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Abstract: Crop monitoring is crucial to understand crop production changes, agronomic practice
decision-support, pests/diseases mitigation, and developing climate change adaptation strategies.
Banana, an important staple food and cash crop in East Africa, is threatened by Banana Xanthomonas
Wilt (BXW) disease. Yet, there is no up-to-date information about the spatial distribution and
extent of banana lands, especially in Rwanda, where banana plays a key role in food security and
livelihood. Therefore, delineation of banana-cultivated lands is important to prioritize resource
allocation for optimal productivity. We mapped the spatial extent of smallholder banana farmlands
by acquiring and processing high-resolution (25 cm/px) multispectral unmanned aerial vehicles
(UAV) imageries, across four villages in Rwanda. Georeferenced ground-truth data on different
land cover classes were combined with reflectance data and vegetation indices (NDVI, GNDVI,
and EVI2) and compared using pixel-based supervised multi-classifiers (support vector models-SVM,
classification and regression trees-CART, and random forest–RF), based on varying ground-truth
data richness. Results show that RF consistently outperformed other classifiers regardless of data
richness, with overall accuracy above 95%, producer’s/user’s accuracies above 92%, and kappa
coefficient above 0.94. Estimated banana farmland areal coverage provides concrete baseline for
extension-delivery efforts in terms of targeting banana farmers relative to their scale of production,
and highlights opportunity to combine UAV-derived data with machine-learning methods for rapid
landcover classification.

Keywords: Rwanda; banana; machine learning; UAV; remote sensing; land cover mapping; precision
agriculture; food security; BXW

1. Introduction

Agricultural production is critical for growth in many developing economies [1] and
is indispensable for food security in sub-Saharan Africa (SSA). The world’s population
is gradually increasing and projected to reach 9 billion by the year 2050 [2]. Considering
that approximately 815 million people in the world are chronically undernourished [2],
it is imperative to address extant food insecurity challenges by increasing agricultural
production (to the tune of 50% more) to feed the growing population [2]. Yet, the need to
increase production is often constrained by resource limitations, production inefficiencies,
and natural/human threats in many smallholder farming systems [3]. Globally, about
one-third (38%) of the terrestrial surface is classified as agricultural land and pastures [4],
and further expansion of both land-use types is expected to cause negative ecological
impacts like biodiversity loss and deforestation [5]. Therefore, sustainable management of
current cropland areas is important to improve productivity and address yield gaps [4].
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However, this requires periodic monitoring of cropland area and composition to under-
stand changes and develop or deploy appropriate agronomic tools and interventions for
farm-level decision-support.

Generally, mapping of croplands includes the identification of crops and their areal
coverage to generate relevant agricultural statistics (at various geographical scales), support
yield forecasting, and assess agroecological/environmental changes [6]. In most SSA
countries, conventional methods such as periodic agricultural surveys are adopted to
map or quantify cropland areas, usually at irregular frequencies. Such methods are cost-
prohibitive due to extensive and repetitive field surveys, mostly conducted on smaller
areas/units of lands, and based on biased sampling techniques which may skew area
estimates [7]. However, current remote sensing tools and technologies offer capabilities for
the rapid and cost-effective acquisition of data to continuously map cropland changes at
varying scales [7–9].

In Africa, about 80% of farmlands are cultivated by smallholder farmers, and in
East Africa, these farmers account for 75% of the agricultural outputs [3]. Most of the
smallholder farms are characterized by mosaic landscapes and mixed crop farming on
small pieces of land, thereby posing a significant challenge to the monitoring of changes in
these agricultural landscapes [10]. The increasing accessibility of high-resolution remotely
sensed data is promising for mapping and monitoring vegetation growth and dynamics in
these smallholder farms. Optical sensors that are coupled with unmanned aerial vehicles
(UAVs) are emerging as a reliable source of high-resolution and multispectral imageries that
can be used to distinguish crops within and between fields [11–13]. Moreover, the imagery
reflectance data can be processed to generate vegetation indices which can further aid crop
identification and differentiation [14]. Specifically, the Normalized Difference Vegetation
Index (NDVI) [15], Green Normalized Difference Vegetation Index (GNDVI) [16] and
Enhanced Vegetation Index (EVI2) [17], have proven useful for various agronomic use-
cases [18–20]. In addition, relevant insights can be derived from UAV-acquired imagery
data by applying advanced analytics, including machine learning techniques to achieve
high prediction accuracy of various parameters for agronomic decision support.

