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Abstract
Machine learning (ML) has proven to be a useful technology for data analysis and
modeling in a wide variety of domains, including food science and engineering.
The use of ML models for the monitoring and prediction of food safety is grow-
ing in recent years. Currently, several studies have reviewed ML applications on
foodborne disease and deep learning applications on food. This article presents
a literature review onML applications for monitoring and predicting food safety.
The paper summarizes and categorizes ML applications in this domain, catego-
rizes and discusses data types used for ML modeling, and provides suggestions
for data sources and input variables for future ML applications. The review is
based on three scientific literature databases: Scopus, CAB Abstracts, and IEEE.
It includes studies that were published in English in the period from January
1, 2011 to April 1, 2021. Results show that most studies applied Bayesian net-
works, Neural networks, or Support vector machines. Of the various MLmodels
reviewed, all relevant studies showed high prediction accuracy by the validation
process. Based on the ML applications, this article identifies several avenues for
future studies applying ML models for the monitoring and prediction of food
safety, in addition to providing suggestions for data sources and input variables.
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1 INTRODUCTION

Along the food supply chain, food products may become
contaminated with various types of safety hazards, includ-
ing biological hazards (e.g., bacteria, viruses, and para-
sites), chemical hazards (e.g., heavymetals, pesticides, and
mycotoxins), or physical hazards (e.g., metal fragments
and pieces of glass) (van der Fels-Klerx et al., 2015). The
presence of these hazards can affect the safety of food

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2021 The Authors. Comprehensive Reviews in Food Science and Food Safety published by Wiley Periodicals LLC on behalf of Institute of Food Technologists

or feed products, with potentially detrimental effects on
human and animal health (ISO, 2016). Monitoring poten-
tial food safety hazards along the entire food supply chain
is important in order to guarantee the correct function-
ing of food safety management systems (ISO, 2013) and
thus the safety of food and feed (Focker et al., 2018; van
Asselt et al., 2018). In this context, food safety monitoring
is defined as the mechanism of conducting regular inspec-
tions for the presence of food safety hazards in order to
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verify that procedures are being executed correctly and
that food safety regulations are being followed properly.
A monitoring plan that describes what will be monitored
(includingwhich food products andwhich food safety haz-
ards) and how this will be done (including how many
samples will be collected and how they will be prepared
and analyzed) is essential to the implementation of food
safety monitoring. Food safety prediction here is defined
as a model-based process that seeks to predict future food
safety events or outcomes by analyzing patterns from his-
torical food safety and other related data. The process of
setting up food safety monitoring plans, and particularly
the parts relating to identifying the products and hazards
that should be assessed, could benefit from early warning
and predictive modeling approaches (Geng et al., 2017; Liu
et al., 2010). Such approaches can make use of historically
collected monitoring data, as well as previous experiences
and other available information, and use these to provide
an assessment on the food safety hazards and/or products
that should be prioritized for monitoring, as well as on
when and where monitoring should be performed along
the food supply chain. Combining various types of infor-
mation and using these in prediction approaches could
improve the quality and cost-effectiveness of monitoring
and the reliability of prediction of food safety hazards. The
White Paper on Food Safety published by the European
Commission (2000a) states that the integration of data
sources on food safety and the analysis of such data are
the two guiding principles for comprehensive and effective
food safety monitoring.
Machine learning (ML) is a relatively new method that

has been proven to be capable of combining various types
of data, including structured data and unstructured data1
(Géron, 2019), in this case relating to the presence of food
safety hazards to make predictions about food safety. With
ML, computers are programmed to “learn” from input data
available to them. Learning is the process (based on a learn-
ing algorithm) of converting the input of experience (e.g.,
historical data) into the output of expertise (e.g., classi-
fication and prediction) (Alpaydin, 2010; Murphy, 2012;
Shalev-Shwartz & Ben-David, 2014). ML models for pur-
poses of monitoring and predicting food safety have been
used in several studies (Bouzembrak et al., 2018; Geng
et al., 2017; Liu et al., 2018), demonstrating ML modeling
is a promising tool for addressing the task of food safety
monitoring and prediction.
Although the use of ML models can assist the tasks of

monitoring and predicting food safety, they are not widely
applied within this context. Important reasons include (1)
the very recent and rapid development of ML methods;

1 The definitions of structured data, unstructured data, and ML algo-
rithms are explained in Section 3.

(2) the dispersion of data relating to food safety across
the domains of food, health, and agriculture, as well as
other domains that are less directly related to food safety,
which complicates the selection of data sources (Marvin,
Bouzembrak, Janssen et al., 2017); (3) the difficulty of
determining which variables can be linked together for
ML modeling in order to achieve satisfactory results; and
(4) food safety records are still not digitized in many cases
making it difficult to use such records for ML. Several
reviews are available on ML applications to food safety.
A recent overview presents emerging ML applications
in food safety mainly focusing on foodborne2 pathogens
and foodborne disease (Deng et al., 2021). Other reviews
present deep learning applications in food (Zhou et al.,
2019), ML techniques using text mining for food science
and nutrition (Tao et al., 2020), and ML applications on
tracing the source of foodborne disease (Wheeler, 2019).
Finally, one review focuses on data derived from nonde-
structive3 food analytical techniques (Ropodi et al., 2016).
However, an overview of ML applications in monitoring
and prediction of food safety is not yet available.
To facilitate the application of ML within the context

of food safety monitoring and prediction, and to provide
insight for future studies, this article presents a literature
review aimed to retrieve relevant ML applications to food
safety, to categorize and summarizeMLapplications in this
domain, to categorize and discuss data types used for ML
modeling, and to provide suggestions for data sources and
input variables for ML modeling. This review provides a
starting point for future studies that wish to apply ML to
food safety monitoring and prediction.

2 MATERIALS ANDMETHODS

2.1 Literature search

The literature search focused on studies applying ML
models within the context of food safety monitoring and
prediction. A systematic literature review was performed
according to the guidance of systematic reviews devel-
oped by the European Food Safety Authority (2010). The
review focused on peer-reviewed publications published
in English in the period from January 1, 2011 to April 1,
2021. Three different electronic databases were used to col-
lect the relevant publications from the scientific literature:
Scopus, CAB Abstracts, and IEEE. These databases were
selected to provide a sufficiently large initial sample of rel-
evant articles. The type of publication was restricted to

2 Foodborne: caused by contaminants, such as toxic substances or
pathogenic microorganisms, in food.
3 Nondestructive: technique that does not involve the removal of a sample.
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published peer-reviewed primary research articles from
journalswith an ISI impact factor. The database searchwas
performed in April 2021. Search strings and selection crite-
ria were predefined and adjusted during the search, when
necessary.

