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Wildfires are becoming increasingly frequent and devastating in many tropical forests.
Although seasonally dry tropical forests (SDTF) are among the most fire-threatened
ecosystems, their long-term response to frequent wildfires remains largely unknown.
This study is among the first to investigate the resilience in response to fire of the
Chiquitano SDTF in Bolivia, a large ecoregion that has seen an unprecedented increase
in fire intensity and frequency in recent years. We used remote sensing data to assess at
a large regional and temporal scale (two decades) how fire frequency and environmental
factors determine the resilience of the vegetation to fire disturbance. Resilience was
measured as the resistance to fire damage and post-fire recovery. Both parameters
were monitored for forested areas that burned once (F1), twice (F2), and three times (F3)
between 2000 and 2010 and compared to unburned forests. Resistance and recovery
were analyzed using time series of the Normalized Burn Ratio (NBR) index derived
from Landsat satellite imagery, and climatic, topographic, and a human development-
related variable used to evaluate their influence on resilience. The overall resilience was
lowest in forests that burned twice and was higher in forests that burned three times,
indicating a possible transition state in fire resilience, probably because forests become
increasingly adapted during recurrent fires. Climatic variables, particularly rainfall, were
most influential in determining resilience. Our results indicate that the Chiquitano dry
forest is relatively resilient to recurring fires, has the capacity to recover and adapt, and
that climatic differences are the main determinants of the spatial variation observed in
resilience. Nevertheless, further research is needed to understand the effect of the higher
frequency and intensity of fires expected in the future due to climate change and land
use change, which may pose a greater threat to forest resilience.

Keywords: fire, Chiquitania, tropical, dry forest, resilience, remote sensing

INTRODUCTION

In recent years, the large and devastating fires burning the highly biodiverse forests of central
South America have made international headlines (Bertrand, 2020). Current predictions state that
wildfires in the region are expected to become more common due to a complex interplay of
climatic and anthropogenic drivers, potentially causing rapid forest dieback (Malhi et al., 2008;
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Cochrane and Barber, 2009; Andela et al., 2019; Burton
et al., 2021). Of the different major South American biomes,
dry tropical forests, which are characterized by a distinct
dry period, have seen an unprecedented increase in fire
occurrence (Di Bella et al., 2006; Pennington et al., 2009),
with some areas hit by fires multiple times within the last
decades. Here, we assess the resilience to recurring fires of the
Chiquitanía in Bolivia, one of the largest remaining dry forests
in the Neotropics.

Forest fires have become increasingly common in the
Chiquitanía region of Bolivia (Devisscher et al., 2016a), where
approximately 17 million ha of forest burned between 2005
and 2019 (Anívarro et al., 2019). This region is home to the
Chiquitano seasonally dry tropical forest (SDTF), the largest
intact SDTF block in the Neotropics (Pennington et al., 2004).
The increasing occurrence of fires in the last decades is
particularly alarming due to the lack of understanding of tropical
forests’ resilience to fire (Balch et al., 2011) and the fact that
dry tropical forests remain largely understudied (Becknell et al.,
2012). On the one hand, many ecologists assume that, in
contrast to savannas, neotropical SDTFs lack adaptation to fire
(Pennington et al., 2009; Power et al., 2016). On the other
hand, historical records show that fire has been an integral
part of the ecology of the Chiquitanía (Power et al., 2016),
and several fire-adapted species with protective traits such
as a thick bark are present (Killeen et al., 2006), suggesting
that the resilience to fire is higher than generally thought.
Much recent work on the effects of fire in the Chiquitanía
has been done by Devisscher et al. (2016a,b, 2019), who have
found shifts in species composition and functional traits with
increasing fire frequency that suggest that the Chiquitanía may
irreversibly transition into a more fire-adapted state as fires
occur more frequently (Devisscher et al., 2016b). However,
their field work mainly focused on transition zones within the
Chiquitanía, and it remains unknown whether these changes
would be similar across the region. We set out to determine
whether these findings scale up over a larger area of the
Chiquitanía.

Resilience describes the ability of a system to endure
disturbances and consists of two factors, the resistance to
a disturbance and the recovery to a pre-disturbance state
after the disturbance occurred (Hodgson et al., 2015). The
frequency and severity of a disturbance can be crucial in
shaping resilience (Ingrisch and Bahn, 2018). Furthermore,
several environmental factors can affect the resilience of a
forest ecosystem. Water availability and temperature are strong
drivers of the distribution of species (Toledo et al., 2012).
Additionally, water availability increases tree growth rates and
may therefore accelerate the time to reach fire-resistant sizes,
leading to increased fire resistance and recovery (Hoffmann
et al., 2009; Poorter et al., 2016; Silva et al., 2018). High
water availability also reduces fire intensity, leading to less
impact on the vegetation and a higher resistance (Schmidt
et al., 2017). Increased temperatures, in contrast, exacerbate heat
and water stress as well as fire risk, negatively affecting plant
development and thus resistance and recovery (Littell et al.,
2009; Cook et al., 2014). Both water availability and temperature

can further be influenced by topographic features with water
availability for example increasing downslope (Markesteijn
et al., 2010). Temperature is influenced by topographic
features such as the slope orientation, which lead to increased
light exposure and can drastically affect surface temperatures
over short distances (Lipton, 1992). Finally, human presence
and development are known to often negatively influence
natural regeneration (Crouzeilles et al., 2020). The majority of
wildfires in the Chiquitanía are caused by inappropriate fire
practices in the agricultural and livestock sector (Ibarnegaray
et al., 2014). Humans thus play a large role in shaping
the fire regime and consequently influence the resilience to
fire. Hence, the fire regime, environmental factors as well
as human presence need to be considered to understand
fire resilience.

The fire intensity and frequency observed in the Chiquitanía
since the beginning of the millennium are unprecedented,
with higher temperatures, dry periods and climate change
causing extreme fire intensity and behavior even in non-dry
years (Castellnou et al., 2019). Climatic models suggest that
temperatures are on the rise whereas rainfall is decreasing
in Bolivia, with significant negative consequences for water
resources (Seiler et al., 2013). How the Chiquitano dry forest
ecosystem will respond to these changes is largely unclear, but
this knowledge is urgently required to delineate an action plan
moving forward. Doing so is of relevance not only for the
scientific interest of better understanding forest resilience but
also to preserve areas such as the Chiquitanía on which local
communities and biodiversity depend.

Wildfires affect large areas and have long-lasting consequences
on the ecosystem. Large-scale approaches spanning several
decades are required to measure the fire resilience across an
entire region. Remote sensing using satellite imagery that is freely
available from online resources offers the opportunity to assess
resilience to wildfires over large areas (Di Mauro et al., 2014).
Here, we use remote sensing techniques to identify areas burned
at different frequencies and to assess their resistance and their
recovery during a 10 year period following the last fire. This study
is the first to assess the fire resilience of the Chiquitanía at a large
regional scale using a remote sensing-derived vegetation index,
the normalized burn ratio (NBR). We investigate how results
from previous studies at the plot level (e.g., Devisscher et al.,
2016b) scale up over the entire Chiquitanía region and identify
drivers of spatial variability.

