhase lineage resolution. The MAGPhase algorithm attempts to identify 
full-length SNP variant haplotypes in a greedy fashion within a given set of 
genomic coordinates. First, all input read alignment BAM files are stripped of 
supplementary (flag status = 2,048) alignments to exclude the majority of chimeric 
reads. By default, only genomic coordinates that have at least ten full-length 
reads (10× coverage) are considered for variant calling. Initial SNP variants used 
in read phasing are identified from HiFi read alignment pileups using pysam 
(https://pysam.readthedocs.io/en/latest/api.html). Due to the lower error rates of 
HiFi reads, a SNP variant calling strategy similar to short-read variant callers54 is 
used. Initially, all candidate SNP variants are tallied within all reads that overlap 
the genomic coordinate range. To distinguish between potential errors in reads 
and SNPs, we model expected errors at a rate of 0.5% and test observed variant 
coverages against an expected error variant coverage using the Fisher exact test. To 
correct for further multiple hypothesis testing across an entire region, we employ 
a Benjamini–Hochberg55 procedure to estimate modified P values. Only SNP 
variants that meet our corrected threshold P value (default value, 0.1) are kept for 
subsequent phasing.

Once a set of candidate SNP variants is called, MAGPhase attempts to phase 
them into haplotypes based on their presence in HiFi reads. The entire length 
of an alternate haplotype is imputed using the linkage of previously identified 
SNP variants on individual HiFi reads that span the region in a stepwise fashion 
using the read pileups. HiFi reads are first decomposed into their variant position 
status at each of the predefined, filtered variant loci. A directed, acyclic graph 
of variant sites is formed through observation of filtered variant alleles on each 
HiFi read. This graph is then used to compose candidate haplotype ‘strings’ of 
variant positions. The assignment of reads to each haplotype is retained for later 
output, and read counts supporting each variant position are used to estimate 
relative coverage for the alternative haplotype allele. Missing variant information 
(due, primarily, to erroneous bases in HiFi reads or alignment of chimeric reads) 
is recovered through a round of imputation using the IsoPhase algorithm33. 
Imputation is performed when a previously filtered alternative variant base 
is found at a candidate variant site to attempt to resolve the read into its true 
haplotype affiliation. The implementation of our imputation method relies on 
calculation of exact match scoring between a read’s observed haplotype allele 
affiliation and previously identified haplotypes in the region. If the read’s score is 
fewer than three exact variant matches from the next best haplotype allele or has 
a score that is tied with the best and second-best matching haplotypes, the read’s 
haplotype state is considered to be ambiguous. A single read alignment with no 
variant state that matches to any previously observed haplotype is discarded. Any 
haplotypes with variant states that could not be recovered using this imputation 
algorithm are denoted with question marks (?). The final haplotype dataset consists 
of equal-length haplotypes of SNP variants observed in the genomic region and 
their associated read counts.

To reduce the potential expansion of haplotype counts due to recombination, 
we phased HiFi reads within identified SCG regions of each HiFi and pCLR bin. 
CCS reads that extended over the edges of SCG regions were included in haplotype 
phasing, so if two SCG regions were within short distances from each other, phased 
variant haplotypes could extend further. Partially imputed haplotypes (haplotypes 
that contained question marks) were excluded from analysis, as these could have 
resulted from chimeric read alignments or base call errors on selected SNP variant 
sites within the haplotype. Haplotypes were considered alternative alleles based 

on read depth, with lower-depth haplotypes considered to be alternatives to the 
highest-read-depth allele at that loci. Haplotypes that included fewer than three 
SNPs were filtered, as these tended to have lower counts of read alignments and 
higher alternate allele haplotype counts. If a MAG was found to have no SNP 
variants that fit the read depth statistical requirements, it was considered to be 
a ‘lineage-resolved’ MAG. MAGs that had unfiltered SNP variants that were 
otherwise unable to be assigned to haplotypes with three or more SNPs were 
not considered to be lineage resolved and were labeled as ‘polymorphic’. Read 
depth and read clustering were assessed through custom Python scripts (https://
github.com/njdbickhart/SheepHiFiManuscript/blob/main/magphase_workflow/
plotMagPhaseOutput.py) and IGV56 plots.

