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A B S T R A C T   

Farms face various risks such as uncertainties in the natural growth process, obtaining adequate financing, 
volatile input and output prices, unpredictable changes in farm-related policy and regulations, and farmers‘ 
personal health problems. Accordingly, farmers have to make decisions to be prepared for such situations under 
risk or mitigate their impacts to maintain essential functions. Increasingly, a data-driven perspective is warranted 
where machine learning (ML) has become an essential tool for automatic extraction of useful information to 
support decision-making in farm management as well as risk management. ML’s role in farm risk management 
(FRM) has recently increased with advances in technology and digitalization. This paper provides a literature 
review in the form of a systematic mapping study to identify the publications, trends, active research commu-
nities, and detailed reviews on the use of ML methods for FRM. Accordingly, nine research/mapping questions 
are designed to extract the required information. In total, we retrieved 1819 papers, of which 746 papers were 
selected based on the defined exclusion criteria for a detailed review. We categorized the studies based on the 
addressed risk types (e.g., production risk), assessments that addressed risk components (e.g., resilience), used 
ML types (e.g., supervised learning) and algorithms ranging from regression modeling to deep learning, 
addressed ML tasks (e.g., classification), data types (e.g., images), and farm types (e.g., crop-based farm). The 
results reveal that there is a significant increase in employing ML methods including deep learning and con-
volutional neural networks for FRM in recent years. The production risk and impact/damage assessment are the 
most frequently addressed risk type and assessment that addressed risk components in ML-FRM, respectively. In 
addition, research gaps and open problems are identified and accordingly insights and recommendations from 
risk management and machine learning perspectives are provided for future studies including the need for ML 
methods for different risk types (e.g., financial risk), assessments addressing different risk components (e.g., 
resilience assessment), and developing more advanced ML methods (e.g., reinforcement learning) for FRM.   

1. Introduction 

One of the most important management tasks of a farmer is to deal 
with the plethora of risks that may occur on a farm. Evaluating and 
quantifying risk can provide crucial information to support decision- 
making on the farm at any time. Risk can be assessed based on its 
components, i.e., response, recovery, mitigation, and preparedness, 
(Coppola, 2015; UNISDR, 2009) using different evaluations including 
vulnerability, resilience, and impact (Ghaffarian et al., 2018; Meuwissen 
et al., 2019). Depending on the stage and aim, each of these aspects can 
be assessed to provide information for farm risk management (FRM). For 

example, in case of an agricultural pest or disease outbreak, the farmer 
needs to have an impact assessment to extract its effects on production 
or detect the damaged crops/animals to response and act quickly and 
reduce further impacts. In other examples, assessing the resilience of the 
farm to climate change (Luo et al., 2017; Nyasimi et al., 2017) or 
drought (Sennhenn et al., 2017) is important for a farmer to make de-
cisions and be prepared to cope with such situations. Therefore, 
assessing farm-level risk in general or any of its components is important 
to understand the situation and make decisions accordingly. Recent 
advances in technology including computer facilities and sensors pro-
vide big data as well as automatic computer-based processing methods 
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to evaluate the risks at any time (Woodard, 2016). In recent years, 
machine learning (ML) has gained attention in different science fields 
including (agricultural) economics (Athey, 2018). It is increasingly 
being used for farm risk analyses and other fields such as disaster risk 
management (Ghaffarian et al., 2019; Ghaffarian et al., 2020; Kerle 
et al., 2019). ML methods provide accurate data processing results in an 
automated manner to assess the risk in general (Almeria et al., 2009; 
Chavez et al., 2015; Esgario et al., 2020; Picon et al., 2019; Taneja et al., 
2020; Zhong and Zhou, 2020). Furthermore, the ML methods were used 
to address different risk types; (i) production risk, e.g., a self-attention 
Convolution Neural Network (CNN) for crop leaf disease detection 
(Zeng and Li, 2020); (ii) Financial risk, e.g., evaluation of insurance risk 
in case of climate change using different regression models (Lyubchich 
et al., 2019); (iii) Institutional risk, e.g., principal component analysis 
for assessment of the seeding policies in East Africa in the face of climate 
change (Westengen et al., 2019); (iv) Market risk, e.g., a heuristic ML 
approach for agriculture supply chain risk assessment (Yan et al., 2019); 
(v) Personal risk, e.g., artificial neural network (ANN), K-nearest 
neighbors (K-NN), and support vector machines (SVM) methods to 
evaluate the effects of the pesticides and/or cigarette smoke to farmers’ 
health (Tomiazzi et al., 2019). 

In recent years, researchers reviewed the FRM literature from 
different perspectives, for instance, investigating only one type of risk 
(Martinelli et al., 2015; Sankaran et al., 2010), focusing on a specific 
application domain (Boyd and Bellemare, 2020; Duong et al., 2019), 
reviewing the methods in the literature applied on a particular type of 
data collected by a specific sensor (Barbedo, 2019; García-Berná et al., 
2020), and from a general perspective but not investigating the risk 
analysis methodology used (Komarek et al., 2020). Hence, the current 
mapping study is aimed to complement earlier reviews by providing a 
systematic mapping study to identify and analyze the state-of-the-art 
advances in machine learning-based farm risk management (ML-FRM). 
The present paper is the first to adopt the form of a systematic mapping 
review study in the FRM research domain. A systematic mapping study 
is conducted by following a structured methodology, in which the 
objective is to extract current trends in publications, publishers, used 
methods, applications, weaknesses, challenges, etc., to provide recom-
mendations for researchers and practitioners in the specific field. The 
key contributions of this paper are as follow; (i) we reviewed the ML- 
based FRM literature from a holistic farm risk management perspec-
tive including risk types and risk components and demonstrate the 
current trends, and (ii) provide a list of developed ML methods for FRM 

that can be used either by researchers or practitioners. Furthermore, (iii) 
we demonstrate the current research directions and the limitations in 
the use of ML methods for FRM, and accordingly (iv) based on the gap 
analysis in the literature and the sate-of-the-art ML methods in computer 
science we provide guidelines on how to further ML can contribute to 
FRM. Moreover, (v) we provide insights from other disciplines e.g., agro- 
economic and disaster risk management, for ML-FRM future works. 

