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A B S T R A C T   

Nutrient pollution is a widespread problem in rivers in China. Managing nutrient pollution requires better 
knowledge of in-stream processes governing the surface water quality. As current nutrient models for China 
mainly focus on river export of nutrients to seas, in-stream surface water quality and their contributing sources 
and processes are, therefore not well understood. This requires accounting for combined effects of nutrient inputs 
to rivers from produced waste, biochemistry of different forms of nutrients and their transport by river network. 
Moreover, improvements can be made in evaluating the model performance of large-scale nutrient models based 
on water quality measurements in China (using the surface water quality classes from 1 to 6). The objective of 
this study is to quantify the spatial variation in in-stream water quality for nutrients, and associated sources, for 
water quality classes in China. Our new Model to Assess River Inputs of Nutrients to seAs (MARINA 3.0) for in- 
stream water quality distinguishes different nutrient forms including dissolved inorganic (DIN, DIP) and organic 
(DON, DOP) nitrogen and phosphorus and was applied for the year 2012. Our model simulations compare 
reasonably well with measurements across 155 river sections. Results show that between 12% and 66% of the 
streams are highly polluted (exceeding water quality class 3) and depending on nutrient form. Diffuse sources 
dominate in 76% of the streams for DIN. Point sources such as direct discharges of animal manure dominate in 
46%–59% of the streams for DON, DIP and DOP. The dominant sources vary considerably between rivers and 
nutrient forms. This indicates the need account for nutrient forms in models and national monitoring programs. 
Our model results could support effective management to reduce nutrient pollution in China.   

1. Introduction 

Chinese population accounts for 22% of the global population and 
suffers from water pollution (MEP, 2010–2014). Surface water accounts 
for 77% of total fresh water resources in China (MWR, 2014). Nutrient 
pollution dominates in Chinese surface water pollution (Jiacong et al., 
2020). Human activities on the land such as urbanization and agricul-
ture produce waste that pollutes Chinese surface waters with nutrients 
(MEE, 2019). For example, animal manure is often treated as waste and 
discharged to water. Efficiencies in the use of nutrients and water in 

agricultural production are not high enough to reduce pollution. Water 
pollution with nutrients contributes to eutrophication (Liu et al., 2013; 
Liu and Qiu, 2007; Strokal et al., 2016b) and decreases the availability of 
clean water for people (Jiang, 2009; Liu and Yang, 2012), potentially 
resulting in water scarcity (Ma et al., 2020a; van Vliet et al., 2017). 
Nutrient models exist to quantify nutrient pollution in water systems and 
their sources. Examples are the Global NEWS-2 (Nutrient Export from 
Watersheds) model on the basin scale (Mayorga et al., 2010), the family 
of the MARINA (Model to Assess River Inputs of Nutrients to seAs) 
models on the sub-basin scale for China (Strokal et al., 2016a; Wang 
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et al., 2020b) and the IMAGE-GNM (Global Nutrient Model) model on a 
0.5◦ grid scale for the world (Beusen et al., 2015; Liu et al., 2018). The 
MARINA model for China accounts for direct discharges of animal 
manure, which is ignored in many other existing nutrient models. The 
existing models do not quantify in-stream nutrient pollution in relation 
to the water quality classes used in China. This challenges the support of 
national policies to reduce future water pollution by nutrients. 

Current large-scale nutrient pollution models generally do not ac-
count for in-stream water pollution by different nutrient forms and their 
sources. There is a need to combine the effects of nutrient inputs to 
streams, the biochemistry of nutrients in rivers (retentions) and their 
transport by river networks (Yu et al., 2019). Existing models often focus 
on river export of nutrients to coastal seas rather than in-stream nutrient 
pollution (Liu et al., 2018; Qu and Kroeze, 2010; Wang et al., 2020b). 
The Global NEWS-2 and MARINA (versions 1.0 and 2.0) models quantify 
river export of different nutrient forms, including dissolved organic 
(DON, DOP) and inorganic (DIN, DIP) N and P. However, the spatial 
scales of these models (basin and sub-basin) are too coarse to represent 
in-stream water pollution in relation to water quality classes. In contrast, 
IMAGE-DGNM (Dynamic Global Nutrient Model) runs at a 0.5◦ grid and 
accounts for biochemistry and transport processes of nutrients in 
in-streams, distinguishing different nutrient forms (Vilmin et al., 2020). 
However, the model was applied and validated for the Mississippi and 
Rhine basins, where extensive monitoring data are available. To our 
knowledge, the in-stream surface water quality model with balance 
between data requirement and detailed process descriptions for 
modelling water quality classes and different nutrient forms in China 
does not yet exist. 

Large efforts have been made by the Chinese government to control 
water pollution. The National Environmental Monitoring Network has 
been set up as an important step to evaluate surface water quality status 
and guide the associated strategies. Surface water quality classes 
ranging from 1 (representing good water quality) to 6 (indicating poor 
water quality) are used to reflect the pollution levels of important pol-
lutants (e.g. N, P) by the Chinese government. So far, an explicit link 
between the water pollution model results and these water quality 
classes is lacking. 

Modelling studies often use nutrient observations at the river mouth 
to validate the model results (Liu et al., 2018; Strokal et al., 2016a; Wang 
et al., 2020b). However, this has not been done to a large extent for 
surface water quality measurements across river sections in China. 
Statistical analyses for surface water quality measurements and with 
connection to the anthropogenic drivers (e.g. livestock production) have 
previously been done (Ma et al., 2020b; Ouyang et al., 2006). However, 
these statistical studies could not explicitly address the main processes in 
the system, including nutrient inputs to streams, retentions of nutrients 
and their transport. Connecting water quality observations across river 
sections with integrated nutrient models will help to estimate model 
performances and the validated model outputs could add to the mea-
surements with the associated source attributions for pollution 
management. 

The main objective of this study is to quantify the spatial variation in 
in-stream water quality for nutrients, and associated sources, for water 
quality classes in China. To this end, we develop a spatially-explicit 
surface water quality model (MARINA 3.0) for in-stream water pollu-
tion including different nutrient forms and their associated sources. We 
link the model results for year 2012 with surface water quality classes 
across river sections in China. We assess the implication of polluted in- 
streams for coastal eutrophication using the Indicator for Coastal 
Eutrophication Potential (ICEP) (Garnier et al., 2010). 

2. Methodology 

2.1. Model description 

We have developed a spatially-explicit nutrient model, MARINA 3.0. 

This model is for in-stream water quality assessment, including different 
nutrient forms and sources. MARINA 3.0 is developed based on the 
MARINA model families (Strokal et al., 2016a; Chen et al., 2019; Wang 
et al., 2020b). MARINA 3.0 quantifies annual flows of nutrients from 
land to streams (for the year 2012), followed by retentions of nutrients 
and their transport by river network (Fig. 1). The model is developed 
based on three existing modelling approaches: MARINA 1.0 and 2.0 
(Strokal et al., 2016a; Wang et al., 2020b), the NUFER (Ma et al., 2010; 
Wang et al., 2018) county model and the VIC hydrological model 
(Droppers et al., 2020; van Vliet et al., 2016a; Van Vliet et al., 2016). The 
MARINA 1.0 and 2.0 models provide the basis for modelling nutrient 
inputs to rivers and their exports to seas. Outputs of NUFER and VIC are 
used as inputs to our model. NUFER provides model inputs for 2338 
counties in China for 2012 (RESDC, 2014; Wang et al., 2018). Examples 
of such inputs are synthetic fertilizers and animal manure applications 
on land. VIC provides the total runoff on a 0.5◦ × 0.5◦ grid for quanti-
fying the soil retention processes (van Vliet et al., 2016a; Van Vliet et al., 
2016) and river discharge on a 0.5◦ × 0.5◦ grid to calculate the re-
tentions of nutrients and concentration in streams. We used mean water 
temperature derived from daily simulated data with the VIC-RBM model 
on 0.5◦ × 0.5◦ (van Vliet et al., 2016a; Van Vliet et al., 2016). 