HiFi read downsampling. To simulate smaller subsets of HiFi reads,  
we employed a progressive downsampling strategy using recursive sampling.  
We sampled from the Sequel II HiFi read dataset, as this dataset benefited from 
the latest advances in chemistry for PacBio sequencing and is likely to be most 
analogous to the data used in the future by other groups. In brief, this method 
attempts to bin reads into their lowest deciles using a recursive test against the 
target percentile with values generated from the default Perl random number 
generator. Reads are placed into all deciles to which their random number value 
fits, without replacement. In practical terms, this means that all reads within 
the lower decile samples (for example, 10%) are present in the top (90%) decile. 
Actual percentages of read counts and total base pairs were compared to expected 
decile categories and were found to be almost perfectly matched (Supplementary 
Table 8). This algorithm is implemented in base Perl (version 5.8+) at the 
following URL: https://github.com/njdbickhart/SheepHiFiManuscript/blob/main/
downsampling/downsampleFastaForAssembly.pl. Each downsampled dataset 
was assembled with metaFlye using the same settings described above. Bins were 
generated using the full Hi-C sequence dataset and bin3c, and lineage-resolved 
complete MAGs were identified using MAGPhase. The HiFi reads from each 
downsampled decile were aligned to their associated assembly to determine 
variant sites in the MAGPhase pipeline.

Polishing HiFi assembly using short reads. Pilon44 polishing of the HiFi assembly 
was accomplished using the short-read sequence dataset in a single iteration 
with the ‘—fix indels’ setting. A single iteration was chosen, as the first polishing 
iteration usually results in the largest magnitude of changes57. The polished 
and unpolished HiFi assemblies were then assessed using the IDEEL pipeline58. 
Comparisons between counts of open reading frame length ratios between the two 
assemblies were conducted with the qqplot function in the R stats (version 4.0.2) 
package and plotted with base R.

Biosynthetic gene cluster prediction and functional annotation. The HiFi and 
pCLR assemblies were used as input for the BGC prediction tool antiSMASH37 
(version 5), with Prodigal59 as the default gene prediction tool. The predicted BGCs 
were classified into six BGC classes: RiPP, NRPS, Terpene, PKS, Saccharide and 
Others. Also, from the annotated GenBank files, BGCs were classified into either 
‘Partial’ (when they were found on a contig edge) or ‘Complete’ (when this was not 
the case). Finally, predicted BGCs with fewer than 50% of the genes having hits to 
the best KnownClusterBlast hit, which is obtained from searching all BGCs in the 
MIBiG database, version 2.0 (ref. 60), were considered ‘novel’. When this condition 
was not satisfied, the BGCs were classified into the ‘Known’ group.

Virus and plasmid association analysis. Viral contigs were identified from 
BlobTools taxonomic assignment for use in the association analysis. Genome 
completeness of these viral contigs was estimated by the CheckV 1.0 ‘end_to_end’ 
workflow40 (Supplementary Table 7). Given the potential novelty of assembled viral 
genomes in this dataset, the ‘Not-Determined’ and ‘Medium’ completeness viral 
contigs were not filtered before the association analysis. CCS read overlaps and 
Hi-C link data were used to identify potential host–viral associations, as previously 
described6. In brief, read overlap data consisted of CCS reads that partially mapped 
to both viral and non-viral contigs. Associative Hi-C links consisted of cases where 
the number of inter-contig Hi-C pair alignments between viral and non-viral 
contigs were three standard deviations above the average count for all contigs. Both 
datasets were compared for overlap, and network plots were generated using the 
Python NetworkX version 2.5 module. The analysis workflow and network plotting 
were automated using the following script: https://github.com/njdbickhart/
SheepHiFiManuscript/blob/main/viral_association/viralAssociationPipeline.py.

Plasmids were identified using the SCAPP workflow38 with the metaFlye HiFi 
assembly graph (‘gfa’ file) and aligned short-read BAM files to the final, polished 
assembly FASTA file38. The default settings were used apart from the setting of 
the ‘-k/–max_kmer’ value to ‘0’ to disable k-mer-based tokenization of sequence 
reads. SCAPP plasmid nodes were filtered if they were shorter than 5 kb or longer 
than 1 Mb in length before alignment. Plasmid node orthologs in each main 
assembly were identified through minimap2 (ref. 46) alignments and were removed 
before alignment. Hi-C reads were aligned to this modified reference using bwa 
MEM45, and alignment files were converted to BAM format using SAMtools54. 
The alignment file was used in the aforementioned viral association workflow 
script to identify substantial links between candidate plasmids and host contigs. 
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Contig-level annotation via the BlobTools48 taxify pipeline was used to classify each 
candidate host by kingdom. Networks were visualized using the Python NetworkX 
version 2.5 module.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article