The remainder of the paper is organized as follows. Section 2 pro-
vides background information on machine learning and FRM including 
the definition of the FRM concept and the related terms. Section 3 gives 
a step-by-step explanation of the systematic mapping methodology used 
in this study. In Section 4, the quantitative results of the study are pre-
sented and visualized. Subsequently, Section 5 provides the discussions 
over the results, main findings, challenges, and limitations of the 
reviewed papers, and finally, Section 6 concludes the paper. 

2. Background 

2.1. Farm risk management 

Risk refers to the degree of uncertainties and/or probability of 
adverse results on a farm such as lower yields and incomes, farmer 
health problems, uncertain input/output prices, change in farm-related 
regulations and policies, or change in the availability of financing 
sources (Hardaker et al., 2015). Farm risk can be grouped based on two 
main perspectives: the addressed risk type, and the targeted risk 
component. Farm risk types can be classified into five main groups 
(Komarek et al., 2020) as follows: (i) production risk refers to un-
certainties in the natural growth process of crops and livestock; (ii) 
market risk relates to uncertainties in marketing including prices, costs, 
and market access; (iii) institutional risk focuses on unpredictable policy 
and regulation developments or changes generated by formal or 
informal institutions; (iv) personal risk refers to the problems related to 
individuals that affect the farm or farm household such as human health 
and personal relationships; (v) financial risk refers to the variability of 
the general financing sources and the farm’s operating cash flow. 

In addition, the farm risk management cycle consists of four main 
components that are linked to the time and aim of the assessment (Fig. 1) 
similar to what is defined in the field of disaster risk management 
(Coppola, 2015; UNISDR, 2009). Two are related to pre-event time 
usually called prevention-mitigation and preparedness, and two are 
related to post-event time usually called response and recovery. After an 

Fig. 1. Components of the farm risk management cycle and associated assessments in which machine learning methods can be used.  
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adverse event or disturbance, the provision of emergency actions are 
taken to reduce further impacts (response phase) and then return to a 
normal condition (recovery phase). In the mitigation phase, actions are 
taken to prevent an adverse event, reduce its chance of happening, 
lessening or limitations of the diverse impacts of disturbances and 
related uncertainties. In the preparedness phase, knowledge and ca-
pacities developed by governments, individual farm holders, and other 
organizations are used to effectively anticipate, respond to, and recover 
from, the impacts of likely, imminent or current events/disturbances or 

conditions. To make effective decisions in the response phase, it is 
necessary to assess the impact of the disturbance by evaluating the 
damages to the farm (Elahi et al., 2019; Gutierrez et al., 2019; Lee et al., 
2018; Yang et al., 2019). In addition, decision-makers making plans in 
the mitigation and preparedness phases need information regarding the 
vulnerability and resilience of the farm (Aleksandrova et al., 2014; 
Ghaffarian et al., 2018; Kantamaneni et al., 2020; Meuwissen et al., 
2019) or use models to predict an upcoming event (Marvin and Bou-
zembrak, 2020; Ribeiro and Coelho, 2020). Vulnerability refers to the 

Fig. 2. Mapping review protocol.  
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inability of a farm and its elements at risk to resist uncertainties or to 
respond when a disturbance has occurred. While resilience is the ability 
of a farm exposed to uncertainties or disturbances to resist, absorb, 
maintain its essential functions and recover from the effects in a timely 
and efficient manner (Coppola, 2015; UNISDR, 2009). Hence, impact, 
vulnerability and resilience assessments and damage/impact prediction 
are crucial for FRM. Each of the explained risk types (e.g., production 
risk) can be assessed to address any of the risk components, depending 
on the time and aim of the evaluation by conducting impact, recovery, 
vulnerability or resilience assessments, and damage prediction. ML 
methods can contribute to such assessments directly, for example, by 
assessing impact or damage to the farm (Chen et al., 2020a; Huang et al., 
2019), and indirectly by extracting relevant information from available 
data sets, for example, for vulnerability (Rodriguez-Galiano et al., 2014; 
Sendhil et al., 2018) and resilience assessments (Chanana-Nag and 
Aggarwal, 2020; Steward et al., 2018). 

2.2. Machine learning 

Machine learning is a branch of artificial intelligence, in which 
computer programs (algorithms) use data to automatically improve 
themselves through experience and learning. This makes ML suitable to 
execute different tasks including detection, recognition, and prediction, 
where historical data exists. The performance of ML models mainly re-
lies on the quality and quantity of the data and the type of the employed 
algorithms. It is crucial to select the proper algorithm to solve the 
problem at hand, considering the type and size of the available data. 
Datasets with high-quality and quantity can mostly increase the accu-
racy of ML models. In general, two types of data can be used to train ML 
algorithms: labeled and unlabeled. Labeled data have both input and 
output information, while unlabeled data have only input information. 
There are four different ML types based on the ways to train them:  

• Supervised learning: The computer program is trained on labeled 
data to develop a function between the input and the output. Manual 
work is required to produce labeled data. Hence, supervised learning 
is mainly used where we have enough knowledge regarding the data. 
In addition, feature engineering (in conventional ML models), 
parameter tuning and algorithm selection are required to be done by 
an expert. Supervised machine learning algorithms are employed to 
address regression and classification tasks. ML algorithms are used to 
optimize the parameters and minimize the error to predict a 
continuous outcome value and of the discrete output value (e.g., 
class) using input variables in the regression and classification tasks, 
respectively. 

• Unsupervised learning: Contrary to supervised learning, unsuper-
vised learning uses only unlabeled data. Hence, it does not require 
manual work. Unsupervised learning is mainly used where we do not 
have sufficient knowledge regarding the input data to only group 
them into different patterns. Unsupervised ML algorithms are used to 
address clustering, data/dimensionality reduction and anomaly 
detection tasks.  

• Semi-supervised learning: Using labeled data makes the prediction 
of ML algorithms more accurate and robust; however, it requires 
tedious manual work and is an expensive process. Hence, to develop 
a cost-effective yet accurate model, semi-supervised ML algorithms 
require only a small portion of the input data as labeled while the 
majority are unlabeled.  

