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The following report summarizes the work carried out in 2021 for further 
development and testing of the methodology used for management strategy 
evaluation for the exploited stocks in the Ijselmeer. The work was concentrated on 
methodological issues realted to parts of the current analysis (Tien et al., 2020) that 
were considered less robust: improving the use of survey and market data in the 
conditioning of operating models, and refining the status indicators based on length 
samples in the catch. 
For the later, an alternative method to the one currently applied (LB-SPR, Hordyk et 
al. 2014) was implemented into the FLR simulation platform and tested on both 
simulated and real data. The LIME method (Rudd and Thorston, 2017) was chosen as 
a possible replacement, as it is more adaptable to the particularities of the Ijsselmeer 
fisheries (e.g. gear selectivity). 
Regarding the conditioning of operating models, an algorithm based on Approximate 
Bayesian Computation (ABC, summarized by Sunnåker et al. 2013) was implemented 
and tested. The method is a natural extension of the one currently used, with more 
flexibility about the sources of data to be included and the manner in which they can 
be used. 
Finally, a new harvest control rule was implemented and tested, based on one 
succesfully applied to a commercially valuable fishery (Southern bluefin tuna, Hillary 
et al., 2016). This rule reacts to changes in stock status indicators, rather than 
distances to reference values, and has interesting properties that appear to be make 
it valuable for stocks in need of recovery. 
 

Evaluation of an alternative length-based status estimator 
Management procedures require some indication of the changes in status of a stock 
to inform the rule that will decide on the next course of management action. In the 
2020 MSE analysis, catch length frequency data, available through a sampling 
program, was used as input data to the LBSPR method (Length-based Spawning 
Potential Ratio, Hordyk et al (2014)) to provide an indicator of stock status. The 
method appeared to perform well when tested against a number of similar indicators, 
and was used in combination with a harvest control rule, in one of the management 
options tested in 2020 (Tien et al., 2020). LBSPR assumes that catch data is obtained 
from a fishery with selectivity that reaches a plateau (i.e. older/larger fish remain a 
target for the fishery), while the gillnet fleets operating in the IJsselmeer are known 
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to have a narrow selectivity pattern, with a sharp decrease for older ages. Although 
breaking this assumption did not appear to invalidate the use of this method, 
according to some tests we run, it did have an effect in the interpretation of the 
catch samples obtained in 2020. 
All of this led to this exploration of alternative length-based estimators that could be 
set to incorporate a different selectivity curve. We identified the Length-based 
Integrated Mixed Effects (LIME) method of Ruud and Thorston (2017) as a possible 
candidate. This model works with different selectivity curves and was tested in 
comparison with other length-based method (Chong, et al, 2019). 
The method was tested on simulated data, generated from the current pikeperch 
operating model, and on the actual samples obtained for that stock in the IJsselmeer 
fishery over the last few years. 
 
Methods 
The LIME model is a mixed-effects model that can be applied to a single year of 
length frequency data from samples of landings, but, in contrast with LBSPR, can 
also be applied on time series, and also make use of survey indices (Rudd and 
Thorson, 2018). This model could potentially estimate random variations in 
recruitment, fishing mortality and other biological processes, as well as the 
magnitude (variance) of the random variations of each of those processes. 
Furthermore, LIME allows to set any functional form of selectivity, and might be able 
to estimate it if data is sufficiently informative.  LIME and LB-SPR performances 
against logistic selectivity have already been compared in the past (Chong et al., 
2020). 
 
Simulated data 
A simulated dataset was generated to evaluate the estimates provided by LIME 
against the values present in the population. This simulation is based on the current 
operating model for IJsselmeer pikeperch, with a von Bertalanffy growth model being 
used to generate a number of correlated random length samples. Two OMs were 
generated with catch data being the result of the activity of fleets with either a flat-
topped or a dome-shaped selectivity. This allowed evaluating the impact of the 
selectivity being mis-specified. 
 
Life history parameters 
Values need to be given to this length-based method on a number of life-history and 
biological parameters. For these tests, the following values were used (Table 1), 
equal to those used in previous analysis for this stock. 
 
Table 1: Life history parameters employed in the estimator runs. 