The previous versions of the MARINA model run on the sub-basin 
scale and quantify the river export of nutrients at the outlets of these 
sub-basins (Chen et al., 2019a; Strokal et al., 2016a; Wang et al., 2020). 
In these earlier versions, the in-stream surface water pollution was not 
modelled due to their relatively coarse representations. There are three 
main improvements in MARINA 3.0 compared to previous versions of 
the model. The first improvement is in the quantification of nutrient 
inputs to rivers. We downscale the sub-basin approach by developing a 
multi-scale framework (polygon approach) to bridge the administrative 
scales (e.g. county) with biophysical scales (e.g. grid and sub-basin). 
Moreover, we distinctly improve the modelling for point sources (see 
Chen et al. (2019)). The second improvement is in the quantification of 
in-stream nutrient pollution. Based on nutrient inputs to rivers, we ac-
count for retentions of nutrients (in-stream retentions, retentions by 
dams and reservoirs, and consumptive water use), and transports of 
nutrients by the river network (upstream to downstream influences). 
The retention processes have been downscaled from sub-basin to grid 
scale, and the in-stream retention now takes a process-based modelling 
approach as opposed to a calibrated approach in earlier version of 
MARINA. Finally, we validated the model by both river sections and 
river mouths (while previous versions focussed validation only on river 
mouths). Next to this, we have made an explicit link of our model results 
of simulated concentrations with water quality classes for China. Below, 
we first summarize the approach for quantifying nutrient inputs to rivers 
(for details we refer to Chen et al. (2019), section 2.1.1). Next, we 
describe how retentions and transport of nutrients by river network are 
quantified (section 2.1.2). 

2.1.1. Nutrient inputs to streams 
Nutrient inputs to streams are quantified using the multi-scale model 

of Chen et al. (2019) on the basis of the modelling approaches of 
MARINA 1.0. The multi-scale model takes polygons as the basic inter-
sected unit between the administrative (county) and biophysical (grid of 
0.5◦) scales (Fig. 1B). The model quantifies inputs of dissolved inorganic 
(DIN, DIP) and dissolved organic (DON, DOP) N and P to rivers by source 
on both biophysical (e.g. sub-basin, gird) and administrative scales (e.g. 
county). Inputs of N and P to Chinese streams by polygon are quantified 
as following (Chen et al., 2019): 

RStotalF =RSdif F +RSpntF +RSothersF =
(
FEws,F ⋅ WSdif F +RSdif ECF

)

+RSpnt ma,F +RSpnt con,F + RSothersF (Eq.1)  

where, RStotalF is the total inputs of nutrient form (F) from land to 
streams by polygon (kg year− 1). Nutrient forms include DIN, DIP, DON 
and DOP. These nutrients in river and streams result from point (RSpntF ), 

X. Chen et al.                                                                                                                                                                                                                                    



Journal of Cleaner Production 334 (2022) 130208

3

diffuse (RSdifF ) and other sources (RSothersF ) (kg year− 1). Diffuse sources 
(RSdifF ) include explicit land sources (WSdifF ), which are corrected for the 
retentions of nutrients in soil (FEws,F) and parameterized export pro-
cesses (RSdifECF ). Explicit land sources are synthetic fertilizer use, animal 
manure that is applied on land, human waste that is applied on land 
from rural and urban population disconnected to sewage systems, bio-
logical N2 fixation, and atmospheric N-deposition. Parameterized export 
processes reflect inputs to streams through leaching of organic matter 
(DON, DOP) and weathering of P-contained minerals (DIP). Point 
sources (RSpntF ) include direct discharges of animal manure to streams 
(RSpnt ma,F) and human waste emitted from wastewater treatment plants 
(WWTPs) (RSpnt con,F). RSothersF is the direct discharges of nutrient form 
(F) to streams from human waste that is not connected to WWTPs in a 
polygon (kg year− 1). Model outputs at different scales (e.g., grid of 0.5◦, 
county) are processes from polygons and here we used the 0.5◦grid scale 
in Eq. (1) (details are in Chen et al., 2019). Both modelling of point 
sources (e.g. spatially-explicit WWTP database) and diffuse sources (e.g. 
county inputs and land-use distribution) are improved (section S2.1, SI). 
For a more detailed model description of nutrient inputs to streams, we 
refer to Chen et al. (2019). In the next section, we explain how we add 
retentions and routing of nutrients along the stream network in our 
model. 

2.1.2. Nutrient retentions in streams 
Nutrient inputs to rivers are retained and transported through the 

stream network to coastal seas. The retentions of nutrients in the stream 

network are quantified by two parts: the ‘sub-grid’ retention and the 
‘grid-stream’ retention. The followings describe the quantifications of 
these two parts and the routing (i.e. transport process) of nutrients. The 
extended descriptions and sources of model inputs are in section S1.2 in 
SI. 

2.1.2.1. Sub-grid retentions. Nutrient inputs to rivers are first trans-
ported by lower order streams to higher order streams (Strahler order) 
(Strahler, 1957). The large river presented explicitly by the stream lines 
(Fig. 1C) in our model is derived based on DDM30 flow direction map 
(Döll and Lehner, 2002) on a 0.5◦ × 0.5◦ grid. In addition to the explicit 
streamlines by the DDM30 (Strahler order of six or higher), there are 
lower order streams that are not represented by the derived streamlines. 
We define these lower order rivers (Strahler order from 1 to 5) which are 
not reflected by streamlines (Fig. 1C) as sub-grid network followed by 
Beusen et al. (2015). As such, ‘grid-stream’ refers to the derived 
streamlines from 0.5◦ × 0.5◦ DDM30 flow direction map and repre-
sented by grid streamlines in our model (Fig. 1C). Nutrient inputs to 
rivers are first entering lower order streams (from 1 to 5) and are 
retained before entering ‘grid-stream’ (Strahler order 6 or higher) rep-
resented by the grid streamline network. 

Nutrient inputs to streams results from four categories including 1) 
diffuse sources, 2) human waste emitted from WWTPs, 3) direct 
discharge of animal manure and 4) direct discharge of uncollected 
human waste. We assume that nutrients from human waste emitted from 
centralized WWTPs enter directly high order streams (‘grid-stream’). 

Fig. 1. Nutrient modelling framework of this study. (A) shows the connection between inputs of nutrients to rivers and their exports to seas. (B) shows the connection 
between polygons, grids, counties and (sub)basins in relation to the flow direction and stream network. (C) shows stream networks in the model on 0.5◦ grid (grey) as 
well as the actual Chinese river streams (green and blue). Clarifications (A): a: This box includes manure application on land, biological N2-fixation, atmospheric N- 
deposition, crop export via harvesting and animal grazing, and human waste applied on land from people who are not connected to sewage systems. b: Others include 
human waste from unconnected population that is directly discharged to water bodies. c: Nutrient forms include dissolved inorganic (DIN, DIP) and dissolved organic 
(DON, DOP) nitrogen and phosphorous. d: Stream networks are derived based on the DDM30 flow direction map (Döll and Lehner, 2002). The actual Chinese river 
stream maps and associated river classifications are from National Geomatics Center of China (NGCC, 2018) and river channel classification standard (MWR, 1994). 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Nutrients from all other sources enter lower order streams and are 
retained and transported to the higher order streams. This results in the 
following equation: 

RStotalF local =
(
RSdif F +RSpntma ,F +RSothersF

)
∗LF subgrid + RSpnt con,F

(Eq.2)  

where, RStotalF local is the nutrient inputs to high order streams repre-
sented in the model (‘grid-stream’) on 0.5◦ × 0.5◦ local cell (kg year− 1). 
These inputs are the combination of nutrient inputs from two main 
sources: (1) nutrient inputs to lower order streams (RSdif F ,RSpntma ,F and 
RSothersF in Eq. (1)) where nutrients are retained (‘sub-grid’) and expor-
ted further to higher order streams, and (2) nutrients inputs to high 
order streams from WWTPs (RSpnt con,F) (‘grid-stream’). LF subgrid refers 
to nutrient retentions in lower order streams (0–1). This is based on a 
process-based nutrient spiralling approach (Beusen et al., 2015; Marcé 
and Armengol, 2009; Wollheim et al., 2008b; Workshop, 1990), which is 
adjusted to our study area. The parameterization of these sub-grid net-
works is followed by accepted geomorphic principles (Leopold et al., 
1964; Wollheim et al., 2008a). The parameterization of low order 
streams (‘sub-grid’) and quantifications of in-stream retentions by 
sub-grid network are described in SI section S1.2. 