2.1.1 Search criteria and search strings

The search focused on studies on ML model applications
in food safety monitoring and food safety prediction. A
combination of search terms was applied to the title, key-
words, and abstract of the publications. The search strings
include subclasses for the various types of ML models:
“machine learning” or “artificial intelligence” or “deep
learning” or “supervised learning” or “decision tree” or
“random forest” or “naive bayes” or “bayesian network” or
“bayesian belief network” or “support vector machine” or
“ensemble method” or “ensemble learning” or “boosting”
or “gradient boost” or “bagging” or “k-nearest neighbor”
or “neural network” or “unsupervised learning” or “prin-
cipal component analysis” or “k-means” or “association
rule” or “clusteringmethod” or “association rule learning”
or “semi-supervised learning” or “reinforcement learning”
or “q-learning” or “temporal difference” (Ru et al., 2017).
The general term “food safety” was included in the search
strings, even though the focus of the study was monitoring
and predicting food safety hazards/risks. This was due to
the difficulty of clearly defining the search strings relating
to these specific aspects of food safety while not excluding
too many relevant articles. The use of more general terms
yielded a larger set of references,whichwere then screened
for relevance to the topic of the study in the next step.

2.1.2 Search process

The selected relevant references were collected and stored
in an Endnote file, which was used as a working database
for storing the initially retrieved set of references and for
sorting the included and excluded references based on the
application of the aforementioned selection criteria. Refer-
ences retrieved from the various databases were combined
and subsequently screened in the following steps: (a)
duplicate references were removed; (b) both relevant ref-
erences and “possibly relevant” references were selected—
and nonrelevant references excluded—based on reading
the title, keywords, and abstract, using the selection crite-
ria mentioned above; (c) the groups of relevant references
and “possibly relevant” references were then further
evaluated by reading the full texts, and those that met the
selection criteria were retained. Following the suggestion
of reviewers, several valuable articles suggested, not con-

taining the abovementioned search strings but relevant to
our topic, were added. All studies meeting the selection
criteria were retained and used in the present review.

2.2 Classification of the relevant
publications

The studies included in the final selection were classified
into categories according to their field of application, type
of data used, and type of ML model used.

3 RESULTS AND DISCUSSION

3.1 Literature search

The literature review process yielded a total of 1162 ini-
tial references, including 804 from Scopus, 299 from CAB
Abstracts, and 59 from IEEE. From the initial set of ref-
erences, 125 duplicate references (due to the use of three
databases) were eliminated. Evaluation of the remaining
1037 references yielded 210 (possibly) relevant references
(including relevant and possibly relevant articles). After
reading the full text (or parts thereof) of these 210 articles,
114 references were selected as relevant and were used in
the further analysis of this study.

3.2 Overview of studies

An overview of the selected publications (numbers per
year and per food safety hazard type) is presented in
Figure 1. As can be seen from this figure, most articles
have been published in the period 2017−2021 (until April 1,
2021), showing that the use of ML models for the monitor-
ing and prediction of food safety has been growing rapidly
in recent years. With regard to the type of food safety haz-
ard studied, 36 of the included studies focus on biological
hazards, 22 studies on chemical hazards, two studies on
physical hazards, 16 studies on food fraud, and 38 studies
on general or other aspects of food safety hazards.
Figure 2 shows the classification structure of the rele-

vant articles, with selected publications classified into four
categories of application: 60 articles focused on predic-
tion and monitoring of one or some specific food safety
hazards, 38 articles focused on prediction and monitoring
of food safety hazards and events in general, 16 articles
focused on food fraud, and 10 articles focused on traceabil-
ity of food safety hazard in general. Data types used were
classified into two groups: 48 articles focused on struc-
tured data, and 66 articles focused on unstructured data.
ML algorithms mostly used for analyzing structured data
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F IGURE 1 (a) Number of selected publications per year. (b) Number of selected publications per hazard category

F IGURE 2 Classification structure of the relevant literature
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were Bayesian network (BN), Neural network (NN), Sup-
port vector machine (SVM), and Decision tree (DT). ML
algorithms mainly used for analyzing unstructured data
included various types of NN. In Sections 3.3–3.5, results of
the evaluation and classification of the articles according to
ML model type (Section 3.3), food safety application field
(Section 3.4), and type of data (Section 3.5) are reported and
discussed, along with examples for each classification cat-
egory and the main practical significance of the studies.

3.3 Introduction of ML algorithms

3.3.1 ML algorithms using unstructured
data

The most frequently used ML algorithms to analyze
unstructured data include various types of NN. For exam-
ple, convolutional neural network (CNN) is used to ana-
lyze image data and recurrent neural network (RNN) is
used to analyze text data. The ML algorithms used to ana-
lyze unstructured data related to food safety have recently
been reviewed by Zhou et al. (2019). The reader is referred
to this review for detailed information.

3.3.2 ML algorithms using structured data

Of the MLmodels covered in our literature search, the rel-
evant studies mostly apply four different basic ML models
being BN, NN, SVM, and DT, as well as various combina-
tions of these basic ML models (e.g., PCA combine with
NN), ensemble model (e.g., random forest [RF]), or vari-
ous derived model types (e.g., extreme learning machine
[ELM]). This section provides a brief introduction to each
of the four basic ML methods used in the selected publi-
cations. Examples from the publications retrieved are pre-
sented to provide an overview of the validation accuracy of
the ML model.

Bayesian network
A BN model (including the Bayes classifier) (Bouzembrak
& Marvin, 2016; Bouzembrak & Marvin, 2019; Bouzem-
brak et al., 2018; Liu et al., 2018; Marvin, Bouzembrak,
Hendriksen, et al., 2017; Marvin et al., 2016; Sun et al.,
2013) is a graphic model containing nodes (with corre-
sponding probability distributions) representing variables
and directed arcs connecting the variables (with condi-
tional distributions) (Nielsen & Jensen, 2009). A condi-
tional distribution is assigned between each node cate-
gory and its parent nodes. The probability distribution of
each node can be obtained from expert opinion, statisti-
cal models, empirical data, simulations, reports, or articles

(Buriticá & Tesfamariam, 2015). A BN is able to describe
the interactions between variables, in addition to quan-
tifying and characterizing complex outcomes (Nielsen &
Jensen, 2009). It is a supervised model for both regression
and classification problems, and it is easy to understand
and capable of dealingwith incomplete datasets. The struc-
ture of a BN model can be built according to expert opin-
ion, and it can be supplemented with variables incorpo-
rating managerial decisions (Bouzembrak et al., 2018; Liu
et al., 2018; Uusitalo, 2007). Liu et al. (2018) apply a BN
model to predict the level of the mycotoxin deoxynivalenol
(DON) in wheat in the Netherlands using an incomplete
input dataset. The results indicate an accuracy level of 86%
for the BN model. In an exploration of a BN modeling
approach, Marvin et al. (2016) apply expert knowledge to
predict the occurrence of food fraud incidents. The level
of model prediction accuracy was 91.5%. Results demon-
strate how expert knowledge and quantitative historical
data can be combined within a model to help risk man-
agers to identify the factors that influence food fraud and
to improve understanding concerning interrelationships
between these factors. Bouzembrak et al. (2018) develop a
BN model to predict the most important food safety haz-
ards and food products, with the aim of establishing a food
safety monitoring program for herbs and spices. The pre-
diction accuracy level, as assessed through model valida-
tion, exceeded 85%. The authors report that the BN model
can be easily updated as new data becomes available, and
it can be updated continuously by adding new variables to
reflect new information.