We address two questions. First, what is the effect of fire
frequency on the resilience (i.e., the resistance and recovery)
of the Chiquitano SDTF? We expect that resilience increases
with fire frequency as the abundance of fire-tolerant or fire-
adapted species increases. Second, how do environmental
factors affect the fire resilience (i.e., the resistance and
recovery) of the Chiquitano SDTF? We expect that resilience
increases with water availability (through e.g., rainfall and
topography) due to weaker fire impacts and faster growth
and recovery rates. However, resilience would decrease with
temperature due to stronger fire impacts and slower growth
rates, and with human presence or pressure, which hampers
natural recovery.
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MATERIALS AND METHODS

Study Area
The Chiquitano seasonally dry tropical forest is named after the
Chiquitanía, a region in the Eastern lowlands of the Department
of Santa Cruz, Bolivia (Figure 1). The Chiquitanía acts as a
transition from the humid Amazon forest in the North to
the semi-arid Gran Chaco biome in the South (Killeen et al.,
2006). Precipitation levels throughout the year range from 500
to 1,710 mm (Killeen et al., 1998). The temperature varies
little throughout the year and daily averages are around 24–
25◦C. The region is marked by its distinct seasonality, with 6
months (beginning in April or May) with <100 mm rain and
the driest months being July and August. Annual precipitation
levels throughout the Chiquitanía are generally similar, but
local differences can be distinguished (Supplementary Appendix
2). The Chiquitanía exhibits a range of deciduousness, with
areas receiving less precipitation in the South being fully
deciduous and wetter areas in the North tending toward semi-
deciduousness (Killeen et al., 2006). Many different vegetation
types can be distinguished within the Chiquitanía, several
of which have been affected by fire (Anívarro et al., 2019).
Generally, forests occur on relatively richer, more fertile soils
whereas grasslands are found on sandier, nutrient-poor soils
(Devisscher et al., 2016a). We focused on the vegetation type
known as Subhumid Semi-deciduous Forest (Bosque subhúmedo
semideciduo de la Chiquitanía; henceforth simply referred to
as “Chiquitanía”), as defined by Navarro (2011), which covers
a substantial part (around 40%) of the Chiquitanía ecoregion
(Figure 1, in green, and Supplementary Appendix 1). This
vegetation type has been the most affected by fires in recent
years (Anívarro et al., 2019). Characteristic species include
Acosmium cardenasii, Anadenanthera macrocarpa, Aspidosperma
cylindrocarpon, Astronium urundeuva, Caesalpinia pluviosa,
Casearia gossypiosperma, Centrolobium microchaete, Guarea
macrophylla, Machaerium scleroxylon, Schinopsis brasilensis,
Tabebuia impetiginosa (Killeen et al., 2006; Government of Santa
Cruz, 2008; Navarro and Ferreira, 2008). The canopy of the dense
to semi-dense forest reaches a height of up to 20–25 m and soils
are well to moderately well drained (Navarro and Ferreira, 2008;
Paz-Roca and Mostacedo, 2020). For the data acquisition, we used
the boundaries of the Chiquitanía ecoregion as defined on the
web portal GeoBolivia.1 This area represents the Bosque Modelo
Chiquitano, a model forest which encompasses much of Santa
Cruz (Anívarro et al., 2019).

Google Earth Engine
To assess broad-scale changes in the vegetation after fire,
we used remotely sensed data from Google Earth Engine
(GEE). GEE is a cloud-based online platform that gives access
to high-performance computing resources for analyzing very
large geospatial datasets. It offers freely available, analysis-ready
remote sensing data (Gorelick et al., 2017). Among many other
products, GEE includes satellite data from NASA’s long-running
Landsat, Terra and Aqua satellite missions and combines them

1http://geo.gob.bo/portal/

with a high-performance, parallel computation service. Several
studies have already used GEE to perform studies on burned
areas and vegetation recovery (e.g., Soulard et al., 2016; Long
et al., 2019). All remotely sensed data obtained for this study were
retrieved using GEE.

Identifying Burned Areas
The MCD64A1 MODIS Burned Area data product version 6
offered by NASA’s Land Processes Distributed Active Archive
Center (LP DAAC) combines data from the Terra and Aqua
satellites to obtain monthly, globally burned area at 500 m
resolution. MCD64A1 uses MODIS (a sensor aboard Terra and
Aqua) surface reflectance imagery in combination with MODIS
sensor active fire observations to identify burned areas from
the year 2000 onward (Giglio et al., 2015). MCD64A1 was
chosen over the MODIS Fire_cci Burned Area pixel product
version 5.1 (Chuvieco et al., 2016), also available on GEE,
because the latter has been found to be less sensitive to
fires in South America (Lizundia-Loiola et al., 2020) and less
temporally accurate (Campagnolo et al., 2021). Furthermore,
the MCD64A1 product has been validated to perform well by
several studies (globally: Padilla et al., 2015; Boschetti et al.,
2019; in Brazil: Shimabukuro et al., 2020; Campagnolo et al.,
2021; Bolivia: Rodriguez-Montellano et al., 2015) and used in
the Chiquitanía for other purposes (Rodriguez-Montellano et al.,
2015; Fundación Amigos de la Naturaleza [FAN], 2019).

Using MCD64A1 on GEE, areas were identified that burned
at different frequencies within the Chiquitanía between 2000 and
2010. Data from 2010 to 2020 were used to evaluate the forest
response following fire. The following four “treatments” were
compared:

(1) Control areas that didn’t burn between 2000 and 2020
(Ctrl).

(2) Areas that burned only once between 2000 and 2020, in
2010 (Frequency 1 or F1).

(3) Areas that burned twice between 2000 and 2020, in 2007
and 2010 (Frequency 2 or F2).

(4) Areas that burned three times between 2000 and 2020, in
2002, 2007, 2010 (Frequency 3 or F3).

The years 2002, 2007, and 2010 were chosen because these
were years which saw significant fire events (Fundación Amigos
de la Naturaleza [FAN], 2019) and have been used in a study in the
Chiquitanía previously to evaluate the effect of recurrent wildfire
on the vegetation (Devisscher et al., 2016b).

Selection of Sampling Points
For each fire frequency (Ctrl, F1, F2, F3), 500 1-ha plots were
randomly selected as sample units (2000 in total). The size of 1 ha
was chosen because it is a common standard plot size and because
areas need to be larger than 0.5 ha to qualify as forest (FAO,
2020). The selection was performed by creating a grid of adjacent
cells 1-ha in size (100 m × 100 m) on top of the study area
identified by MCD64A1 using Quantum GIS (QGIS.org, 2021),
and 500 random cells were selected using the R 4.0.5 (R Core
Team, 2021) for each fire frequency. The spread of the sample

Frontiers in Forests and Global Change | www.frontiersin.org 3 November 2021 | Volume 4 | Article 755104

http://geo.gob.bo/portal/
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-755104 November 26, 2021 Time: 11:22 # 4

Hartung et al. Tropical Dry Forest Fire Resilience

FIGURE 1 | Location of the study area. Bolivia, in orange, is shown with its departmental subdivision, with the department of Santa Cruz highlighted in yellow. The
expanse of the Chiquitanía ecoregion (as defined on GeoBolivia) is shown using a dashed line, with the Subhumid Semi-deciduous Vegetation type (Navarro, 2011),
which is the focus of this study, shown in green. The inset (top right) highlights the position of Bolivia on the South American continent.

units throughout the Chiquitanía decreased with a higher fire
frequency (Supplementary Appendix 3).

