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A B S T R A C T   

Systematic reviews are used to collect relevant literature to answer a research question in a way that is clear, 
thorough, unbiased and reproducible. They are implemented as a standard method in the domain of food safety 
to obtain a literature overview on the state-of-the-art research related to food safety topics of interest. A 
disadvantage to systematic reviews, however, is that this process is time-consuming and requires expert domain 
knowledge. The work reported here aims to reduce the time needed by an expert to screen all possible relevant 
articles by applying machine learning techniques to classify the articles automatically as either relevant or not 
relevant. Eight different machine learning algorithms and ensembles of all combinations of these algorithms were 
tested on two different systematic reviews on food safety (i.e. chemical hazards in cereals and leafy greens). The 
results showed that the best performance was obtained by an ensemble of naive Bayes and a support vector 
machine, resulting in an average decrease of 32.8% in the amount of articles the expert has to read and an 
average decrease in irrelevant articles of 57.8% while keeping 95% of the relevant articles. It was concluded that 
automatic classification of the literature in a systematic literature review can support experts in their task and 
save valuable time without compromising the quality of the review.   

1. Introduction 

A systematic review is an approach to collect a complete and 
exhaustive summary of current literature to answer a specific research 
question in a way that is clear, thorough, reproducible and unbiased 
(Higgins et al., 2019). Systematic reviews follow a fixed procedure. They 
entail gathering research using a priori defined criteria and describing 
and analyzing the reported results of the deemed relevant literature in a 
systematic way. This in contrast to the traditional narrative reviews 
where the process of literature selection and assessment criteria are 
often not explicit, which can lead to selection and performance bias 
(EFSA, 2010; Higgins and Green, 2011). These biases arise when there is 
no extensive, systematic way of searching for literature and a selective 
strategy of reporting results of relevant studies is often based on the 
interpretation of the reviewer. While expert judgment is still involved in 
conducting systematic review, the structured processes are designed to 
minimize bias and increase transparency with respect to expert 
judgements. 

Both the European Food Safety Authority (EFSA) and the United 

States Department of Agriculture (USDA) adopted the use of systematic 
reviews as a standardized method to identify research on food and feed 
safety to ensure the selection of robust and relevant studies while 
increasing credibility and transparency (EFSA, 2010; Fungwe et al., 
2009). Independent risk assessments of the food chain are performed 
and advice on existing and emerging food risks is given. The knowledge 
gained in the systematic reviews provide European and American au-
thorities with input for prioritizing future monitoring activities due to 
new information and trends in consumption behavior or processing 
methods of food and feed. 

A systematic review entails four main steps: (1) Formulating a 
research question and establishing a reproducible methodology for the 
review, (2) creating a search query to retrieve literature from databases 
that are applicable to the research question, (3) screening the collected 
literature for its relevance based on the titles and abstracts and (4) 
collecting and analyzing the results reported in the relevant literature. 
These steps can be very time-consuming, making a systematic review a 
costly undertaking. The third step alone already consists of reading 
through hundreds or even thousands of papers and assessing whether 
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they are relevant for the case at hand. Since in the future more and more 
research will become available, the screening and assessment of the 
literature will become an increasingly bigger task. 

To reduce human burden and resources required as well as increase 
the speed at which results are produced, machine learning algorithms 
are becoming an increasingly popular tool in a lot of areas. When it 
comes to text as input, a specialized part of machine learning called text 
mining has been on the rise (Gupta and Lehal, 2009; Talib et al., 2016; 
Hassani et al., 2020; Jung and Lee, 2020). Text mining refers to the 
process of automatically extracting information from text that is 
meaningful and nontrivial (Feldman and Sanger, 2007; Jo, 2019). It has 
already been successfully applied in many domains, for example in 
language translation (Wu et al., 2016; Aharoni et al., 2019; Popel et al., 
2020), spam detection in emails (Dada et al., 2019; Zamir et al., 2020; 
Akinyelu, 2021), sentiment analysis and opinion mining (Ain et al., 
2017; Yue et al., 2019; Liu, 2020) and automatic summarization (Aries 
et al., 2019; Zhang et al., 2020; El-Kassas et al., 2021). 

Text mining can also be a valuable tool in systematic reviews by 
assisting the reviewers in the screening of the set of collected literature 
for its relevance. Just as the reviewers judge the literature based on their 
titles and abstracts, text mining can be used to automatically classify the 
literature as relevant or not relevant based on the combined text of the 
title and abstract as its input. 

Over the past two decades multiple studies have explored the use of 
machine learning to classify the relevancy of literature for systematic 
reviews. One of the first was the work by Cohen et al. (2006) who 
explored if automatic classification of medical articles on efficacy of 
drugs could reduce time spent by the experts. It used the title and ab-
stract together with the keywords and publication type to create 
bag-of-words feature vectors. The feature vectors were fed to an 
ensemble of one-layer neural networks (NN) for classification. They 
could reduce the amount of articles for the reviewer to screen with an 
average of 23% with a mean precision of 10% and a mean recall of 95%.1 

Wallace et al. (2010) had the same goal of reducing time for the reviewer 
in mind for their research and applied an ensemble of support vector 
machines (SVM) on biomedical literature. They used the title, abstract 
and keywords in a term frequency–inverse document frequency 
(TF-IDF) feature vector as input for the model. With a recall of 1 they 
reduced the amount of articles to review by 46% on average. The work 
by Bekhuis and Demner-Fushman (2012) showed a comparison of a 
k-Nearest Neighbors (KNN) classifier, naive Bayes (NB) and SVM on the 
classification of medical systematic reviews. They concluded evolu-
tionary SVMs worked best, using bag-of-words feature vectors with a 
recall of 95%, a precision of 11% and a reduction in articles to be 
screened of 46%. In 2014, García Adeva et al. (2014) tested four clas-
sifiers: NB, KNN, SVM and Rocchio. The data set again consisted of 
medical systematic reviews. It was concluded that the SVM worked best 
with a recall value of 70% and a precision of 72%, reducing the amount 
of articles that need screening with 77% at the cost of losing 30% of 
relevant articles. Timsina et al. (2016) retested four data sets used by 
Cohen et al. (2006) using three types of SVMs (linear, polynomial and 
evolutionary), NB and a single-layer NN. They tested their performance 
on two feature types, TF-IDF features and Unified Medical Language 
System (UMLS) features consisting of only those words occurring in 
medical vocabularies. The polynomial SVM performed best in all data 
sets with both features types, leading to an average reduction in articles 
of 59% with an average recall of 99% using the UMLS features. 

The studies mentioned above have all been applied in the domain of 
medicine, mostly as systematic reviews play a very important role in 
evidence-based medicine (Sauerland and Seiler, 2005). In 2018, Jaspers 
et al. (2018) presented a report on the possible applications of machine 
learning in systematic reviews within EFSA. They evaluated the 

automation of screening abstracts by testing four different classifiers and 
all possible ensembles on the data of three systematic food safety re-
views. The classifiers tested were an SVM, two-layer NN, random forest 
(RF) and gradient boosting (GB). Furthermore, they tested two different 
techniques of feature creation: Bag of words and topic modeling through 
latent Dirichlet allocation. They concluded that ensembles often per-
formed best, but there was no optimal solution to the combination of 
models in the ensemble over the tested cases. RFs and NNs were the best 
individual classifiers and all classifiers had to use data augmentation to 
counteract the imbalance in the data in order to perform optimally. 
Using an RF and topic modeling they reduced the amount of literature to 
be screened by approximately 60% with an average recall of 80%. 