Neural network
A NN model (Geng et al., 2017, 2019; Pham et al., 2005;
Wang et al., 2017; Zhang et al., 2018) is based on a directed
graph model with edges and nodes. The nodes corre-
spond to neurons, and edges correspond to links between
nodes. As input, each neuron receives the weighted sum
of the output of the neurons connected to its entry edges.
All neurons join together to carry out complex compu-
tations through communication links (Shalev-Shwartz &
Ben-David, 2014). The output value of variables (nodes)
for a new instance can be predicted according to the non-
linear combination of the values of several input variables
and intermediary layers. NN, a supervised model for both
regression and classification problems, is capable of deal-
ing with incomplete datasets. It is characterized by the
property of fault tolerance (i.e., corruption of one or more
cells of NN does not prevent it from generating output).
The NN model is regarded as a “black box,” meaning that
it is difficult to explain how and why it arrives at a given
output (Chan et al., 2001; Paliwal & Kumar, 2009; Pan
et al., 2008; Poddar et al., 2018). Geng et al. (2017) propose
an analytic hierarchy process integrated extreme learning
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machine (AHP-ELM) aimed at building a prediction and
optimization model for food safety inspection. An ELM is
one type of NN and, for that study, the number of nodes
in the input layer, output layer, and hidden layers was
set at 11, 3, and 20, respectively. The proposed model is
used to analyze food safety inspection data with complex,
discrete, high-dimensional, and nonlinear properties. The
accuracy and training time are verified using randomly
selected 10% unused data. The average relative general-
ization error (0.5%) is nearly 20 times faster than the tra-
ditional artificial neural network (ANN) approach, with
training time being 468 ms (nearly 10 times faster than the
ANN approach). Zhang et al. (2018) report on an explo-
ration of an ELMmodel to predict food safety risks in dairy
products. The model is validated using the unused half of
the same dataset, and the results reveal a network predic-
tion accuracy level of 86% for the ELM network.

Support vector machine
A SVMmodel is constructed by assigning new examples to
one category or the other by searching for “large margin”
(i.e., distance to the closest data belonging to a class) sep-
arators. In the SVM, a training dataset is divided into two
sides, separated by a half-space (hyperplane), with a large
margin. The SVM is thus a nonprobabilistic binary lin-
ear classifier, with the better hyperplane having the lower
functional margin; such greater margins are associated
with lower levels of classification error (Cortes & Vap-
nik, 1995). The SVM uses direct decision functions that
were originally designed for binary classification, although
some researchers have since proposed an extension tomul-
ticlass classification (Duan & Keerthi, 2005). Given that
restricting the model algorithm to generate a large mar-
gin separator can result in low sample complexity, the SVM
model works well in high-dimensional problems (Shalev-
Shwartz. & Ben-David., 2014). To obtain the best classifica-
tion results, however, several key parameters of the SVM
modelmust be set correctly, and this is not easy (Abe, 2005;
Anguita et al., 2010; Pan et al., 2008; Weston & Watkins,
1999). Ma and et al. (2016) apply a parallel SVM model to
explore a model of risk assessment for dairy production.
The study is based on several data sources, including ana-
lytical data relating to dairy products, including the con-
centration of related factors (e.g., protein, sodium). Model
prediction accuracy was as high as 90%.

Decision tree
ADT is a tree-like structure composed of leaves, branches,
and internal nodes. Each leaf node represents a class label,
with each branch representing the relationship of attribu-
tion and each internal node representing a “test” of an
attribute. The classification rules are represented by the
paths from the root to the leaf (Shalev-Shwartz & Ben-

David, 2014). A DT is a supervised model for both regres-
sion and classification problems, and it can be easily under-
stood. Although it yields the most optimal solution, it does
not necessarily yield the globally optimal solution. The tree
structure may become highly complex when training with
complex datasets. Wu et al. (2019) use agricultural veg-
etable planting data to construct a DTmodel to early iden-
tify vegetable disease, thereby enhancing the quality and
safety of crops. The results indicate a high level of accu-
racy for the DT model: 98.8%. An RF is an ensemble learn-
ingmethod on the basis of DT classifiers. An RF constructs
a multitude of DT on various subsamples of the dataset in
model training, and output the class that is the average pre-
diction of the individual trees. A RF aims to improve the
predictive accuracy of DT and control over-fitting.

Clustering and principal component analyses
Clustering and principal component analyses are both
unsupervised ML techniques (Géron, 2019) and they are
also traditional statistical methods. Because they have
been widely discussed in the traditional statistical field,
this review will not discuss them in detail.

3.3.3 ML algorithms validation

In ML, model validation is referred to as the process in
which a trained model is evaluated using a test dataset,
which is a separate dataset that is not used to train the
model (Alpaydin, 2010). Model validation includes inter-
nal and external validation, which can be interpreted into
model reproducibility and model transportability (Altman
& Royston, 2000). Internal validation is able to represent
the model’s reproducibility by running the model across
unused data from the same target population. External
validation is able to represent the model transportabil-
ity by running the model across unused data from dif-
ferent but related populations. External validation is also
able to represent reproducibility when the training data
and test data have a very similar case mix. For inter-
nal validation, model performance was evaluated across
test dataset from the whole dataset. Various methods
can be applied, including random subsampling, k-fold
cross-validation, and bootstrapping. Random subsampling
involves sampling a training set and a test (i.e., valida-
tion) set independently, which is equivalent to partitioning
the dataset randomly into two sections (such as 80/20). In
k-fold cross-validation, the training set is divided into k
subsets (folds). The ML model is trained on the other k – 1
folds (except the kth fold), after which the validation (i.e.,
the error of its output) is estimated using the k-fold. This
process is repeated k times, with k being changed each
time. The average of the validation accuracies indicates the
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accuracy of the model validation (Shalev-Shwartz & Ben-
David, 2014). The researcher should be careful in order
to avoid possible data leakage, which refers to a problem
where knowledge of the test data is leaked into the train-
ing set, or knowledge from the future is leaked to the past.
This can result in an incorrect and/or unrealistic estimate
of model performance (Kuhn & Johnson, 2019). Most of
the selected articles apply internal validation, that is, cross-
validation (Balamurugan et al., 2019) or random subsam-
pling validation (Geng et al., 2017; Sun et al., 2013; Wang
et al., 2017; Zhang et al., 2018). In these studies, unused
data from the whole dataset are used to validate the model
performance. In external validation, model performance is
evaluated across test data from different but related data
sources, for example, temporal (e.g., different time range)
to geographical (e.g., different region) related. Both Liu
et al. (2018) andMa et al. (2016) validated theirmodel using
unused data collected in a new year.
In addition to evaluating the generalization capacity of