Normalized Burn Ratio Time Series
Analysis
Tracking Vegetation Changes
While the MODIS product MCD64A1 was used to identify
burned areas, Landsat 7 satellite data were used to track
vegetation changes and measure resilience. The NASA Landsat
7 satellite mission has been collecting spectral information from
the Earth’s surface at 30 m spatial resolution approximately
every 16 days since April 1999 (U.S. Geological Survey, 2018).
Landsat 7 atmospherically corrected surface reflectance imagery
was obtained on GEE and Landsat 7 pixels that fell into each
sample unit for all available dates between 2000 and 2020 were
identified. Clouds, especially prevalent during the rainy season,
are a common problem with optical satellite imagery because they
do not let through the radiation used for calculating vegetation

indices. Furthermore, clouds cast shadows, which can further
affect the value of the optical bands within a given pixel. Landsat
7 pixels with more than 25% cloud cover were removed in a first
step before using the Quality Assessment bands attached to each
pixel to isolate high-quality land pixels that had a low chance of
cloud and cloud shadow presence. The Pixel Quality Assessment
band is based on the CFMask algorithm (U.S. Geological Survey,
2020). Furthermore, since 2003, Landsat 7 has suffered from the
Scan Line Corrector (SLC) failure, which has resulted in gaps
in the collected spectral data. SLC-gaps were masked (i.e., made
transparent and excluded) for further analyses. Despite these
gaps, Landsat 7 still represents one of the most accurate civilian
satellite datasets covering large areas of the world (U.S. Geological
Survey, 2018).

Vegetation Indices to Assess Resilience
One of the most commonly used remote sensing tools to
follow the vegetation state after fire are so-called spectral or
vegetation indices (VIs) (Gitas et al., 2012). They are obtained
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by algebraically combining spectral band values of different
wavelengths measured by remote sensors (Gitas et al., 2012). VIs
exploit the spectral properties of the environment and vegetation,
such as the strong absorption of red light by chlorophyll or
reflectance of near-infrared light by the leaf mesophyll (Li et al.,
2017). While using information from individual spectral bands
offers a simple way of following plant status, this approach may
lack sensitivity and makes it difficult to capture the heterogeneity
of plant communities on the ground and discriminate between
different regions of interest (Xue and Su, 2017). Nonetheless,
VIs such as the NDVI (normalized difference vegetation index)
or NBR (normalized burn ratio) have been employed in various
ways to investigate fire resilience (Díaz-Delgado et al., 2002; Van
Leeuwen et al., 2010; Veraverbeke et al., 2012; João et al., 2018;
Bright et al., 2019). In our study, the bands in each Landsat pixel
were used to obtain a time series of the Normalized Burn Ratio
(NBR) vegetation index, spanning the study period (2000–2020),
for each pixel. The NBR is similar to the Normalized Difference
Vegetation Index (NDVI) but uses the normalized difference
between the near-infrared (NIR) and short-wave infrared (SWIR)
spectral bands (bands 4 and 7 for Landsat 7):

NBR =
NIR− SWIR
NIR+ SWIR

(Key and Benson, 2006).

These bands respond strongly, but in opposite ways, to
burning, with the NIR band relating to biomass content and
the SWIR band relating to the moisture content of the soil
and vegetation (U.S. Geological Survey, n.d.). Because each 1-
ha sample unit contained several 30 m × 30 m pixels, the NBR
values of the Landsat pixels within a given sample unit at a
given date were averaged to calculate a single NBR value for that
sample unit and date. The region averaging algorithm of GEE
considers a Landsat pixel to fall within a defined polygon (such
as a sample unit in this study) if 0.5% of that Landsat pixel is
included in the polygon (Google Earth Engine, 2021). The NBR
was chosen over other indices such as the NDVI due to the
NBR’s higher sensitivity to fire damage and to the subsequent
structural recovery in both forests and more sparsely vegetated
land (Fornacca et al., 2018; Morresi et al., 2019). The NBR is
widely used for estimating burn severity and perimeter (Key and
Benson, 2006). Vegetation indices relying on short-wave infrared
(SWIR) bands are known to better correlate with vegetation and
soil moisture, as well as vegetation structure compared to for
example the NDVI (Lozano et al., 2007; Hislop et al., 2018), which
has known limitations for tracking recovery. These limitations
include that the NDVI rapidly increases when forbs, grasses,
and other non-woody pioneer vegetation colonize an area soon
after disturbance. Furthermore, the NDVI is highly sensitive to
leaf-related changes, resulting in its quick saturation following
disturbance. The NBR, in contrast, follows recovery in a much
more gradual fashion and is thus better fit to track the increase
in structural complexity of a forest over time after a disturbance
(Pickell et al., 2016). The NBR has been used in several studies
to examine post-fire effects on vegetation, including in the
Chiquitanía (Dwomoh and Wimberly, 2017; Bright et al., 2019;
Maillard et al., 2020).

Sample Unit Quality Check
To check that none of the selected sample units had been
converted to agricultural fields or other land types, Sentinel 2
satellite imagery at 10 m spatial resolution was used on GEE to
visually confirm which sample units were still “natural” in the
first months of 2020 (an example is shown in Supplementary
Appendix 4; Sentinel 2 was launched in 2015). All initial 2000
sample units were visually inspected in this manner. Additionally,
using the MCD64A1 burned area product, burn dates were
obtained for the years 2002, 2007, and 2010 for each sample unit.
The majority of fires in 2010 occurred in the months of August
and September (Supplementary Appendix 5). Areas that were
missing a burn date when they should have burned (e.g., an F3
sample unit missing a burn date in 2002) and areas that had
a burn date when they should not have burned (e.g., a control
sample unit in any year or F1 in 2002 and 2007) were excluded
from the analysis. Furthermore, areas with burn dates outside of
the period July 1 up to October 15 (the main fire season) were
excluded to ensure that fires happened in more similar seasonal
conditions. Out of the original 500 sample units selected for each
fire frequency, this resulted in a remaining sample size of 433,
378, 401, and 370 sample units and their associated NBR time
series for the Control, F1, F2, and F3 areas, respectively.

Normalized Burn Ratio Time Series
Reconstruction
Complete and accurate time series for vegetation index data
are crucial for the long-term monitoring of vegetation. Data
collected by satellite sensors typically suffer from noise caused
by geometric mis-registration, anisotropic reflectance effects,
electronic errors, data resampling artifacts, atmospheric effects
and clouds. Various methods, such as the interpolation of missing
data points and smoothing of time series, are commonly used
to reconstruct incomplete or erroneous vegetation index (VI)
time series (Cai et al., 2017). In this study, we used both
interpolation and smoothing.

Interpolation
To account for missing values within each NBR time series (due
to e.g., their removal because of cloud cover), NBR values were
linearly interpolated between available time points at intervals of
16 days (equal to the time it takes for the Landsat 7 satellite to
fly over the same point over the surface of the Earth) between
the first and last available time points in the entire time series.
Each sample unit NBR time series was checked to ensure that
consecutive time points were indeed always separated by 16
days. Linear interpolation is common for NDVI time series
reconstruction (Chen et al., 2004; Fontana et al., 2008; Pan et al.,
2015) and has also been applied to time series in dry tropical
forests in the Americas (Guzmán et al., 2019). Linear gap filling
was done using the na.interpolation function of the R package
imputeTS (Moritz and Bartz-Beielstein, 2017) (Supplementary
Appendix 6). Sample units with NBR time series that were
missing NBR values for more than 12 consecutive time points
(equivalent to approximately 6 months, or the length of the dry
or wet season) for the year 2001 and for time points between
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July 2010 and July 2016 (needed for the calculation of resilience
metrics later) were excluded from the analysis. This resulted in a
remaining final sample size of 157, 146, 213, and 172 sample units
and their associated NBR time series for the Control, F1, F2, and
F3 areas, respectively.