The aim of this study was to further the research on automatic 
classification of scientific literature in the screening stage of systematic 
reviews, specifically in the domain of food safety. In contrast to the 
systematic reviews in medicine and the cases presented by EFSA, which 
in many instances contain thousands of articles, the amount of literature 
in food safety can often be significantly smaller. The amount of data can 
have a pronounced effect on the classifier performance. The efficacy of 
relevancy classification in those cases that only contain a few hundred 
articles was tested. Eight different algorithms ranging from classical text 
classification algorithms like an SVM to the current state-of-the-art on 
text classification like the BERT algorithm were implemented to cover a 
wide range of classifiers. The combination of the title and abstract of an 
article retrieved by a manually created search query within a specific 
topic of food safety was classified as either relevant or not relevant. The 
final goal of the research was to assist the experts and save valuable 
time, not to replace them entirely. 

The data of two systematic reviews performed for the Netherlands 
Food and Consumer Product Safety Authority (NVWA) were used for this 
study: one on cereals (Kluche et al., 2020) and one on leafy greens 
(Banach et al., 2019). The goal of the reviews was the identification of 
chemical hazards in their respective supply chains. The systematic 
literature reviews were performed using search queries defined by ex-
perts applied to the databases of Scopus2 and Web of Science3 for the 
years 2008–2018 for the topic of cereals and 2009–2019 for the topic of 
leafy greens. 

2. Materials and methods 

2.1. Machine learning algorithms 

Eight different machine learning algorithms were trained to classify 
the relevance of an article in a supervised way. The algorithms were 
selected based on the fact that they are suitable for binary classification, 
they can handle text data as input and that they are easily implemented 
through freely available coding packages. All algorithms were imple-
mented in Python 3.7.4 All code is available on GitHub (see Appendix A). 
In the sections below each algorithm is explained in short. For more 
detailed explanations the reader is referred to the cited references. 

2.1.1. Logistic regression (LR) 
LR is an algorithm that calculates the probability of an event by 

applying a log-odds function on the dependent variable (Menard, 2002; 
Peng et al., 2002; Hosmer et al., 2013). The log-odds function is the 
logarithm of the odds. Similar to linear regression, it is assumed that 
there exists a linear relationship between the independent variables of a 
data point, called features, and in this case the log-odds of the proba-
bility of the binary dependent variable, called the class: 

1 Note that all recall and precision values discussed are those of the ‘relevant’ 
class. 

2 https://www.scopus.com.  
3 https://www.webofknowledge.com.  
4 https://www.python.org. 
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log
(

P(yi = 1|xi)

1 − P(yi = 1|xi)

)

= β0 + β1xi,1 + ⋯ + βnxi,N (1)  

where xi denotes the i’th data point, yi its respective class, xij the j’th 
feature in xi, βi a parameter and N the total number of features. The 
probability of yi = 1 can be calculated by taking the inverse of the log- 
odds, which is the logistic function: 

P(yi = 1|xi) =
1

1 + e− (β0+β1xi,1+⋯+βnxi,N )
(2)  

where P(yi = 0|xi) is 1 − P(yi = 1|xi) and the class with the highest 
probability is taken as its final prediction. 

Generally, the algorithm is optimized using a gradient descent al-
gorithm that minimizes the error between the predicted class value and 
its true class value by estimating the parameters β. 

LR has been shown to be effective on task classification tasks in 
previous research (Komarek and Moore, 2003; Indra et al., 2016; 
Pranckevičius and Marcinkevičius, 2017). 

2.1.2. Support vector machine (SVM) 
SVM is an algorithm that aims to find the most optimal hyperplane 

that separates data points from one class from the data points from 
another class (Boser et al., 1992; Cortes and Vapnik, 1995; Noble, 2006). 
The most optimal hyperplane is defined as the hyperplane with the 
largest margin between the classes, i.e. the distance between the plane 
and the closest data point of all classes is maximized. These closest 
points are called the support vectors and they completely determine the 
hyperplane. SVMs use kernel functions (Schölkopf et al., 2018) to be 
able to transform the data into a higher dimensional space such that the 
data is linearly separable, even when it would not be linearly separable 
in the original dimension of the data. The optimization problem that 
needs to be solved in an SVM is to calculate the maximum distance from 
the support vectors to the hyperplane, which can be computed through 
Langrange multipliers, and is expressed in the following equation: 

maxαi

∑N

i=1
αi −

∑N

i=1

∑N

j=1
αiαjyiyjk(xi, xj) (3)  

where xi and xj are data points, yi and yj are their respective classes, k() is 
any kernel function, N is the total number of data points and αi and αj are 
the coefficients to be maximized for which holds αi ≤ 0 and 

∑n
i=1αiyi =

0. 
With the maximized values of α, the class of a binary problem can be 

calculated via: 

yi = sign

(

b +
∑N

j=1
αjyjk(xj, xi)

)

(4)  

where b is given by: 

b =

∑N
i=1yi −

∑N
i=jαjyjk(xj, xi)

N
(5) 

SVMs are historically one of the most successful text classification 
algorithms and often outperform most other algorithms when it comes 
to text classification (Yang and Liu, 1999; Zhang and Oles, 2001; 
Mohammad et al., 2016). 

2.1.3. Naive Bayes (NB) 
NB is an algorithm in which the probability that a data point belongs 

to a specific class is computed through Bayes’ theorem, with the 
assumption that all features in the data point are independent of each 
other (Hand and Yu, 2001; Rish, 2001; Zhang, 2004). Bayes’ theorem is 
defined as follows: 

P(yi|xi) =
P(xi|yi)P(yi)

P(xi)
(6)  

where xi represents a data point and yi represents its class. 
Often, P(xi) is difficult to determine. Fortunately, it is a constant 

given the data and can therefore be omitted. With the features in xi 
assumed to be independent and the denominator omitted, the proba-
bility of a class can be calculated by estimating: 

P(yi|xi)∝P(yi)
∏M

j=1
P(xi,j|yi) (7)  

where xi,j is a feature from xi and M is the total number of features in xi. P 
(Y) and P(xi,j|Y) are estimated directly from the data. As a last step the 
probabilities over the classes are normalized such that they sum to one 
and the class with the biggest probability is taken as its final prediction. 

NB is often used in text classification as it is a fast and efficient al-
gorithm, and has proven to be effective for classifying text (Colas and 
Brazdil, 2006; Ting et al., 2011; Pratama and Sarno, 2015). 

2.1.4. Random forest (RF) 
RF is an algorithm that builds multiple binary decision trees in 

parallel to create an ensemble of decision trees to make a prediction (Ho, 
1995; Breiman, 2001; Cutler et al., 2012). At each iteration of the al-
gorithm a new tree is made, which is done in three steps. The first step is 
to select a random subset of the data with replacement, this to ensure 
each tree in the ensemble will be different and combat overfitting. Then 
a random number of features from the total set of features will be 
selected. As a third step the feature and threshold with the most error 
reduction is chosen according to the weighted Gini impurity Iwg, which is 
a metric to represent that a data point is classified incorrectly if the 
distribution of the split is followed: 

IWG =
∑B

i=1

Ni

N

(

1 −
∑

c∈C
P(C = c|Ni)

2

)

(8)  

where B is the number of branches, N is the number of data points 
distributed across the branches, Ni is the number of data points in branch 
i and C are the possible classes. Steps two and three will then be repeated 
until a branch only contains data points of one class. After all iterations 
have finished, the final prediction for each data point is made by taking a 
majority vote over all created decision trees. A single decision tree 
makes a prediction by following the path of the decision tree according 
to the given data point until it reaches an end node corresponding to a 
class. 