the ML model, the validation process also distinguishes
ML models from statistical models. Although statistical
models serve primarily to make inferences, ML mod-
els provide predictions and classifications. The boundary
between statistical and ML approaches is not clear (Bzdok
et al., 2018). Nevertheless, the inclusion of the ML model
validation step as a selection criterion made it possible to
exclude statistical models (e.g., Bayes inference) from our
references.

3.4 Application classification: Food
safety hazard type of the relevant
publications

3.4.1 Specific food safety hazard(s)

Food safety hazards refer to all hazards thatmaymake food
injurious to the health of the consumer. They include: (1)
Biological hazards, such as bacteria, viruses, parasites, and
insects amongst others, (2) Chemical hazards, such as nat-
ural toxins, heavy metals, food additives, pesticides, and
processing-induced chemicals among others, and (3) Phys-
ical/extraneousmaterial hazards such as glass, plastic, and
metal fragments (Lawley et al., 2012).

Biological hazards
Selected studies mainly focus on the bacteria and para-
sites classification and identification (Adem & Közkurt,
2019; Wasikowska et al., 2018), bacteria source attribution
(Lupolova et al., 2017; Munck et al., 2020; Zhang et al.,
2019) and managing the presence of bacteria by control-
ling the food storage process (Kuzuoka et al., 2020), classi-
fication of various types of crop insects (Ayan et al., 2020;

Bisgin et al., 2018), and bacteria growth (Li et al., 2013;
Qin et al., 2018). Munck et al. (2020) use LogitBoost algo-
rithm to predict the origin of domestic human salmonel-
losis cases in Denmark. The most important source was
pigs produced in Denmark (53%), followed by imported
pigs (16%), imported broilers (6%), imported ducks (2%),
and layers produced in Denmark (2%). Esser et al. (2015)
summarize ML models, such as BN and NN, that have
been applied to model microbial growth and activity, and
they provide examples and applications in the context of
food safety. Ayan et al. (2020) use seven different pre-
trained used convolutional NN (VGG-16, VGG-19, ResNet-
50, Inception-V3, Xception,MobileNet, and SqueezeNet) to
identify insect species to help reduce the yield loss in crops.
Early identification can facilitate the necessary precau-
tions for farmers. Estelles-Lopez et al. (2017) use ML mod-
els to predict themicroorganisms, such asBrochothrix ther-
mosphacta, Enterobacteriaceae, and pseudomonads, that
cause meat spoilage. Some studies related to ML applica-
tion on microbial growth and dynamics, mostly published
before 2010, have been reviewed by Esser et al. (2015).
Spectroscopy-based methods are mainly used for creating
the data for analyzing biological hazards, whereas NN,
SVM, BN, and RF are the most frequently used ML algo-
rithms for modeling.

Chemical hazards
Studies mainly focus on the identification and detection of
toxins (Chakraborty et al., 2021; Liang, Huang et al., 2020),
pesticide residues (Gui et al., 2019; Mohite et al., 2017; Nie
et al., 2021), and food additives (Šojić et al., 2019), as well as
the estimation or prediction of the presence of heavy met-
als (Petrea et al., 2020; Yu et al., 2018). Nie et al. (2021)
use deep learning combining with a terahertz imaging
method to identify and visualize multiple benzimidazole
pesticide residues on toona sinensis leaves. Chakraborty
et al. (2021) use the KNN method to make classifications
and predictions of aflatoxin B1 concentrations in maize
kernels. Petrea et al. (2020) use the RF method to deter-
mine the heavy metals concentration in turbot muscle and
liver tissues. Similar to biological hazards, spectroscopy-
based methods and computer vision are mainly used for
creating the data for analyzing chemical hazards, whereas
NN, SVM, and BN are the most frequently used ML algo-
rithms for modeling.

Physical hazards
Studies mainly focus on the identification of abnormal
cases (Lucas Pascual et al., 2020) and foreign objects
(Rong et al., 2019). Lucas Pascual et al. (2020) use an NN
to classify four possible pocket cases of olive: normal,
empty, incorrectly de-stoned olives at any angles, and
anomalous cases (foreign elements such as leaves, stones,
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small branches). Rong et al. (2019) use convolutional NN
on walnut images to detect different foreign objects (e.g.,
packing material, leaf debris, dust, paper, metal, and/or
plastic scraps). Again, image-based methods are mainly
used for creating the data for analyzing physical hazards,
andNN is themost frequently usedML algorithm formod-
eling.

3.4.2 Food safety hazards in general

Food may be contaminated by a variety of safety hazards
at the same time. Prediction of the combined presence of
food safety hazards could help risk managers to focus on
either the major food safety hazards or on the main fac-
tors contributing to the occurrence, in addition to control-
ling hazards at an earlier stage. In the relevant studies, food
safety prediction is explored in two ways: one focusing on
general food safety hazards given direct information on the
food safety hazards such as from food safety monitoring
records, and the other one predicting food safety events
given information indirectly related to food safety events
such as complaints and reports from consumers.