Smoothing
To minimize any remaining noise and unrealistic values, NBR
time series were smoothened using the Savitzky-Golay filter. This
filter has consistently been validated in its use to filter out minor
fluctuations and create high-quality NDVI time series (Hird and
McDermid, 2009; Marcos et al., 2012; Cai et al., 2017; Guzmán
et al., 2019). To this end, the sgolayfilt function from the R
package signal (Signal developers, 2013) was used. The Savitzky-
Golay filter operates as a weighted moving average filter that
assigns weights based on a polynomial of a chosen degree (Chen
et al., 2004). Two parameters need to be chosen for the Savitzky-
Golay filter: p, the order of the polynomial, and m, a parameter
which is used to determine the moving average window size,
given by 2m+1. In order to best retain the original shape of the
NBR time series for each sample unit, different combinations of
values for m ranging from 4 to 12 and for p ranging from 1 to 4
were tested and the root mean-squared error (RMSE) between the
smoothened and original data calculated. Out of the 36 different
parameter combinations, the combination m = 4, p = 4 resulted
in the lowest RMSE and was chosen for subsequent analyses
(Supplementary Appendix 6).

As a consequence of the interpolation and smoothing process,
the data were more balanced and less biased toward the dry
season (which has more data due to lower cloud coverage),
while still maintaining the overall patterns of the original data
(Supplementary Appendices 7, 8).

De-Trending the Normalized Burn Ratio
Time Series
There are strong seasonal fluctuations in vegetation indices.
In order to assess resilience without the confounding effect
of seasons, the seasonality signal was removed for each NBR
time series through detrending (Figures 2A,B). For each sample
unit, NBR time series values were transformed using the Fast
Fourier Transform (FFT) to perform frequency domain analysis,
also known as Fourier filtering (O’Haver, 1997). The Fourier
Transform decomposes a complex function varying over time
into a set of simple sine and cosine wave functions, which
together add up to the original time series. Each simple
function is defined by a given frequency and amplitude. If
the frequency of the signal that one wants to remove is
known, one can identify this signal among the simple wave
functions that make up a more complex function and set its
amplitude to 0, effectively filtering it out. Then, an inverse
Fourier Transform can be applied to reconstitute the complex
function, but this time with the “noise” signal removed. For
a seasonal signal repeating every year, one would expect there
to be a peak in the frequency domain at a frequency of
around 1/365 days or 0.0027 days−1. This was indeed observed
for the NBR time series (Supplementary Appendix 9). In
order to remove this signal, signals with a frequency greater

than 0.002 (i.e., as frequent or more frequent than every 365
days) were set to 0 and the data transformed back using the
Inverse FFT. An example of resulting NBR time series is shown
in Supplementary Appendix 9. This procedure is essentially
equivalent to using a low-pass frequency filter, common in
signal and system analysis. Forward and inverse FFT were
implemented using the fft function of the R package stats
(R Core Team, 2021).

Resilience Metrics
To quantify resilience to fire, two measures of resilience, one
for resistance and one for recovery, were adopted based on
the metrics developed by several authors (Bahn and Ingrisch,
2018; Ingrisch and Bahn, 2018; Carper et al., 2021). Each metric
describes a different aspect of the resilience to fire. Taken together,
these metrics offer a more complete picture of resilience, as no
single metric can fully describe resilience on its own. To allow
comparison of these metrics between different sample units, each
NBR time series had to be normalized. To this end, a baseline was
defined to estimate the pre-fire state of the vegetation. For each
sample unit, this pre-fire baseline was calculated by averaging the
de-trended NBR values between June 2000 and June 2002, before
any fire in the study period occurred. By calculating the baseline
from the same years for each sample unit, we avoid differences
caused by annual differences in e.g., rainfall. Then, all de-trended
NBR values within each time series were baseline-normalized
(Ingrisch and Bahn, 2018), i.e., divided by the baseline value,
to allow comparison of NBR values. The following metrics were
then calculated (Figure 2C).

Resistance
Resistance was determined as the maximum impact, which
represents the “maximum deflection of an ecosystem state by
a disturbance” (Bahn and Ingrisch, 2018). Imax was calculated
relative to the pre-fire baseline as percentage loss (i.e., as negative
% values) in baseline-normalized NBR at the lowest NBR value
within 6 months of the burn date. Imax thus represents the
relative difference between the lowest NBR value after fire and
the baseline. For Control areas, the “burn date” was set to August
24 2010, which was the most common burn date. The stronger
the impact of fire, the more negative the Imax, and an Imax closer
to or above 0 suggests a more resistant system.

Recovery Time
Recovery time was determined as the time to baseline recovery,
i.e., the time it takes for a system to return to the pre-disturbance
baseline after a disturbance has occurred. By definition, after
baseline-normalization, the value of the baseline was set to 1.
Recovery time was thus calculated as the time in days it took for
a sample unit to reach the pre-fire baseline again after the time
point at which Imax was calculated. This metric corresponds to
what Holling (1996) termed engineering resilience. A high level
of resilience in response to fire should lead to a shorter recovery
time to the baseline.

Additionally, we calculated the cumulative fire impact (i.e.,
the Perturbation Rp), as the cumulative difference between
the baseline-normalized NBR curve and the pre-fire baseline
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FIGURE 2 | Visualization of the de-trending of the NBR time series and calculation of resilience metrics. (A) NBR time series for illustrative sample units for the
different fire frequencies considered in this study. The drops in NBR in the years 2002, 2007, and 2010 represent the fire effects. In each case, the final fire occurs in
2010. (B) The example NBR time series from a. after seasonal de-trending using Fourier filtering. In (A,B), each fire frequency is shown in a different color and line
style, defined by the legend at the top right. (C) The seasonally de-trended and base-normalized NBR time series with important values for the quantification of
resilience highlighted. For clarity, only the Fire Frequency 1 time series are shown. The following terms are defined: Fire: the date at which fire occurs; Baseline: the
pre-fire NBR baseline, derived by averaging NBR values pre-2002; Rp: the post-fire perturbation, indicated by the shaded area between the NBR curve and the
baseline between the time point when NBR is lowest and when the baseline is reached again; Imax : the maximum percentage loss in NBR shortly after fire, relative to
the baseline. Rt: the amount of time it takes from the lowest NBR value after fire until the baseline is reached again. Together, Rt, Imax and Rp quantify resilience.

from the time point at which Imax was calculated until
the baseline was reached again (essentially equivalent to the
area between the baseline and the NBR curve). This index
represents the overall post-disturbance perturbation, and is the
sum of relative differences between the NBR trajectory and
the baseline. Rp was calculated by summing the difference
between the baseline and the baseline-normalized NBR value
for any given date falling within the recovery period Rt. In
cases where a disturbance does not cause an overshooting
response (i.e., positively affects an ecosystem), Rp is directly
related to the mean recovery rate (Bahn and Ingrisch, 2018).
As it is independent of the shape of the recovery, it inherently
takes into account the variability of recovery rates over time.
A more resilient system is expected to have a smaller absolute
cumulative difference between the NBR values and the baseline.
Because the cumulative impact is strongly correlated with both
resistance and recovery time (Spearman correlation coefficients:
Imax-Rt: −0.54; Imax-Rp: 0.82; Rt-Rp: −0.88), we here only
present results of resistance and recovery and show results
of the cumulative impact in Supplementary Appendix. Rt,
Imax and Rp were also calculated for the Control areas; this
is possible because the NBR time series do not stay perfectly
constant over time but fluctuate around the baseline, even
for the Controls.