Many researchers have utilized UAV-acquired data for crop and yield mapping in
smallholder farming systems, in combination with various remote-sensing and machine
learning tools/methods [18]. Chew et al. [21] mapped croplands in Rwanda using a deep
convolutional neural network (CNN) on UAV-acquired imagery and achieved high classifi-
cation accuracy (up to 96%) for staple crops like banana and maize compared to legumes
(49%), which are mostly cultivated under intercropped conditions [21]. In Ghana, UAV-
acquired RGB and near-infrared (NIR) spectral bands (and calculated vegetation indices)
were used to delineate and map smallholder maize-cultivated farms with an accuracy
of 94% [22], while several imagery products (including thermal imagery, multispectral
band, and vegetation indices) were used to monitor crop growth within farmers’ fields
in the Czech Republic [23]. The methods applied in these various studies differ as well.
For instance, croplands in Zimbabwe were mapped by implementing automatic classifi-
cation of UAV imageries, including ensemble classification methods and decision-level
fusion (and NDVI thresholding) to identify the croplands and determine spatiotemporal
cropland changes [24]. As explained by Lu and Weng [25], in addition to the right imagery,
the right choice of classification methods is crucial to successfully map land cover. Machine
learning methods, supervised or unsupervised, have been widely used for land-cover
classification studies using remotely-sensed data [26–28]. For instance, support vector
machine (SVM) has gained much attention [29] and has been applied widely in land cover
classification using imageries with highly reliable outputs [29–31]. Phan and Kappas [32]
compared land cover classification with k-nearest neighbor (KNN), random forest (RF),
and SVM, and reported that higher overall classification accuracy and least sensitivity to
training size samples was achieved with SVM. Other studies [28,33,34] have shown that RF
is also promising for land-cover classification. Rodriguez-Galiano et al. [33] showed that
high (>90%) overall accuracy was achieved (kappa = 0.92) by applying RF in a land cover
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classification of a complex area to classify 14 different land categories. While each of these
classification techniques has unique strengths under specific application contexts, they can
perform poorly in other contexts, and it is often important to compare performance across
classifiers relative to the specific classification task.

In Rwanda, Banana is one of the important staple crops for food and nutritional
security in the country, and it supports household livelihood as a source of income [35].
However, Banana production is threatened by the Banana Xanthomonas Wilt (BXW),
an infectious crop disease that can cause up to 100% yield loss per infected stand [36,37],
and spatially explicit data about areas of banana production are generally outdated or
non-existent. The identification and delineation of cropland area is a critical first step
towards targeting, controlling, and preventing crop-specific diseases, such as BXW, nation-
ally. Similar to other sub-Saharan African Countries, national estimates about the location
and areas of banana farms in Rwanda are predominantly estimated or extrapolated based
on traditional survey and hierarchical reporting, which are often conducted post-season,
at irregular intervals, and usually at sparse locations [9,38,39]. Rapid and spatially explicit
assessment of banana farms at high-resolution and frequent intervals can support the need
for timely extension delivery in banana production systems and support food security in
Rwanda by providing reliable data at useable granularity for local action and interventions.
The combination of high-resolution imageries, such as from new-generation satellites and
UAVs, and evolving analytical methods, such as machine learning classification techniques,
are promising to generate (near) real-time outputs and insights for timely decision-support.
Yet, due to varying geographical contexts and the cost of collecting ground-truth data from
representative locations, methods for classifying croplands should be evaluated for their
reliability or relative accuracy [40], especially to advance credible national monitoring sys-
tems. For instance, the classification accuracy of supervised classification methods can be
affected by the volume, dimensionality, and quality of the dataset [41]. Further, depending
on the desired level of confidence in the classification process, the usefulness/reliability of
landcover classification outputs can be determined by the robustness of the ground-truth
training data. Limited research exists to guide the understanding of the impact of differing
levels of sample points on classification accuracy, however, such assessment can generate
useful information to guide the selection of the most reliable landcover classifier that can
be reliable for national mapping purposes in Rwanda. Therefore, this study was conducted
to assess the accuracy of multi-classifier models for mapping of banana landcover at a
village level, and to evaluate if a combination of ground-truth georeferenced data within
digitized point datasets from high-resolution UAV imageries can enhance the classification
outcomes based on improved data robustness.