Prediction of general food safety hazards
The majority of the relevant articles focuses on general
(combining multiple categories) food safety hazards using
a BN model (Bouzembrak & Marvin, 2019; Liu et al., 2018;
Marvin, Bouzembrak, Hendriksen et al., 2017), NN model
(Geng et al., 2019; Geng et al., 2017; Zhang et al., 2018),
SVMmodel (Ma et al., 2016), or DTmodel (Wu et al., 2019),
mostly using historical food safety data from laboratory
analyses (monitoring results).
Bouzembrak and Marvin (2019) present a BN approach

using agricultural, climatic, and economic factors as input
variables to predict the occurrence of food safety haz-
ards in vegetables and fruits. The authors report that the
methodology could help riskmanagers to identify themost
important influential factors, as well as interrelationships
between these factors and the presence of food safety haz-
ards. Geng et al. (2017) propose an NN model using data
from food safety inspections to analyze and predict food
safety hazards in sterilized milk for the purpose of early
warning. The results indicate that food inspection data
could be used for predictive modeling, thereby provid-
ing tools for early warning for food safety. This approach
could help risk managers to provide the baselines for sci-
entific guidance, thereby promoting food safety and qual-
ity improvement. The BN model developed by Marvin,
Bouzembrak, Hendriksen, et al. (2017) can be used to pre-
dict the biological effects and hazardous potential effects
of metal nanomaterials and metal oxide nanomaterials,
with the aim of supporting risk assessments for human

health. The proposedmodel is capable of ranking nanoma-
terials according to two properties—hazard potential and
biological effects—and evaluating the factors contributing
to these two effects. Bouzembrak et al. (2018) apply a BN
model to predict which types of food safety hazards occur
in herb and spice products imported to the Netherlands, as
well aswhichherb and spice products should be prioritized
for monitoring at each stage of the supply chain (i.e., con-
sumers, market, border inspection points, and suppliers).
According to their results, at the stage of border inspection,
food safety managers should focus on products, mainly
chili peppers, curry, and curry leaves, imported from India.
At the market stage, food safety managers should focus on
nutmeg, chili peppers, and paprika imported from Thai-
land and India. The results reported by Bouzembrak et al.
(2018) could thus guide governmental and industrial food
safety inspectors in performing risk-based inspections.

Food safety events
Food safety events can be predicted and monitored by
exploring information related to food safety from websites
and other online media, emails, and other reports. This
information can be used by ML algorithms for the classifi-
cation, identification, and forecasting of food safety events.
Relevant studies mainly focus on risk assessment (Song
et al., 2020), classification of food safety events (Barbosa
et al., 2019; Goldberg et al., 2020; Magalhães et al., 2020;
Maharana et al., 2019), and the design of food safety warn-
ing systems (Chang et al., 2020).
Goldberg et al. (2020) use text mining and supervised

ML to rapidly screen online media for reports on food
safety hazards. Magalhães et al. (2019) use a text mining
technique to textual data extracted from daily basis reports
and complaints from consumers. Then they use Naive
Bayes and SVMClassifiers to analyze the content of reports
and complaints so as to determinewhether the responsible
entity is the Economic and Food Safety Authority. Chang
et al. (2020) built an automated alarm system for the safety
of edible oil by using electronic receipts.

3.4.3 Prediction of food fraud

Application of ML on food fraud mainly focus on the pre-
diction of general food fraud (Bouzembrak&Marvin, 2016;
Marvin et al., 2016), classification of different quality lev-
els of one food product (Dong et al., 2012; Vo et al., 2020;
Zhang et al., 2014), and identification of added material to
food (Laga & Sarno, 2020; Lim et al., 2016; Mithun et al.,
2018).
Some studies apply the BN approach (Bouzembrak &

Marvin, 2019; Laga & Sarno, 2020; Marvin et al., 2016),
using data integrated from open access data and/or other
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data beyond the context of food safety to predict the
occurrence of food fraud and to identify factors leading to
food fraud activities. Activities involving food fraud—such
as the adulteration of food with non-food-grade materials
(e.g., dioxin-containing oils and Sudan dyes)—are increas-
ingly posing a threat to food safety and raising consumer
concerns (Spink & Moyer, 2011). Factors that could have a
direct or indirect influence on the occurrence of food fraud
incidents include climate, demographics, and the economy
(Marvin et al., 2016). In one study, Marvin et al. (2016)
apply a BN model to analyze all relevant driving factors
related to food fraud incidents. Their results could help risk
managers to identify the most important factors influenc-
ing food fraud, thereby strengthening their ability to pro-
mote the management, mitigation, and prevention of food
fraud and the risks associated with it. The BNmodel devel-
oped by Bouzembrak and Marvin (2016), based on notifi-
cations of adulteration/fraud, can make predictions con-
cerning the types of food fraud that could be expected to
occur for specific imported products for which the coun-
try of origin and product category are known. The results
could facilitate targeted enforcement activities by the gov-
ernment and food industries aimed at controlling food
fraud. Mithun et al. (2018) use deep learning (NN) to clas-
sify naturally and artificially ripened bananas using spec-
tral data. Artificially ripened bananas can be potentially
ripened using carcinogens such as calcium carbide. Adul-
terated milk powder may have added melamine, a cheap
nitrogen-rich substance that may be added purposely to
increase the protein content and thus profits. Laga and
Sarno (2020) use SVM, naive bayes, and RF to distinguish
pure beef and mixed beef by analyzing beef features, such
as temperature, strain, and humidity, by using electronic
nose data. Lim et al. (2020) use deep learning to discrimi-
native 10 different plant oil types from each other by ana-
lyzing fatty acid patterns of edible oils.

3.4.4 Traceability

Traceability refers to the ability to trace and follow food,
feed, and ingredients through all stages of food supply
chain from production to processing and market distribu-
tion (European Commission, 2002). Information related
to the food/feed and food/feed business operators can
be gathered from a traceability system and analyzed to
facilitate the monitoring of the supply chain (Balamu-
rugan et al., 2019). Studies mainly focus on traceability
and monitoring general food safety hazards in food sup-
ply chains (Alfian, Syafrudin, Farooq, et al., 2020; Alfian,
Syafrudin, Fitriyani, et al., 2020; Balamurugan et al., 2019;
Wang & Liu, 2019), as well as traceability based on ani-
mal features, which can trace the original source, uphold

food safety standards, and ensure consumer confidence
(Bennion et al., 2019; Ibáñez, 2015; Song et al., 2019; Thar-
wat et al., 2014).
Balamurugan et al. (2019) report on the development of a

Bayes classifier formonitoring any irregular food condition
(e.g., contaminated food needed to be recalled) through-
out the entire food supply chain—from the producer to the
consumer—based on internet-of-things (IoT) data. Their
results can be used to prioritize food monitoring in order
to ensure high food quality. Wang et al. (2017) propose an
NN model for building a food traceability system to gen-
erate timely evaluations of food quality along the supply
chain. Also, it can be used for forward tracing, while pro-
viding consumers with reliable information on the evalu-
ation of food products. Sun et al. (2013) establish a fuzzy
BN model to analyze data related to food safety extracted
froma traceability system, in order to arrive at a direct indi-
cation for possible high risks in specific steps of the food
production process. Two aspects, including the degree of
microbial contamination in food and the content of poi-
sonous and harmful substances in food, are identified as
reflecting the food safety level. The model has been used
to help food safety managers to make precrisis diagnoses
and safety warnings, as well as to define liability issues
throughout the food supply chain. Bennion et al. (2019) use
RF model to classify and trace element fingerprinting data
of blue mussel shells and soft tissues to reveal the harvest
locations, and thus to identify possible contaminated pro-
duce. Song et al. (2019) use dynamic inlier selection to reg-
ister pig skin images and apply convolutional NN to extract
the features of pig skin and accurately trace pigs, so as to
prevent pigs from carrying viruses that may be harmful to
the liver and kidneys of consumers.