Relation to Fire Severity
The severity of a disturbance can influence resilience (Ingrisch
and Bahn, 2018). As Keeley (2009) points out, metrics that
combine fire severity and ecosystem responses in a single
composite index can be misleading as these metrics may correlate
significantly with fire severity measurements in the field but may
not actually be very good at predicting ecosystem responses. In
our case, it might be difficult to distinguish how much of Imax
could be explained by fire severity or the actual ecosystem’s ability
to resist the fire. To at least partially address this, we correlated
our resilience metrics with the relative differenced normalized
burn index (RdNBR), which is a common remote sensing index
to measure fire severity (Miller et al., 2009). The RdNBR is
given by:

RdNBR =
PreFireNBR− PostFireNBR
√

(|(PreFireNBR/1000)|)
,

which yields a positive integer that increases in value as the
fire severity increases (Miller and Thode, 2007). We used the
Savitzky-Golay filtered NBR values obtained from the Landsat
image just before a given burn date as PreFireNBR and NBR
values from the second Landsat image available after a given burn
date as PostFireNBR. The correlation coefficient of RdNBR with
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Imax, Rt, and Rp was −0.57, 0.13, and −0.40, respectively (the
correlation with Imax and Rp is negative because these metrics
were defined as negative % losses, i.e., Imax and Rp become more
negative as RdNBR or the fire severity increases). As expected,
the highest correlation was with Imax, our measure of fire impact,
showing that Imax captures the effects of fire impact to some
extent. These correlations are given for reference here, but this
study focuses on the resilience metrics that we describe above.
All metrics were computed in the R programming environment
version 4.1.0 (R Core Team, 2021).

Environmental Predictors
We identified a total of 14 variables related to climatic, human-
related and topographic factors that can potentially influence
Imax, Rp, and Rt. These variables may influence the presence
and intensity of fires and the recovery of vegetation, and
were subsequently obtained for each of the sample units
using GEE. The following subsections cover the different
variables in more detail.

Climatic Data
Climatic data were obtained for each sample unit for the study
period (2000–2020) using the TerraClimate product, available on
GEE. TerraClimate represents a high-resolution (2.5 arc minutes)
dataset that offers monthly climate and water balance data from
the years 1958–2019. It uses climatically aided interpolation
and combines high-spatial resolution climatological normals
from the WorldClim dataset with time series from the CRU
Ts4.0 and Japanese 55-year Reanalysis dataset (Abatzoglou et al.,
2018). Among other variables, the TerraClimate dataset offers
monthly precipitation, monthly minimum temperature and
monthly maximum temperature data. To determine whether
the TerraClimate dataset adequately described climatic variables
in the Chiquitanía, TerraClimate precipitation, maximum
temperature, and minimum temperature data at the coordinates
of seven weather stations in the Chiquitanía were compared
to ground measurements from those same weather stations
obtained from the Bolivian national service of meteorology
and hydrology (SENAMHI, data available on http://senamhi.
gob.bo/). Using the mean absolute error (MAE) as a metric
for comparison, the mean MAE for monthly precipitation was
around 42 mm while it was less than 1◦C for either minimum
and maximum temperature (Supplementary Appendix 10). The
TerraClimate data were used in the remainder of this study
given their accuracy and the possibility to obtain data at the
level of the sample units used in this study. Using R, these
variables were used to calculate the mean annual precipitation,
mean annual minimum temperature, mean annual maximum
temperature and mean annual rainfall seasonality (the coefficient
of variation of monthly precipitation values) for each sample unit
between 2000 and 2020.

Human Influence
Areas linked to human use and close to human-impacted areas
(e.g., forest edges) can be most strongly impacted by forest fires
(Maillard et al., 2020). To incorporate the aspect of human
influence into the study, the global human modification (gHM)

dataset published by Kennedy et al. (2019) was obtained. This
dataset provides an index that estimates the cumulative intensity
of human modification associated with several different types
of human-associated “stressors,” such as human settlement,
agriculture and infrastructure for the year 2016 for pixels at 1 km
resolution. The gHM index ranges in value from 0 as the lowest
level of human modification up to 1 representing the highest level
of human modification or stress. The gHM values for each sample
unit were extracted using GEE (Supplementary Appendix 11).

Topographic Data
Topographic features can strongly influence the resilience of
trees to fires by affecting vegetative spatial patterns across
the landscape (Ng et al., 2020). Elevation and slope can
favor regeneration because higher and steeper areas are often
associated with lower accessibility for humans and a wetter
climate, which is often associated with a positive effect on
recovery (Thomlinson et al., 1996; Crk et al., 2009). Furthermore,
aspect can be important, as moisture-bearing trade winds are
often directional, releasing more moisture on slopes facing a
certain direction (Crk et al., 2009), and a given slope orientation
can lead to increased light exposure and drastically affect surface
temperatures over short distances (Lipton, 1992). Generally,
insolation and topographic position can influence the risk of fire
as they affect both surface temperature and water availability
(Kane et al., 2015a,b). Water availability tends to increase
downslope and crest positions are usually significantly drier
than valleys and slopes (Markesteijn et al., 2010). Topographic
position can be described by the topographic position index
(TPI), which relates the position of a given point to its
surroundings. It is calculated by taking the difference between
the elevation of a given point X and the mean elevation of points
within a continuous ring of a given radius (an annulus) centered
on X. Positive values indicate that X is located higher than its
specified neighborhood (Weiss, 2001).

Elevation was extracted from GEE using the NASA SRTM
Digital Elevation 30m dataset (Farr et al., 2007). Aspect and slope
were derived from the elevation dataset using built-in functions
of GEE. Insolation was estimated by using the solar radiation
index (SRI) given by:

SRI = 1+ cos
(
latitude

)
× cos

(
slope

)
+ sin

(
latitude

)
×

sin
(
slope

)
× cos

(
aspect

)
(Kane et al., 2015b)

which ranges from 0 to 2, with 0 being the lowest level of solar
radiation and 2 the highest. The SRI models the level of solar
radiation around noon on the equinox (Keating et al., 2007). The
TPI, being scale-dependent, was calculated for annuli of radii 100,
250, 500, 1,000, and 2,000 m, following Kane et al. (2015b).

Data Analysis
Effect of Fire Frequency
To assess the differences between the different fire frequencies
in the resistance and recovery, we ran Kruskal-Wallis tests with
resistance (Imax) or recovery time (Rt) as response variable
and fire frequency as explanatory factor. A Dunn test was
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subsequently used with the Bonferroni correction to perform
multiple comparisons. Additionally, we tested for differences
in the baseline and the perturbation (Rp) between the fire
frequencies. All statistical analyses were implemented in R
using the stats package for the Kruskal-Wallis test (R Core
Team, 2021) and the FSA (Ogle et al., 2021) and rcompanion
(Mangiafico, 2021) packages for multiple comparisons. The
exact results for the multiple comparisons are given in
Supplementary Appendix 12.

Effect of Environmental Factors
To assess the influence of environmental variables on the
resilience indices Imax, Rt, and Rp, multiple linear regressions and
random forest models were developed with the resilience indices
as response variables. To avoid multicollinearity, the Spearman
correlation test was run between all the predictor variables using
the Hmisc R package (Harrell and Dupont, 2021). A correlation
coefficient threshold of 0.70 was used to remove correlated
predictors. Only the variable that more strongly correlated with
the response variables Imax, Rp, and Rt was kept (Supplementary
Appendix 13). Consequently, elevation, maximum temperature
and TPI at 100, 250, 500, and 2,000 m were removed from the
dataset. Because differences in the pre-fire baseline between the
different fire frequencies were observed in the Kruskal-Wallis
tests, the baseline and the fire frequency were also included in
the models as predictor variables. Thus, the predictor variables
used were Fire Frequency, Pre-Fire Baseline, Mean Annual
Precipitation, Mean Annual Rainfall Seasonality, Mean Annual
Minimum Temperature, gHM, slope, aspect, SRI, and TPI at
1,000 m. Because the goal of this analysis was to investigate
the effect of the predictor variables on the resilience of areas
that had been affected by fire, Control areas were excluded from
the analysis. A table giving descriptive statistics of the different
variables considered with and without the Control areas is given
in Supplementary Appendix 14.