• Reinforcement learning: It uses trial and error-based learning and a 
feedback mechanism to update its previous status and action to 
optimize the final developed function. Agents are defined in rein-
forcement learning to observe and take actions in an environment. As 
the result of their actions, they get some rewards or punishments, 
and accordingly, update the ML model. This is good for decision 
making for example to extract optimal policy solutions. 

3. Methodology 

The current review study was carried out in the format of a sys-
tematic mapping review based on the guidelines provided in Petersen 
et al. (2015). The aim of a systematic mapping study is to give an 
overview of a research area through classification and counting contri-
butions in relation to the categories of that classification (Petersen et al., 
2015). Accordingly, it differs from a systematic literature review study 
by investigating relatively broad topics and mainly mapping the struc-
ture of a research area rather than digging in details and synthesizing the 
evidences. This also allows and requires reviewing a larger number of 
papers in a study. Hence, the purpose of this study is to provide an 
overview of the use of ML methods in FRM content, identifying the 
publishers, journals and the quantity of the papers published, active 
research communities in this topic, and other interesting details 
accordingly. 

3.1. Mapping review protocol 

At the start of the study and before conducting the systematic map-
ping review, a review protocol was developed. This protocol defines the 
steps and methods for performing the specified systematic mapping 
study, and consequently, it reduces the research biases (Fig. 2). The 
developed review protocol consists of three main steps: planning, con-
ducting, and reporting the review. In the first main step, i.e., planning 
review, we identified the mapping questions (explained in Section 3.2) 
according to the objective of this study. Subsequently, we defined a 
search strategy including the search string and data sources after per-
forming several pilot searches and revisions (Section 3.3). In the second 
step, i.e., conducting review, we implemented the final search string on 
the selected data source and extracted the final publications based on 
the defined exclusion criteria (Section 3.4). Then, we used a data 
extraction strategy to extract the required information (Section 3.5). To 
do so, we developed a data extraction form that was defined after a pilot 
study (Appendix A.1). In the final step, i.e., reporting review, we syn-
thesized the extracted data and defined classification strategies to pre-
sent the results and answer the mapping questions. In addition, we 
analyzed and extracted the main findings, insights, and limitations of the 
review. 

Table 1 
Mapping review questions and their rationale for the review process.  

ID Mapping Question Rationale 

MQ1 What publication channels are the 
main targets for ML-FRM? 

Identifying where ML-FRM research 
can be found, and the most 
appropriate channels for future 
studies (i.e., publisher, journals) 

MQ2 Which research communities 
include papers in ML-FRM? 

Identifying the research 
communities (e.g., computer 
science) contributed to ML-FRM 

MQ3 How was the frequency of 
approaches related to ML-FRM 
changed over time? 

Extracting the publication trends 
over time to ML-FRM 

MQ4 What are the main research types of 
ML-FRM studies? 

Exploring different types of research 
in ML-FRM in the literature 

MQ5 What types of farms are addressed 
in ML-FRM? 

Extracting the most prominent farm 
types covered in ML-FRM 

MQ6 What are the most frequently 
applied research methods, and how 
these changed over time? 

Extracting the different ML types and 
methods employed/developed in the 
literature for ML-FRM 

MQ7 What types of data were used for 
ML-FRM? 

Identifying the main types of data/ 
data sources used for ML-FRM 

MQ8 Which components of risk were 
addressed in ML-FRM? 

Studying what are the most 
frequently tackled components of 
the risk management cycle in ML- 
FRM literature 

MQ9 Which types of risk were addressed 
in ML-FRM? 

Analyzing what types of risks are 
mostly studied in ML-FRM research  
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3.2. Mapping questions 

A total of nine mapping questions (MQs) were defined based on 
reviewing the papers to detect the most interesting aspects to extract 
(Table 1). Accordingly, the research and further analysis were built on 
these questions. The first five questions (MQ1–5) help to extract general 
information and an overview of where one can find publications related 
to ML-FRM, the research communities worked on ML-FRM, the fre-
quency of the approaches, the research and farm types of the ML-FRM 
studies. The rest of the questions (MQ6–9) were defined to extract de-
tails and more specific aspects of ML-FRM, such as the ML types and 
methods and the data types employed, the different risk components and 
types addressed. 

3.3. Search strategy 

The initial literature search was done automatically in the Institute 
for Scientific Information (ISI) Web of Knowledge (Web of Science) 
using a predefined search string. This database indexes ISI publications, 
which assure the quality of the studies while covering most of the high- 
quality publications. The search was conducted in August 2020. When 
defining the search string to extract relevant papers, a balance needs to 
be struck between extracting only the most suitable papers, while 
reducing the possibility of missing any relevant publications. This was 
ensured by selecting keywords that are usually used in the FRM litera-
ture while excluding common terms between different fields. The search 
query was applied to search in Title, Abstract, and Keywords of the 
papers. The following text represents the search string that was formu-
lated for the ISI Web of Knowledge database: 

((“agri*” OR “farm*” OR “crop” OR “livestock” OR “dairy”) AND 
(“risk” OR “resilien*” OR “damage” OR “impact” OR “recovery” OR 
“expos*” OR “vulnerability” OR “coping capacity*” OR “disease” OR 
“adaptive capacity”) AND (“machine learning” OR “deep learning” OR 
“artificial intelligence” OR “neural networks” OR “CNN” OR “smart” OR 
“AI”)) 

The search string is the combination of three groups separated with 
“AND”. This means that at least one word of each group is required to 
appear in Title or Abstract or Keywords of the publications to be selected 
from the database. The first group corresponds to the subject, including 
terms to find papers that address any farm type (e.g., crop-based). The 
second group corresponds to the task, including terms related to any 
types of risk and its components (e.g., damage). The third group corre-
sponds to methods, including terms to find papers that used any ML 
method in the study (e.g., deep learning). 

3.4. Screening of primary studies 

The used search query string has a broad scope (1,819 papers), which 
is usually the case in systematic mapping reviews (García-Berná et al., 
2020; Gurbuz and Tekinerdogan, 2018). Therefore, it ends up with a 
large number of publications found relevant for the study. In addition, 
our strategy includes searching the Abstract of the papers, although it 
ensures any key publications are not omitted, it led to an even more 
number of papers. Hence, in order to reduce the number of selected 

papers, we defined exclusion criteria (EC). Papers that meet one or more 
of these ECs were discarded. This process was applied manually, and 
reduced the total number of 1,819 papers to 746 papers according to the 
defined as in Table 2. 