2. Materials and Methods
2.1. Study Area

This study was conducted in Rwanda (Figure 1), one of the most densely populated
countries in Africa [35], which is characterized by a tropical highland climate. Agriculture
contributed approximately 29% to the country’s GDP in 2019 and employs about 72% of the
working population [35]. In this study, four (4) villages were selected, namely Murambo
and Karambo in Burera Districts, and Rubira and Rusera in Kayonza district, based on
the relative intensity of banana production. The landcover across the villages is mainly
croplands, water, buildings, and bare land.
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Figure 1. Map of Rwanda showing selected villages; Murambo and Karambo (Burera district) and
Rusera and Rubira (Kayonza district) where UAV imageries and ground-truth data were acquired.

2.2. Data Description

During the growing season of 2019 (mid-May), field surveys were conducted across the
four (4) target villages to collect georeferenced data on banana farms, as part of the research
focused on surveillance of BXW presence/absence in the target geographies. We acquired
multispectral imageries with Airinov multispec 4C sensor borne by eBeeX fixed-wing UAV
which captured vegetation reflectance at 4 bands (red, red-edge, green and near-infrared).
Four (4) UAV flight missions, including over 20 flights, were simultaneously planned to
acquire high-resolution imageries (0.25 m × 0.25 m/px), covering each village. The entire
fight mission was completed within two (2) days, covering a total area of 550 ha. The eBee
UAV was flown at 100 m above-ground, with 85% frontal overlap and 75% lateral overlap
to ensure successful image acquisition. Each flight was under optimal ambient conditions,
with average windspeed of 8.5 m/sec, and temperature below 30 ◦C. All flight precautions
and guidelines were followed, using a similar protocol as described by Adewopo et al.
2020 [18].

To acquire ground-truth points for the classification, we used a GPS device and open
data kit (ODK; www.xlsform.com; accessed on 11 September 2021) survey form to collect
coordinates of point locations and record the vegetation that was present at each point.
The georeferenced points included 615 points which were acquired from existing banana-
cultivated farmlands and 135 points from other land cover classes. This initial ground-truth
dataset was enriched with additional georeferenced data points which were manually
digitized from the UAV imageries. The additional reference points were digitized in the
ArcGIS environment by visually identifying the different land cover classes of interest
within the UAV-acquired RGB imagery for each village, and subsequently creating points
for each clearly identified land cover while assigning the respective land cover label.
Although banana-cultivated land was the primary land cover of interest, other land cover
classes represented in the data points include built-up areas, bare land, other vegetation,
and water. The relative number of data points that was acquired per land cover is shown
in Table 1, while Figure 2 shows a sample of the RGB mosaic with the identified target land
cover class objects.

www.xlsform.com
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Table 1. Ground truth data for various land use classes across the villages.

Banana Land Bare Land Built-Up Other Vegetation Water

Murambo 126 131 194 77 4
Karambo 108 96 219 62 4

Rubira 179 135 274 41 N/A
Rusera 202 74 273 107 N/A
TOTAL 615 436 960 287 8

Figure 2. Sample of RGB orthomosaic aerial images that were acquired at 0.25 m resolution
(Karambo Village).

2.3. Vegetative Indices

The various landcover features all have different spectral properties, which are cap-
tured in the spectral bands and the vegetation indices (Figure 3). Both the spectral bands
and VIs are useful as inputs for imagery analysis and classification. Some of the most used
vegetation indices include the Normalized Difference Vegetation Index (NDVI), the green
NDVI (GNDVI) and the Enhanced Vegetation Index (EVI). The NDVI was calculated as,
NDVI = (NIR − RED)/(NIR + RED) and ranges from −1.0 to 1.0. The green NDVI was
calculated as, GNDVI = (NIR − GREEN)/(NIR + GREEN), ranging from −1.0 to 1.0. The 2-
band Enhanced Vegetation Index (EVI2) was calculated as EVI2 = 2.5 * [(NIR − RED)/(NIR
+ 2.4 * RED + 1)] [17,42], also ranging from −1.0 to 1.0.
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Figure 3. Sample imagery of vegetation indices (VIs) used for landcover classification in Karambo
village.