Data availability
The HiFi sheep dataset, Hi-C reads and WGS short reads are available on National 
Center of Biotechnology Information BioProject PRJNA595610 at accession IDs 
SRX7628648, SRX10704191 and SRX7649993, respectively. Whole-metagenome 
assemblies and MAG bins for the pCLR and HiFi datasets are available at https://
doi.org/10.5281/zenodo.4729049. The ‘kaiju_db_nr_euk_2021-02-24’ database was 
used for Kaiju classification (https://kaiju.binf.ku.dk/server). The ‘2017-07’ version 
of the UniProt database was used for BlobTools classification (https://ftp.uniprot.
org/pub/databases/uniprot/previous_major_releases/release-2017_07/).

code availability
The MAGPhase script and codebase are part of the https://github.com/Magdoll/
cDNA_Cupcake GitHub repository. Scripts to replicate the analysis of the manuscript 
and to implement the MAGPhase workflow are located at this centralized repository: 
https://github.com/njdbickhart/SheepHiFiManuscript (ref. 61). A listing of all analysis 
software packages used in this study can be found in Supplementary Table 10.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | contig-level comparison of pcLr and HiFi assemblies. a. Strategy for generating the read sets for the three pCLR and the HiFi 
assemblies. b. Comparison of contig length distributions in the four assemblies demonstrating a tendency for pCLR assembly to create longer contigs.  
c. Comparison of the total length of each assembly after separation of contigs into predicted Superkingdoms demonstrating an increased length from HiFi 
assembly among assigned Superkingdom and reduced length in unassigned bin. d. Comparison of the completeness of pCLR and HiFi assemblies based on 
the presence of >90% expected single-copy genes with <5% redundancy.
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Extended Data Fig. 2 | Assembled MAG taxonomy. A circular dendrogram showing the presence (blue) and absence (black) of GTDB-TK assigned 
taxonomy to Assembly bins for the HiFi (outermost ring) and CLR (innermost rings, descending) assemblies. Branch nodes were consolidated to 
Genus-level affiliations when possible. Branch colors were assigned based on Phylum-level classification, with the exception of the Firmicutes, which was 
sub-divided into separate classes due to its increased diversity relative to other Phyla.
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Extended Data Fig. 3 | read depth across orthologous, collapsed pcLr bins. Each bin from separate, replicate pCLR assemblies corresponds to all three 
HiFi bins displayed in Supplementary Figure 6. Read depth that can be attributed to the reference sequence is labeled in blue, whereas phased alternative 
haplotypes identified via MAGPhase are labelled in alternating colors (see legend). Contig ends are denoted by vertical black bars and the x-axis 
represents the total length of the entire MAG with contigs placed randomly from end-to-end.
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Extended Data Fig. 4 | read depth across three closely related HiFi complete MAGs. Read depth that can be attributed to the reference sequence is 
labeled in blue, whereas phased alternative haplotypes identified via MAGPhase are labelled in alternating colors (see legend). Contig ends are denoted by 
vertical black bars and the x-axis represents the total length of the entire MAG with contigs placed randomly from end-to-end.
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Extended Data Fig. 5 | Biosynthetic Gene cluster Analysis. The HiFi assembly revealed approximately 25% more complete Biosynthetic Gene Clusters 
(BGCs) than the average pCLR assembly (a). This increase was manifested in all identified BGC classes (colors in legend) and was not exclusive to one 
particular class. As found in other metagenome assembly datasets, the majority of identified BGCs were novel in all assemblies (b), but the HiFi assembly 
had a higher proportion of novel BGCs than the other assemblies. Additionally, the HiFi assembly contained more partial BGCs (c) of any assembly.
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Extended Data Fig. 6 | cLr1 viral association network plot. Viral contigs identified from Blobtools-assigned taxonomy estimates are represented as 
hexagonal nodes with black borders, whereas non-viral host contigs are represented as circular nodes with white borders. Edges represent associations 
identified for each connection, with colors representing the identification of partial HiFi read overlap (blue), Hi-C read links (green) or both types of data 
(red), respectively.
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Extended Data Fig. 7 | cLr2 Viral association network plot. Viral contigs identified from Blobtools-assigned taxonomy estimates are represented as 
hexagonal nodes with black borders, whereas non-viral host contigs are represented as circular nodes with white borders. Edges represent associations 
identified for each connection, with colors representing the identification of partial HiFi read overlap (blue), Hi-C read links (green) or both types of data 
(red), respectively.
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Extended Data Fig. 8 | cLr3 Viral association network plot. Viral contigs identified from Blobtools-assigned taxonomy estimates are represented as 
hexagonal nodes with black borders, whereas non-viral host contigs are represented as circular nodes with white borders. Edges represent associations 
identified for each connection, with colors representing the identification of partial HiFi read overlap (blue), Hi-C read links (green) or both types of data 
(red), respectively.
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