3.5. Data extraction strategy 

This section explains how MQs can be answered for the selected 
papers. We created a data extraction form/table to extract relevant in-
formation and classified the possible answers for each question using 
reliable sources available in the literature. 

The data extraction strategies to answer MQs developed for the 
present study are as follows:  

• MQ1. The publisher and the name of the journal for each paper were 
identified to answer this question.  

• MQ2. In order to identify the research communities, we classified the 
papers based on their published journals’ subject area defined in Web 
of Science. We only considered the main subject areas and finally 
defined six standard categories as follows: Agriculture, Computer 
Science, Geosciences and Environmental Sciences, Economy and 
Business, Social Sciences, and General. Web of Science also provides 
ranking for the journals based on their impact factors and group 
them into four quartiles (Q1-4) in each subject area. Accordingly, we 
used this ranking to assess the quality of the journals in different 
disciplines. The categories for the papers were selected based on the 
quality of the journal in the specific discipline, and thus if the journal 
is a multidisciplinary journal we categorized it based on the subject 
area in which it has the highest quality. In addition, the general 
category consists of multidisciplinary journals which have equal 
qualities for more than one discipline.  

• MQ3. We extracted the year of each paper and classified them per 
publication year to extract the publication trends.  

• MQ4. Studies can be distinguished based on the conducted research 
types, for example, a paper can propose a new method or it can 
evaluate an existing one in a new application area. We adapted the 
classification of the research types proposed by Petersen et al. (2008) 
for the current study as follows: 
– Evaluation research: Existing ML methods/techniques are imple-

mented and evaluated in practice.  
– Solution proposal: A ML solution/approach is proposed to address 

FRM. This solution may be a new ML approach or a significant 
extension of an existing approach. In addition, the performance of 
the proposed approach should be evaluated and its potential 
benefits can be determined with an experimental study.  

– Other. Other types of research can include e.g., opinion papers, 
experience papers, etc.  

• MQ5. The farm types can be broadly classified into the following 
groups:  
– Crop-based. The papers that only addressed crop-based FRM using 

ML approaches  
– Animal-based. The papers that only addressed animal-based FRM 

using ML approaches.  
– Mixed. The papers that addressed a general challenge related to 

both growing crops and raising animals, or proposed ML methods 
that solve a common problem for mixed farms.  

• MQ6. Another interesting aspect to analyze is the different ML types 
and methods that are used in the selected papers to address different 
ML tasks. For this, we classified the papers based on three criteria: 
used ML types, addressed ML tasks, and employed/developed ML 
methods. The papers are classified based on the used ML types, as 
described in Section 2.2., into four categories: supervised, unsuper-
vised, semi-supervised, and reinforcement learning. In addition, the 
papers are classified based on the addressed general ML tasks as 
follows: regression, classification, clustering, and data reduction. 

Table 2 
Exclusion criteria for the review process.  

ID Exclusion Criteria 

EC1 Papers in which the full text is unavailable 
EC2 Papers gathered as a duplicate from different platforms 
EC3 Papers that are not written in English 
EC4 Papers that are not aiming to directly contribute to FRM 
EC5 Papers that do not directly use ML methods 
EC6 Papers that do not validate the proposed study 
EC7 Papers that provide a general summary without a clear contribution 
EC8 Review and editorial papers  
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There are many different ML algorithms/methods developed in the 
literature. However, according to the initial screening of the papers and 
extracting the most frequently used methods, we selected the following 
methods to classify the papers.  

– Regression: includes all types of regression models unless deep 
learning-based models.  

– Support Vector Machines (SVM)  
– Ensemble methods (EM): includes any ensemble-based approaches 

such as Random forests, Boosted methods (e.g., Gradient boosting)  

– Bayesian methods: includes any method using Bayesian statistics 
such as Naive-Bayesian, and Markov random fields.  

– Artificial Neural Networks (ANN): including, neural networks, 
feedforward networks, backpropagation networks, multilayer per-
ceptron method.  

– Deep Learning (DL): includes recurrent neural network (RNN), Long 
and Short Term Memories (LSTM), deep regression modeling, and 
any deep neural networks.  

– Convolutional Neural Networks (CNN): includes any CNN-based 
approaches. 

Fig. 3. Publication channels of the selected papers.  

Fig. 4. Publisher and journal names of the selected papers.  
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– Other: includes optimization approaches, decision trees, hybrid 
methods, fuzzy methods, heuristic methods, k-nearest neighborhood, 
clustering, Principal component analysis (PCA).  
• MQ7. The used data types in the selected papers can be classified 

as follow:  
– Visionary sensors data: includes images and videos.  
– Non-visionary sensors data: includes any sensory data, for example, 

sensor data for dairy cows, GPS data to track cow movements.  
– Earth data: includes any data related to the earth surface such as 

hydrological data, and field-based ones such as soil, and water data.  
– Field data: includes any types of data based on fieldwork or surveys, 

for example, yield data.  
– Climate data: includes weather, climate, and air quality data.  
– Socio-economic data: includes any data associated with the socio- 

economic status of farm and farm holders, e.g., bank credit data.  
– Other: includes any other data e.g., genome data.  
• MQ8. The selected papers are classified based on the assessment 

types that addressed different components of the risk as follow:  
– Impact: includes papers in which conduct impact and damage 

assessments.  
– Resilience: includes papers that addressed resilience, adapting, 

coping capacities in FRM content.  
– Vulnerability: includes papers that directly mention and tackle 

vulnerability in Farms.  
– General risk/Risk: includes papers that addressed the risk in general 

without specifically talking about any assessments types and com-
ponents of risk, for example, extracting different risk factors. The 
prediction/forecasting studies are in this group.  
• MQ9. The selected papers are classified based on the risk types 

according to (Komarek et al., 2020):  
– Production risk refers to uncertainties in the natural growth process 

of crops and livestock.  
– Market risk relates to uncertainties in marketing including prices, 

costs, and market access.  
– Institutional risk focuses on unpredictable policy and regulation 

developments or changes generated by formal or informal 
institutions.  