2.4. Data Splitting

The ground truth dataset was used to extract training data based on spectral reflectance
values and vegetation index values that were extracted from the imagery bands. The four
bands (Red, NIR, Green and Red Edge) and three vegetation indices were used for training
and prediction, relative to the target landcover classes. To assess the impact of data richness
on classification accuracy, the entire pooled georeferenced point datasets were categorized
into different 3 levels (Table 2). The level 1 data were based on the data that were available
from the actual ground survey (i.e., 750 point locations), while level 2 and level 3 were
accrued from the combination of the manually digitized data points (from UAV RGB
imagery) with the actual ground surveyed data points from farmers’ fields. At each level
of data richness, the datasets were randomly split into training (70%) and testing (30%)
points across all villages prior for further classification analysis.

Table 2. The relative split of training and test data samples across villages based on the different data
richness levels for village-level classification of land cover in Rwanda.

Data Richness Number of Data Samples Training (70%) Test
(30%)

Level 1 750 525 225
Level 2 1500 1050 450
Level 3 2306 1615 691

2.5. Classification Methods

Three pixel-based supervised multi-classifier models were used for banana cropland
classification, namely support vector machines (SVM), classification and regression tree
(CART) and Random Forest (RF). We overlaid the ground truth points on the UAV-imagery
for each village and extracted the reflectance band values (Red, Green, NIR and Red-
edge) and vegetation indices values (NDVI, EVI2 and GNDVI) from each incidence pixel.
All the models were optimized using 10-fold cross-validation and specific details about the
tuning of parameters are provided below. For each classification method and data richness
level, we assessed overall accuracy and Kappa statistics, as recommended for land cover
classifications [43], and selected the most suitable model for the final delineation of the
landcover classes.

SVM classifier aims at finding an optimal hyperplane in an N-dimensional space
where N is the provided number of features (variables) distinctly classifying the data
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points [29]. Unlike other classification algorithms that find differences between classes,
SVM identifies the most similar characteristics between classes and uses them as support
vectors. Based on the established support vectors, the SVM algorithm attempts to find the
most optimal hyperplane, from the many possible hyperplanes, that best separates the
available data classes. For this study, we used a linear kernel because it is preferred for
the training of large datasets [30]. The L2 regularized SVM (dual) with linear kernel was
applied to improve overall model generalization and a cost parameter of 0.5 was used.

Classification and regression tree (CART) classifier or the decision tree classifier breaks
down data into smaller subsets as the decision tree develops. The classifier randomly splits
a problem into smaller subproblems by defining some set of rules to be applied down a
tree-like structure sequentially [44]. Using the concept of information entropy, a variable
with the highest information gain at each node split is chosen to make the decision [44].
A complexity parameter (cp) was used to control the size of the tree and was 0.001, and
this led to a relatively large tree of 46 leaf nodes optimally.

Considering the “overfitting” problem associated with the decision trees classifier,
RF provides an alternative solution as an ensemble of decision trees [45,46]. Based on
the architecture of decision trees, the tree nodes are further divided into nodes and sub-
nodes through splitting. The RF algorithm constructs many decision trees with a bagging
technique during training and provides a majority vote of the classes’ prediction of the
individual decision trees [47]. The features for prediction are themselves a random subset of
original features during each node split randomly (mtry parameter). The other parameter
applied in our model is the number of trees used in the model, ntree. The number of trees is
adjusted to ensure minimal out-of-bag error (OOB error). In our study, the parameters mtry
and ntree described above were tuned to ensure an optimal model performance where
400 trees were used and the number of variables at each split was 3.

For every model, assessment of its performance is essential. In this study, training and
testing samples are randomly chosen at a ratio of 70 to 30. After training data were used
to construct and calibrate the model, we applied the model to predict the test data and
assessed the prediction accuracy using a confusion matrix. As a general practice, the matrix
is useful to generate relevant statistics to determine the reliability of the classification
routine [43]. In this study, we assessed the overall accuracy, precision, producer’s and
user’s accuracies, and Kappa coefficient.

After successful classification of the landcover classes using the best fit model, as de-
termined based on the performance parameters, a spatially explicit landcover map for each
village was created by applying basis routines (such as focal majority) on the classified
raster which contains predicted classes for each pixel. Subsequently, the area (ha) of the
banana farms in each village was calculated by counting the banana-predicted pixels in
each village-level map and multiplying with the imagery resolution (Equation (1)).

Area (ha) = (Pixel Count * Imagery Resolution)/10,000 m2 (1)

where, Pixel Count for banana is the count of pixels predicted as banana-cultivated land,
using the optimal classification model; imagery resolution is 0.063 m2 (i.e., 0.25 × 0.25 m).