RFs have been shown to be an effective algorithm in the domain of 
text classification in the last decade (Xu et al., 2012; Parmar et al., 2014; 
Onan et al., 2016). 

2.1.5. AdaBoost (AB) 
AB is an algorithm that uses an ensemble of one-deep binary decision 

trees that are sequentially generated and learn from previous mistakes 
by assigning larger weights to the data points it classified incorrectly 
(Freund and Schapire, 1996; Schapire, 2013). At each iteration t the 
decision tree, representing only one feature, that has the lowest 
weighted error is selected. The error is calculated via: 

εt =
∑N

i=1
wi,t[yi ∕= h(xi)] (9)  

where xi is a data point, yi is its label, N is the total number of data points, 
wi,t is the weight associated with data point xi at time t and h() is the 
decision tree. Next, the weight of each data point is updated before the 
next iteration is executed. The weight of each data point starts at t = 1 
with 1/N and is each iteration updated according to: 

wi,t+1 =
wi,t

Z
e− yiαtht(xi) (10)  

where Z is a normalization factor and αt is defined as 1
2 ln 1− εt

εt
. The 

amount of iterations is defined as a parameter. The final prediction is a 
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weighted majority vote over all decision trees that are weighted ac-
cording to their corresponding alpha value. 

AB has been applied successfully on text classification tasks in pre-
vious research (Schapire et al., 1998; Bloehdorn and Hotho, 2004; Zhang 
et al., 2016). 

2.1.6. Gradient boosting (GB) 
GB is very similar to AB and also sequentially generates one-deep 

binary decision trees to make an ensemble of trees. However, GB does 
not update the weight of data points in order to steer the decision trees in 
the right direction, but it uses gradient descent instead (Mason et al., 
2000; Friedman, 2001; Ruder, 2016). The goal is to improve the pre-
dictions sequentially by minimizing a (differentiable) loss function using 
gradient descent by fitting each next decision tree on the residual error 
of the previous decision tree. The residual error at iteration t is calcu-
lated for each i ∈ {1, 2, …, N} as follows: 

εi,t = −

[
∂l(yi,mt− 1(xi))

∂mt− 1(xi)

]

(11)  

where N is the total number of data points, l() represents the loss func-
tion, xi is a data point, yi is its label and m() is the incremental model 
defined as: 

mt(xi) = mt− 1(xi) + γht(xi) (12)  

with γ the learning rate and h(xi) is the decision tree that minimizes the 
residual error. The number of iterations is set as a parameter. The final 
prediction is the output of the model in the last iteration. 

GB has been proven as a successful text classification algorithm in the 
last few years (Prasad et al., 2017; Ramraj et al., 2018; Alzamzami et al., 
2020). 

2.1.7. Long short-term memory (LSTM) 
LSTM is a type of neural network that is capable of learning long- 

term dependencies in the input while processing it sequentially from 
left to right (Hochreiter and Schmidhuber, 1997; Gers et al., 1999; Greff 
et al., 2016), which is especially useful when looking at text. These 
long-term dependencies are learned by keeping a memory of the input 
that was seen before. This memory is used as a second input in each layer 
of the neural network next to the standard sequential input, and is 
produced by the previous layer. The memory output of an LSTM layer at 
step t is given by: 

ct = ft ∗ ct− 1 + it ∗ c̃t (13)  

where the * operator denotes element-wise multiplication and ft, it and c 
are given by: 

ft = sigmoid(Wf xi,t +Wf ht− 1 + bf ) (14)  

it = sigmoid(Wixi,t +Wiht− 1 + bi) (15)  

c̃ = tanh(Wcxi,t +Wcht− 1 + bc) (16)  

with xi,t the input of the model from data point xi at time-step t, W the 
learned weight matrices and b the learned bias vectors. Furthermore, the 
output vector h at time step t, which together with the memory output 
will be the input for the next LSTM layer, is given by: 

ht = sigmoid(Woxt +Woht− 1 + bo) ∗ tanh(ct) (17) 

The weight matrices and bias vectors are learned during training via 
a gradient descent algorithm. The model can make a prediction by 
feeding the output of the LSTM layers to one or more so called fully 
connected layers, expressed by: 

y = σ(Wa+ b) (18)  

with y the output class, a the input to the layer and where σ can be any 

activation function, like a sigmoid or tanh. The last fully connected layer 
will output a probability for the model for each of the classes using a 
sigmoid function, where the final prediction is the class with the highest 
probability. 

With the rise of neural networks, LSTMs have become a popular and 
successful method for text classification (Khanpour et al., 2016; Nowak 
et al., 2017; Mascio et al., 2020). 

2.1.8. Bidirectional encoder representations from transformers (BERT) 
BERT is a neural network that can learn context in a sentence both 

from left to right and from right to left by processing all words from a 
sentence at the same time (Devlin et al., 2018; Jawahar et al., 2019). 
BERT consists of blocks called encoders. The amount of encoder blocks is 
a parameter of the algorithm. An encoder consists of an attention layer 
and two fully connected layers (see equation (18)). An attention layer 
calculates for each word in a sentence its relevance with the other words 
in the first encoder block, and in later blocks the relevancy for each 
element in the output vectors of the previous encoder. The attention 
layer makes use of so called multi-head attention, meaning that the 
relevancy is calculated multiple times using different learned weights, to 
simulate different perspectives on the relevancy between words. An 
attention layer is defined as follows: 

ai = (hi,1, hi,2,…, hi,M)W (19)  

with i ∈ {1, 2, …, N}, N the number of words in the sentence, h an 
attention head, M the number of chosen attention heads and W a learned 
weight matrix. The attention heads h are given by: 

hi,m =
∑N

j=1
softmaxj

(
QmxiKmxj

Z

)

Vmxj (20)  

where xi denotes the i’th word in the sentence, Q, K and V denote learned 
weight matrices and Z is a normalization factor. All weight matrices are 
learned during training via a gradient descent algorithm. 

The final prediction is made by an added fully connected layer on top 
of the model with a sigmoid function to produce a probability for each of 
the classes and selecting the one with the highest probability per sen-
tence. BERT has an advantage over other models, because it is pre- 
trained on the entire English Wikipedia5 and BookCorpus (Zhu et al., 
2015) texts. This means that it has already captured a large amount of 
text representations before it is even trained on the task at hand and will 
therefore perform better at language understanding. 

BERT is one of the newest advances in natural language modeling 
and is state-of-the-art in various text data sets (Sun et al., 2019; 
Aggarwal et al., 2020; González-Carvajal and Garrido-Merchán, 2020). 

2.1.9. Ensemble models 
Since previous research has shown a better performance of ensem-

bles of models compared to individual models, ensemble models were 
also investigated in this study. To this end, all unique ensemble com-
binations with at least two models (i.e. 247 combinations) were tested. 
The final classification by the ensembles was determined by summing 
the predicted probabilities of all involved trained models and averaging 
them. 