Parameter Value 
MK 1.5 
Linf 96 
CVLinf 0.2 
L50 25 
L95 42.89 
Walpha 3.485257e-05 
Wbeta 2.671735 
Steepness 0.8 
SL50 38 
SL95 47 
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The performance of the LIME method was evaluated across a range of scenarios that 
considered alternative model options, data availability and assumptions. The model 
was tested using the length distribution in the catches, combined or not with a 
biomass index, generated from the survey. the method was tested on time series of 
different lengths (1, 5, or 10 or 25 years). Finally, the ability of the method to 
estimate selectivity was also investigated. 
Bias refers here to the difference between the value of a metric as returned by LIME 
or LBSPR, and the value obtained from the assumed true population in the operating 
model. Two indicators are reported here, one related to exploitation level, F/FMSY or 
the fishing mortality over the value at MSY, and a proxy of biomass status, SPR, the 
spawning potential ratio. 
 
Results 
We report here only on the main results of this analysis, related to the bias (i.e. 
systematic error) in the two indicators obtained from LIME : the ratio of F to FMSY 
(F/FMSY) and the Spawning Potential Ratio (SPR, measuring current spawning 
potential in comparison of that of the stock in absence of exploitation). The SPR 
estimate from the LBSPR method was also calculated for comparison. 
 
Data available for 1 year 

Running LIME with a single year of data is similar to running the LBSPR estimator in 
the previous MSE (Tien et al, 2020). This choice could be considered as a suboptimal 
use of the LIME method, as the mixed-effects structure specifically designed to deal 
with data time series. The method appears to be sufficiently accurate at estimating a 
proxy for exploitation level (F/FMSY) if selectivity is set to the form used in the OM 
(bias close to 0), but not if required to also estimate the functional form of the 
selectivity curve (Figure 1). 
 

 
Figure 1: Distribution of the values for the bias ratio of the estimates of 

F/FMSY from the LIME model against the OM real values, in runs 
where selectivity was set (blue) or estimated by the model (orange) using 

1 year of length frequency data. 
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A comparison was carried out between those two runs of LIME and LBSPR (Figure 2), 
in this case on the bias of their estimates for SPR, the stock status indicator 
employed in Tien et al (2020). The bias in LIME estimates is still better when run 

with a set selectivity. LBSPR appears to underestimate SPR to a greater extent. Bias 
for SPR is lower than that obtained in the F/FMSY calculation. 
 
 
Data available for 5 years 
While LBSPR can be run with multiple years of length data, the estimation is done 
independently for each year. In contrast, LIME is designed to be able to treat multiple 
years and types of data in an integrated manner to improve estimates of fishing 
mortality changes over time. We tested the performance of both methods using five 
years of catch data. 
The bias in F/FMSY estimates obtained with set or estimated selectivities are still 
clear (Figure 3). Bias over the five years is not stable. Simulated length frequencies 
are generated with the same variance every year, so this estimate variability reflects 
mostly the effect on the estimator of the changes in abundance it is meant to report 
on. 
 

 
Figure 2:  
Distribution of the values for the bias ratio of the estimates of F/FMSY from the LIME model against the 
OM real values, in runs where selectivity was set (blue), estimated by the model (orange) using 1 year 
of length frequency data. 

 

Figure 3: Bias ratio in F/FMSY estimates 
for the LIME model, with selectivity set 

(blue), or estimated by the model 
(orange), and using  5 years of length 

frequency data. 
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Discussion 
The initial results on the application of LIME appear encouraging, and the estimates it 
provides for the two indicators, F/FMSY and SPR, are sufficiently unbiased. However, 
the variance in mean bias observed when applied over a number of years could be 
problematic. Bias in the abundance estimator can generally be compensated during 
the tuning process which would return values for the HCR parameters that take that 
bias into account. Changes over time in the strength of that bias, or more worryingly 
in its sign, would result in over-conservative exploitation levels. 
During this study, contact was made with the authors of LIME to enquire about some 
convergence issues in a limited number of model runs. They indicated that they were 
now aware of certain problems with the method, yet to be reported, that lead them 
to generally recommend that it should not be used in its current formulation. 
A final decision will have to be made on whether the use of any of these estimators 
(LBSPR, LIME) is to be pursued further. An ongoing project for the United Nations 
Food and Agriculture Organization (FAO) evaluating these estimators, and comparing 
them with simpler length-based indicators for certain data-limited fisheries (Kell et al, 
pers. Com.) has found that most simple indicators are able to perform as well as the 
estimators, when applied to harvest control rules driven by trends rather than 
comparing estimates of abundance with reference values. 
 