3.5 Type of data

Data are fundamental to ML model analysis. Data used
in the selected articles can be divided into two main cat-
egories: structured data and unstructured data. Structured
data refer to data that are highly organized, usually come
in the form of letters and numbers stored in tables or
databases. Unstructured data refer to data that are not
structured in a predefined format. It comeswith a diversity
of formats, usually a range of native formats, for example,
imagery files or text files.

3.5.1 Unstructured data

The relevant studies in this categorymainly use image data
(Adem&Közkurt, 2019; Kodors et al., 2020; Patsekin et al.,
2019; Song et al., 2019; Vo et al., 2020), sensor data (mainly
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from spectroscopy and electronic noses) (Liang, Sun et al.,
2020; Liu et al., 2020; Mithun et al., 2018; Tsakanikas et al.,
2020; Weng et al., 2020), and text data derived from online
media, emails, and reports (Mao et al., 2018; Vo et al.,
2020). The most frequently used sources of unstructured
data related to food safety have been reviewed recently (Jin
et al., 2020; Zhou et al., 2019). The reader is referred to these
two reviews for detailed information.

3.5.2 Structured data

Structured data used in the relevant studies mainly refer
to existing historical data, defined here as data gathered
over a period of time and stored in a database/dataset, often
frommultiple rather than from a single study. The applica-
tion of existing historical data inMLmodels can reduce the
number of experiments,which require expensive and time-
consuming operations and trained, specialized personnel
(Chin et al., 2007). Structured data used in the selected
studies were categorized into food safety monitoring data,
open access data, expert knowledge, and other data.

Food safety monitoring data
Food safety monitoring data have been used in the devel-
opment of ML models for predicting food safety hazards.
Such data are based on results from laboratory tests, which
provide detailed information on the presence/absence or
concentration of hazards in food products. The informa-
tion used (e.g., hazard concentration, product type, and/or
compliance with legislation) is essential for the predictive
modeling of the presence of hazards in food. Inmost cases,
these data were not obtained from open data sources, but
from public or private organizations, and some of these
datawere either not available or available only after obtain-
ing permission.
As shown in Table 1, food safety monitoring data can

be obtained from institutions that provide food inspection
services (e.g., supervision and inspection departments,
national food safety monitoring systems, and national
institutes for public health). For example, Wageningen
Food Safety Research (WFSR) is a unique knowledge insti-
tution in the Netherlands, with a focus on food and feed
safety, which also functions as an international and Euro-
pean reference laboratory. Liu et al. (2018) use data col-
lected on food safety hazards related to concentrations
of the mycotoxin DON in wheat. Input variables gath-
ered from this data source for purposes of predictive mod-
eling include related mycotoxin and wheat-related data,
such as country of origin, product category, sample col-
lection, analysis date, hazard concentration, and compli-
ancewith legislation. These input variables have been used

to develop a BN model for predicting the presence of the
mycotoxin DON in wheat.
In another study, Geng et al. (2017) use data from labo-

ratory analyses relating to food safety, as extracted from a
quality supervision system (i.e., the repository of the Chi-
nese inspection and supervision department). These data
include data from the daily food safety inspections in the
period from 2010 to 2014, as obtained from the Analy-
sis and Testing Institute of one province in China. The
model input variables consist of 11 important inspection
indicators: arsenic, copper, lead, fenitrothion, hexachloro-
cyclohexane, cypermethrin, acephate, dichlorodiphenyl-
trichloroethane, Escherichia coli, total numbers of the
colony, and the coliform group. These input variables have
been used to develop amodel to predict the food safety risk
of dairy products.

Open access data
Open data sources on food safety have been applied to the
prediction of aspects relating to one or more specific food
safety hazards or the occurrence of fraud incidents. Inmost
cases, these data are generated from historic information
about food safety cases and food trade information. This
information is usually easy to access, given that some of it
should be known by the public. Usually, the type of data
that can be used for modeling depends on the research
question and the experience of experts.
As shown in Table 1, most open access sources of food

safety data provide data relating to the food safety cases
or food safety notifications published by the government
or a food safety authority, for example, by the Food Pro-
tection and Defense Institute in the United States and
the European Union’s Rapid Alert System for Food and
Feed (RASFF). The RASFF collects notifications on food
safety incidents and instances in which legal limits have
been exceeded when risks related to public health are
detected in the food supply chain. The system enables effi-
cient information sharing between the European Member
States. The RASFF portal is an interactive, open access
online database,4 which provides the public with informa-
tion about the most recent notifications, as well as other
notifications issued in the past (RASFF, 2020).Marvin et al.
(2016) use data on 1393 food fraud cases, as retrieved from
the RASFF portal and several other databases. The input
variables gathered from these data sources include food
product category, food fraud incident date, type of food
fraud, profitability level of the fraud, corruption level of
the control country, and the food safety level of the origin
country. These input variables have been applied tomodels
for predicting the product categorieswith the highest prob-
ability of fraud. In another study, Bouzembrak et al. (2018)

4 It is now closed since beginning of the year 2021.
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use food safety data extracted from the RASFF and Euro-
stat. Input variables for the model include the food safety
hazard, the hazard category, the food product, product cat-
egory, notifying country, origin country, notification type,
trade volume, checkpoint, control point, and the compli-
ance legislation. These variables are used as input into the
model to predict the hazard categorywith the highest prob-
ability to occur.
IoT systems can provide important data related to food

safety. This type of data includes information for tracking,
tracing, sensing, andmonitoring food products throughout
the supply chain (Bouzembrak et al., 2019). An IoT system
interrelates many devices and technologies to provide
unique identifiers for physical objects, allowing physical
objects to form an interconnected network without requir-
ing interaction between humans or between a human and
a PC. These devices and technologies (including radiofre-
quency identification technology, laser scanners, infrared
sensors, information sensors, and global positioning
systems) are able to collect various types of information
(e.g., with regard to chemistry, biology, light, sound, heat,
electricity, location, or mechanics) for food products in
the supply chain. Balamurugan et al. (2019) use data from
IoT systems for Bayes classifier modeling to build a trace-
ability system for the food supply chain, which facilitates
decision-making concerning the quality of food products.
This system provides tracing and monitoring functions
across various stages in the food supply chain (e.g., pro-
duction, processing, warehousing, distribution, retail, and
the end customer). Data used for modeling are collected
from barcodes, sensors, RFID, and wireless network
technology.
Banerjee et al. (2020) propose an IoT-enabled monitor-

ing system, which can be deployed in remote areas to pro-
vide services to farmers with storage facilities to reduce
food losses and increase food safety. This framework mon-
itors warehouse parameters such as CO, humidity, motion,
temperature, smoke, and vibration to reflect grain quality
and safety.