Linear Regression
Linear regression models were used to determine (1) which
variables had an influence on the resilience indices, (2) what
the direction of the relationship was and (3) whether the
effect of variables differed between different fire frequencies. In
order to satisfy the requirements of linear regression, Rp values
were cubic root transformed. Because the recovery time Rt is
a count variable, a generalized linear model with a Poisson
distribution was initially tried for Rt. However, the variance was
larger than the mean, thus a generalized linear model using
the negative binomial distribution was eventually fitted. Fitted
values vs. observed values from both models were compared
to assess if a negative binomial distribution was better for our
data. A backward selection method was used to identify a
more parsimonious set of predictor variables and any significant
interactions between frequency and the other predictor variables
were added. Numerical predictor variables for the parsimonious
model were scaled by subtracting the mean and dividing by
the standard deviation to facilitate model output interpretation.
Linear models were built using the lm function from the stats
package in R (R Core Team, 2021), whereas the glm.nb function

from the MASS package in R was used for building generalized
linear models (Venables and Ripley, 2002).

Random Forests
The random forest supervised learning algorithm (Breiman,
2001) was used to determine (1) how well the different
environmental variables, the pre-fire baseline and the fire
frequency predicted the variation in Rt, Imax, and Rp, and (2)
which predictor variables had the highest influence in these
predictions. A random forest is a collection of multiple randomly
developed decision trees, which are combined to produce a final
model. Because the trees are developed randomly, a random
portion of the data fed into the algorithm are used to train
the model while the remainder (out-of-bag data) is used for
model validation. This results in a metric known as variance
explained, which is similar to the R2 in linear regressions. The
algorithm also provides a measure of predictor importance,
which is computed by using randomly permutated out-of-bag
data for a single predictor in all the random forest trees. The
change in mean square error compared to the original out-of-bag
data then represents the variable importance (Kane et al., 2015b).
While importance scores are often normalized to more easily
compare importance scores across models, it has been suggested
that raw importance scores have better statistical properties
(Strobl et al., 2008).

For each random forest model predicting either Rt, Imax, or
Rp, 75% of the data were used for training the random forest
while the rest were used for validation. We report both the
explained variance based on out-of-bag data and the R2 obtained
by calculating how well each random forest predicts the set-
aside validation data. We finally report the raw importance scores
for each predictor variable in each random forest. The number
of trees used in each model was set to 1,000 to obtain stable
results while the number of variables to be used in each split
(mtry) was optimized by testing mtry values between 1 and 10
and picking the mtry value that resulted in the lowest mean
squared error in the final model. This resulted in mtry values
of 4, 3, and 5 when Rt, Imax, Rp were the dependent variable,
respectively. Random forests were built using the randomForest
package (Liaw and Wiener, 2002).

RESULTS

We set out to determine the resistance and recovery of the
Chiquitanía using the NBR remote sensing index following fires
in 2010 for areas did not burn (Ctrl), that burned once (F1),
twice (F2), or three times (F3), and what factors might influence
this resilience.

Effect of Fire Frequency
A significant effect of fire frequency (0, 1, 2, or 3 fire events) on
the resistance Imax and the recovery time Rt was found (Figure 3).
The resistance (Imax) was similar between areas that experienced
fire, but tended to decrease from F1 to F2 and increase from
F2 to F3 (Figure 3A). The recovery time Rt was longer for F1
(median: 576 days) and F2 (median: 592 days) than it was for F3
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FIGURE 3 | Box plots showing the maximum fire impact (Imax ) (A) and the recovery time to the baseline (Rt), i.e., the number of days after fire (or Aug 24 2010 for
Control data points) until the baseline is reached again (B) and how they differ between the fire frequencies (Ctrl = control, no fire; F1 = 1 fire event, F2 = 2 fire events,
F3 = 3 fire events). Both Rt and Imax were calculated for the fire in the year 2010 and are measures of the recovery and resistance, respectively. The letters at the top
of each box plot represent the significance groups obtained after a multiple comparison test. The output of the Kruskal-Wallis test (p-value and Chi squared statistic)
is shown at the top right of each box plot.

(median: 240 days), which did not differ significantly from the
Control (median: 208 days; Figure 3B). Note that 2010 was also
a drought year, likely leading to non-zero resistance and recovery
also of control areas. All areas showed full recovery to the pre-
fire baseline within the time frame considered. The perturbation
Rp showed similar results to Imax (Supplementary Appendix 15).
Moreover, the pre-fire baseline was lower for F3 and highest for
control areas (Supplementary Appendix 15).

Effect of Environmental Factors
Linear Regression
A multiple linear regression and generalized linear model
with negative binomial distribution were, respectively, used to
predict Imax or Rt based on several predictor variables. The
most parsimonious model for Imax, the measure of resistance,
showed that the pre-fire baseline and slope increased Imax (i.e.,
the impact was lower), TPI 1000 and minimum temperature
decreased Imax while precipitation decreased Imax for F1 and
F2 but increased Imax for F3 (Figure 4A). The adjusted R2

of the model was 0.28 (residual standard error = 7.55 on 521
degrees of freedom and F-statistic = 23.77). Similar results
were seen for the cumulative impact Rp (Supplementary
Appendix 16). The most parsimonious model for Rt, the measure

of recovery, showed that slope and minimum temperature
shortened the recovery time, rainfall seasonality increased the
recovery time, while precipitation increased the recovery time,
especially for F2 (Figure 4B). The global human modification
index was not significant in any model and thus not included
in the final models. The full model details are given in
Supplementary Appendix 16. The differences between the
different fire frequencies in the linear regression models were
similar to the ones observed in Figure 3, which is why we do not
show these differences in Figure 4 and omit the intercept values
for clarity (see Supplementary Appendix 16).

Random Forest
R2 values of the random forest models predicting Rt, Imax, and Rp
calculated for out-of-bag data ranged from 23 to 40%, while the
R2 obtained for data that were not used in training the models
ranged from 30 to 47% (Figure 5 and Supplementary Appendix
17). In every model, precipitation was assigned the highest
importance score, followed by rainfall seasonality and minimum
temperature (Figure 5). Topographic variables exhibited smaller
importance scores, with slope being the most important
topographic variable. Fire frequency had an importance score
similar to the topographic variables in all models. The solar
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FIGURE 4 | Regression coefficients for several variables predicting the maximum impact Imax (A) or the recovery time Rt (B). A multiple linear regression and
generalized linear model with negative binomial distribution were used to predict Imax or Rt, respectively. Error bars show standard errors and interactions are
indicated by an asterisk. Estimates for the regression model intercepts are not shown.

radiation index (SRI) and aspect consistently scored lowest in
importance and were close to 0. Human modification, estimated
by the global human modification (gHM) variable, generally
scored low. The pre-fire baseline was important for Rt and Imax,
but less so for Rp (Supplementary Appendix 17).