Conditioning of OMs using Approximate Bayesian Computation. 
The operating model (OM) is the part of the MSE tool that represents the biological 
stock, and incorporates both the uncertainty on the stocks characteristics and the 
various natural sources of variability in its dynamics (recruitment, growth, mortality). 
Conditioning of OMs is an essential step in the development of an MSE analysis. The 
past and future dynamics of the stock, but also the uncertainty around them, need to 
be well specified to allow simulations to compare robustly the expected performance 
of alternative MPs (Punt and Donovan, 2007). The MSE carried out in 2020 for 
IJsselmeer stocks applied a relatively simple but robust approach. A series of feasible 
trajectories (Bentley and Langley, 2012) were generated from prior distributions on 
key populations parameters, and their ability to explain various sources of data was 
used to decide on their validity as possible models for the population. 
This approach is relatively simple to apply, and can be quickly tailored to the 
differences in data availability and quality between different stocks, as was the case 
for those in the IJsselmeer. Approximate Bayesian Computation (ABC) formalizes this 
simulation-based mechanism by applying the ideas behind Markov chain Monte Carlo 
(McMC) algorithms to the process. McMC is a method commonly used in Bayesian 
statistics to obtain samples for a complex distribution by randomly proposing 
parameter values from prior distributions, computing the quality of model to data 
when using those parameters, and then accepting or rejecting them based on the 
combined likelihood. The method ensures that the most likely area of the model 
likelihood is sufficiently explored.  See for example Sunnaker et al (2013) for a good 
overview of the logic and methods behind ABC. 
In practical terms, the use of ABC for the OM conditioning allows to consider multiple 
sources of data, and in multiple forms, when evaluating simulated populations. The 
algorithm applied in this test is that of Wilkinson (2013). The code makes use of the 
forecasting and simulation tools in the FLR toolset (Kell et al, 2007). 
The objective of the work was to test the current ABC algorithm on the data available 
for the pikeperch and perch stocks, and identify any extensions or modifications that 
might be necessary. 
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Methods 
In essence, the ABC algorithm extends the methods used in the past for conditioning 
operating models for the IJsselmeer stocks (Tien et al., 2020), based on Bentley and 
Langley’s (2012) feasible trajectories, and where priors for carrying capacity (K) and 
initial depletion level (d) were drawn to generate possible initial populations that are 
then projected for the reported total catch. ABC formalizes further the evaluation of 
the quality of the simulation run by (1) assessing how well the simulated population 
explains the totality of the survey data, and (2) by employing probability distributions 
to compute the likelihood of a population with the drawn parameters being able to 
generate the data, both catch and survey. 
Development tests for the algorithm were based on an operating model generated 
from life history, with values chosen to mimic the biology of pikeperch in the 
IJsselmeer. Three alternative histories of exploitation were applied to the initial 
stock: a one way trip with catches linearly increasing, a flat trajectory of catches at a 
mostly constant level, and one where the stock was overexploited to 1.5 times the 
fishing mortality at MSY and later brought down to MSY levels (Figure 4). All runs 
were started with populations with K= 23,000 t and initial total biomass at 75% of 
that value (d=0.25). 
 
The algorithm was run for 1000 iterations. Different values for the variances of the 
proposal distributions, those used to propose a new value from the previous one in a 
Markov chain, were applied until an acceptance rate of between 30 and 35% was 
obtained, a value generally deemed as indication of good mixing of the chain 
(Gelman and Rubin, 1992). The algorithm was given the actual total catch from each 

OM, to which a 10% CV lognormal error was added (to represent measurement 

Figure 4. Simulated population trajectories employed in the simulation testing 
exercise. Recruitment in thousands of individuals and total biomass (‘B‘) in 
tonnes. 
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error), and the abundances at age obtained from a survey with fixed selectivity, also 
with a 10% CV lognormal observation error. 
Runs were then conducted for both pikeperch and perch in the IJsselmeer using the 
catch data and surveys used in the previous OM (Tien et al, 2020) In the case of 
pikeperch, survey information was used in the algorithm only for ages 1 to 3, while 
age 0 abundances were used to provide information on the deviances from the 
assumed stock-recruit relationship. 