3. Results
3.1. Descriptive Statistics

Reflectance values were extracted from the multispectral bands of the imageries
covering the five land cover classes, and the vegetation indices were computed for EVI2,
NDVI, and GNDVI. The plot in Figure 4 below shows the variation of reflectance values
of the three vegetation indices (EVI2, NDVI and GNDVI) from the five landcover classes.
These are characterized by a boxplot for each of the indices and each of the land cover
classes shown. For each boxplot, the upper fence denotes the maximum value, the upper
bound of the box is the upper quartile, the line in the box is the median, the lower bound
of the box is the lower quartile and the lower fence denotes the minimum value. The dots
represent outliers.
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Figure 4. Relative range of the calculated value for enhanced vegetation index (EVI2), normalized
difference vegetation index (NDVI), and green normalized vegetation difference index (GNDVI) for
the target landcover classes.

The range of values for the vegetation indices varied across all landcover classes, with
water showing the least range. Moreover, it was possible to distinguish between banana
crop and “other vegetation” using the value-ranges of EVI2 and NDVI despite potential
similarity in the spectral signature of both classes. Generally, both vegetation classes
(banana cropland and other vegetation) have indices values above 0.1 while non-vegetation
features (bare land, building and water) had index values below 0.0. Therefore, the selected
vegetation indices are reasonably suitable as input variables for the landcover classification.

3.2. Overall Classification Accuracy

The algorithms were used to identify the most probable class for the target feature
points (Banana land, bare land, other vegetation, building, and water). The overall best
performing model was the RF with an over 95% overall accuracy and over 0.93 kappa
coefficient for all data used, as seen in Table 3. CART performed relatively well with over
90% overall accuracy and kappa above 0.85 for all data. On the other hand, SVM performed
poorly with only 56% overall accuracy and kappa coefficient of 0.25.

Table 3. Table showing model performance across all villages for different levels of selected data
richness.

Data Points SVM CART RF

Accuracy kappa Accuracy kappa Accuracy kappa

750 0.563 0.253 0.907 0.856 0.957 0.934
1500 0.567 0.252 0.907 0.856 0.967 0.949
2306 0.566 0.252 0.908 0.857 0.967 0.950

There was a poor distinction of banana and other vegetation classes and of building
and bare land classes when using the SVM model, as seen in the confusion matrix in
the Appendix A (Table A1) as compared to the other models. For all models, banana
was sometimes confused with other vegetation class. The best precision for banana was
achieved when using RF model at 0.97 compared to SVM and CART, whose precision was
0.58 and 0.92, respectively.
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3.3. Effect of Input Data Richness Level

The overall performance of all the models was comparable at the different data
richness levels. For the SVM model, the overall accuracy of 0.57 was achieved with
750, 1500, and 2306 training features. For the CART model, the model had a minimal
error of 0.065 (Table 3). Its overall accuracy of 0.91 was achieved with 750, 1500, and
2306 training features. For the RF model, the number of trees to grow was chosen as the
one that minimizes the out-of-bag error estimate (OOB error rate) for each classification.
Five variables were randomly selected during each split (mtry value), with 800, 1000,
and 1300 trees grown, at the different data level richness, thereby generating an OOB
error rate estimate of 1.39%, 1.23%, and 1.12%, respectively. Overall accuracy and kappa
coefficient of 0.95 and 0.93 was achieved with 750 training feature points, 0.97 and 0.95 with
1500 feature points, and 0.97 and 0.95 with all the 2306 feature points (Table 3).

3.4. Banana Land Area Assessment

Considering that the RF classifier had the overall best performance, the outputs from
the classification, using the RF model for all data samples (level 3), were subsequently
used to map the banana farm area across the four villages (Figure 5). The area covered by
banana land in each village was calculated based on the number of pixels that are classified
as banana-cultivated by the classifier (Table 4). Rusera village (in Kayonza district) had the
highest proportion of banana-cultivated land area (80.93%), followed by Rubira, Murambo,
and Karambo where banana covered 82.32%, 67.28%, and 62.41% of their village-level land
area, respectively.

Figure 5. Classification maps for the four villages. The grey shows the buildings, brown for bare
land, black for other vegetation, green for banana land, and blue for water.

Table 4. Table showing banana farm area for the four villages and the percentage coverage of the
banana farms for each village.