2.1.2.2. Retentions in high order streams (‘grid-stream’). After retained 
and transported by ‘sub-grid’ network, nutrient entering the ‘grid- 
stream’ and will be transported further based on flow direction to next 
‘grid-stream’. The main retention processes (Eq. (3)) included in the 
‘grid-stream’ in the model follow the approach of the MARINA 1.0 
model (Strokal et al., 2016a): 

FErivF =(1 − LF) ⋅ (1 − DF)⋅(1 − FQrem) (Eq.3)  

where, FErivF is the export fraction of each nutrient forms (F) on a 0.5◦

grid scale (0–1). LF is in-stream retention within the river network, 
channels, river bed sediments, and floodplains (0–1). DF is the nutrient 
retention within constructed reservoirs and behind dams (0–1). FQrem 
is the removal from streams through water removal for irrigation and 
other human needs (0–1). All these retentions are calculated on 0.5◦

grid. 
The main differences compared to the MARINA 1.0 and 2.0 models 

are that: (1) the basin-scale retentions of MARINA are downscaled to a 
grid scale to support spatially-explicit modelling of in-stream nutrient 
pollution, (2) the in-stream retentions are added for all nutrient forms 
(previous only for DIN and DIP) and (3) LF is quantified using the 
nutrient spiralling approach (Beusen et al., 2015; Marcé and Armengol, 
2009; Wollheim et al., 2008c; Workshop, 1990), but adjusted to our 
study area. The following paragraphs explain how LF is calculated (de-
tails are in S1.2, SI). DF and FQrem are modified based on the approach 
of the Global NEWS-2 (Mayorga et al., 2010) and MARINA 1.0 and 2.0 
models (Strokal et al., 2016a; Wang et al., 2020b) and explained in the 
S1.2 in SI. 

Retention of N (LF) within the stream network includes three main 
processes: denitrification, sedimentation and uptake by aquatic plants. P 
is removed by sedimentation and sorption by sediment and the uptake 
by microorganisms and aquatic plants. The in-stream retention (LF) is 
quantified following the nutrient spiralling approach (Beusen et al., 
2015; Marcé and Armengol, 2009; Wollheim et al., 2008c; Workshop, 
1990), but with some modifications as: 

LF =

(

1 − exp
(

−
Vf ,E

HL

))

*Fbio,f (Eq.4)  

where LF is the fraction of the nutrient load that is removed within the 
stream network (0–1). Vf ,E is the net uptake velocity (m year− 1). F is the 
nutrient forms. Fbio,f is the bioavailability coefficient that is applied only 
for organic forms. It is set at 0.4 and 0.7 for DON and DOP, respectively. 
It is assumed that organic forms of N and P are less bioavailable to 

bacteria and plants compared to inorganic forms. The bioavailability 
coefficient is derived from literature to account for lower retentions of 
organic forms compared to inorganic forms in rivers (section S1.2.2). HL 
is the hydraulic load (m year− 1) representing the hydrological condi-
tions and is quantified as: 

HL =
D
τ (Eq.5)  

τ=V
Q

(Eq.6)  

V=W⋅L⋅D (Eq.7)  

where D is the depth of the water body (m). τ is the residence time (year) 
and is calculated from the volume V (m3) of the water body and the 
water discharge Q (m3 year− 1). W and L (m) are the width and length of 
the channel, respectively. W is calculated as a function of discharge (see 
S1.2). Deducted from the above equations, HL could be calculated as: 

HL =
Q

W*L
(Eq.8)  

Vf ,E is the net uptake velocity (m year− 1) which is different for each 
nutrient E (N or P) and represents the biological activities. For N and P, 
the Vf ,E is calculated based on the constant values (m year− 1) that is 
calibrated based on the measurements across streams globally and is 
adjusted based on local water temperature (Wollheim et al., 2008a, 
2008c): 

Vf ,N = 35f(t) (Eq.9)  

Vf ,P = 44.5f(t) (Eq.10)  

where, t is annual mean water temperature (◦C). The constants value for 
N and P are 35 (Wollheim et al., 2008c) and 44.5 (Marcé and Armengol, 
2009), respectively. 

2.1.3. Routing procedure 
The routing (transport process) of nutrients is based on the flow di-

rection network of DDM30 (Döll and Lehner, 2002) on a 0.5◦ × 0.5◦ grid 
scale. Each grid cell receives nutrient inputs from the local cell 
(RStotalF local in Eq. (2)) and from upstream grid cells (ISFupstream ). Nu-
trients in grids are then exported (FErivF , Eq. (3)) to the next grid. During 
this export, some nutrients are retained (e.g., LF and FQrem in Eq. (3)). 
The same procedure holds for the next downstream grid cell. After the 
retentions, the in-stream nutrients are transported to the next grid cell 
and the same procedures applies: the local nutrient inputs from the next 
grid cell will be added to the nutrient accumulations from upstream cells 
and the local retentions (FErivF ) of this new grid will be applied. This 
calculation continues until nutrients reach the river mouth or until the 
flow in a certain grid cell does not drain to the next grid cell (i.e. inland 
rivers): 

ISF =
(
RStotalF local + ISFupstream

)
⋅FErivF (Eq.11)  

where, ISF refers to the in-stream nutrient accumulation load by 
nutrient form (F) in a grid of 0.5◦ (kg year− 1). RStotalF local refers to the 
total input of nutrient form from a grid of 0.5◦(the local grid cell, i.e. 
RStotalF after correcting for sub-grid retentions that entering the higher 
order streamlines of the grid (kg year− 1). These inputs originate from 
activities (point and diffuse sources) in its own grid. ISFupstream refers to the 
input of nutrient form F from upstream grids of 0.5◦ (kg year− 1). FErivF 

refers to the export fraction of nutrient form (F) in high order streams 
that represented by streamlines of 0.5◦grid (0–1). This export fraction 
accounts for retentions of nutrients in the grid during the export. 
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2.1.4. Surface water quality and indicator for coastal eutrophication 
The in-stream water quality is expressed in our model by in-stream 

accumulated nutrient load in a grid cell at 0.5◦ × 0.5◦ spatial resolu-
tion (ISF in Eq. (15)) and in-stream nutrient concentrations. The in- 
stream nutrient concentration is calculated by in-stream nutrient load 
accumulation divided by the river discharge of that grid cell. The in- 
stream concentrations are further converted to surface water quality 
classes according to the Environmental Quality Standard (MEE, 2002) 
for Surface Water in China (Table S4 in SI. The in-stream nutrient con-
centration and the converted quality class serve as an indication of 
annual average pollution level for each river stream, accounting for the 
combined effects of nutrient inputs to streams, retentions of nutrients by 
the network and transportation processes. We take quality class 3 as a 
threshold to define polluted rivers as the government reports (MWR, 
2012) and other studies (Ma et al., 2020; Yu et al., 2019). The sources of 
in-stream nutrient loads per stream are quantified and described in S1.3 
in SI. The in-stream nutrient load at the grid cell of the river mouth 
represents river export of nutrients to sea. We calculate an Indicator for 
Coastal Eutrophication Potential (ICEP) to assess the impacts of river 
export of nutrients on coastal eutrophication. A positive ICEP value in-
dicates high potential for coastal eutrophication while the negative 
value indicates the opposite. The approach is followed Garnier et al. 
(2010) and is calculated with the modelled river export of nutrients. The 
quantifications are described in section S1.3 in SI. 