Results 
Test runs of the algorithm for these three trajectories showcase its ability to explain 
the trajectories of the biomasses for the various OMs (Figures 5, 6 and 7). The 
observed differences in uncertainty reflect the expected amounts of information 
about stock productivity contained on each trajectory. A stock that has been over-
exploited and recovered, like the FMSY case here, is bound to provide us with data 
that can be used to define its carrying capacity more precisely. 
The distributions of the prior and posterior distributions for both parameters (carrying 
capacity, K, and initial depletion, d), together with the actual initial biomass (defined 
as K * d), are summarized in Figure 8. The algorithm is clearly updating the 
estimates of initial biomass, and in all cases, posterior distributions are very distant 
from the real value (red line). With relatively uninformative priors for both 
parameters, as in these tests, the algorithm cannot separate depletion and virgin 
biomass, and only the combination of both is brought to values close to real. 
Runs of the algorithm with real IJsselmeer data for pikeperch (Figure 9) and perch 
have been up to his point less successful than expected. Acceptance rates are very 
low and the algorithm is unable to move away from a very narrow combination of 
values for both parameters. 
 

 

Figure 5: Example run of the ABC algorithm 
for the FMSY OM trajectory. Top panel shows 
the OM biomass while the bottom panel shows 
the inference made by ABC. 
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Figure 6: Example run of the ABC algorithm for the one- 
way OM trajectory. Top panel shows the OM biomass 
while the bottom panel shows the inference made by ABC. 

Figure 7: Example run of the ABC algorithm for the no 
contrast OM trajectory. Top panel shows the OM biomass 
while the bottom panel shows the inference made by ABC. 
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Figure 8: Prior (in grey) and posterior (colored) 
distributions for virgin biomass, initial depletion level, 
and the combination of the two, the initial population 
biomass. Red lines indicate the values from the simulated 
population, equal across all trajectories. 
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Discussion 
The potential of the ABC algorithm has been well demonstrated when applied to 
simulated data. Unfortunately, its ability to generate viable OMs for pikeperch and 
perch in IJsselmeer is still not complete. When the algorithm was applied to real 
data, the proposal acceptance rate was very low, less than 10%, even after changes 
to the proposal distribution variances. Inspection of the McMC chains appear to 
indicate that only a very narrow range of prior values is able to explain both catch 
and survey. Two possible avenues of work are now open. The first is to fully explore 
the effect of proposal and distance metrics variances, and consider options in which 
survey data is given a larger weight than the catch data, or viceversa. The second is 
to use a narrower prior distribution for the depletion level, or rather than attempting 
to condition a single model, create a reduced number of OMs with alternative values 
for depletion. MPs would then have to show their performance across levels of initial 
depletion before being deemed as robust. 
The first of these options will be investigated early next year through a large 
simulation exercise that will explore the precise effect of each of the algorithm 
configurations on its performance with these datasets. This will help us adapting it to 
the particular features of these datasets. The second will be tested by exploring a 
narrow range of possible values for initial depletion and quantify the effect on the 
algorithm behaviour. A later step would require constructing appropriate priors for 
this quantity, a process that would ideally be based on an agreement around the 
table from multiple parties with knowledge and views on the status of these stocks. 
Other changes already planned to be carried out in 2021 to the OMs could also help 
the algorithm performance. The OM will be set to run from March to April, so as to 
better cover both the biology and the management cycles. This could diminish the 
apparent conflict between catch and survey data, by separating catches as obtained 
from different cohorts. 