2.2. Data collection 

This research builds upon the data collected in two systematic re-
views performed for the NVWA to make an inventory of chemical haz-
ards in the supply chain of cereals and leafy greens (Kluche et al., 2020; 
Banach et al., 2019). An overview of their data collection procedure will 
be presented here. The literature for the systematic reviews was 
collected from Scopus and Web of Science using search queries defined 

5 https://en.wikipedia.org. 
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by experts (see Appendix B). Collected articles were subsequently 
screened by an expert based on their title and abstract and categorized as 
either i) relevant, ii) maybe relevant or iii) not relevant. A second expert 
validated the decisions of the first expert by screening 10% of the 
collected articles independently. Inconsistencies were discussed and, if 
necessary, updated in the final evaluation. The evaluation was recorded 
in an Endnote6 file, containing the metadata from each article, including 
elements like the title, abstract and authors. Only English texts were 
considered relevant during the screenings. The first systematic review 
focused on the chemical contaminants found in the food chain of cereals 
such as wheat, oat, corn, rice and barley (Kluche et al., 2020). Only raw 
materials were taken into account and not processed cereal products, 
like bread or cornflakes. For the systematic review literature from the 
years 2008–2018 was used. In total 775 articles were screened. This 
resulted in 297 articles deemed to be relevant, 387 articles deemed to be 
not relevant and 91 articles were considered maybe relevant. The second 
systematic review focused on chemical contaminants in the food chain 
of leafy greens (Banach et al., 2019). Vegetables like lettuce, cabbage, 
spinach, kale and arugula were evaluated. Literature from the years 
2009–2019 was used for the systematic review. In total 421 articles were 
screened. Of those articles, 70 articles were deemed to be relevant, 165 
articles were deemed to be not relevant and 186 articles were considered 
maybe relevant. 

To test whether the learned models used in this study are general-
izable to new data from future years which can contain topics not 
covered in the current data, the same experts who performed the sys-
tematic reviews updated the systematic review with literature up until 
February 2020. The new found literature and their relevance category 
were put in a new data set, from now on called the future set. In order to 
be able to compare future data over the same number of years for the 
two topics, it was decided to move all the literature from the original 
leafy greens systematic review from 2019 to the future set so that both 
future sets contained data from 2019 up until February 2020. This meant 
moving four relevant articles, five not relevant articles and seven maybe 
relevant articles to the leafy greens future set. 

Due to the ambiguous value of the articles that were categorized as 
maybe relevant, it was decided to not take them into account for this 
study to prevent training the machine learning algorithms on inconsis-
tent data. The articles are classified as such because they either describe 
field studies in countries not relevant for the Dutch food safety market or 
if there is a possibility useful information is mentioned about chemical 
hazards in the body text even though the article is not on the topic of 
identification of chemical hazards. These articles can be looked through 
by the experts to possibly find more information if for a certain hazard 
group not a satisfactory number of articles were found within the rele-
vant articles, but they are often not found relevant. 

This results in final data sets of 684 articles for the cereals case of 
which 297 were considered relevant (43.3%), and 226 articles for the 
leafy greens case of which 66 were deemed relevant (29.2%). The future 
set consists of 147 articles for the topic of cereals with 71 relevant ar-
ticles (48.2%) and 96 articles for the topic of leafy greens with 62 
relevant articles (64.6%). All articles were exported from Endnote to a 
BibTeX file to make the data machine-readable. From this file only the 
titles and abstracts were collected. The title and abstract were concat-
enated per article to form one data entry and the entry was labelled as 
either relevant or not relevant. 

2.3. Data preprocessing 

Preprocessing of the data is a necessary step as the algorithms need 
numerical instead of textual input. The LSTM and BERT algorithms were 
given a different preprocessing approach to the rest of the algorithms as 
they are capable of handling sequential data. The other six algorithms 

handle text data as bag-of-words representations, in which word order is 
ignored and only the unique words are kept. First, all words are con-
verted into lower-case and all symbols, numbers and stop words are 
removed. Stop words are words that carry no real semantic meaning (e. 
g. articles and prepositions) and can be removed in order to focus on the 
words that represent the subject of a text and prevent uninformative 
features. Stemming of the words was also tested as preprocessing step, 
but this did not improve performance. Next, the number of unique words 
in the text the algorithms are trained on determines the length of the 
feature vector. Each input text is represented by this feature vector filled 
with a TF-IDF feature for each unique word (Robertson and Jones, 
1976). TF-IDF features are one of the most popular features for text and 
represents the importance of a word in the entire document. In contrast 
to the frequency of a word, TF-IDF is normalized by the number of data 
points that contain the word to penalize more common words. 

In the preprocessing for the LSTM and BERT, the specific order of the 
words is kept and no stop words are deleted. All words get transformed 
to lower case and all symbols and numbers are removed. Words are then 
transformed into numerical vectors where each unique words gets a 
unique number. Neural networks require each input to have the same 
length to be able to do the computations, so each data point is padded at 
the end of the vector with padding tokens to the longest text in the data 
the algorithms are trained on. These padding tokens are ignored during 
learning, so do not influence the performance of the model. 

Data augmentation was implemented as an extra preprocessing step 
to combat the imbalance between the amount of relevant and not rele-
vant articles and increase the total amount of data available. The two 
cases used in this study only contained a few hundred data points and, in 
addition, the leafy greens case is quite imbalanced with only 29% of data 
in the relevant class. Two data augmentation techniques were imple-
mented and set as optional parameters for each algorithm: Synthetic 
minority over-sampling technique (SMOTE) (Chawla et al., 2002) and 
general synthetic over-sampling (SO). 

SMOTE generates new data points for the minority class by selecting 
a random data point in that class and updating the values in the feature 
vector so that they lie in between the original values and the values of 
one of the three nearest neighbors selected by the KNN algorithm (Fix 
and Hodges, 1951). The number of extra data points that is created via 
SMOTE is equal to the difference in data points between the minority 
and majority class. SO generates new data points for all classes inde-
pendent of their imbalance. The same technique behind SMOTE was 
used to create new data points. Twenty percent of the data points in the 
training set were used to generate new data points leading to a new 
training data set of 120% the original size. Note that when SMOTE and 
SO are used together, SMOTE will be applied first. 

2.4. Training and validation 

The two data sets for cereals and leafy greens (excluding the future 
sets) were randomly split into a training set and a test set. The training 
set consisted of 80% of the data and the test set consisted of the 
remaining 20%. The training set was trained using 5-fold cross- 
validation, where the data is split into five different parts. Each algo-
rithm is trained five times, each training round the algorithm uses four 
parts of the data as training data and one part as validation data. The 
average validation performance over the five training rounds was seen 
as the final validation performance. Performance was measured using 
three metrics: precision, recall and F1 score (Goldstein et al., 1999; 
Sokolova et al., 2006). Precision represents the probability that a data 
point is classified correctly as its class out of all data point classified as 
that class. Recall on the other hand represents the probability that a data 
point is classified correctly out of all the data points that actually belong 
to that class. Mathematically, precision (pr) and recall (re) of a class c is 
expressed as follows: 

6 https://endnote.com. 
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pr(c) =
TPc

TPc + FPc
(21)  

re(c) =
TPc

TPc + FNc
(22)  

where TPc is the number of correctly classified data points in class c, FPc 
is the number of data points that is incorrectly classified as class c and 
FNc is the data points that are not classified as class c but should have 
been. 

F1 score combines precision and recall is a single metric and is 
calculated as the harmonic mean of precision and recall: 

F1(c) = 2
pr(c)re(c)

pr(c) + re(c)
(23) 

Classifications of the data points were determined by thresholding 
the predicted probabilities by 0.5. All probabilities above and equal to 
0.5 were classified as relevant and probabilities below 0.5 were classi-
fied as not relevant. 