DISCUSSION

Fire Resilience of the Chiquitano Dry
Forest
We used the remote sensing index normalized burn ratio (NBR)
to analyze the resilience of the Chiquitano dry tropical forest.
Our results are summarized in Figure 6, which offers as spatial
representation of the distribution of resistance and recovery
values across the Chiquitanía (the spatial map for Rp is given
in Supplementary Appendix 18). We expected that areas that
burned at different frequencies would have lower resilience than
control areas that did not burn. Indeed, control areas had a
maximum impact (Imax) and recovery time (Rt) that were closest
to 0 and significantly different from areas that experienced fire
(Figure 3), indicating a significant effect of fire in 2010 on the
vegetation in burned areas. Deviations from 0 for the control
may be caused by the major drought in 2010 (Devisscher et al.,
2016a), which likely caused tree mortality and therefore changes

in the vegetation indices. The average impact of the 2010 fire
was low to moderate (Figure 3A, median drop relative to the
baseline lower than 20% for all fire frequencies). Moreover, the
majority of areas affected by fire recovered to baseline levels
very fast, within 2–3 years (Figure 3B). The relatively high
fertility of soils and general edaphic variability in the Chiquitanía,
together with the presence of fire-tolerant species (Iporre, 1996;
Killeen et al., 2006; Toledo et al., 2012) may facilitate relatively
fast vegetation recovery following fire. It has been observed
that different vegetation types of the Chiquitanía, including the
subhumid semi-deciduous forest, display high resilience to fire
in the Chiquitanía (B. Mostacedo, personal communication,
July 22, 2021). Much of the vegetation regenerates within 6
months following the fire, with few traces of fire left; trees
show a high survival rate (around 70%), with new trees being
primarily recruited through seed dispersal, and to a minor extent
through re-sprouting (B. Mostacedo, personal communication,
July 22, 2021). Reproductive strategies can play an important
role in the ability to recover after fire, which is why tree species
composition and the presence of nearby seed sources are crucial
in determining the future of forests facing extreme weather and
fire conditions (Brando et al., 2014). 62% of canopy species in
the Lomerío region of the Chiquitanía have been found to be
wind-dispersed (Justiniano and Fredericksen, 2000) and several
tree species in a dry forest in Brazil (many of which are also
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FIGURE 5 | Variable importance scores for the random forests with the maximum impact (Imax; A) or the recovery time to the baseline (Rt; B) as dependent variable.
The predictor variables are indicated on the y-axis and are the same for each model. Importance scores are given as the permutation importance, which is the
increase in mean squared error of the model when the values of a given predictor variable are randomly shuffled and the model run again. The importance scores are
given in absolute terms rather than being normalized, and allow comparison between the relative predictive strengths of each variable.

found in the Chiquitanía) have shown a strong ability to re-
sprout (Vieira et al., 2006). These traits allow dry forest species
to better colonize disturbed areas (Vieira and Scariot, 2006), and
to become more abundant as fire becomes more frequent. Tree
regeneration in the Chiquitanía may, however, be hampered by
the proliferation of herbaceous vines and lianas after fire (Pinard
et al., 1999). Indeed, lianas can re-sprout from roots that are
able to survive fire events (Mostacedo et al., 2001). Nevertheless,
fire has been a persistent feature of the natural history of the
Chiquitanía (Power et al., 2016), which suggests that the forest
is highly resilient and capable of sustaining itself following fire.
It remains unclear, however, if there exists a threshold in fire
intensity or frequency which, if exceeded, may lead to substantial
forest dieback (Balch et al., 2011). Intensifying fire regimes in
the future may lead to a decrease, instead of an increase, of the
fire resilience.

Fire Resilience Is Lowest at Intermediate
Fire Frequency
We expected that resilience would increase with fire frequency,
i.e., that resistance would increase and recovery time would
decrease as fire frequency increased for burned areas. Overall
resilience was lower for F2, with lower Imax and higher Rt

values indicating lower resilience, while F1 and F3 appeared
more resilient (Figure 3). Devisscher et al. (2016b) observed
similar results; they found that biomass reduction after fire in
the Chiquitanía was higher (i.e., resistance was lower) after
two fires compared to areas that had burned once or three
times. Several interacting effects possibly explained the higher
biomass reduction for F2, such as the presence of trees that
died during or following the first fire as a consequence of
damage suffered in the first fire, but only burned in the second
fire; pioneer species colonizing the area after the first fire
which may have been more vulnerable to fire; too little time
for young trees to reach fire-resistant sizes after the first fire
(Devisscher et al., 2016b). By the time the third fire occurred,
the fuel left to burn had likely been reduced, leading to less
severe fires. Moreover, the species present (e.g., Anadenanthera,
Astronium, Tabebuia) were likely mostly fire-tolerant with thick
bark to protect from fire damage (Devisscher et al., 2016b).
However, it remains unclear whether these changes would
constitute a resilient response, i.e., of an ecosystem returning
to its pre-fire state, or an adaptive response, i.e., an ecosystem
that changes in the final suite of species present compared
to the pre-fire state. Important shifts in species composition
with increased fire occurrence have been observed in several
biomes (e.g., the Brazilian Amazon—Barlow and Peres, 2008;
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FIGURE 6 | Spatial map showing the distribution of plots and values of the resilience metrics. (A) Maximum impact Imax (expressed as percentage loss) and (B)
recovery time Rt, the number of days after fire (or Aug 24 2010 for Control data points) until the baseline was reached again. Each shape corresponds to a plot
experiencing a different fire frequency ( : Ctrl = control, no fire; N: F1 = 1 fire event; �: F2 = 2 fire events; �: F3 = 3 fire events), whereas the color gradient of each
point indicates the higher or lower values of the resilience metric. The area corresponds to the area in green in Figure 1.

Tasmania—Harris et al., 2018), suggesting that many forest
ecosystems undergo adaptive responses to fire in the short term.
It is further possible that some of the results presented here may
be biased due to different pre-fire baseline levels for the different
plots (further discussed below).

Climate Drives Fire Resilience
We expected resilience to vary across the region and increase
with increasing water availability (e.g., high precipitation and
low seasonality) and to decrease with increasing temperature.
We indeed found that climatic variables were most influential
in predicting resilience (estimated by Imax and Rt), with
precipitation representing the most important climatic variable
(Figure 5). The precipitation effect on resistance, however,
differed between the fire frequencies; whereas precipitation
indeed had a positive effect on resistance in areas that burned
three times, it had a negative effect on the resistance of areas
that burned once or twice. Precipitation decreased recovery
(i.e., increased recovery time) across all fire frequencies. The
contrasting effect of precipitation for F1 and F2 vs. F3 observed
for Imax may be the result of a shift in vegetation community
structure. Water availability plays a key role in the distribution
of species in lowland tropical forests and the presence of
species along a water availability gradient is influenced by
their drought tolerance (Markesteijn and Poorter, 2009). In
regions with high precipitation, the baseline community will
consist of a higher proportion of species that prefer somewhat
wetter climates and are comparatively less drought- and fire-
tolerant. Therefore, in the absence of multiple previous fires,
the wetter areas harbor less fire-tolerant communities that
result in lower fire resilience. However, as mentioned before,

recurring fires can cause fire-tolerant species to become more
dominant (Devisscher et al., 2016b). In areas with recurring
fire, the rainfall gradient may no longer represent a fire-
tolerance gradient. Instead, the resistance of such relatively
fire-tolerant communities may increase with rainfall because
of less severe fires and enhanced growth rates that can lead
to e.g., thicker bark. Hence, in areas with low fire frequency,
the rainfall gradient represents the original species composition
and its tolerance to fire, whereas at higher fire frequency,
the vegetation composition may have shifted toward more fire
tolerant species and higher water availability results in less
fire damage. At the same time, rainfall decreased recovery for
all fire frequencies. Gazol et al. (2017) observed that forests
in drier regions in Europe and North America had a greater
recovery capacity following drought, indicating a greater ability
to adapt and respond to periods of disturbance. Trees growing
in drier environments tend to invest more in below-ground
biomass (Markesteijn and Poorter, 2009), thus improving their
ability to access water. Moreover, trees experiencing water
stress can be relatively more efficient in their use of water
(Tong et al., 2019) and may show an increased storage of
carbohydrates (Granda and Camarero, 2017), which may allow
them to recover faster after disturbance by fire compared to
trees growing in wetter conditions. Thus, the negative effect of
rainfall may point to a more general trade-off that plants are
subject to regarding their resource allocation, and consequently
also resistance and recovery.

