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A B S T R A C T

The growth of omni-channel retailing resulted in many new challenges for retailers, especially in relation to
the replenishment and allocation of inventories for the different channels. In this paper we consider a brick-
and-mortar store that uses its inventory to fulfil both in-store demand as well as online orders. In addition to
deciding on replenishment quantities, such a retailer also has to decide how to ration its inventory across the
channels. Practically, rationing inventory relates to storing part of the inventory in the backroom to satisfy
online demand. The rationing process occurs regularly (e.g. daily) whereas inventory replenishment typically
occurs less regular. To analyse this decision process, we model the rationing and ordering decisions as a
Markov Decision Problem that maximises the expected profit. Based on the structure of the optimal policies,
we determine heuristics that near-optimal results and scale well to retailers with many products.
1. Introduction

The increased competition of online shopping has put pressure on
brick-and-mortar stores. Online shopping has made it effortless for
consumers to satisfy their demands from home. To compete against
online retailers, physical store retailers are increasingly adopting online
shopping channels in their channel portfolio. This integration of dif-
ferent sales channels is referred to as omni-channel retailing (Verhoef
et al., 2015). The goal of omni-channel retailing is to provide customers
with a seamless shopping experience and enhance customer loyalty and
satisfaction.

When an omni-channel retailer adopts new channels, it needs to re-
consider its inventory policies (Jalilipour Alishah et al., 2015). Retailers
for instance have to decide whether or not to integrate inventories of
different channels. Retailers that add an online channel often choose to
use store inventory to satisfy online demand (ENC, 2016), as this has
the lowest initial investment (Fernie and Sparks, 2004). The integration
of online sales with offline sales is an ongoing discussion in the field
of retail operations and is referred to as bricks-and-clicks (Agatz et al.,
2008). Especially smaller retailers are adopting this concept, in which
their store essentially become a distribution centre for their online
order fulfilment (Mou et al., 2018). In this way, retailers are able to
leverage their brick-and-mortar store with online sales.

By using store inventory for the fulfilment of online orders, several
advantages can be achieved. First, since offline inventory is also used
to serve online customers, uncertainty in demand can be reduced,
lowering the total inventory. Second, higher inventory turnover rates
result in a decrease in left-overs at the end-of-sales periods (Ben-
doly, 2004; Bayram and Cesaret, 2021). Furthermore, stores are often
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located closer to customers than distribution centres, thus environmen-
tal and economic benefits for the delivery of online orders can be
achieved (Jalilipour Alishah et al., 2015).

However, using stores to fulfil the demand of online customers
also has disadvantages. Using store personnel for picking orders in-
store might influence the customer shopping experience and can be a
high expense for the retailer (Baird and Kilcourse, 2011; Ishfaq and
Bajwa, 2019). Furthermore, store inventory needs to be monitored
more closely to ensure online orders can be satisfied. If online demand
occurs, this means picking the order from the store shelves and updat-
ing the inventory level on the website. If a customer buys the product
in-store, this also needs to be coordinated with the online channel to
ensure that there is no conflict in which an online customer tries to buy
the same product digitally. To mitigate these problems retailers often
choose to satisfy online demand from the remaining store inventory
at the end of the day when customers have left. However, stock-outs
might occur resulting in decreased customer loyalty and satisfaction as
online demand cannot be satisfied (Nguyen et al., 2018).

To mitigate the negative effects of using a store as a fulfilment
centre for online orders, managerial studies (e.g. Hobkirk, 2015; ENC,
2016) have suggested to reserve a certain amount of in-store inven-
tory to satisfy online demand. In practice, this relates to storing the
inventory for the online demand in the backroom (Aastrup and Kotzab,
2010). By doing so, the retailer does not need to continuously coor-
dinate the two sales channels, preventing sales of products that turn
out to actually be unavailable. Furthermore, there is no need to pick
online orders at the moment they arrive. The retailer can inform their
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online customers immediately whether a product is available in their
respective channel. Also for the in-store channel, the retailer needs to
know how many items to display at the store, as a product that is
no longer on display may generate no demand. Managing the store
inventory happens at a daily basis, thus unbalanced inventory among
channels can be reduced by regular rebalancing of the inventory.
When retailers ration their inventory across their physical and digital
channels in this way, they can balance the satisfaction of demand from
both channels. This avoids the disadvantages outlined above, while
creating a new one: when a stock-out happens in one of the channels,
a lost sale occurs even though the other channel might have inventory
left.