2.2. Model validation 

We validate the model in two ways. First, we compare modelled river 
export of nutrients with measurements at the river mouth. This way is 
applied in many existing studies for water quality models. We collected 
measured concentrations of nutrients at the river mouth from available 
literature (Tables S3 and SI). We compared the measured values with 
our model values using three model performance indicators: Pearson’ 
coefficient of determination (R2, 0–1), the Nash-Sutcliffe efficiency 

(NSE, -∞ - 1) and the root mean square error to the standard deviation of 
measured data (RSR, 0 - +∞). The calculations and interpretation of 
these indicators are explained in Moriasi et al. (2007). 

Second, we compare modelled in-stream nutrient pollution levels 
with measurements at the river sections. This way is less common in 
studies such as Strokal et al. (2016a), Wang et al. (2020b), Beusen et al. 
(2015). We collect the data and organize it in such a way to allow to use 
the measurements in river sections for our model validation. To this end, 
we create a Surface Water Quality Database (S2.3, Table S6). The 
database includes 155 river monitoring sections across China (Fig. 2), 
the weekly measurements of concentration of NH3, COD (Chemical 
Oxygen Demand), DO (dissolved oxygen) and associated water quality 
classes (MEE, 2012). The water quality classes are determined by the 
government based on a so-called ‘single indicator’ approach (see S2.2, 
SI) according to the Environmental Quality Standard for Surface Water 
in China. We located the XY coordinates of the river sections from 
different sources (EPMAP, 2019; IPE, 2019). 

We process the weekly measurements into two modes. The first mode 
is the complied annual average concentration (‘average’ mode). For N, 
we processed the weekly concentration of NH3 to an annual average 
estimate for 2012. The weekly measurement data that we obtained do 
not include specific weekly TP concentrations. For P, we use the average 
annual water quality class and associate median concentration based on 
the thresholds of the TP standard of that class (S2.2 in SI). The second 
mode is to determine the most frequent occurrence of the quality classes 
during the year and convert it to the concentrations based on the upper 
limit of the thresholds of NH3 and TP standard of that class (‘frequent’ 
mode, see S2.2). The derived concentrations of all river sections are 
multiplied with the 30 years average annual discharge (1970–2000) on 
0.5◦ × 0.5◦ grid from the VIC hydrological model (van Vliet et al., 
2016a; Van Vliet et al., 2016). The measured load is used to compare 
with the modelled in-stream nutrient load (Fig. 3). The modelled 
in-stream nutrient load is extracted based on XY coordinates of the river 
sections and converted from DIN to NH3 and TDP to TP based on 

Fig. 2. Overview of surface water quality database. 
(A) The distribution of the river monitoring sections 
and the annual average water quality classes per 
section, processed from weekly water quality class 
(see details in S2.2, SI). (B) River monitoring section 
distribution per sub-basin. (C) Annual water quality 
class distribution among river monitoring sections. 
The ‘AverageClass’ refers to the annual average 
weekly quality class (‘average’ mode) and the ‘Fre-
quentClass’ refers to the most frequent occurrence of 
the quality classes during the year (‘frequent’ mode). 
The ‘percentage_avg’ and ‘percentage_fre’ refer to the 
ratio of river sections of certain class in total river 
sections under ‘average mode’ and ‘frequent’ mode 
respectively. See sources in section S2.3 in SI.   
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basin-specific conversion ratios derived from literature (Tables S5 and 
SI). 

The database of measurements in river sections that we created re-
flects the spatial variances of pollution levels by nutrients. The spatially- 
explicit modelling approach is one of the strengths that we claimed and 
therefore would like to evaluate. We use R2 to assess the performance of 
the model, because it reflects the proportion of the variance in measured 
data explained by the model. If the variances among different sections 
are captured by the model, we consider the model as appropriate to 
mimic the spatial distribution of the pollution level by nutrients among 
streams. In addition, we also calculate the NSE and RSR (Fig. 3) to get 
the general insights on the model performance in modelling actual in- 
stream loads. 

3. Results 

3.1. Model evaluation and validation 

Model results were compared with measurements at the river sec-
tions (in-stream nutrient pollution) (Fig. 4) and measurements at the 
river mouths (river export of nutrients) (Fig. 3). Model validation results 
(Figs. 3 and 4) show that our model simulations compare reasonably 
well with measurements across river sections. 

The main indicator R2 for river sections are above 0.75 for both N 
and P and for both the ‘average mode’ and ‘frequent mode’ of the pro-
cessed measured loads (Fig. 4). This indicates that the model is able to 
represent the spatial distribution of the pollution levels amongst the 
streams. For N, the values of NSE and RSR represent ‘good’ to ‘satis-
factory’ model performance (NSE = 0.43 to 0.74; RSR = 0.51 to 0.70) 
(Moriasi et al., 2007). For P, a ‘good’ performance was found under the 
‘frequent’ mode (NSE = 0.75; RSR = 0.50) while under ‘average’ mode 

the model performance is lower (NSE = − 2.5; RSR = 1.1). This may 
result from the uncertainties in the derived TP concentrations based on 
water quality classes (SI, S2.2). Nevertheless, we consider the validation 
results against river sections as reasonably well. 

The estimates for the three model performance indicators at the 
river mouth (Fig. 3) all indicate a ‘very good’ performance according to 
the performance ratings from Moriasi et al. (2007) (R2 = 0.83; NSE =

Fig. 3. Modelled versus measured loads of dissolved inorganic nitrogen (DIN, ton year− 1) and dissolved inorganic phosphorus (DIP, ton year− 1) per river monitoring 
section. Measured loads of DIN and DIP were converted from weekly concentrations of NH3 and TP (see section 2.2 for the conversion method). (A) is based on 
‘average mode’ and (B) is based on ‘frequent mode’ (section 2.2). R2 is the Pearson’ coefficient of determination (0–1), NSE is the Nash-Sutcliffe efficiency (-∞- 1), 
RSR is the root mean square error to the standard deviation of measured data (0 - +∞). 

Fig. 4. Modelled versus measured river export of dissolved inorganic nitrogen 
(DIN, kton year− 1), dissolved inorganic phosphorus (DIP, kton year− 1), total 
dissolved nitrogen (TDN, kton year− 1) and total dissolved phosphorus (TDP, 
kton year− 1) for the Yangtze, Yellow, Pearl, Huai, Minjiang and Liao rivers. R2 

is the Pearson’ coefficient of determination (0–1). NSE is the Nash-Sutcliffe 
efficiency (-∞- 1). RSR is the root mean square error to the standard devia-
tion of measured data (0 - +∞). (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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0.76; RSR = 0.49). Only the measurements representative for the year 
2012 are included, and previous years are excluded (S2.1, Table S3). A 
few outlier points fall relatively far from the 1:1 line. These are results 
for the Yellow and Liao rivers. Our validation results indicate that the 
model overestimates river export of P for the Yellow river and both N 
and P for the Liao river. One reason for this poor agreement could be the 
large fluctuations in discharge, concentrations and subsequently the 
measured loads (Table S3) in these two river basins. The relatively large 
variability in the measured loads in these two basins indicates that the 
measured nutrient concentrations (for certain time intervals) may not 
represent the actual annual loads. Moreover, the overestimations in 
simulated loads in these two basins could be explained by un-
derestimations of in-stream retention processes. In addition, the sus-
pended sediment loads in the Yellow and Liao river are much higher 
than in other basins (Song et al., 2016; Yang et al., 2017). Previous 
studies have shown that higher sediment concentrations result in higher 
N loss by coupled ‘nitrification and denitrification’ and higher absorp-
tion of P in streams (Pan et al., 2013; Xia et al., 2018). The national 
average value of Vf ,E applied to all basins that represent the bio-chemical 
processes of in-stream retentions of nutrients could potentially be lower 
in these two basins due to the high sediment concentrations. 