Rainfall seasonality (the coefficient of variation of rainfall)
decreased recovery (i.e., increased recovery time). The negative
effect of rainfall seasonality on recovery could indicate that
the dry season is more pronounced, i.e., that the growing
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season is shorter, as the seasonality increases, which can
hamper recovery. Rainfall variability exerts great control over
biological processes and can cause scarcity and mortality in
dry months (Schwartz et al., 2020). Interestingly, recovery, but
not resistance, was affected by rainfall seasonality. Resistance
can manifest itself through traits such as a thick bark
(Mostacedo et al., 2001), which confers more resistance as
the bark grows over the course of a plant’s life. Hence,
resistance is age-dependent. Conversely, recovery may rely more
on conditions present at the time of recovery, potentially
explaining why the rainfall seasonality would affect recovery,
but not resistance.

Average minimum temperature decreased resistance but
increased recovery (i.e., shortened the recovery time). The
negative effect of minimum temperature on resistance may be
caused by increased evaporation at high temperature, which
increases and exacerbates dry events (Littell et al., 2009; Cook
et al., 2014) and may therefore lead to more intense and
devastating fires (Littell et al., 2016). Indeed, constantly higher
temperatures were at the root of the devastating fires in
the Chiquitanía in 2019 (Castellnou et al., 2019). Conversely,
minimum temperature had a positive effect on recovery by
shortening the recovery time, possibly because higher minimum
temperature, up to a certain point, can accelerate plant growth
rates and thus recovery.

Rainfall and temperature have been shown to be strong drivers
of species distribution in Bolivia (Toledo et al., 2012). At the same
time, recurring fires may lead to increased dominance of fire-
tolerant species (Devisscher et al., 2016b). Our results support
these studies and suggest that both the climate and fire frequency
determine fire resilience.

Resilience Increases on Steep Slopes
and in Valleys, but Is Not Affected by
Human Influence
We expected factors increasing the level of insolation (such
as aspect or the solar radiation index SRI) to decrease fire
resistance by creating drier conditions but to increase recovery
due to increased growth. Variables influencing insolation scored
consistently lowest in importance in predicting resilience,
whereas topographic position and particularly slope played
a more significant role (Figure 5). Slope increased both
resistance and recovery (by reducing recovery time), while
higher topographic positions decreased resistance and recovery
(Figure 4). Steeper terrain is often associated with lower
accessibility to humans and thus less development, which
can have a positive effect on forest recovery (Crk et al.,
2009). While steeper slopes may be associated with more
severe fire effects (Lentile et al., 2006), because unburned
fuel ahead of the fire is preheated as the fire climbs upslope
(DeBano et al., 1998), water availability may be relatively
higher on slopes and in valleys than on hilltops, leading
to less severe fires and higher fire resistance and recovery
(Markesteijn et al., 2010; Lee et al., 2018). However, the effects
of topography can be complex, and their lower importance
scores in the random forests may point to the fact that

other factors (such as climate) play a more dominant role in
shaping resilience.

Although the vast majority of fires in the Chiquitanía can be
linked to human activities such as slash-and-burn agriculture
(locally referred to as chaqueo) (Devisscher et al., 2019), we
found no effect of human influence (measured by the human
modification index) on fire resilience. Generally, the degree of
human modification was low for the areas considered in this
study (Supplementary Appendix 14) and rather homogeneous
throughout the whole region. It is possible that people choose
to burn forests also in more remote areas where the levels of
human modification are low and where large tracts of forests can
be converted for agricultural purposes. Therefore, the proximity
to human settlements or infrastructure (e.g., roads) may be
more important to describe the effect of presence of humans on
fire resilience in the Chiquitanía. It may also be that another
index than the one chosen in this study is more appropriate
for an area with a relatively low human population density
such as the Chiquitanía. Alternatively, it may be that indices
measuring human influence may explain where fires occur,
but not their intensity or the resistance and recovery of the
ecosystem, which are more determined by the climate and the
vegetation composition.

Pre-fire Baseline Effects
We cannot know whether fire occurred before the start of
the study period (i.e., before 2000). Given that the pre-fire
baseline values decrease at higher fire frequency (Supplementary
Appendix 15), it is likely that some areas are more prone to
receive fires, leading to a lower baseline. A lower initial baseline,
such as in the case of areas that burned three times, may lead
to a faster recovery to baseline levels. Future research will need
to investigate what factors can explain the likelihood of areas
to be affected by fire. The pre-fire baseline had a positive effect
on resistance (Figure 4), suggesting that forests with higher
initial vegetation values suffered less severe fire impact. Baselines
are often dynamic, and it is common to use a pre-disturbance
state to estimate a baseline (Bahn and Ingrisch, 2018). For the
Chiquitanía, it is unrealistic to expect to find areas without any
fire history, as fires have been present throughout the Holocene
(Power et al., 2016). Rather than thinking of the areas considered
here as areas that burned exactly one, two, or three times, it
is perhaps more useful to think of these areas as falling on
a spectrum of areas in which fires have occurred more or
less frequently.

The Future of the Chiquitano Dry Tropical
Forest
The Chiquitanía represents an important source of timber, water,
game, construction material, and non-timber forest products
(Devisscher et al., 2019). Fire also causes large-scale disturbances
of the soil structure, soil nutrients, and local hydrology (Wells,
1979; Maass et al., 1988; Stoof, 2011). Ten out of sixteen
important drainage basins in Santa Cruz are located in the
Chiquitanía, all of which have already been affected by fire, with
potential risks for both the humans and the local ecosystem
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(Anívarro et al., 2019). The majority of fires in the Chiquitanía
can be traced back to human activity, often in conjunction
with inappropriate fire practices in the agricultural and livestock
sector (Ibarnegaray et al., 2014). Engaging with stakeholders
is thus key to address the urgent issue of fires in the
Chiquitanía.

CONCLUSION

We show that the Chiquitanía dry forest is relatively resilient to
up to three recurrent fires. This resilience initially decreases, but
then increases again after the third fire, which may point toward
an ecological transition state toward a higher abundance of fire-
tolerant species with recurring fires. Climatic factors, especially
water availability, are more important in shaping resilience than
topography and human influence. As droughts and fires are
becoming more common due to the growing threat of climate
change and land use change, the Chiquitanía region is facing
considerable challenges in the future. Long-term monitoring,
combining remote and ground-based data building on the results
of this study, will be important for understanding the long-term
resilience of the Chiquitano ecosystem and for protecting the
lives and livelihoods that depend on it. Such knowledge will be
the basis of adequate management and restoration efforts of one
of the largest remaining tropical dry forests. Hence, although
the current ecosystem seems to possess still high fire resilience,
its future with more frequent and intense fires and droughts
remains uncertain.
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