– Personal risk refers to the problems related to individuals that affect 
the farm or farm household such as human health and personal 
relationships.  

– Financial risk refers to the variability of the general financing sources 
and the farm’s operating cash flow. 

3.6. Synthesis 

After selecting the papers and performing the data extraction based 
on the defined mapping questions the last step is synthesizing the re-
sults. For each MQ, the papers are grouped into the defined classes, 
counted for each of which groups, and accordingly visualized in charts 
or presented in tables. Then, the results are discussed in detail and 
finally, a narrative summary bolds the main findings of the mapping 
study. 

4. Results 

A total number of 1,819 papers were extracted using the search 
query from the ISI Web of Knowledge database as explained in Section 
3.3. Then, 746 papers were selected using the defined nine exclusion 
criterion. Therefore, the final selected papers were employed to obtain 
the results by classifying them according to the defined MQs. The results 
are presented in the following subsections. 

MQ1: What publication channels are the main targets for ML-FRM? 
To answer this question we classified the papers based on their 

publishers and journals. Fig. 3 shows the publisher names with at least 
five published papers in ML-FRM, and the other class is the sum of the 
publishers with less than five papers. Most of the ML-FRM papers are 
published in the Elsevier journals with 279 number of papers (Fig. 3). 
Springer and MDPI are the second and third most published ML-FRM 
papers with 90 and 62 papers, respectively. 

Fig. 4 shows the names of the journals with at least five papers 
published in ML-FRM, and the total number of papers. An interesting 
observation is that although Springer has 90 publications in ML-FRM, it 
does not have a journal with 5 or more papers published on this topic. 

MQ2: Which research communities include papers in ML-FRM? 
Fig. 5 shows the number of papers published by different research 

communities. The agriculture research community has published the 
most in the ML-FRM. 

MQ3: How was the frequency of approaches related to ML-FRM 
changed over time? 

For this mapping question, we illustrate the number of annual 
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Fig. 5. Research communities of the selected papers.  
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publications as well as their associated research communities per year 
until August 2020 (Fig. 6). The chronological overview of the publica-
tions shows an increasing trend in ML-FRM studies, which continued in 
2020 considering that the search from the online database was con-
ducted in August 2020. In addition, the rate of increase in the number of 
publications of the computer science research communities is higher 
than the others. 

MQ4: What are the main research types of ML-FRM studies? 
The selected papers were grouped into three standard categories: 

evaluation research, solution proposal, and other. Most of the papers are 
evaluation research (52%), and almost one-third of the papers are so-
lution proposals (38%), and the rest are in the other category (10%) 
(Fig. 7). 

MQ5: What types of farms are addressed in ML-FRM? 
Table 3 shows the farm types addressed in the selected papers with 

their corresponding number of publications. The crop-based farm is the 
most addressed farm type in the literature with 459 papers, while 247 
papers address the animal-based farm and only 40 papers studied mixed 
farm types in one research. 

MQ6: What are the most frequently applied research methods, and 
how these changed over time? 

Fig. 8 shows the used ML types for FRM. Supervised learning is 
predominantly used in the literature to address ML-FRM with 740 pa-
pers (Hepworth et al., 2012; Wang et al., 2020; Wu and Xu, 2019), while 
unsupervised learning (Kumar et al., 2019a; Liu et al., 2010; Lu et al., 
2017) and reinforcement learning (Govindan and Al-Ansari, 2019) types 

Fig. 6. The number of annual publications on ML-FRM for different research communities and in total.  
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are used in 46 and 1 papers. In addition, the most frequently addressed 
ML tasks are regression (Ebrahimie et al., 2018; Garcia-Ispierto et al., 
2007; Smith et al., 2009) and classification tasks with 511 and 230 pa-
pers, respectively (Fig. 9). Clustering (Alzoubi et al., 2017; Lu et al., 
2017; Viet et al., 2012) and data reduction (Kumar et al., 2019a, 2019b; 
Martinez-Martinez et al., 2018) tasks are also addressed in 29 and 17 
papers, respectively. 

Tables 4 shows the employed ML-based methods for FRM, and 
Fig. 10 shows the chronological overview of the used/developed 
methods. The most frequently used method is regression modeling (352/ 
746), which was mostly employed to extract the relation between risk 
and the targeted variables/factors in farms (Andriamanivo et al., 2012; 

Marko et al., 2016; Smulski et al., 2020; Vadlejch et al., 2014). In recent 
years, there is a significant increase in the number of papers that used/ 
developed CNN-based methods, which are mostly focused on detecting 
diseases in crops (Karthik et al., 2020; Kim et al., 2020; Zeng and Li, 
2020), dairy farm (Sun et al., 2019), pig farm (Li et al., 2019; Marsot 
et al., 2020), and pest detection (Cheng et al., 2017; Xing et al., 2019) 
and weed detection (Espejo-Garcia et al., 2020; Sa et al., 2018). On 
contrary, other deep learning methods were only used in 21 papers, 
which mostly focused on animal-based farm disease detection (Domun 
et al., 2019; Plekhanova et al., 2019), despite the recent improvements 
in computer facilities that have enabled performing the computationally 
expensive methods like CNN. 

MQ7: What types of data were used for ML-FRM? 
Fig. 11 shows the most frequent types of data used in ML-FRM 

studies. Field data which are based on fieldwork is the mainly used 
type of data in the studies; however, they are gradually being replaced 
by other automatic data collection methods e.g., using sensors (vision-
ary or non-visionary). Visionary sensors data are collected from different 
sources such as video cameras (Fang et al., 2020), mobile phone images 
(Petrellis, 2019), drone/Unmanned Aerial Vehicle (UAV) data (Su et al., 
2018), satellite images (Santoso et al., 2019) are the second most used 
data sources for ML-FRM, and is increasing by advancing in technologies 
that ease collecting such data. Non-visionary sensors (Smith et al., 2020; 
Tamura et al., 2019), earth (Arshad et al., 2013), climate (Funk et al., 

Fig. 7. Research types of the selected papers in ML-FRM.  

Table 3 
The types of farm addressed in the literature.  