Figure 9: McMC chains for virgin biomass (v) and 
depletion level (d) for ABC runs on the three 
simulated populations., 
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Development of trend-based Harvest Control Rules 
Reliable estimates of stock status are often difficult to obtain, and specially in data-
limited situations. The performance of an MP is likely to be affected if the estimator 
or indicator informing it is not robust enough to variations in sample size, information 
content of the data, or random variability in the system. This is likely to be of greater 
concern if an MP is set to achieve management objectives measures in the tails of a 
probability distribution. For example, aiming at a 5% probability of the stock being 
below some limit reference point is bound to be more of an unstable target that a 
50% probability of the stock being over the target level. 
In either case, an alternative to an unstable status indicator is to track trends rather 
than actual values, and react according to the direction and strength of that trend, 
computed over an appropriate period. This was the basis for the CPUE-based MP 
explored during the 2020 IJsselmeer MSE. Here we present some exploratory runs of 
a similar HCR, one with a proven good dynamic behaviour (Hillary et al, 2016). The 
rule allows for assymetric responses to increases and declines, which can be tuned to 
obtain faster stock recovery, for example, or a very low risk of depleting the stock. 

Methods 
A set of MP runs was conducted to test the behaviour of the trend-based HCR. The 
rule was either informed by a perfect observation of stock abundance or an indicator 
based on mean length in the catch. 
The decision rule is defined as 

𝑇𝑇𝑇𝑇𝑇𝑇𝑦𝑦+1 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑦𝑦 × �1 − 𝑘𝑘1𝜆𝜆𝛾𝛾; 𝜆𝜆 < 0
1 + 𝑘𝑘2𝜆𝜆; 𝜆𝜆 ⩽ 0 � 

where 𝜆𝜆 is the slope in the regression of the employed metric (e.g. SSB) in log space 
for the last five years, k1 and k2 are gain parameters and 𝛾𝛾 is an asymmetry 
parameter that permits stronger or weaker action for negative biomass trends. 
The runs presented here had as their sole purpose the development and testing of 
the approach, including the extension of the MSE framework so that the HCR could 
be applied to either estimates of stock abundance or any kind of equivalent metric, 
like simple indicators based on length data. No attempt was made to tune the HCR 
parameters to achieve any of management objective, and they were left at values 
assumed to be reasonable for testing purposes. 

Results 
Initial runs confirmed that this rule has a good potential to be employed to drive 
management decisions based on total allowable catches and recover a stock, if 
sufficient time is given (Figure 10). Its performance on real-world situations is likely 
to be limited by factors not included in this analysis, such as the available time-span 
for recovery, the variability of recruitment, or probability of low recruitment events. 
The initial performance of the rule when applied using a length-based indicator 
(mean length in the catch) cannot be stated from this limited exercise (Figure 11), 
again solely intended to provide a proof of concept. Catch oscillations, for example, 
are larger than expected, and the impact of sampling sizes on the MLC estimator will 
have to be investigated. The assymetry of the rule, as defined by the relative values 
of the k1 and k2 arguments, will require further correction, so as to decrease the 
probability of the stock falling below the agreed limit reference points. 
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Figure 10: Test run of the trend-based HCR on the pikeperch OM with 
a shortcut stock assessment (perfect information on abundance). 
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Discussion 
The problems encountered with the LIME length-based estimator led to this initial 
research on the feasibility of using simpler length-based indicators to drive a trend-
based HCR, rather than rely on estimates of stock status based on the proxies that 
either LIME of LBSPR can provide. HCR employing trends, rather than estimates 
compared to some reference value, have the ability to be useful when those 
estimates and references are difficult to obtain. 
This trend-based HCR was originally developed for the Southern bluefin tuna, 
Thunnus maccoyii, stock. Its current application has another feature that could be 
applied to some IJsselmeer stocks. The proposals for TAC obtained from indicators 
coming from two sources of information (which in this case would be catch and 
survey) are combined for a final proposal. Trends in both length information in the 
catch, and abundance on biomass of the main age groups from the trawl survey, 
could both inform management. A full exploration of this approach, including an 
analysis of the quantity and timing of the information that can be expected to be 
obtained from each of them, would be an interesting contribution to the development 
of a new MP for these stocks. Data quality on each of those two sources, likely to 
vary for each stock, could be considered when combining their individual 
recommendations. 
Finally, moving from a system where a biomass target sets a clear objective for the 
fishery, to one where management only responds to changes, will require sufficient 
communication among the various stakeholders. 
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