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Abstract

The Digital Future Farm (DFF) is a modeling framework that allows models of arable and dairy
farms to be assembled from sub-models such as crop, soil and livestock models. The DFF is also a
digital twin (DT): a model of a physical object with emphasis on (1) the connection between the
real-world object and its virtual counterpart and (2) the use of real-time data from sensors to keep
the model synchronized. In this study, an Ensemble Kalman Filter was used to synchronize a grass
model and a potato model in the DFF with observations made in experiments. Results indicate that
special care must be taken to prevent divergence of the Ensemble Kalman Filter when it is used
with a crop growth model.

Keywords: crop growth model, data assimilation, observational data, recommendations for farmers,
digital twin

Introduction

In precision agriculture, farmers need precise, real-time information about the status of crops, soils
and livestock, as well as information about the likely outcome of management decisions. Demand
is growing for dynamic crop growth models (CGM) in helping farmers to make decisions about,
for example, irrigation and the application of N fertilizer. Akkerweb (Van Evert ef al., 2018) and
Beregeningssignaal (https://www.zlto.nl/beregeningssignaal) are web-based platforms where CGMs
are used to monitor commercial farms. This paper focuses on two requirements for the operational
deployment of CGMs.

The first requirement arises from the fact that a CGM typically consists conceptually of sub-models:
a sub-model for the crop, one for the soil water balance and another one for soil nitrogen. There
are often two or more alternatives for each sub-model, each alternative having strengths and
weaknesses. For example, one soil water balance model may use a simplified representation of soil
water dynamics, compute quickly, but perform well only on sandy soils; while a second soil water
balance model implements Richards” equation and is capable of representing capillary rise from a
shallow groundwater table, but computes more slowly. In an operational setting, one must be able
to use the simple model where possible and the more complex model where necessary. One way to
achieve this is a framework that allows interchangeable sub-models.

'The second requirement arises from the widespread availability of real-time observational data at
the field level, particularly remote sensing data obtained from satellites, but also, for example, from
tractor-mounted equipment and from sensors installed in the soil. This observational data must
be combined with the output from simulation models to achieve the best possible estimate of the
status of livestock, crops, and soils.
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In this paper the Digital Future Farm (DFF) is introduced. The DFF is a modeling framework that
allows models of arable and dairy farms to be assembled from sub-models such as crop, soil and
livestock models. The DFF is also a digital twin (DT): a model of a physical object with emphasis
on (1) the connection between the real-world object and its virtual counterpart and (2) the use
of real-time data from sensors to keep the model synchronized (Grieves, 2014). In this paper, the
framework is described and preliminary results from data assimilation with the framework are given.

Materials and methods

Simulation framework

The DFF is based on the MODCOM simulation framework (Hillyer et al., 2003), which allows linking
of sub-models and handles numerical integration, events and communication between sub-models.
Essentially, MODCOM is an implementation of the Discrete Event System Specification (DEVS)
(Zeigler, 1976). The DFF used the .NET (https://dotnet.microsoft.com/) version of MODCOM which
was developed in the EU-funded project SEAMLESS (Van Evert and Lamaker, 2007) and which
inspired both SIMPLACE (Enders et al., 2010) and BioMa (Donatelli ef al., 2012).

Grass model

The grass model is programmed in Delphi (https://www.embarcadero.com) and is made available
as a Component Object Model (COM) class (https://docs.microsoft.com/en-us/windows/win32/
com/ component-object-model--com--portal) (Vellinga, 2006; Vellinga et al., 2004).

The model takes an XML-string as input and produces another XML-string as output. The input
string contains all input necessary to run the simulation: soil parameters, grass parameters,
management (fertilization, grazing, mowing), weather and depth to groundwater.

A simulation with the grass model must start on 1 January and can run to any time in the year but,
once stopped, it cannot be resumed. The implementation of the grass model does not fit neatly with
the framework of the DFF where each sub-model takes one time-step, exchanges information with
other sub-models, and only then takes the next time-step. This mismatch was solved by writing a
wrapper class which at each time-step creates the XML-input string for the grass model and runs
the model from 1 January until the current simulation time. Following that, the XML output string
is used to update the state of the wrapper. Events such as fertilizer application, grazing and mowing
are captured by the wrapper and transformed into a format understood by the grass model.