Expert knowledge
Food safety data generated by experts are used primar-
ily for traceability and monitoring food safety risks in the
food supply chain. Although expert knowledge provides
the opportunity to apply qualitative data for modeling,
the quality of the data depends largely on the expertise of
experts.
In the selected articles, most of the food safety data eval-

uated by experts consist of data provided by food safety
institutions or food producing companies that offer infor-
mation on the food chain. These data usually need to be
interpreted with expert knowledge due to the lack of stan-
dardizing communication protocols.

The data sources used include the Bureau of Quality
Supervision (Guangzhou, China) and a pork production
company (Table 1). Wang et al. (2017) extract data related
to the pork supply chain from one large pork company.
The supply chain investigated in that study consists of the
feed supplier, the farmer, the slaughterhouse, the whole-
saler, the retailer, and the consumer. Supply chain infor-
mation relates to raw materials, production, distribution,
sales, and consumers. This information indicates the most
important factors influencing the quality of the pork at
each step in the supply chain. These factors are analyzed
and evaluated by expert knowledge using a discrete scale
ranging from 1 to 5. The results from these evaluation
scales serve as input variables for the ML model, which is
intended to predict the final pork quality grade.
In another study, Sun et al. (2013) use data relating to

information on the food supply chain extracted from the
traceability system of the Bureau of Quality Supervision
in Guangzhou. Data include the conditions of transport,
packing conditions, product inspection, and rawmaterials
inspection. These model input variables are transformed
into numerical values based on expert knowledge, and they
are subsequently used in the MLmodel to predict the food
safety risk level.

Other data
Data related to food safety from other fields have been
applied largely to predicting aspects relating to one ormore
specific food safety hazards, the probability of fraud, and
the outbreak of foodborne disease. Other data are usually
ignored bymodelers within the domain of food safety. Nev-
ertheless, several authors have concluded that the major
demographic, economic, and climate changes are having
direct and indirect effects on food safety. These types of
data can be taken into account in order to facilitate the
management, mitigation, and prevention of risks associ-
ated with food safety (Bouzembrak & Marvin, 2019; Liu
et al., 2018). Data relating to food safety from other fields
are sometimes easy to access and could offer a variety of
variables for modeling aimed at decision-making.
Other data sources used in the selected articles include

the Royal Netherlands Meteorological Institute (KNMI),
China National Center for Food Safety Risk Assessment
(CFSA), Economically Motivated Adulteration (EMA),
and Eurostat. Liu et al. (2018) use weather data extracted
from the KNMI database for predictive food safety mod-
eling, including hourly temperature, relative humidity,
and rainfall, per geographical grid. Model input variables
are calculated from these (raw) input data, for instance,
the number of hours during which humidity is higher
than 80%. These weather-related model input variables
were subsequently combined with other input variables,
such as the mycotoxin DON concentration obtained from
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laboratory testing, and agronomic variables, such as soil
type, wheat cultivar, and the frequency of application of
fungicides. All of these input variables are used to develop
a BN model to predict the distribution probabilities for
the class of mycotoxin DON (low, medium, and high) in
wheat.
Another study is based on the Economically Motivated

Adulteration (EMA) incident database, which provides
information on recent and past EMA records, along with
relevant information about EMA. Marvin et al. (2016) use
data extracted from EMA and 14 other sources, both from
inside and outside the context of food safety, to develop a
ML model to predict food fraud. In addition to informa-
tion on food fraud cases, model input variables include the
product price, product demand increase, gross domestic
product (GDP) of the origin country, product country of
origin, annual trade volume, presence of a legal system for
food in the origin country, political risk index of the origin
country, and the Corruption Perception Index of the ori-
gin country. Those model input variables are used to pre-
dict the product category with the highest probability of
fraud.
Eurostat, a statistical office of the European Union, pro-

vides reliable, high-quality, and objective statistics at the
European level, thereby enabling comparisons of various
situations between regions and/or countries. The Eurostat
database includes general and regional statistics related
to population, social, economic, and financial conditions.
Bouzembrak et al. (2018) use economic data (on trade vol-
ume) extracted fromEurostat as one of the data sources for
predicting themost important food safety hazards in herbs
and spices.

3.6 Future applications

This study has shown many promising applications of ML
application in the context of food safety monitoring and
prediction. However, the proposed studies mostly used
one ML model for making food safety predictions. A few
studies made comparisons among several ML models on
the same dataset. Making comparisons among MLs could
improve the opportunity of obtaining a better result of pre-
diction. In addition, some studies used data from only one
data source. The combination of several data sources to
generate a larger dataset could increase the performance
of modeling. More variables generated by data sources
beyond the food safety field (which may influence food
safety such as climate for mycotoxin) for modeling may
also improve the model performance.
The comparison between MLs and the combination of

more data sources could be taken into account for future
ML applications in food safety. These two aspects had been

identified by some included studies and other articles, and
each aspect will be discussed below.

3.6.1 ML model

The comparison betweenMLs researched in the context of
food safety monitoring and prediction was investigated in
several studies. Liu et al. (2018) compared the BNmodel to
an empirical model and amechanisticmodel. Their results
showed that the BN model is easier to implement with
incomplete input data. Geng et al. (2017) compared their
proposed model (AHP-ELM) to backpropagation (BP) NN
and radial basis function NN model to validate the effec-
tiveness and robustness of the AHP-ELM. Their results
showed that the performance of AHP-ELMmodel was the
best. Laga and Sarno (2020) use k-NN, SVM, Naive Bayes,
and RF model combining with electronic nose to classify
the pure beef or mixed beef (combining beef and pork).
RF results in the highest accuracy for classification. Zhang
et al. (2018) compared their proposed model (Extreme
learning machine) to BP NN and SVM model. The AHP-
ELM network prediction accuracy was 86%, whereas the
BP model and SVM model prediction accuracy was 78%
and 83.2%, respectively. The model comparisons in these
studies are able to either deal with the different types of
data available or improve the opportunity of obtaining bet-
ter prediction results.
Of the four basic ML models (applied in selected stud-

ies) discussed, NN, SVM, and BN are the ML algorithms
that have been used most frequently within the context of
monitoring and predicting food safety. Compared to other
MLmodels, the BN’s structure is easier to understand, and
it more easily allows for the inclusion of expert knowledge.
It appears to be a promising method for analyzing struc-
tured data within the context of food safety monitoring
and prediction. This finding is in line with Marvin et al.
(2016), who demonstrate that BN can be used as a holis-
tic approach within the context of food safety and that it
is capable of dealing with data from a variety of drivers
(e.g., economy, climate change, and human behavior) to
predict future events of food safety risks. Deep learning
(various types of NN) has been proven to be an advanced
technology for unstructured data analysis (e.g., image and
text data) with a large number of successful applications in
food (Zhou et al., 2019).
When focusing on the aspect of the prediction result,

model performance could be compared if all ML algo-
rithms are suitable for the particular modeling goal.
The one with the best performance can be selected by
comparing predictive accuracy based on the validation
results when the various models are applied to the same
validation dataset. Within the context of monitoring and
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predicting food safety, the performance of ML models
was quite high, as evidenced by the high model valida-
tion results. More comparisons between MLs could be
investigated in further research.
ML software, such as Scikit Learn, Pytorch, and Tensor-