3.2. In-stream surface water quality 

In the following, we present spatial patterns of simulated in-stream 
nutrient loads, surface water quality classes (nutrient concentration) 
and the associated source attributions. In addition, the implications of 
the pollutant levels and comparison of our results with other studies are 
discussed. 

We present the modelled DIN and DON in-stream loads in the river 
sections (Fig. 5). In 84% of the streams DIN loads exceed DON loads. The 
spatial distribution in simulated DIN and DON in-stream loads show 

similar patterns and hotspots of severe pollution in the main streams. 
These streams are located in main river basins that drain into the seas 
(Figs. S1 and SI) including the main streams of the Changjiang, Yellow, 
Zhujiang, Hai He rivers. Next to this, the main streams of the Heilong 
Jiang, Songhua Jiang (north east), and Talimu He (north west) are also 
hotspots of high nutrient loads. This is mainly due to the increasing 
nutrient loads into the streams and the unbalanced retentions, resulting 
in large flow accumulations in these main streams. The small differences 
in nutrient loads between DIN and DON mainly occur in lower order 
streams (e.g. in Hai and Liao). For P, the inorganic form (DIP) also 
dominated in most streams (Fig. 6). However, the organic forms for P 
have a higher share compared to N, and DOP dominated for 41% of 
streams. The spatial distribution of in-stream P load is similar with N, 
showing highest pollution levels in the main streams and small varia-
tions between DIP and DOP in lower order streams. 

The modelled nutrient concentration are classified into quality 
classes (class 1 to 6) according to Chinese surface water quality stan-
dards (MEE, 2002). Followed by government, the NH3 and TP concen-
tration is used to classify the quality classes accordingly. Results show 
that 12% of the streams in China are classified as highly polluted (above 
class 3) according to the modelled DIN concentration converted to NH3 
concentration (Fig. 6). The spatial distribution of quality classes show 
large variability within and between basins. The water quality of Huai, 
Hai, Pearl is worse than of other basins, with a quality class of 3 or 
higher. This is due to the combined effects of intensive nutrient inputs to 
rivers and relatively lower discharges (resulting in less dilution and 
therefore higher concentrations) in these basins. The Changjiang, Yel-
low river, south-west rivers and north-west rivers (Fig. S1) show better 
quality compared to other river basins. In these basins, more than 90% 
of total streams have a quality class of 1–3. Differences between spatial 
patterns of nutrient load and water quality class have been observed in 
particular for Changjiang and Yellow river. Their main streams are 

Fig. 5. Modelled in-stream loads of dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) (kton year− 1) and associated water quality classes 
according to Chinese surface water quality standards (converted based on concentrations). The lines on the maps correspond to the streams derived based on the 
DDM30 flow direction. *NH3 water quality class is converted based on modelled DIN in-stream concentration and the basin-specific conversion ratio of NH3 and DIN 
(Tables S5 and SI). The range of each class is based on Chinese surface water quality standard of NH3. **TN water quality class is the modelled TDN in-stream 
concentration and the range of each class is based on Chinese surface water quality standard of TN. 
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hotspots of nutrient load of DIN, while they show relatively better water 
quality based on concentrations. This can partly be explained by the 
large discharges of these main stream rivers which result in high dilution 
and offsets high nutrient inputs. In addition, the ratio of NH3 and DIN of 
these two river basins are lowest compared to other basins (Table S5), 
and may result in relatively lower converted NH3 from DIN. However, 
monitoring of nitrogen in Chinese rivers and the associated quality 
classes has so far largely focussed on NH3 concentration, rather than TN 
concentrations. We convert the modelled in-stream TDN load to con-
centration (by dividing the load by discharge) and classify them 
accordingly to the TN-standard of the surface water quality standard 
(MEE, 2002). The highly polluted streams (above class 3) increase from 
12% (NH3 concentration) to 66% (TN concentration). Also ‘good qual-
ity’ river basins such as Changjiang and Yellow river based on NH3 
concentration deteriorate from ‘green’ to ‘red’ (Fig. 6). 

The in-stream pollution level of P (based on TP) is generally higher 
than that of N (based on NH3) (Fig. 6 and Fig. 6). On national scale, 30% 
of the total streams in China are highly polluted (above class 3). For most 
river basins, TP is the dominant pollutant compared to NH3 (i.e. the 
associated water quality class of streams is worse than for NH3). Similar 
as for N, the Hai, Huai and Liao basins are the top 3 polluted river basins. 
Streams above class 3 in these basins ranging from 62% to 77%. The 
pollution level of South-east rivers (Hanjiang, Jiulong, Menjiang, 
Qujiang and Fuchun Jiang), Yellow river and Changjiang is more 
moderate but still with around 40% of highly polluted streams. South- 
west and north-west rivers (Figs. S1 and SI) show overall good quality 
based on TP standard, with less than 10% of polluted streams. 

The dominant sources of surface water pollution vary among 
different nutrient forms. For DIN, diffuse sources dominate (Fig. 7) in 
76% of rivers streams, followed by manure point sources (16%), ‘others’ 
(i.e. human waste discharges from unconnected population, 5%), and 
waste water treatment plants (WWTPs, 3%). For DON, manure point 
source dominate in 46% of the streams followed by diffuse sources in 

43%, ‘others’ in 9% and in WWTPs in 1% of the streams. Manure point 
source is also the dominant source of P in most streams, dominating 53% 
and 59% of streams of DIP and DOP, respectively. ‘Others’ are the sec-
ond largest pollution source of DIP dominating 24% of streams, followed 
by ‘WWTPs’ (12%) and diffuse sources (11%). For DOP, diffuse sources 
and ‘others’ are equally important, both dominating in 20% of the 
streams. 

The spatial distribution of dominant sources shows large variability 
within and among different basins. Fig. 7 shows the detailed source 
attributions for streams. The diffuse sources are divided into several sub- 
categories to understand the differences within the basins. North-west 
rivers and south-west rivers that are located in the Xinjiang, Gunsu and 
Yunan provinces (Fig. S1) are less urbanized and have lower crop and 
livestock production levels. The dominant sources in these regions are 
N-deposition (for DIN), and human waste discharges from unconnected 
population (for all nutrient forms). For areas with WWTPs presented 
(see Fig. 6 of Chen et al. (2019)), WWTPs dominated both DIN and DIP 
in the adjacent streams. For DON, leaching of organic matter from 
agricultural and non-agricultural areas dominate around 35% of the 
streams in these regions. North-east rivers that located in Jilin, Hei-
longjiang and Inner Mongol province have different dominant sources 
compared to north-west rivers. Manure point source overall dominates 
DIN in the Songhua river, while in other streams of north-east rivers 
N-deposition dominates. For other nutrient forms (DON, DIP and DOP), 
manure point source dominates in most streams, except for the main 
streams of Heilongjiang where WWTPs are the dominant source for DIP. 
For main basins draining into seas, most river and streams are 
dominated by manure point sources for DOP, DON and DIP. Except in 
upstream parts of Changjiang (Qinghai province part), Poyang and part 
of Delta Changjiang (Anhui province part), P-weathering and leaching of 
organic N-matter dominate DOP and DON. These regions have lower 
livestock production and are less urbanized. Therefore, natural sources 
seem to play a more important role than anthropogenic sources, and this 