The final training parameters for the algorithms were determined 
based on the combination of parameters that achieved the highest 
average validation performance across the two different cases. Perfor-
mance was based on the average F1 score of the relevant and not rele-
vant class. The two data augmentation techniques, however, were 
selected per case to account for the different imbalances and number of 
data points. Each algorithm was trained using the final parameter set on 
the entire training data to create the final model. 

The final parameters of each algorithm are described below. LR was 
trained using 5 iterations and L2 regularization (Wahba, 1995) with a 
regularization factor of 0.001. The SVM was trained using a linear kernel 
and L2 regularization with a regularization factor of 1.0. NB used an 
alpha value of 1.0. RF used 1000 decision trees and considered at each 
split a random amount of features equal to the square root of the total 
number of features. AB also used 1000 decision trees. GB used 2000 
decision trees, a learning rate of 0.01 and Friedman mean squared error 
as the loss function. The LSTM consisted of four layers: An embedding 
layer, a bidirectional LSTM layer and two fully connected layers. The 
LSTM layer consisted of 12 nodes and the fully connected layers of 12 
nodes and 1 node respectively. In between each layer dropout was 
applied with a rate of 0.5. It was trained for 50 epochs with a learning 
rate of 0.0005 and a L2 regularization factor of 0.0001. The batch size 
was 32 and during training each batch was balanced across the two 
classes. BERT was initialized with the DistilBERT parameters (Sanh 
et al., 2019), which is a smaller pretrained BERT model more suitable for 
small data sets, consisting of 6 encoder blocks and 12 attention heads. 
The attention layer contains 768 nodes, the fully connected layers in the 
encoders contain 3072 nodes and the final fully connected layer contains 
2 nodes. Dropout was applied after each layer and with a rate of 0.1. It 
was trained for 3 epochs using a learning rate of 5− 5 and a one-cycle 
policy (Smith, 2018). The batch size was 2, due to the large GPU 
memory requirement of the network. 

The parameters for the data augmentation can be found in Table 1, 

and are represented by a Boolean value. True indicates that type of 
augmentation was applied for that combination of algorithm and data 
set in the final model and False means that it was not applied. In the 
cereals case, data augmentation did not lead to improved performance 
for any of the algorithms. For the leafy greens case SMOTE improved 
performance for six out of the eight algorithms, while SO improved 
performance for three algorithms. Note that SO only proved beneficial in 
sequence with SMOTE and never on its own. 

3. Results 

The performance of the trained models on the test set and the future 
set can be found in Table 2 and Table 3 for the cereals and leafy greens 
cases, respectively. Precision, recall and F1 score are shown for the 
relevant class, the not relevant class and the average across the two 
classes. The best values per column for the two sets are indicated in bold. 

For the cereals case in Table 2, LR was the best performing model 
based on the test set. It acquired the best score for seven out of the nine 
columns and has the best F1 score for both the relevant and not relevant 
classes. However, for the future set the SVM performed best. It also 
obtained the best score for seven out of nine columns and has the best 
average F1 score. For the leafy greens case in Table 3, the SVM per-
formed best on the test set. With four out of nine columns containing the 
highest score and the best F1 score across the two classes, it achieved the 
best scores among the models. For the future set, the NB model per-
formed best with the highest scores in seven out of nine columns and the 
best F1 scores in both classes. Considering the performance across the 
two cases over the two sets, the model with the highest average F1 score 
was the SVM with a score of 84.2% followed by NB with a score of 83.3% 
and BERT with a score of 83.2%. 

In addition to these eight individual models, ensemble models were 
created to test if a combination of models could lead to a better per-
formance. In total 247 combinations (representing all unique combi-
nations with at least two models) were made and tested on the test and 
future set for both the cereals and leafy green case. The results of the 
ensemble models can be found in Table 4 and Table 5 for the cereals and 
leafy greens cases, respectively. Only the top five best ensemble models 
are presented per combination of each case and set. 

For the cereal case presented in Table 4 an ensemble of NB and SVM 
achieved the best results for both the test and future set. For the leafy 
greens case presented in Table 5, the top five ensembles for the test set 
all achieved the same score, e.g. combining either AB, BERT or NB with 
SVM all yield the top score. On the future set an ensemble of AB and NB 
performed best. Considering the ensembles across the two cases over the 
two sets, there was only one ensemble that occurred in all four top five’s: 
an ensemble of NB and SVM. This ensemble achieved the best score in 
both sets of the cereals case and in the test set of the leafy greens case. All 
three scores are higher than the respective best scores achieved by the 
single models. In the future set of the leafy greens case it achieved the 
fifth best score with a difference in score of 0.8% with the best score in 
that set and it had a difference of 1.9% with the respective best score 
achieved by the single models. The average F1 score of the NB and SVM 
ensemble across the two cases over the two sets was 86.3%, which was 
the highest average across all individual models and ensemble models. 
The corresponding averages for precision and recall are 85.4% and 
85.5% for the relevant class and 86.9% and 87.9% for the not relevant 
class. This model results in an average decrease of 54.4% in the amount 
of articles the reviewer has to read and an average decrease in irrelevant 
articles of 87.9% across the cereals and leafy greens cases over the test 
set and future set. 

However, a successful model should have a high recall for the rele-
vant class to ensure that a significant number of relevant articles will not 
be omitted from the final selection. The current result of the NB and SVM 
ensemble with a relevant recall of 85.5% means that 14.5% of the 
relevant articles will not be included in the final selection and therefore 
will not be seen by the reviewer. This can be remedied by lowering the 

Table 1 
The data augmentation parameters for each of the algorithms in the two data 
cases: cereals and leafy greens.  

Algorithm Cereals Leafy greens 

SMOTE SO SMOTE SO 

AdaBoost False False True True 
BERT False False True False 
Gradient boosting False False True True 
Logistic Regression False False True False 
LSTM False False False False 
Naive Bayes False False True True 
Random forest False False True False 
Support vector machine False False False False  
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probability threshold, which will make sure articles are classified as 
relevant more quickly. This will increase the recall, but also decrease the 
precision for the relevant class. A recall of at least 95% was desired to 
warrant that a significant number of relevant articles will not be lost, 
while not being overly accepting, which would negatively affect the 
performance of the model. The first threshold to cross an average recall 
of 95% in the relevant class over the data sets was a threshold of 0.25, 
which lead to an average recall of 96.5% and an average precision of 

65.0% in the relevant class and an average recall of 57.8% and an 
average precision of 96.7% in the not relevant class (see Table 6). 
Applying this threshold results in an average decrease of 32.8% in the 
amount of articles the reviewer has to read and an average decrease in 
irrelevant articles of 57.8% across the cereals and leafy greens cases over 
the test set and future set. 

Table 2 
Performance of the trained models on the test and future set from the systematic review on cereals. Performance is shown in terms of precision, recall and F1 score for 
the relevant and not relevant class. An average across the two classes is also shown. The best values per column and set are boldfaced.  