District Village Banana Area (ha) Village Area (ha) Banana Land (%)

Kayonza Rusera 134.02 165.58 80.93
Kayonza Rubira 121.12 147.12 82.32
Burera Murambo 96.70 143.72 67.28
Burera Karambo 52.30 83.8 62.41

4. Discussion

The rapid classification of land cover with UAV-acquired imagery across multiple vil-
lages can enhance timeliness and accuracy of cropland area estimates, especially to advance
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decision-support for the specific crop (such as banana) or farming systems. Although this
research was conducted as a study focused on four banana-producing villages in Rwanda,
it demonstrates the potential to adapt UAV as a tool to support the national framework
for agricultural assessment. The availability of spatio-temporally rich and crop-specific
map products, based on high-resolution UAV-acquired imageries and reliable classification
routine, can support the delivery of tailored recommendations and extension support to
farmers, depending on the status and dynamics of their cropland conditions.

Access to robust ground-truth data is indispensable for the implementation of training
and validation of the classification models. However, ground-level data points are rarely
available at sufficient volume to fully calibrate and test models, and this study is not an
exception. For our study, it was noteworthy that the accuracies of classifier models were
comparable at different data richness levels, notwithstanding the general differences in
the performance of the models relative to each other. The initial 750 georeferenced data
points that were collected from banana farms provided a good basis for implementing
the classification routine. Yet, the high-resolution orthomosaic UAV images (i.e., RGB
band combination) offered a major advantage to support manual digitization of banana
farms and generate more georeferenced data points, based on visual identification of the
banana stands and canopy. This flexibility to generate additional data points (up to 3x the
initial feature points) enabled the testing of hypotheses regarding the performance of ML
classifiers at a different level of data richness, to evaluate the potential trade-off between
these methods, as a guide for future and larger scale classification within similar/the same
geography. The accuracy of RF and CART increased with increasing training data samples,
although by a smaller margin. The random forest model performed well, on average
above 96% accuracy, for all data levels tested. This implies that while in general better
model performance can be expected with more ground-truth data, the performance of
classification models tends to flatten out when a sufficient number of the data points is
reached. Modelers need to strike a balance between model performance and the cost of
data collection; model performances can be optimized at moderate data richness, with
careful parameter tuning, for effective mapping of banana croplands in our case. This un-
derstanding can help to evolve sampling strategies to minimize the difficulty associated
with acquiring ground truth data in heterogeneous landscapes for future national banana
mapping projects.

Other studies [21,22] have utilized UAV-acquired imageries and object-oriented mod-
eling techniques to map croplands, with varied accuracies and outcomes. In our efforts to
identify a suitable classification model, it was clear that the classification accuracy metrics
contrasted between the different classifier models. Our results suggest that the random
forest model can be effective for identifying banana cropland and agree with previous re-
search where the model has been reported to be promising for cropland mapping [11,21,22].
The least accurate model, the SVM, may have performed very poorly compared to RF and
CART due to the model’s training complexities. SVM classified some banana farms as other
vegetation because they have similar spectral characteristics. Since the model constructs
hyperplanes in a multi-dimensional space to classify the target data [29,48], it may have
performed poorly when the target classes in the data overlap, including shades of green
color that are characteristics of banana and other vegetations. Generally, CART and RF
were expected to perform at similar accuracy levels for distinguishing the landcover classes,
considering that RF is an ensemble of decision trees. However, the accuracy metrics of both
models which shows that RF performed better than CART may be indicative of the inherent
limitation of CART, which is prone to overfitting by penalizing the fitted model to minimize
the training noise at the expense of the overall data [17]. This problem is addressed in the
RF model, which minimizes bias-related overfitting of the data, specifically by recognizing
the nuances of vegetation characteristics and accounting for the high dimensionality of the
data [33,34].

The successful delineation and estimation of the current banana-cultivated land area
within each village provide additional evidence regarding the potential application of UAV
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for rapid assessment of cropland area for local or national planning and agronomic decision-
support. It is noteworthy that the estimated area of the banana-cultivated land area is
comparable to the current village-level estimates reported in national agricultural statistics.
This rapid mapping and assessment of the banana-cultivated area in Rwanda is important
to target extension resources within critical banana production areas, and provide useful
data that can further support the mitigation of banana disease (including BXW) risk by
providing timely targeted resources for control at a local, regional, and national scale.
For instance, the risk of BXW contagion and incidence is linked to the presence and density
of the host plant, banana. Therefore, clusters of farmlands that are cultivated with banana
can be identified more easily with the landcover maps and relevant extension (information
and personnel) resources can be deployed to support the farmers both for proactive and
reactive actions to minimize the potential or existing threat of the disease.