Fig. 6. Modelled in-stream loads of dissolved inorganic phosphorus (DIP) and dissolved inorganic phosphorous (DOP) (kton year− 1) and associated water quality 
classes according to Chinese surface water quality standard (converted based on concentrations). The lines on the maps correspond to the streams and are derived 
based on the DDM30 flow direction. *TDP water quality class is converted based on modelled TDP in-stream concentration. The range of each class is based on 
Chinese surface water quality standards of TP. **TP water quality class is the modelled TP concentration and the conversion is based on the basin-specific conversion 
ratio of TDP and TP (section SI, Table S5). The range of each class is based on Chinese surface water quality standard of TP. 
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also holds for DIN and DIP in these regions. For DIP, the WWTPs are 
detected as the dominant sources in coastal regions, mid-stream 
(Longmen sub-basin) of Yellow river, mid-stream of Pearl (Yujiang sub 
basin). This is due to highly urbanized cities that are located along the 
coastal line (e.g. Shanghai, Hongkong) and less livestock productions in 
Longmen (Shanxi province) and Yujiang (Guangxi province) sub-basins. 
For DIN, manure and fertilizer applied are the dominant sources in 
upstream parts of the Pearl (Xijiang sub-basin), middle and downstream 
parts of Changjiang, and downstream of the Pearl. For highly polluted 
river basins (Hai and Huai) and Luan and Liao, manure point sources 
dominated DIN in more than 50% of streams. The atmospheric N 
deposition become an another important source of DIN for regions with 
relatively lower crop and livestock production. 

3.3. Coastal water quality 

The 12 Chinese rivers with basin outlets to seas () export in total 
6167 kton of TDN and 449 kton of TDP to the seas. More than half of 
total TDN and TDP are exported to East China Sea, followed by Bohai 
Gulf (20%–37%), South China Sea (14%–24%)and Yellow Sea (3%–4%). 
About 68% of the total TDN exports originate from diffuse sources, while 
direct discharge of manure and human waste emitted from WWTPs are 
dominant sources for total TDP exports to seas. The river export of nu-
trients to each of the four seas and their associated sources are described 
below. The analyses of associated sources per river basin are presented 
in Fig. 9. 

The Bohai Gulf received 20% and 37% of total TDN and TDP exports, 
respectively. Hai and Yellow are top contributors of nutrient exports, 

Fig. 7. Dominant sources of dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorous (DIP), dissolved organic nitrogen (DON), dissolved organic 
phosphorous (DOP), total dissolved nitrogen (TDN) and total dissolved phosphorus (TDP). The lines on the maps correspond to the streams and are derived based on 
the DDM30 flow direction. Sources are divided into four categories. ‘WWTPs’ (blue) refers to nutrients in streams from human waste that is discharged from 
wastewater treatment plants. ‘Manure point source’ (orange) refers to nutrients from the direct discharges of animal manure. ‘Others’ refer to DIN and DIP in streams 
from direct discharges of the human waste from urban and rural population that are not connected to sewage systems. Diffuse sources are then divided into four sub- 
categories. First sub-category is fertilizer and manure applied on land (grey). Second sub-category is biological N2-fixation by crops (for DIN) and by natural 
vegetation (for DIN), atmospheric N-deposition on agricultural and non-agricultural land (for DIN) (green). Third sub-category are diffuse sources including leaching 
of organic matter from agricultural and non-agricultural land (for DON and DIP), and weathering of P-contained minerals from agricultural and non-agricultural soils 
(for DIP) (purple). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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accounting to around 80% of the TDN exports and 85% of the TDP ex-
ports. Direct discharge of animal manure dominates and is responsible 
for 65%–83% of DIP, DOP and DON exports to Bohai Gulf (Fig. 9). For 
DIN, direct discharge of animal manure, fertilizer and manure applied 
on land, and N-deposition and -fixation are equally important, ac-
counting around 18%–32% exports (depending on sources). Human 
waste emitted from WWTPs contributes more than other sources except 
for manure discharges to DIP exports, accounting for 24% of DIP exports 
to Bohai Gulf. The South China sea receives 24% and 14% of the total 

river export of TDN and TDP, respectively. The Pearl river contributes to 
83%–85% of nutrient export to coastal waters, while Hanjiang is 
responsible for the remaining part. Direct discharge of manure accounts 
for 42%, 50% and 71% of DON, DIP and DOP entering the South China 
Sea. The second largest source is the discharge of uncollected human 
waste for DON and DOP exports (12%–13%). For DIP, human waste 
emitted from WWTPs is responsible for 17% of total DIP exports. Diffuse 
sources include fertilizer and manure applied, N- deposition and -fixa-
tion account for 82% of DIN entering South China Sea. 

Fig. 8. The Indicator for Coastal Eutrophication Potentials (ICEP) for individual river basins in 2012 (kg C km− 2 day− 1). The approach to calculate ICEP is described 
in SI section S1.3.2. ICEP values above zero indicate a high potential for coastal eutrophication and negative value indicates low risk for coastal eutrophication. 

Fig. 9. River export of dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorous (DIP), dissolved organic nitrogen (DON), dissolved inorganic phos-
phorous (DOP) (kton year− 1) from 12 Chinese rivers by source in 2012. Sources are divided into four categories. ‘WWTPs’ (color blue) refer to nutrients in streams 
from human waste that are discharged from wastewater treatment plants. ‘Manure point source’ (color orange) refers to nutrients from the direct discharges of 
animal manure. ‘Others’ refer to DIN and DIP in streams from direct discharges of the human waste from urban and rural population that are not connected to sewage 
systems. Diffuse sources are then divided into four sub-categories. First sub-category is fertilizer and manure applied on land (grey). Second sub-category is biological 
N2-fixation by crops (for DIN) and by natural vegetation (for DIN), atmospheric N-deposition on agricultural and non-agricultural land (for DIN) (in green). Third 
sub-category is parameterized diffuse sources (purple). They are leaching of organic matter from agricultural and non-agricultural land (for DON and DIP), and 
weathering of P-contained minerals from agricultural and non-agricultural soils (for DIP). The fourth sub-category is human waste applied on land (from total 
population without connections to sewage systems) (pink). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 
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The East China Sea receives most of the nutrient inputs to seas, ac-
counting for 54%–45% of the total TDN exports and TDP exports. More 
than 80% of TDN and TDP are exported from the Yangtze river. The 
main sources of nutrient export to East China Sea are fertilizer and 
manure applied (for DIN), N-deposition and fixation (for DIN), direct 
discharge of animal manure (for DON, DIP and DOP), human waste 
emitted from WWTPs (for DIP). Huai and Yalu rivers are two rivers 
flowing into Yellow Sea, contributing to 3–4% of total TDN and TDP 
export to seas. Direct discharge of manure accounts for 62–83% of DON, 
DIP and DOP export while fertilizer and manure applied and N-fixation 
and -deposition are responsible for 65% of DIN entering the Yellow Sea. 
Human waste emitted from WWTPs contribute 18% of DIP exports. 

We used the ICEP indicator to assess the potential coastal eutrophi-
cation associated with nutrient export by the 12 Chinese rivers (Figs. 8 
and 9). The calculated ICEP values range from – 2 to 31 C km− 2 year− 1 

between the different river basins. All rivers but one have positive ICEP 
values, indicating a high potential for coastal eutrophication along the 
coast of China. Among the four seas, Bohai Gulf has the highest average 
ICEP value (14) while South China Sea has lowest (5) (Fig. 8). 