Farm type Example references Number of 
papers 

Crop- 
based 

(Ali et al., 2018; Calou et al., 2020; Chavez et al., 
2015; Ghielmi and Eccel, 2006; Lee et al., 2020; Lie 
et al., 2019; Messier et al., 2019; Perez-Bueno et al., 
2016; Ribeiro and Coelho, 2020; Westengen et al., 
2019) 

459 

Animal- 
based 

(Ahmad, 2009; Bates and Saldias, 2019; Dalanezi 
et al., 2020; Domun et al., 2019; Fourichon et al., 
2001; Miekley et al., 2013; Nasirahmadi et al., 2020; 
Vasquez et al., 2019; Wagner et al., 2020; Zaborski 
et al., 2016) 

247 

Mixed (Aryal et al., 2020; Chandra et al., 2017; Dang et al., 
2020; Goyol and Pathirage, 2018; Gyamerah et al., 
2019; Jost et al., 2016; Kumar et al., 2019a; 
Lyubchich et al., 2019; Roberts and All, 1993; 
Strzepek et al., 2013) 

40  

740
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1
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Fig. 8. The used ML types for FRM.  
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Fig. 9. The addressed general ML tasks in ML-FRM.  

Table 4 
The ML methods used in the selected papers for FRM.  

ML 
method 

Example references Number of 
papers 

Regression (Aungier et al., 2014; Capitani et al., 2019; Garcia- 
Ispierto et al., 2007; Gompo et al., 2020; Waltner 
et al., 1993) 

352 

ANN (Alzoubi et al., 2019; Aparecido et al., 2019; Avila- 
George et al., 2018; Hernandez et al., 2020; 
Martinez-Martinez et al., 2018) 

96 

Bayesian (Benitez et al., 2017; Marvin and Bouzembrak, 2020; 
Meisner et al., 2016; Viet et al., 2012; Willett et al., 
2016) 

12 

SVM (Calou et al., 2020; Griffel et al., 2018; Machado 
et al., 2019; Mudereri et al., 2020; Zhuang et al., 
2018) 

44 

EM (Chen et al., 2020b; de Castro et al., 2020; Hermans 
et al., 2017; Taneja et al., 2020; Yazdanbakhsh et al., 
2017) 

55 

DL (Ebrahimi et al., 2019; Espejo-Garcia et al., 2019; 
Fan and Xu, 2020; Ghahari et al., 2019; Zhao et al., 
2019) 

21 

CNN (Karlekar and Seal, 2020; Marsot et al., 2020; Picon 
et al., 2019; Sladojevic et al., 2016; Wang et al., 
2018) 

95 

Other (Leroy et al., 2018; Lins et al., 2020; Miekley et al., 
2012; Walsh et al., 2018; Wang et al., 2020) 

71  

S. Ghaffarian et al.                                                                                                                                                                                                                             



Computers and Electronics in Agriculture 192 (2022) 106631

10

2014), and other (Mochida et al., 2015) data types also employed for 
ML-FRM. The socio-economic data is the least used data type in ML-FRM 
(Kakhki et al., 2019; Pal et al., 2016) which is primarily employed in 
combination with other data types (Arndt et al., 2014; Chen et al., 
2020b). 

MQ8: Which components of risk were addressed in ML-FRM? 
Almost two-thirds of the selected papers address the FRM from a 

general perspective e.g., finding the effect of targeted variables on risk 
(e.g., production) without mentioning or focusing on a specific risk 
component. The impact assessment was investigated in 248 papers from 
the selected papers, in which most of them detected disease (Shakoor 
et al., 2017) or damage (Avila-George et al., 2018). On the other hand, 
only 35 and 11 of 746 papers studied farm vulnerability and resilience 

(Table 5). However, risk mitigation and reduction need pre-event/ 
impact assessment that is possible through evaluating farm vulnera-
bility and resilience. 

MQ9: Which types of risk were addressed in ML-FRM? 
Table 6 depicts risk types studied in the selected papers with the 

exact number of papers and example references. Accordingly, the pro-
duction risk is the most studied risk type in the selected papers covering 
96% of the papers. In addition, financial, institutional, personal and 
market risks were studied in 13, 11, 8, and 2 papers, respectively. 
Table A1. 

Fig. 10. The number of annual publications on ML-FRM classified by the employed/developed ML methods.  
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5. Discussion 

The main objective of this study is to provide an overview of the state 
of the research in the use of ML for FRM by answering the defined nine 
mapping questions. In this section, we discuss the presented results and 
findings of this study to provide insights towards future research. In 
addition, the limitations of the mapping study are discussed. 

5.1. Main findings 

The major findings that can be extracted from the presented results 
are as follows: 

• The main target publisher for the ML-FRM studies is Elsevier jour-
nals. In addition, the “Computers and Electronics in Agriculture” 
journal and ‘Journal of Dairy Sciences” published the largest number 
of papers in crop- and animal-based FRM, respectively. However, 
there are plenty of publishers and journals that have papers pub-
lished on ML-FRM (i.e., the selected papers are published in 362 
different journals) which shows the potential of the subject and the 
need to be addressed from various perspectives and disciplines.  

• Recently, the FRM topic has gained increasing attention in the 
computer science research community, which helped to increase in 
developing and using more advanced ML methods. However, most of 
them address computer vision-based problems for example to detect 
disease (Wang et al., 2017), weed (Sharpe et al., 2019) and damages 

Fig. 11. The number of annual publications on the employed data for ML-FRM and in total.  
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(Huang et al., 2016). In contrary, although the Agriculture research 
community has the largest number of papers published in FRM, 
traditional ML methods (e.g. conventional regression modeling) is 
the most popular one. Computer scientists mostly focused on 
developing computer vision-based methods since they need field 
experts to introduce new/actual field problems in FRM. On the other 
hand, lack of advanced ML knowledge in field scientists limit them in 
developing advanced methods. Those depict the need for multidis-
ciplinary works to aggregate the power of different disciplines in 
developing advanced ML methods to overcome the challenging is-
sues on FRM.  

• ML-FRM gains increasing attention due to advances in automatic 
sensor-based data collection and providing big data for several farm 
management issues as well as risk management. In particular, the 
rapid increase in the number of publications in ML-FRM started after 
a drop in 2011. In recent years, there is a transition from regression 
analysis to DL-based approaches including CNN-based methods, 
which will continue as a result of advances in technologies e.g., 
computer facilities. With entering the different research commu-
nities to FRM studies, the increasing interest in ML-FRM is expected 
to continue in near future.  