Potato model

WOFOST is a simulation model for the quantitative analysis of the growth and production of annual
field crops (De Wit et al., 2019). It is a mechanistic, dynamic model that explains daily crop growth
based on the underlying processes, such as photosynthesis, respiration and how these processes are
influenced by environmental conditions.

The reference version of WOFOST is written in Python (https://www.python.org/). A wrapper
class was written which uses IronPython (https://ironpython.net/) to call the original Python code
of WOFOST. Fortunately, WOFOST can be stopped after every time-step; the wrapper uses this
functionality to instruct WOFOST to perform a single time-step whenever the simulation time in
the framework is advanced. Running WOFOST in DFF in this way is not much slower than running
it stand-alone. Events such as fertilizer application and haulm killing are captured by the wrapper
and translated to WOFOST events.

Weather

Weather data are provided by a sub-model which reads data from file and which can be linked to
the other sub-models. The grass model and the potato model both make use of this weather model.
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Data assimilation

Models are imperfect due to limitations in the model structure and processes, uncertainty about
model parameters and initial conditions, as well as uncertainty about the driving variables that the
models require. Therefore, the simulated states often diverge from reality and this uncertainty tends
to increase with every time-step of the model. Particularly when the digital twin is used to forecast
the impact of management decisions, this can become a serious problem for the reliability of the
outputs from the digital twin.

Data assimilation provides a tool to adjust the model whenever observations are available that provide
information on the system state. Data assimilation considers the uncertainty in observations (how
likely are outliers) as well as the uncertainty in simulation outcome. The combined ‘knowledge’
of the simulated system plus the observations allow to make a better estimate of the state of the
system and consequently adjust the model states and reduce uncertainty on the system. Data
assimilation algorithms have been highly successful in many disciplines, including numerical weather
prediction, robotics and many other engineering areas. Three main methods of data assimilation
are distinguished, namely calibration (where model parameters are adjusted), forcing (where
observations replace one or more state variables that would otherwise be simulated), and updating
(where observations and simulations are combined into a new, optimal estimation of the state of
the system) (e.g. Jin ef al., 2018). Here, the Ensemble Kalman Filter (EnKF) method (De Wit and
Van Diepen, 2007; De Wit et al., 2012), which is an updating method, was implemented for the DFE.

Data

Data on crop variables (LAI, biomass, grass height, etc.) measured using destructive sampling were
used. For grasslands, data from a four-year experiment with grass in the Netherlands were used
(Hoving et al., 2019). For potato, data from a two-year experiment in the Netherlands were used
(Ten Den et al., 2020).

Results

Grass

The grass model is well-calibrated for the Netherlands but there is a parameter to which the model is
sensitive and the value of which is difficult to quantify. This parameter specifies the annual amount
of soil organic nitrogen that is mineralized. For the peat soil for which the simulation was run, a
standard value is 250 kg/ha. The ensemble of simulations was generated by drawing values for this
parameter from a Normal distribution with mean=250 and sd=50. To demonstrate the effect of data
assimilation, it was assumed that grass yield was accurately observed on 18 April, 30 May, 10 July
and 21 August, and that the standard error of measurement was either 10 or 20%. Figure 1 shows
that observations with a small standard error (s.e.) have a larger effect on the ensemble than the
more uncertain observations.

WOFOST Potato

The WOFOST model was calibrated for potential production level using the 2019 field trials for
cultivar Innovator. Despite the calibration efforts, the WOFOST model still showed considerable
discrepancies between observed and simulated results for this cultivar (Brouwer, 2020). Particularly,
leaf biomass and leaf area index during the second half of the growth cycle were overestimated
leading to late senescence and an overestimation of the biomass and tuber growth rate. These
discrepancies are probably related to structural aspects of the model which, being a generic crop
growth model, may not properly represent this potato cultivar. It was hypothesized that assimilating
the leaf area index by means of an EnKF will lead to simulation results that correspond more closely
to the measurements.
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Figure 1. Data assimilation with the grass model for an experiment in Zegveld in 2017 where total N
applied was 280 kg/ha. Filled symbols: destructive measurement of grass dry matter yield. Dotted
line: simulation with the calibrated model. Black line: median of ensemble simulations. The grey area
delineates the 0.1 and 0.9 quantiles of the ensemble simulation. Arrows: indicate when observations
were assimilated. Top: s.e. of observations set to 10% of the mean. Bottom: s.e. of observations set
to 20% of the mean.