4. Discussion 

Here we discuss our spatially-explicit results of surface water quality 
and river export of nutrients to coastal seas (4.1) and uncertainties in our 
newly developed model and simulation results (4.2). 

4.1. Comparison of surface water quality and river export of nutrients to 
coastal seas 

In our study we compared our spatially-explicit nutrient modelling 
results with official reports of the Surface Water Quality, presenting 
monthly and annual water quality classes (Tables S1 and SI). In general, 
our modelled water quality classes based on N and P are in line with the 
reported pollution classes based on the measurements for Chinese rivers. 
On the national level, the Annual Water Resource Bulletin for year 2012 
reports that 33% of streams (‘single indicator’ approach, section S2.2 in 
SI) are highly polluted (above class 3), compared to our modelled results 
of N (NH3) and P (TDP) based on ‘single indicator’ approach quantifying 
that 31% of streams are above quality class 3. For most rivers, TP is the 
main pollutant, which is in line with our model results. The spatial 
distribution of pollution levels and quality classes resembles with the 
measurements. Huai, Hai and Liao basin are the most polluted river 
basins, where both our modelled and the measured reported data show 
that more than 60% of the streams are highly polluted (i.e. above quality 
class 3). The south-west and north-west rivers have the best water 
quality, and here both our modelled and the reported data show that 
there are less than 10% of streams highly polluted in these regions. For 
the main river basins that drain into seas, the water quality of Chang-
jiang, Zhujiang, South-east rivers are relatively better and this resembles 
with the measurements. For south-east rivers, we modelled relatively 
higher pollution level (43%–50% of the streams above class 3 based on 
TDP and NH3 respectively) compared to measurements (21%). The 
higher percentage of polluted rivers particular for NH3 might be due to 
the conversion ratio of NH3 and DIN of these basins, which is the average 
value derived from all other river basins (Tables S5 and SI). The con-
version ratio of Hai and Huai (up to 50%) is included while the river 
mouth of Changjiang and Zhujiang which is close to these river basins 
show less than 10% of NH3 in total DIN. This might cause overestimates 
of NH3 pollution in these rivers. For Zhujiang, we also modelled higher 
pollution level than measurements (56% vs. 27% of the streams above 
class 3 based on ‘single indicator’ approach). These higher estimates for 
NH3 pollution for our model results compared to the reported data can 
be explain by the relatively higher conversion ratio of NH3 and DIN that 
we derived for Zhujiang. The studies included are mostly for river mouth 
and downstream of Zhujiang, where the highly urbanized cities such as 
Hongkong and Shenzhen are located. Previous studies show that the 

ratio of NH3 and DIN in highly urbanized basins are distinctly higher 
than in river basins with moderate or limited urban areas (Li et al., 2014; 
Zhang et al., 2015). For the Yellow river, our simulated and pollution 
levels (quality classes) correspond well with the reported classes, with 
the 40% (modelled) versus 45% (measured) of the streams (‘single in-
dicator’ approach) above quality class 3. 

We compared the modelled river export of DIN, DIP, TDN, and TDP 
with measurements (section 2.2). According to the model performance 
standards (Moriasi et al., 2007), our model shows a good performance 
for R2, NSE and RSR (section 3.1). Our validation results indicate that 
the model overestimates river export of P for the Yellow river and both N 
and P for the Liao river. One reason for this lower model performance 
could be the large variability in measured discharge and concentrations, 
which directly impact the subsequently the measured loads (Table S3) in 
these two river basins. The relatively large variability in the measured 
loads indicates that the measured nutrient concentrations (for certain 
time intervals) may not represent the actual annual loads. Moreover, the 
overestimations in simulated loads in these two basins could be 
explained by underestimations of in-stream retention processes. In 
addition, the suspended sediment loads in the Yellow and Liao river are 
substantially higher than in other basins (Song et al., 2016; Yang et al., 
2017). Previous studies have shown that higher sediment concentrations 
can result in higher N losses from coupled ‘nitrification and denitrifi-
cation’ and higher absorption of P in streams (Pan et al., 2013; Xia et al., 
2018). The national average value of Vf ,E that we applied to all basins 
and which represent the biochemical processes of in-stream retentions of 
nutrients could potentially be lower in the Yellow and Liao river basins 
due to the high sediment concentrations. 

In addition, our modelled river exports are within the range reported 
by previous modelling studies for China. Liu et al. (2018) showed a 
simulated 5708 kton of TN and 371 kton of TP export with the 
IMAGE-GNM model for Changjiang (year 2010). Wang et al. (2020b) 
modelled 2373 kton of TDN and 344 kton of TDP export for Changjiang 
river (year 2012). Our modelled TDN export of 2625 kton is within the 
range of these studies. Our modelled TDP export of 173 kton is lower 
than the TP export from Liu et al. (2018). This might be due to the 
disregard of particulate P in our model, which could be up to 40% of TP 
(Shen and Liu, 2009). The differences between our model and MARINA 
2.0 (Wang et al., 2020b) mainly results from the modelling approach of 
river retentions, i.e. retentions on sub-basin versus on gridded (0.5◦) 
scale. For Pearl basin, Ti el at (2013) quantified river export of 536 kton 
of N for the year 2010, while we quantified 1215 kton of TDN for the 
year 2012. These discrepancies result both from different estimates of 
pollutant inputs to rivers and contributing sources, and differences in 
river retentions. For example, Ti et al. assumed that 22% of manure was 
directly discharged, while our study quantified a national average of 
35% of direct manure discharge to water bodies. In addition, Ti and Yan 
(2013) used a constant coefficient on basin scale for river retentions 
while we include more processes on grid scale to represent retention, 
which may also partly explain the discrepancies in our results. Our 
source attribution of the nutrient export by Chinese rivers entering to 
coastal seas are in line with the results from MARINA 2.0 (Wang et al., 
2020b). For three Chinese Seas, direct discharge of manure is important 
source of DIP, DON and DOP according to both models (57%–88% of 
total export from MARINA 2.0 and 45%–82% from our study). For DIN, 
both models agree that direct discharge of manure is the dominant 
source of DIN export to the Bohai Gulf, while the use of synthetic fer-
tilizer, N-deposition and -fixation dominate DIN export to the Yellow 
Sea, East China Sea and South China Sea. 

4.2. Model uncertainties 

We recognize the impacts of uncertainties in our modelling study and 
address them in terms of model structure, inputs and parameters. First, 
the uncertainties in the model structure are mainly related to the sim-
plifications of the ‘annual steady-state’ of the model. The ‘steady-state’ 
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implies that: (1) the nutrients are permanently retained and lost, and do 
not return to river systems within the annual time-step; (2) the nutrient 
accumulated load and concentration (as in-stream surface water quality) 
represent the theoretical annual average pollution level of the river 
sections, ignoring the seasonal temporal variations and inter-annual 
memory of the soil-groundwater system (Sharpley et al., 2013). Ac-
counting these temporal variations on such spatial scale has been 
hampered by data availability of nutrient inputs and measurements. We 
consider our approach appropriate for annual average assessment for 
such large scale (whole China) taking into account the balance between 
model complexity and data requirement. 