Algorithm Set Relevant Not relevant Average 

pr re F1 pr re F1 pr re F1 

AB Test set 75.0% 76.4% 75.7% 84.0% 82.9% 83.4% 79.5% 79.6% 79.6% 
Future set 79.4% 70.4% 74.6% 75.0% 82.9% 78.7% 77.2% 76.7% 76.7% 

BERT Test set 80.0% 87.3% 83.5% 90.9% 85.4% 88.1% 85.5% 86.3% 85.8% 
Future set 91.1% 71.8% 80.3% 78.0% 93.4% 85.0% 84.5% 82.6% 82.7% 

GB Test set 81.2% 70.9% 75.7% 82.0% 89.0% 85.4% 81.6% 80.0% 80.6% 
Future set 85.5% 66.2% 74.6% 73.9% 89.5% 81.0% 79.7% 77.8% 77.8% 

LR Test set 83.9% 85.5% 84.7% 90.1% 89.0% 89.6% 87.0% 87.2% 87.1% 
Future set 90.0% 76.1% 82.4% 80.5% 92.1% 85.9% 85.2% 84.1% 84.2% 

LSTM Test set 80.4% 67.3% 73.3% 80.2% 89.0% 84.4% 80.3% 78.1% 78.8% 
Future set 90.6% 67.6% 77.4% 75.5% 93.4% 83.5% 83.0% 80.5% 80.5% 

NB Test set 76.9% 90.9% 83.3% 93.1% 81.7% 87.0% 85.0% 86.3% 85.2% 
Future set 85.7% 84.5% 85.1% 85.7% 86.8% 86.3% 85.7% 85.7% 85.7% 

RF Test set 75.4% 78.2% 76.8% 85.0% 82.9% 84.0% 80.2% 80.6% 80.4% 
Future set 87.3% 77.5% 82.1% 81.0% 89.5% 85.0% 84.1% 83.5% 83.5% 

SVM Test set 81.4% 87.3% 84.2% 91.0% 86.6% 88.8% 86.2% 86.9% 86.5% 
Future set 91.0% 85.9% 88.4% 87.5% 92.1% 89.7% 89.3% 89.0% 89.1%  

Table 3 
Performance of the trained models on the test and future set from the systematic review on leafy greens. Performance is shown in terms of precision, recall and F1 score 
for the relevant and not relevant class. An average across the two classes is also shown. The best values per column and set are boldfaced.  

Algorithm Set Relevant Not relevant Average 

pr re F1 pr re F1 pr re F1 

AB Test set 80.0% 57.1% 66.7% 83.3% 93.8% 88.2% 81.7% 75.4% 77.5% 
Future set 88.9% 64.5% 74.8% 56.9% 85.3% 68.2% 72.9% 74.9% 71.5% 

BERT Test set 70.6% 85.7% 77.4% 93.1% 84.4% 88.5% 81.8% 85.0% 83.0% 
Future set 85.9% 88.7% 87.3% 78.1% 73.5% 75.8% 82.0% 81.1% 81.5% 

GB Test set 81.8% 64.3% 72.0% 85.7% 93.8% 89.6% 83.8% 79.0% 80.8% 
Future set 85.4% 56.5% 68.0% 50.9% 82.4% 62.9% 68.1% 69.4% 65.4% 

LR Test set 76.9% 71.4% 74.1% 87.9% 90.6% 89.2% 82.4% 81.0% 81.7% 
Future set 87.8% 69.4% 77.5% 59.6% 82.4% 69.1% 73.7% 75.9% 73.3% 

LSTM Test set 62.5% 71.4% 66.7% 86.7% 81.2% 83.9% 74.6% 76.3% 75.3% 
Future set 83.9% 83.9% 83.9% 70.6% 70.6% 70.6% 77.2% 77.2% 77.2% 

NB Test set 64.7% 78.6% 71.0% 89.7% 81.2% 85.2% 77.2% 79.9% 78.1% 
Future set 84.5% 96.8% 90.2% 92.0% 67.6% 78.0% 88.3% 82.2% 84.1% 

RF Test set 81.8% 64.3% 72.0% 85.7% 93.8% 89.6% 83.8% 79.0% 80.8% 
Future set 88.1% 59.7% 71.2% 53.7% 85.3% 65.9% 70.9% 72.5% 68.5% 

SVM Test set 78.6% 78.6% 78.6% 90.6% 90.6% 90.6% 84.6% 84.6% 84.6% 
Future set 90.0% 72.6% 80.4% 63.0% 85.3% 72.5% 76.5% 78.9% 76.4%  

Table 4 
Performance of the top five best ensemble models on the test and future set from the systematic review on cereals. Performance is shown in terms of precision, recall 
and F1 score for the relevant and not relevant class. An average across the two classes is also shown.  

Ensemble top 5 Set Relevant Not relevant Average 

pr re F1 pr re F1 pr re F1 

1. NB, SVM Test set 82.0% 90.9% 86.2% 93.4% 86.6% 89.9% 87.7% 87.7% 88.0% 
2. AB, LR, NB, RF, SVM Test set 83.1% 89.1% 86.0% 92.3% 87.8% 90.0% 87.7% 88.4% 88.0% 
3. GB, NB, SVM Test set 84.2% 87.3% 85.7% 91.2% 89.0% 90.1% 87.7% 88.1% 87.9% 
4. GB, LR, NB, SVM Test set 84.2% 87.3% 85.7% 91.2% 89.0% 90.1% 87.7% 88.1% 87.9% 
5. AB, GB, NB, SVM Test set 84.2% 87.3% 85.7% 91.2% 89.0% 90.1% 87.7% 88.1% 87.9% 
1. NB, SVM Future set 91.3% 88.7% 90.0% 89.7% 92.1% 90.9% 90.5% 90.4% 90.5% 
2. AB, NB, SVM Future set 91.3% 88.7% 90.0% 89.7% 92.1% 90.9% 90.5% 90.4% 90.5% 
3. AB, SVM, NB Future set 91.0% 85.9% 88.4% 87.5% 92.1% 89.7% 89.3% 89.0% 89.1% 
4. RF, SVM, AB Future set 91.0% 85.9% 88.4% 89.3% 89.0% 89.7% 89.3% 89.0% 89.1% 
5. NB, RF, SVM Future set 91.0% 85.9% 88.4% 87.5% 92.1% 89.7% 89.3% 89.0% 89.1%  
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4. Discussion 

Eight different machine learning algorithms (LR, NB, SVM, RF, AB, 
GB, LSTM and BERT) were implemented and trained on the data of the 
screening stage of two different systematic review cases: chemical haz-
ards in cereals and chemical hazard in leafy greens. The trained models 
and all possible unique ensemble combinations of these models were 
tested on a held-out set of the data for evaluation. It was shown that an 
ensemble of NB and SVM performed best across all single models and 
ensembles. Across the two cases and the two sets, the ensemble resulted 
in an average decrease of 32.8% in the amount of articles the reviewer 
has to read and an average decrease in irrelevant articles of 57.8% when 
adhered to a recall of 95%. The reduction of articles could even be 
increased if lower levels of recall are acceptable, but this can lead to a 
less complete systematic review as some relevant articles will be missed. 
Increasing the recall to 100% would also not be advisable as this would 
enforce the model to be overly accepting, resulting in a negative effect 
on the overall performance. Furthermore, since the class labels of the 
data were set by human reviewers, who can make mistakes in their 
labelling during systematic reviews (Wang et al., 2020), it is better to 
allow a bit of room in the recall of the model. 

Even though the number of articles to be screened in a systematic 
review on the domain of food safety is relatively small, reducing the 
burden of screening with a machine learning model will still have a 
positive impact. The expert will have to spend less hours scanning 
through articles, which saves costs and lessens the monotonous part of 
writing a systematic review. Furthermore, since the process of data 
collection from literature databases like Scopus and Web of Science can 
be automated through their APIs, a system that collects and classifies 
new articles automatically can be set up. This way articles classified as 
relevant can be shown to the experts in real-time, so they can stay on top 
of the topic and make a more informed decision if a new systematic 
review is needed because of changes in the respective food supply chain. 

The good performance of the ensembles compared to the single 
models shows the power of combining multiple models together. The 
SVM and NB were the two best single performing models, but still were 
able to complement each other to increase performance in the ensemble. 