Setting up the EnKF requires estimating the variance of measurements and of model predictions.
Variance of measured LAI was estimated from the three replicates in the field trial. The estimated
variance varies over the growth cycle with low variance in the first half and larger variance in the
second half of the growth cycle (Figure 2).
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Figure 2. Results of the WOFOST Ensemble (dotted lines) for LA, total biomass (TAGP in kg/ha) and
tuber yield (TWSO in kg/ha) as well as the observed values from the field trials.
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The variance of model predictions was estimated by sampling from the distributions of two important
model parameters with large uncertainty: specific leaf area (SLATB), and the maximum relative
growth rate for leaf area (RGRLALI). Specific leaf area was measured during the experiments and was
estimated as 0.00191 ha/kg with a standard deviation of 18%. The default RGRLAI value for potato
is 0.012 d"! with an assumed standard deviation of 0.002. Figure 2 shows the resulting variability in
the model ensemble together with the observed biomass and LAIL

The results of the assimilation of LAI with the EnKF were analysed by evaluating the resulting
LAl trajectories and the impact of the EnFK on the predicted values. The results demonstrate that,
despite the large variability in the ensemble, the assimilation of LAT has a limited impact, particularly
during the second half of the growth cycle (Figure 3). There is a strong impact of the first set of
LAI observations which has very small variance and therefore the ensemble collapses after the first
assimilation interval. Although the variance in the ensemble increases again, the ensemble converges
through the growth cycle. This causes the EnKF to almost completely ignore the observations
from mid-July onward through the combination of low ensemble variance and high measurement
variance. This phenomenon of the EnKF is called ‘filter divergence’ and is a known problem with
crop models whose ensembles tend to collapse as the growing season continues (Huang et al., 2019).
A practical solution to the problem of filter divergence is the introduction of a ‘variance inflation
factor’ (Huang et al., 2016) which enlarges the Kalman gain in the EnKF equation in order to
maintain variance in the ensemble. Experimentation with the variance inflation factor shows that
a value of at least 10 is required to ensure that LAI is updated based on the observed values (Figure
4). Simulation of total above-ground production (TAGP) improves and so does the final predicted
tuber weight (TWSO). The time-trajectory of tuber yield still shows deviations. However, this could
also be related to partitioning of newly formed dry matter.

Discussion

With both models, parameters were used as source of variation in the ensemble. For the grass model,
the soil mineral nitrogen supply parameter had been calibrated earlier but it is appropriate to use
filtering to incorporate year-to-year or site-to-site variation. For the potato model, the uncertainty
in the parameters was related to the cultivar and in this case also it is appropriate to use filtering. For
both models, uncertainty does not only consist of parameter uncertainty but also includes structural
uncertainty due to model limitations; however, the EnKF was used only to update the state of the
model. In future work, an effort will be made to update model parameters as well as model state.

The EnKF was implemented directly. The use of a library such as OpenDA (https://www.openda.
org/) was investigated. However, this library was not used because it was estimated that it would
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Figure 3. WOFOST model simulated LAl with assimilation of observations using the EnKF.
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Figure 4. Results from assimilating LAl with the EnKF using a variance inflation factor of 10 for LA,
total biomass (TAGP in kg/ha) and tuber yield (TWSO in kg/ha) as well as the observed values from
the field trials.

take less time to implement the EnKF than it would take to link to OpenDA. If, in future work, the
need arises to use other data assimilation methods, then this decision will have to be reconsidered.

Conclusions

'The Digital Future Farm (DFF) provides uniform access to several models that are commonly used
at Wageningen UR. An Ensemble Kalman Filter was implemented for the DFF and tested. Results
indicate that special care must be taken to prevent divergence of the Ensemble Kalman Filter when
it is used with a crop growth model.
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