• More than half of the papers are evaluation research that implements 
available ML methods for different case studies. While almost one- 
third of them are solution proposals. This can be due to two main 
reasons: 1- At least in some specific topics the research community 
reached maturity and they only try to develop methods to obtain 
more accurate results for existing problems (e.g., disease detection), 
2- In some specific topics with entering the computer science society 
and providing advanced knowledge of ML methods they provide 
more advanced and precise methods for existing problems while they 
cannot identify the untouched problems in FRM subject. Having a 
detailed look at the selected papers, it can be figured out the second 
reason is mostly the case in ML-FRM studies, for example, crop 

disease detection. However, only recently DL-based methods have 
started to be used in animal-based farm management for example for 
behavior recognition (Li et al., 2019). The rapid increase in devel-
oping advanced ML methods (i.e., DL-based approaches) will 
continue increasing the evaluation studies to provide accurate so-
lutions for existing problems.  

• Regression modeling is still the most used method due to its easy 
implementation and providing sufficiently accurate results e.g., to 
find the relations between different risk factors in farm management 
issues (Aungier et al., 2014). However, the traditional regression 
modeling can be replaced by other ML methods like SVM and EM and 
more recently DL in most cases to achieve accurate results, which is 
already done in a few studies (Romero et al., 2020). The rapid in-
crease in using DL, in particular, CNN approaches is due to the in-
crease in the number of image acquisition platforms such as drones, 
satellites, mobile phones, and their high resolution.  

• Field data are going to be replaced by new platforms/sensors to 
collect data. For example, aerial and ground image and video 
capturing sensors for crop and animal disease detection, wireless and 
other non-visionary sensors for dairy farm production, and climate 
data. In the meantime, new sensors will serve new types of data 
which will need new methods or adaptations of existing methods to 
process and address FRM topics.  

• The DL-based methods, including CNN, are mainly used in crop- 
based farms. However, they can also be used in animal-based farm 
risk management to increase the accuracy of the results. As a 
straightforward example, both crop- and animal-based FRM need 
computer vision-based methods to do disease detection; that means 
in some cases the developed methods in crop-based FRM can be 
interchangeably employed for animal-based FRM with some 
adaptations.  

• There is a need to focus and develop ML methods to address all risk 
components such as recovery, mitigation and preparedness through 
resilience, vulnerability and recovery assessments rather than only 
impact assessments. In addition, it is observed that the researchers 
prefer to use the general term “risk” instead of a term that depicts the 
more detailed task in their study. Although the use of the term risk is 
correct since it covers all the risk components, the overuse of this 
term makes it difficult to find relevant studies. Some of the concepts 
such as resilience and vulnerability are more recently developed in 
the risk literature and for this reason, those were specifically 
addressed in the paper later. For example, farm vulnerability and 
resilience assessments have been entered to the ML-FRM literature 
from 2014. In future studies in ML-FRM, it is needed to elaborate 
more on the targeted risks which in the meantime can lead to uni-
fying the studies and even help to accelerate and simplify the using 
ML methods for FRM. CNN methods have been mainly used for 
impact, damage, and disease detection in farms. However, DL, in 
particular CNN, can also be employed to address other risk compo-
nents, similar to how it has been used in the disaster risk manage-
ment field, through recovery (Ghaffarian et al., 2019), vulnerability 
(Saha et al., 2021) and resilience assessment (Ghaffarian et al., 
2018).  

• Although assessing production risk is an important task in FRM, 
other risk types such as financial and institutional risks should be 
addressed as well. For instance, price volatility may lead to financial 
uncertainty and risk to farms, which has been on the increase since 
2005 (Tropea and Devuyst, 2016). One of the reasons for such a big 
difference between the number of papers that address production 
risk and the others is the current challenges in employing/adapting 
ML methods for social, economic, and policy-based tasks (Athey, 
2018). However, interesting examples of using ML methods for such 
tasks are provided in this study (Espejo-Garcia et al., 2019; Lyub-
chich et al., 2019; Tomiazzi et al., 2019; Zhong and Zhou, 2020) that 
can be used to provide insights for future studies. 

Table 5 
The assessment types that addressed different risk components in the selected 
papers.  

Risk 
component 

Example references Number of 
papers 

Impact (Busin et al., 2019; Chen et al., 2020a; Huang 
et al., 2019; Markom et al., 2009; Mohanty et al., 
2016) 

248 

Vulnerability (Douxchamps et al., 2016; El Yacoubi et al., 2019; 
Mudereri et al., 2020; Rodriguez-Galiano et al., 
2014; Sendhil et al., 2018) 

11 

Resilience (Chanana-Nag and Aggarwal, 2020; Makate et al., 
2016; Salack et al., 2015; Steward et al., 2018; 
Tesfaye and Seifu, 2016) 

35 

General risk (Ealy et al., 1994; Jensen et al., 2020; Kaundal 
et al., 2006; Partel et al., 2019; Sun et al., 2019) 

451  

Table 6 
The type of risks addressed in the selected papers.  

Risk type Example references Number of 
papers 

Production (Chaudhary et al., 2016; Esgario et al., 2020; Fang 
et al., 2020; Fuentes et al., 2017; Pydipati et al., 
2005) 

717 

Financial (Liu and Zhan, 2019; Lyubchich et al., 2019; Muller, 
2000; Pinheiro et al., 2016; Zhong and Zhou, 2020) 

13 

Institutional (Espejo-Garcia et al., 2019; Lyubchich et al., 2019; 
Musshoff and Hirschauer, 2014; Strzepek et al., 
2013; Westengen et al., 2019) 

11 

Personal (Chandra et al., 2017; Elahi et al., 2019; Khatri- 
Chhetri et al., 2020; Tomiazzi et al., 2018; Tomiazzi 
et al., 2019) 

8 

Market (Chen et al., 2020b; Yan et al., 2019) 2  
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• It is observed that most studies are aimed to monitor the status of the 
farm focusing on one or multiple risk types, providing information 
for making decisions by farmers. However, machine learning, in 
particular reinforcement learning, has the capacity to make decisions 
as well, which can be used to optimize risk mitigation (Govindan and 
Al-Ansari, 2019). Furthermore, reinforcement learning has several 
applications in economy and finance, for example, to extract optimal 
policy solutions and to solve complex behavioral problems (Char-
pentier et al., 2020), which can be also adopted for FRM 
applications. 