If a retailer rations its inventory, a trade-off therefore exist between
serving in-store customers and serving online customers. Although
serving an online customer from a store normally results in a lower net
revenue due to shipping and handling costs (e.g. Bayram and Cesaret,
2021), the inventory cost are normally also lower since products do
not need to be displayed on store shelves (Xu and Cao, 2019). Little
research has been conducted on how retailers should adjust to this new
store operation and its impact on the retailers’ performance (Mou et al.,
2018). Finding an optimal rationing policy for retailers using in-store
inventory for fulfilling online and offline demand is thus an important
challenge. Additionally, the retailers inventory replenishment decisions
are linked to this rationing policy. Therefore, the objective of this study
is to identify an optimal replenishment and rationing policy for an
omni-channel retailer.

Current rationing policies are not sufficient for the abovementioned
retailer settings, as they typically consider a negligible lead time and
the possibility to backorder. As a positive lead time and lost sales are
common in retail practice (e.g. Jalilipour Alishah et al., 2015; Bayram
and Cesaret, 2021), we focus in this paper on a retailer who faces a
deterministic non-zero lead time, and who has to deal with lost sales
in case of stock-outs. Deterministic, non-zero lead times are necessary
to account for handling time and transportation efforts. Furthermore,
lost sales are relevant because, when a stock-out occurs, demand cannot
be backordered, as customers will often satisfy their demand elsewhere.
In-store demand may only happen when products are displayed. Online
customers nowadays expect immediate fulfilment of their demand with
next day delivery, and they do normally not wish to backorder their
demand.

Including non-zero lead times and lost sales does however increase
the complexity of the decision problem, and makes an analytical ap-
proach cumbersome. Exact solution can be obtained numerically by
formulating and solving the model as a Markov Decision Problem
(MDP). Solving the MDP is time consuming due to the curse of dimen-
sionality, where the amount of states for which an optimal action needs
to be determined can grow exponentially. Therefore, a faster solution
would be preferred for practical implementation. In this paper, we
therefore also derive a heuristic based on the structure of the optimal
policy of the MDP.

We contribute to the academic literature in several ways. First, we
provide an exact method for replenishment and rationing in an omni-
channel bricks-and-clicks context. Second, based on our results, we are
able to derive heuristics that omni-channel retailers could easily apply
in practice. Third, with an extensive numerical study, we compare the
heuristics with the optimal policy to find their performances.

The remainder of this paper is structured as follows. Section 2
presents related research on order fulfilment in an omni-channel setting
and on inventory rationing. In Section 3, we outline the decision
problem and formulate it as a MDP. In Section 4, the MDP model is
numerically investigated to identify the structure of the optimal policy.
In Section 5, we derive heuristics for the ordering and rationing deci-
sion based on the structure of the optimal policies found numerically.
In Section 6, we compare the performance of the derived heuristics in
relation to the optimal policy for a wide range of instances. Section 7
2

concludes the paper and discusses future research directions.
2. Literature review

Our work is related to the literature on ship-from-store strategies
in omni-channel retailing and to the literature on inventory rationing.
Below, we first briefly address the work on ship-from-store strategies,
followed by a more comprehensive overview of the relevant inventory
rationing literature.

2.1. Ship-from-store strategies

The rich body of literature on online order fulfilment discusses the
different strategies retailers can adopt to fulfil online demand. In this
research, we are interested in ship-from-store strategies, a concept that
uses store inventory to satisfy online demand.

One of the earliest works related to online fulfilment from store in-
ventory is the work by Bendoly (2004). This work concluded that using
store inventory for online fulfilment decreases the inventory cost for
the online channel, however, satisfying in-store demand decreased due
to higher stock-outs. Therefore, a trade-off between lower inventory
cost and satisfying demand occurs. Further research by Bendoly et al.
(2007) discussed when using store inventory is beneficial for retailers,
finding that with lower percentages of online sales, store fulfilment
is preferable. Hübner et al. (2016) also mention that using stores for
online fulfilment is preferable for retailers who are aiming to adopt an
online channel in a fast and inexpensive manner.