The averaging across the probabilities ensured some mistakes made by 
one model to be corrected by the other. It must be noted that the se-
lection of the specific ensemble is very important. Different ensembles 
performed well on each data set, the ensemble of the SVM and NB was 
the only ensemble present in all top five best ensembles across the 
different data sets. It is apparently not sufficient to just combine two or 
more well performing models to create an ensemble that performs better 
than the models separately. However, for a systematic review data set 
with only hundreds of articles an ensemble of an SVM and NB has proven 
to perform consistently well and would be a good choice. 

Comparing the classifications of the individual models does show a 
trend in what articles are classified correctly and incorrectly. Articles 
that not discuss chemical contaminants, but instead discuss microbio-
logical contaminants or quality of product, will almost always be clas-
sified as not relevant. This holds for literature describing the 
development of a novel detection method that could be used for 
chemical contaminants or the effect of the contaminants on human 
health as well. Contrarily, articles solely describing the concentration of 
chemical contaminants found in cereals and leafy greens will mostly be 
classified as relevant. It gets difficult when articles discuss chemical 
contaminants, but don’t fall in the scope of the review. Examples of this 
are chemical contaminants in processed products, the effects of chemical 
contaminants on growth and yield, or risk management systems, which 
often are falsely classified as relevant. Reversely, articles discussing both 
microbial and chemical hazards or new detection methods that are 
applied in the field directly can be falsely classified as not relevant. 
These more difficult articles are the distinguishing factor between the 
performance of the models. 

The success of the SVM both as a single model and combined in an 
ensemble is in line with previous work, where four out of the six studies 
were most successful with an SVM (Wallace et al., 2010; Bekhuis and 
Demner-Fushman, 2012; García Adeva et al., 2014; Timsina et al., 
2016). SVMs have historically always performed well on text classifi-
cation (Yang and Liu, 1999; Zhang and Oles, 2001; Mohammad et al., 
2016), because of their ability to generalize well on a large number of 
features (Joachims, 1998; Leopold and Kindermann, 2002). However, 
they have since been surpassed by neural network models like LSTM and 

Table 5 
Performance of the top five best ensemble models on the test and future set from the systematic review on leafy greens. Performance is shown in terms of precision, 
recall and F1 score for the relevant and not relevant class. An average across the two classes is also shown.  

Ensemble top 5 Set Relevant Not relevant Average 

pr re F1 pr re F1 pr re F1 

1. AB, SVM Test set 78.6% 78.6% 78.6% 90.6% 90.6% 90.6% 84.6% 84.6% 84.6% 
2. BERT, SVM Test set 78.6% 78.6% 78.6% 90.6% 90.6% 90.6% 84.6% 84.6% 84.6% 
3. NB, SVM Test set 78.6% 78.6% 78.6% 90.6% 90.6% 90.6% 84.6% 84.6% 84.6% 
4. AB, BERT, SVM Test set 78.6% 78.6% 78.6% 90.6% 90.6% 90.6% 84.6% 84.6% 84.6% 
5. AB, NB, SVM Test set 78.6% 78.6% 78.6% 90.6% 90.6% 90.6% 84.6% 84.6% 84.6% 
1. AB, NB Future set 84.3% 95.2% 89.4% 88.5% 67.6% 76.7% 86.4% 81.4% 83.0% 
2. LR, NB, SVM Future set 91.1% 82.3% 86.4% 72.5% 85.3% 78.4% 81.8% 83.8% 82.4% 
3. BERT, NB Future set 85.1% 91.9% 88.4% 82.8% 70.6% 76.2% 83.9% 81.3% 82.3% 
4. AB, BERT, NB Future set 85.1% 91.9% 88.4% 82.8% 70.6% 76.2% 83.9% 81.3% 82.3% 
5. NB, SVM Future set 89.7% 83.9% 86.7% 73.7% 82.4% 77.8% 81.7% 83.1% 82.2%  

Table 6 
Performance of the best ensemble model (NB and SVM) with a threshold of 0.25 on the test and future set from the systematic review on cereals and leafy greens. 
Performance is shown in terms of precision, recall and F1 score for the relevant and not relevant class. An average across the two classes and an average across the data 
sets is also shown.  

Case Set Relevant Not relevant Average 

pr re F1 pr re F1 pr re F1 

Cereals Test set 57.1% 94.5% 71.2% 93.5% 52.4% 67.2% 75.3% 73.5% 69.2% 
Future set 71.4% 98.6% 82.8% 98.0% 63.2% 76.8% 84.7% 80.9% 79.8% 

Leafy greens Test set 52.0% 92.9% 66.7% 95.2% 62.5% 75.5% 73.6% 77.7% 71.1% 
Future set 79.5% 100.0% 88.6% 100.0% 52.9% 69.2% 89.7% 76.5% 78.9% 

Average  65.0% 96.5% 77.3% 96.7% 57.8% 72.2% 80.8% 77.2% 74.8%  
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BERT as the state-of-the-art (Lee and Dernoncourt, 2016; Mascio et al., 
2020; Hu et al., 2020). Nonetheless, neural networks often only perform 
optimally when there is a large data set. In the present study, the amount 
of data is limited, which would explain why the more traditional models 
like SVM and NB perform better. 

The amount of data can also explain why the presented F1 scores are 
higher for the cereals case than for the leafy greens case as the training 
data had a size of 547 and 180 articles, respectively. Interestingly, this 
difference in F1 scores almost disappears when lowering the threshold to 
0.25 for the ensemble of NB and SVM. This suggests that the models are 
less certain of their classification in the leafy greens case by attributing a 
lower probability to articles belonging to the relevant class, possibly 
because the models had less data to train on. The fact that at a lower 
threshold the leafy greens models achieve similar F1 scores to the cereals 
models indicates that even cases with a low amount of data can improve 
from automatic classification through machine learning. 

One of the strengths of combining a machine learning model with a 
human reviewer lies in the fact that the model can keep improving with 
each use. After the model has made the initial selection of possible 
relevant articles from a new unseen data set, the human reviewer will 
produce a final ‘correct’ selection. This final selection of relevant and not 
relevant articles can be added to the training data of the model and 
increase the amount of data the model can train on. More data leads to 
improved performance and will decrease the amount of not relevant 
articles with the next use. 

A limitation of the current work is that a model is trained per case, 
meaning that there needs to be training data available from that exact 
case from a previous systematic review. Moreover, the reviewer needs to 
have saved both the articles that were considered relevant and not 
relevant in order for the data to be useful. For new topics, the approach 
reported in this study is unfortunately not applicable out of the box. The 
reviewer will first need to spend some time labelling a good part of the 
data before a model can be trained and applied. However, there are tools 
available to aid a reviewer in screening the data in a way that not all data 
has to be seen with the use of machine learning, e.g. RobotAnalyst 
(Przybyła et al., 2018), SWIFT-Active (Howard et al., 2020) or ASReview 
(van de Schoot et al., 2021). These tools can reduce the time to label an 
article data set considerably by actively learning to identify relevant 
articles during the screening process and discarding the not relevant 
ones. 

An additional limitation of this research is that the articles classified 
as maybe relevant were discarded from the training data. Ideally, all 
data should be incorporated in the training of the model as either rele-
vant or not relevant to cover all possible input. Due to the ambiguous 
nature of the articles classified as maybe relevant, this was not possible 
currently, but in future it would be best to entangle the articles in this 
class and move them to either the relevant or not relevant set. 