Second, uncertainties in model inputs exist. Model uncertainties of 
nutrient inputs to rivers are discussed in detail in Chen et al. (2019) 
including uncertainties in land use data, WWTPs, manure farms. Un-
certainties in estimates of source attribution differs per source. We 
calculated that direct discharge of manure and diffuse sources such as 
fertilizers and N deposition are dominant sources of nutrients in rivers. 
Uncertainties in direct discharge of manure, are associated with un-
certainties in the discharge rates for counties, which are derived from 
field surveys and expert knowledge (Bai et al., 2016; Wang et al., 2018). 
The fertilizer applied is from Chinese county statistics, which is 
considered a reliable data source in China, but not without un-
certainties. For N deposition, we include the dry and wet N deposition 
rates for the year 2012 following Wang et al. (2018), which are based on 
the data from a nationwide monitoring network (details in Xu el al 
(2015) and Liu et al. (2013)). We calculate the total N deposition as the 
product of deposition rate and agricultural area or natural area. For 
future studies, we hope to incorporate the site-specific inputs of N 
deposition rates. Next to this, there are uncertainties associated with the 
model inputs for in-stream river pollution, related to the simulated 
discharge. In our study we used extracted results for China from the VIC 
hydrological model which was run at the global scale at 0.5◦ (van Vliet 
et al., 2016a; Van Vliet et al., 2016). VIC has been validated using daily 
grid-based (0.5◦ × 0.5◦) observed records of the streamflow for 1557 
river monitoring stations showing a realistic representation of the 
observed conditions for stations globally (van Vliet et al., 2016a; Van 
Vliet et al., 2016). We calculated the 30-years average gridded discharge 
over the 1970–2000 period. Although the discharge is not changing 
dramatically for the current year 2012, this difference in reference year 
may influence the estimation of nutrient concentrations. The river 
network is based on the DDM30 flow direction map (Döll and Lehner, 
2002), which has been validated and calibrated against rivers globally. 
We compare the derived streamlines with actual river flows in China 
(Fig. 1C) and concluded that the rivers are represented well by the 
modelled network. In addition, inherited uncertainties exist in the 
derived river section measurements database and are discussed in sec-
tion S2.2 in the SI. We also realize that we do not include aquaculture as 
a source of nutrients. The IMAGE-GNM model indicates that aquaculture 
can be an important source of nutrient pollution in some regions (Chen 
et al., 2020; Wang et al., 2020a). In next versions of our model we could 
include this additional source. 

Third, uncertainties exists in the model parameters we derived from 
existing studies. For example, we apply the global calibrated constant 
value in the quantifications of Vf ,E ((Eq. (4)) that represents the bio-
logical process of river in-stream retentions for Chines rivers. The 
recalibration for China is limited by data availability. The global con-
stant of 35 for N (Wollheim et al., 2008c) may leads to a conservative 
estimate of in-stream nutrient retentions in our model. The calibrated 
data used in the study only accounts for denitrification while neglecting 
the effect of ‘coupled nitrification and denitrification’ from sediment 
that additionally removes N, besides the denitrification. Thus it is the 
conservative estimate of the in-stream retentions for N. Moreover, the 
calibrated value is for total N and total P (Marcé and Armengol, 2009; 
Wollheim et al., 2008c), while we applied the value directly to DIN and 
DIP and introduce the bioavailability adjustment factor (Eq. (4)) derived 
from literatures (Table S2) for organic forms. Existing nutrient models 

do not account for different nutrient forms or assume zero in-stream 
retentions of organic nutrient forms. However, studies have demon-
strated the ability of the rivers to utilize the organic nutrient forms 
(Nausch and Nausch, 2007; Shi et al., 2016; Wiegner et al., 2006). 

Large-scale models for nutrient pollution include full calibrated 
models (e.g. SWAT (Arnold et al., 2012)), and full processed based 
models (e.g. IMAGE-GNM (Beusen et al., 2015)). Our model is an in-
termediate, with a largely processed based approach and only a few 
calibrated parameters, in line with the earlier versions of the MARINA 
model and Global NEWS (Mayorga et al., 2010; Strokal et al., 2016a). A 
fully calibrated model at the scale of China is not preferred, because of 
lack of data. For future calibration of the model, the required data in-
cludes measurements and bio-geographical data, such as comprehensive 
measurements of in-stream concentrations by nutrient forms, nutrient 
export by soil on site scale, rates of nitrate uptake and denitrification in 
rivers, and streambed environments. The data could be used to calibrate 
processes such as the retentions of nutrients in soil and the in-stream 
retentions by Chinese rivers. 

Despite these uncertainties, we consider our model approach as 
appropriate for analysing the in-stream water quality and associated 
sources. We consider our data sources as reliable (e.g. county statistics or 
validated modelled outputs) and include state-of-art modelling datasets 
(e.g. surface water quality measurements, WWTPs database). Moreover, 
the model is evaluated and shows that our modelling estimates corre-
spond well with measurements of pollution levels and water quality 
classes. Our model and derived results can therefore provide a valuable 
basis in supporting effective management policies of nutrient pollution 
in China. 

We address the novelties of our model in the context of existing 
nutrient models. First, our model aims quantifies pollution levels in 
surface waters, and the associated source attributions for different 
nutrient forms (DIN, DON, DIP and DOP). Other global models typically 
quantify total N and P, and not the different forms (Beusen et al., 2015; 
McCrackin et al., 2013). Second, we consider our spatial level of detail 
unique. Our model quantifies water quality for river sections, which 
differs from the basin scale in Global NEWS-2 and early versions of the 
MARINA model (Mayorga et al., 2010; Strokal et al., 2016a). Our 
multi-scale modelling framework bridges the biophysical and adminis-
trative scales, which we consider an important step towards an 
improved understanding of the impacts of administrative driv-
ers/policies on water pollution. Our source attribution estimates on 
multiple scales support policy making. Models like SWAT and Quals are 
particular popular in developing countries to model in-stream water 
quality for specific watersheds (as summarized in Costa et al. (2019)). 
However, these focus on biophysical scales only, while we can provide 
source attributions on multiple scales, including administrative scales to 
support policy-making in water management. Third, our model requires 
less input data than some other models, as we aimed for an efficient 
balance between data requirement and process descriptions. This is 
different for, for example, an application of the IMAGE-DGNM model 
that calculates in-stream concentrations of TN, NH4 and NOx-for the 
Mississippi and Rhine basins. Our model quantifies multiple nutrient 
forms for whole China with moderate input requirements. This comes, 
however, with limitations in terms of the number of processes explicitly 
modelled. Compared to models such as IMAGE-DGNM (Vilmin et al., 
2020) our model takes a more simple approach to model dynamics in 
processes within rivers and groundwater. 

5. Conclusion 

Our study contributes to a better understanding of the spatial vari-
ation in in-stream water pollution by nutrients, their sources and how 
they compare with reported water quality classes in China. For this, we 
developed the MARINA 3.0 model that accounts for the combined effects 
of nutrient inputs to rivers, retentions of nutrients and transport of nu-
trients by the river network. We link our modelling results for year the 
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2012 with measurements of in-stream water quality classes across river 
sections. The validation results show that the model compares reason-
ably well against measurements. To our knowledge, this is the first 
attempt to couple an integrated nutrient model with the official moni-
toring network of surface water quality classes on the large scale (whole 
China). 

The modelled results could help to formulate and evaluate region- 
specific water management policies targeting the main sources to 
improve in-stream water quality in China. 

Our main findings are:  

- Between 12% and 66% of the streams are highly polluted (above 
water quality class III). The pollution is different among nutrient 
forms. We thus argue that water quality models and the national 
monitoring programs need to consider the different nutrient forms. 
This may not only help to better evaluate the ecological impacts of 
nutrient pollution but also improve the understanding of N-retention 
processes.  

- Diffuse sources dominate in over two-thirds of the streams for DIN. 
Point sources dominate in around half of the streams for DON, DIP 
and DOP. To better understand the ecological impacts of different 
nutrient forms, future research should consider compound indicators 
accounting for both N and P to assess the environmental impact of 
nutrient pollution in surface water, such as the ‘ICEP’ indicator for 
coastal seas.  

- Polluted streams and rivers contribute to coastal eutrophication 
along Chinese coasts. In particular, high potentials for coastal 
eutrophication are calculated for the Bohai Gulf. 
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