Flow, which require programming knowledge, are avail-
able for researchers to use. Low-code platforms (such as
PyCaret, Auto-ViML, H2O AutoML) and no-code plat-
forms (such as Create ML, MakeML, Google Cloud Auto
ML, Runway AI), requiring basic programming knowl-
edge, provide solutions with limited functions but allow
researchers to quickly apply simple ML models on food
safety monitoring.

3.6.2 Data

In the food safety monitoring and prediction field, data are
the basis for modeling. The lack of public and reliable data
is the major hurdle for applications of ML for food safety
monitoring and predicting. This problem has been given
attention by Marvin et al. (2017) and Jin et al. (2020) who
reviewed big data in food safety. They provide promising
data sources within the context of food safety, and state
that more and more data become available in food safety
research nowadays.
As for the data sources and input variables derived

from the included articles in this study, more similar data
sources could be found in other countries from compara-
ble institutions. For example, data onmycotoxinDON con-
centration obtained from the aforementioned data sources
have been used in ML modeling to predict the probability
ofmycotoxinDON levels inwheat (Liu et al., 2018). Similar
data related to other hazards and/or other products (e.g.,
the mycotoxin aflatoxin in corn) could be applied for mod-
eling in the same way.
Other online data sources might contain or generate

information relevant to food safety that could also be
explored for use inMLmodeling. Marvin et al. (2017) men-
tion the food safety platform “FOSCOLLAB,” which pro-
vides integration of various sources from multiple sectors,
including animal, agriculture, food, public health, and eco-
nomic indicators (WHO, 2015a). In addition, the Global
Environment Monitoring System (GEMS) database con-
tains important information on the properties of chemi-
cals, growth conditions of microorganisms, and weather
reports, which can be used to predict the presence of cer-
tain hazards (WHO, 2015b).
Besides online databases, other techniques (such as IoT,

social media, smartphones, and satellite imagery) can be
applied to provide data related to food safety. Bouzembrak
et al. (2019) reviewed the IoT application in the food supply
chain,which shows that the use of IoT canprovide an enor-

mous source of information related to food supply chain.
The majority of information related to food safety that is
measured by IoT refers to humidity, temperature, and geo-
graphical location (GPS). The information obtained from
the communicated technologies (most frequently used in
IoT were Internet, wireless sensor networks [WSN], and
radiofrequency identification [RFID]) can provide more
input variables for modeling and thus improve the trace-
ability and monitoring in the food supply chain. Social
media platforms such as YouTube, Twitter, and Facebook
can be used to collect food safety-related information such
as related to foodborne disease, food safety event discus-
sions, or online questionnaires (Soon, 2020). The smart-
phone can be used to collect food safety data because it
is usually applied for conducting food quality assessment,
food safety hazard monitoring, and food inspection (Silva
& Rocha, 2020). Satellite imagery can be used to collect
imagery data related to agricultural product monitoring,
such as crop growth and harvest (Mateus et al., 2019).

3.7 Limitations of the search method

This paper followed the methodology of a systematic
review, and did not include a meta-analysis. The search
was restricted to references published between January
1, 2011 and April 1, 2021. Indeed, the most recent
publications—published after April 1, 2021—are thus not
included. But we believe the included publications cap-
ture the most up-to-date ML applications within the
current field of interest. Because this review covered peer-
reviewed research articles published in English, some arti-
cles related to the research question but written in other
languages, such as Chinese (e.g., several articles published
in ��� et al., 2019), were not included. The restric-
tion to articles written in English was adopted in light of
the fact that English is accepted as the universal language
in science. By following the methodology of a systematic
review, we did not read full texts in the screening step (b),
because the aim of this step was to exclude all nonrele-
vant references and keep the relevant and possibly relevant
references, and because of the large amount (1162) of the
initial references. Only published peer-reviewed primary
research articles from journals with an ISI impact factor
were included in our review in order to reflect the scien-
tific trend of ML applications for the monitoring and pre-
diction of food safety. In this review, we critically evaluated
the strengths and weaknesses of these studies. We found,
for example, from all ML applications, BN was frequently
used for modeling because its model structure is easy to
understand and allows for easy incorporation of expert
knowledge. We also provided recommendations for future
studies, such as (a) comparing different MLs is useful for
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obtaining better prediction results, and (b) cross-validation
and external validation are useful for validating model
robustness. Our review focused in detail onMLapplication
using structured data in the food safety domain. We only
shortly mentioned ML application on unstructured data
because unstructured data have been reviewed recently in
a detailed way by several other review papers, and we have
referred the readers to these review papers for more detail.
Predefined search strings were set for the reference search.
These search strings related to ML models probably did
not cover all possible ML models, given the breadth and
frequent updating of ML models (based on the basic ML
models). The most commonly used ML models within the
context of food safety were retrieved and discussed in the
current review. The discussion could be used as an intro-
duction to the topic and to provide insight for further inves-
tigation on other applications of ML models within this
context.

4 CONCLUSION

This study identifies and evaluates ML models for the
monitoring and prediction of food safety. A systematic
literature search yielded 114 relevant studies, 75% of which
had been published in the last 5 years. The use of ML
models within the context of food safety monitoring and
prediction is thus still in its early stage but increasing
rapidly. The predictive accuracy of the retrieved studies is
high, indicating that MLmodels offer a promising method
with regard to themonitoring and prediction of food safety.
In the various ML models applied in the 114 studies, BN
is the most frequently used algorithm for analyzing struc-
tured data, as its model structure is easy to understand and
allows for easy incorporation of expert knowledge. NN is
the main algorithm for analyzing unstructured data, as it
can more easily handle image data and text data. The sug-
gestions for data sources and input variables identified in
this study suggest several avenues for future studies apply-
ing ML models for the monitoring and prediction of food
safety.
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