For future research, it could be investigated whether it is beneficial 
for performance to train a model on all available data independent of the 
case to create a model that detects general relevant food safety litera-
ture. It was observed that in the used data the context of the relevant 
cereals and leafy greens articles was very similar. Combining different 
cases together will lead to more data to train the model on, presumably 
leading to better performance, and could especially be beneficial for 
those cases that have little to no data available. Another approach that 
could be investigated for cases that have no previous data available is 
unsupervised learning, where labels are not required. Instead the articles 
would be clustered according to how similar they are in terms of words, 
topics or context. 

In this study, only two systematic reviews could be included. Future 
work could apply the models to more systematic reviews covering a 
wider range of topics to investigate whether the results stay consistent. 
Furthermore, only the title and abstract were used, being the informa-
tion the human reviewers base their assessment on. It is understandable 
that reading the entire article to determine its relevancy is infeasible for 
human reviewers, however, for a computer this poses less of a problem. 

Additional research can be done to explore the possibility of using (part 
of) the full article text as input for the classification models instead of 
using only the abstract. Access to full-text articles was historically quite 
limited, but with the push towards open science, more full-texts are 
steadily becoming available. Tools that convert PDF to text can be used 
to access the raw texts of the articles if those are not available. Research 
in extracting text from specifically PDFs of scientific articles has also 
been performed (Ramakrishnan et al., 2012; Tkaczyk et al., 2015; Yu 
et al., 2020). Challenges still exist when it comes to automatically 
parsing tabular and graphical content, but approaches have been 
developed to overcome these issues (Clark and Divvala, 2016; Singh 
et al., 2018; Siegel et al., 2018). 

In order to save more time and automate more of the systematic 
review process, future work could also focus on also automatically col-
lecting the relevant parts of the text from the selected relevant articles. 
For example by retrieving those paragraphs or sentences most likely to 
contain useful information by looking for certain sections and keywords. 
This would decrease time spent screening through the parts of the article 
that are not of importance to the review and present the reviewer with a 
better overview of the content. 

5. Conclusion 

In this study, the application of machine learning was demonstrated 
for the automatic classification of literature in systematic reviews on 
food safety. It was shown that the applied models are successful in the 
reduction of irrelevant articles, while retaining high percentages of 
relevant articles. Multiple machine learning algorithms and all possible 
ensemble combinations were tested and it was concluded that an 
ensemble of naive Bayes and a support vector machine performed best 
overall. By including a set with future literature, it was shown that the 
results do not only apply on the literature from the period the model 
trained on, but also on literature from the foreseeable future. The pos-
itive results show that human reviewers in a systematic review on food 
safety can benefit from using machine learning to do automatic classi-
fication of the literature, as it can save valuable time but does not 
comprise the completeness of the review. 
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Appendix A 

The code and data used in this study can be found on https://github. 
com/WFSRBigData/systematic-review-classification. 
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Appendix B 

The search queries used by Kluche et al. (2020) and Banach et al. 
(2019) to collect the data for the systematic reviews can be found below. 
The data collection for the cereals case was done with two queries of 
which the results where combined together in one data set. 

Cereals: 

Search-query 1: 
In title: cereals or oat* or barley or rice or millet or rye or sorghum or 

wheat or maize or corn or poaceae or glycine or buckwheat or fonio or 
triticale. 

AND 
In title, abstract, keywords: “food contamination” OR “chemical 

pollutant*” OR “chemical hazard*” OR contamina* OR toxin* OR “toxic 
substance*” OR “toxic compound*” OR pollutant* OR “agricultural 
chemical*” OR “chemical compound*” OR “chemical substance*” OR 
residu* 

AND 
In title, abstract, keywords: “public health” OR “HACCP” OR “con-

sumer protection” OR consumer* OR “food safety” OR “risk assess-
ment*” OR “risk analys*” OR “hazard analys*” OR “human health*” OR 
“health impact” OR “health risk*” 

AND NOT 
In title, abstract, keywords: pathogen* OR streptococcus OR listeria 

OR virus OR bacillus OR salmonella OR clostridium OR staphylococcus 
OR outbreak OR “foodborne disease*” OR environment* OR ecological 
OR bioavailability OR “water management” OR soil OR nutritional* 

AND NOT 
In title: fung* OR method* OR experiment* OR analytic* OR model* 
AND 
Publication year: 2008–2018. 

Search-query 2: 
In title: cereals or oat* or barley or rice or millet or rye or sorghum or 

wheat or maize or corn or poaceae or glycine or buckwheat or fonio or 
triticale. 

AND 
In title, abstract, keywords: “food contamination” OR “chemical 

pollutant*” OR “chemical hazard*” OR contamina* OR toxin* OR “toxic 
substance*” OR “toxic compound*” OR pollutant* OR “agricultural 
chemical*” OR “chemical compound*” OR “chemical substance*” OR 
residu* 

AND 
In title, abstract, keywords: “public health” OR “HACCP” OR “con-

sumer protection” OR consumer* OR “food safety” OR “risk assess-
ment*” OR “risk analys*” OR “hazard analys*” OR “human health*” OR 
“health impact” OR “health risk*” 

AND NOT 
In title: pathogen* or streptococcus or listeria or virus or bacillus or 

salmonella or clostridium or staphylococcus or outbreak or “microb* 
contamin*” or “foodborne disease*” OR fung* or method* OR experi-
ment* OR analytic* OR model* OR environment* or ecological. 

AND 
Publication year: 2008–2018. 
AND 
Document type: review. 

Leafy Greens: 

Search-query: 
In title: brocco* OR cauliflower* OR sprout* OR cabbage* OR 

chicory OR spinach* OR “turnip top*” OR “turnip green*” OR kale OR 
chard OR lettuce* OR endive OR escarole* OR “leafy vegetable*” OR 
“green vegetable*” OR “leafy vegetable*” OR salad OR choi OR choy OR 

artichoke OR arugula OR “beet green” OR bitterleaf OR celery OR cel-
tuce OR “collard green*” OR *cress* OR epazote OR “garden rocket” OR 
komatsuna OR “mizuna greens” OR “mustard green*” OR “leaf 
mustard*” OR radicchio OR rapini OR tatsoi OR chaya OR chickweed OR 
“Chinese mallow” OR Chrysanthemum OR “fat hen” OR “fluted pump-
kin” OR samphire OR “Greater plantain” OR “jute plant” OR karkalla OR 
“Lagos bologi” or orache OR purslane OR rucola OR sculpit OR stridolo 
OR soko OR “spleen amaranth”. 

AND 
In title, abstract or keywords: “food contamination” OR “chemical 

pollutant*” OR “chemical hazard*” OR contamina* OR toxin* OR “toxic 
substance*” OR “toxic compound*” OR pollutant* OR “agricultural 
chemical*” OR “chemical compound*” OR “chemical substance*” OR 
residu* 

AND 
In title, abstract or keywords: “public health” OR “HACCP” OR 

“consumer protection” OR consumer* OR “food safety” OR “risk 
assessment*” OR “risk analys*” OR “hazard analys*” OR “human 
health*” OR “health impact” OR “health risk*” 

AND 
In title: pathogen* OR streptococcus OR listeria OR *virus* OR ba-

cillus OR salmonella OR clostridium OR staphylococcus OR outbreak OR 
“foodborne disease*” OR fung* OR campylobacter OR “Escherichia coli” 
OR “E. coli” OR model* OR analytic* OR microbio* OR bacteri* OR 
virol* Or nutri* 

AND 
Publication year: 2009–2019. 
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