To fully unlock the opportunity for rapid mapping of banana croplands, UAV-derived
imagery can be fused with satellite data for national-scale mapping of banana croplands.
Therefore, the future research direction can go beyond the spectral-based classification by
including texture-based and object-oriented algorithms to extract more information about
the unique features of banana farmlands. Also, it will be relevant to assess how classified
land-cover data can be combined with other ancillary data (e.g., weather, slope, soil) to
implement specific agronomic use-cases at the local and national level, such as prediction
of (BXW) disease incidence and risk in Rwanda’s banana production system.

5. Conclusions

In this paper, we used UAV-based remote sensing technology to map the banana
plantation in four selected villages in Rwanda. By comparing the accuracy of the three
most popular classification methods, namely, support vector machines, classification and
regression trees, and random forests relative to different data richness levels, we show that
the classification accuracy attainable is dependent on the choice of classifiers; the classifi-
cation performance seems flatten out when sufficient ground-truth data points are used.
Our research also provides a valuable reference to guide the further application of UAV-
based crop mapping in African smallholder farming systems and other complex mosaics
of farming landscapes where short distance variation in vegetation characteristics often
limit the use of relatively coarse satellite imagery data. The output landcover maps from
rapid UAV-based mapping can be very useful for extension officers in Rwanda to target
farmlands where banana is cultivated extensively and support the farmers with relevant
information resources on banana agronomy, disease control, and post-harvest management
of their crops from improved profitability.

6. Patents

This section is not mandatory but may be added if there are patents resulting from the
work reported in this manuscript.
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Appendix A

Table A1. Table showing confusion matrices across all the pixel-based classification models for
different models on 750 data richness.

REFERENCE

PREDICTION Banana
Land Bare Land Building Other

Vegetation Water

SVM

Banana land 41,731 47 2441 91 0
Bare land 3027 8 4888 23 0
Building 4232 59 9166 28 0

Other
vegetation 22,616 25 1557 184 0

Water 0 0 87 0 0

CART

Banana land 43,063 333 519 394 1
Bare land 1293 4182 1522 942 7
Building 1890 597 10,831 161 6

Other
vegetation 400 193 127 23,658 4

Water 0 0 0 0 87

RF

Banana land 43,755 178 319 58 0
Bare land 753 6087 761 343 2
Building 820 361 12,246 58 0

Other
vegetation 70 103 38 24,171 0

Water 0 0 0 0 87

Table A2. Table showing confusion matrices across all the pixel-based classification models for
different models on 1500 data richness.

REFERENCE

PREDICTION Banana
Land Bare Land Building Other

Vegetation Water

SVM

Banana land 125,036 9259 12,556 67,956 0
Bare land 130 33 181 84 0
Building 7052 14,449 27,610 4631 288

Other
vegetation 286 48 85 522 0

Water 0 1 3 0 0

www.cialca.org
http://www.cgiar.org/about-us/our-funders/
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Table A2. Cont.

REFERENCE

PREDICTION Banana
Land Bare Land Building Other

Vegetation Water

CART

Banana land 128,888 3983 5837 1035 1
Bare land 718 11,707 962 382 1
Building 1555 5357 32,999 589 0

Other
vegetation 1195 2715 634 71,304 0

Water 4 35 18 5 286

RF

Banana land 131,110 1779 1716 141 0
Bare land 348 19,390 854 249 1
Building 849 1989 37,731 121 0

Other
vegetation 53 639 149 72,804 1

Water 0 0 0 0 286

Table A3. Table showing confusion matrices across all the pixel-based classification models for
different models on 2306 data richness.

REFERENCE

PREDICTION Banana
Land Bare Land Building Other

Vegetation Water

SVM

Banana land 207,910 15,321 21,129 112,845 0
Bare land 152 36 239 100 0
Building 12,138 24,247 46,012 8048 490

Other
vegetation 453 91 112 881 0

Water 1 1 3 0 0

CART

Banana land 214,694 6017 8497 2746 0
Bare land 1313 19,668 2315 353 1
Building 2444 9307 55,837 1021 0

Other
vegetation 1941 4305 1033 118,134 0

Water 11 45 33 5 489

RF

Banana land 218,503 2875 2768 234 0
Bare land 645 32,409 1352 423 1
Building 1399 3342 63,134 201 0

Other
vegetation 107 1069 241 121,016 0

Water 0 1 0 0 489
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