5.2. Threats to validity 

The main threats to validity of our review are discussed as follows: 
Construct validity: The aim of this study is to review the existing 

literature on the use of ML methods for FRM addressing different risk 
types and components and provide insights accordingly. To do so, we 
used an automated search query applied on the ISI Web of Knowledge 
website (Web of Science). Using this database as the only source of 
publications may lead to missing other relevant publications that are not 
included in this study. However, this study aimed to provide an over-
view of high-quality publications. Hence, indexing in an ISI journal is an 
accepted way that we used to find and extract the relevant high-quality 
papers. Excluding non-English papers and the ones that we could not 
find their full text may also bias the results. However, since the total 
number of papers that are excluded according to these criteria are not 
more than 10 papers, they do not have remarkable impact on the final 
results of this study (considering that the initial number of selected 
papers was 1819). In addition, there might be missing terms that may 
impact the final result. However, we tried to keep the search broad, and 
we refined the search query several times to reduce the possibility of 
missing any relevant study. Hence, the impact of missing any relevant 
papers in the final results is low. 

Internal validity: We formulated the mapping questions to inves-
tigate and extract all the required elements for ML-FRM. Since the 
mapping questions are based on the precisely defined and explained ML 
methods, risk types, risk components and other necessary information, 
the findings of this study are properly described and linked to the 
extracted results. 

External validity: This study reviewed the publications which 
employed ML methods for FRM. There are other ML methods that are 
not discussed in this study. However, we provide insights from computer 
science domain regarding the potential of ML methods for FRM, giving 
examples of advanced ML methods that can contribute to FRM. 

Conclusion validity: We conducted the review based on the 
accepted structure and protocol for systematic mapping studies 
(Petersen et al., 2015). Accordingly, the mapping questions, search 
strategies, screening criteria, and result evaluations are designed and 
performed based on the widely used structure. In addition, we provided 
the search string, and data extraction form in the paper, and the 
extracted publications in an open-source platform. Thus, the results of 
this study are simply reproducible. 

6. Conclusions 

This article surveyed the studies and advances in the use of machine 
learning (ML) for farm risk management (FRM) in the form of a sys-
tematic mapping study. Our main goal was to investigate and identify 
the application domains, trends, current challenges, and limitations of 
using ML methods for FRM, and accordingly, provide insights and 
guidelines for future works. As the results of our initial search in the ISI 
Web of Knowledge, we identified 1,819 studies in ML-FRM, then we 
selected 746 papers based on the defined exclusion criteria. Involving 
such a large number of papers in the study allowed us to produce reliable 
results and extract trends and the research directions in an accurate 
manner. However, further investigations and studies are required, for 

example, in a systematic literature review format, to perform detailed 
analysis and extract advances in different ML methods, in particular 
deep learning, addressed different risk types and components in FRM. In 
addition, there is a need to tackle FRM from a different point of view by 
investigating and extracting what is needed from a data-driven 
perspective to counteract risks for example, by decreasing the vulnera-
bility and improving resiliency. Even though various types of risks are 
studied, we observed dominance of production risk-centered studies, a 
trend in line with the general field of FRM (Komarek et al., 2020). Due to 
improvements in data acquisition platforms/sensors (e.g., satellites, 
drones, ground sensors) collecting production-based data has been 
easier compared to other risk types. Future research should explore 
other types of risk and could also leverage ML to explore the relationship 
between risk types such as business risk and financial risk (de Mey et al, 
2014). Although it is important to update the status of the farm after 
exposure to an adverse event, risk mitigation and preparedness analysis 
through resilience and vulnerability assessments are crucial to reduce 
and mitigate the impacts and reach the food and agriculture-related 
sustainable development goals. This issue can be overcome by getting 
insights from adjacent research fields such as disaster risk management 
and performing a resilience analysis (Slijper et al., 2021), or widening 
the scope of analysis to an agricultural systems analysis (Meuwissen 
et al., 2019). In addition, we observed that most of the DL (e.g., CNN) 
methods are employed/developed to address crop-based agricultural 
problems; however, some of them can be easily adopted for animal- 
based agriculture problems. In recent years, only a few studies used 
ML methods to address financial, institutional, personal, and market risk 
analysis. The open challenges and limitations in AI/ML field, including 
trustworthy, ethical and social impacts, are one of the reasons limiting 
using ML methods for FRM. We identify a clear scope for data integra-
tion and analytical efforts to use ML methods to undertake FRM in these 
domains. 

Table A1 
Data extraction form.  

# Extraction 
element 

Contents 

General information 
1 ID Unique ID for the study 
2 Title Full title of the article 
3 Authors The authors of the article 
4 Year The publication year 
5 Publisher name The publisher name (e.g., Elsevier) 
6 Journal name The journal name (e.g., Journal of Dairy Science) 
7 Research 

community 
□Agriculture □Computer Science □Geosciences and 
Environmental-Sciences □Economy and Business 
□Social Sciences □General 

Study description 
8 Main objective of 

the study  
9 Details about the 

study 
E.g., task details 

10 Directly address 
FRM 

□Yes □ No 

11 Research type □Evaluation research □Solution proposal □Other 
12 Farm type □Crop-based □Animal-based □Mixed 
13 Machine learning 

types 
□Supervised □Unsupervised □Semi-supervised 
□Reinforcement learning 

14 Machine learning 
tasks 

□Regression □Classification □Clustering □Data 
reduction 

15 Machine learning 
method 

□Regression □SVM □EM □Bayesian □ANN □DL 
□CNN □Other 

16 Data type □Visionary sensors data □Non-visionary sensors data 
□Earth data □Field data □Climate data □Socio- 
economic data □Other 

17 Risk component □Impact □Resilience □Vulnerability □General risk 
18 Risk type □Production risk □Market risk □Institutional risk 

□Personal risk □Financial risk 
19 Additional notes E.g., the opinions of the reviewer about the study  
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