Early work on using stores for online fulfilment is mainly focused on
how to allocate an online sale to different online fulfilment locations.
For instance, Mahar and Wright (2009) and Mahar et al. (2009) studied
a case in which the online order could be fulfilled from either a store
or an online fulfilment centre. Here, the decision on where to fulfil an
online order from is chosen centrally, taking into account the location
of the online fulfilment centre. Bretthauer et al. (2010) and Mahar
et al. (2012) extend this research by additionally taking the decision of
whether a store should be included in the allocation of online orders.
By not incorporating all stores for online fulfilment, their inventory can
be protected from stock-outs. Similarly, Aksen and Altinkemer (2008)
study store fulfilment in settings with multiple stores, deciding on
which store should fulfil an online order, based on the distance to the
customer and the related cost.

More recent papers focus on the order fulfilment and the operational
costs. Ishfaq and Bajwa (2019) gives insight on the profitability of
online fulfilment from stores when other choices of fulfilment such
as vendors, distribution centres or online fulfilment centres are avail-
able. Bayram and Cesaret (2021) researches a similar setting how-
ever, includes the demand generated in-store. Difrancesco et al. (2021)
specifically study the ship-from-store strategy where online orders are
picked from store shelves and then shipped to the consumer. Through
simulation they determine the number of pickers and packers that
ensures a good balance between service levels and costs.

Most literature on ship-from-store strategies is thus focused on the
strategic decision on whether to adopt a ship-from-store strategy in-
stead of adopting alternatives such as online fulfilment centres. On the
operational side, the focus is often on which location should satisfy an
online order. The impact of integration of channels on store operations
is however not much addressed in the literature, even though an in-
creasing number of stores are involved in online order fulfilment (Mou
et al., 2018). Optimal implementation of the ship-from-store strategy
is essential, as failure can lead to stock-outs, higher costs, and higher
customer dissatisfaction (Difrancesco et al., 2021). Therefore, it is im-
portant for omni-channel retailers to have good inventory management
and properly manage their inventory in relation to the different sales
channels. In this paper, we therefore focus on inventory management

related to our study which will be elaborated in the following section.
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Table 1
Literature review of dynamic inventory rationing.

Paper Replenishment Demand Optimisation focus Method

Order policy Lead timea Backordering Lost sales Classes Cost Profit Service level MDP Simulation Mathematical analysis

Kaplan (1969) × 2 × ×
Haynsworth and Price (1989) (𝑠,𝑄)b D × 2 × ×
Ha (1997b) × 2 × ×
Carr and Duenyas (2000) × 2 × ×
Melchiors et al. (2000) (𝑠,𝑄)b D × 2 × ×
Melchiors (2001) (𝑠,𝑄)b S × 𝑁 × ×
Deshpande et al. (2003) (𝑠,𝑄) D × 2 × ×
Frank et al. (2003) (𝑠, 𝑆) Z × 2 × ×
Melchiors (2003) (𝑠,𝑄)b D × 𝑁 × ×
Teunter and Klein Haneveld (2008) (𝑠,𝑄) Z × 2 × ×
Gayon et al. (2009) S × 𝑁 × ×
Benjaafar et al. (2010) × × 2 × ×
Fadıloǧlu and Bulut (2010) (𝑠,𝑄) D × × 𝑁 × ×
Zhao and Lian (2011) (𝑠,𝑄) S × 2 × ×
Chen et al. (2012) (𝑠,𝑄) S × 2 × ×
Hung et al. (2012) (𝑅,𝑆) D × 𝑁 × ×
Chew et al. (2013) Dynamic Z & D × 𝑁 × ×
Hung and Hsiao (2013) (𝑠, 𝑆)b S × 𝑁 × ×
Wang et al. (2013a) (𝑠,𝑄) D × 2 × × ×
Wang et al. (2013b) S × 2 × ×
Wang and Tang (2014) (𝑅,𝑆) Z × × 𝑁 × ×
Liu and Zhang (2015) × 2 × ×
Liu et al. (2015) (𝑅,𝑆) Z × 𝑁 × ×
Turgay et al. (2015) × 𝑁 × ×
Alfieri et al. (2017) (𝑅,𝑆)b D × 2 × ×
Bao et al. (2018) Dynamic Z × 𝑁 × ×
Xu and Cao (2019) Dynamic Z × 2 × ×

aD = Deterministic, S = Stochastic, Z = Zero.
bFixed parameters for replenishment policy.
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2.2. Inventory rationing

Ensuring profitability for the retailer using in-store inventory for
online fulfilment is an import topic in omni-channel retailing. To enable
this, retailers need to develop a strategy for reserving part of their
inventory specifically for online orders. Even though such a strategy
is important, there is limited research on the topic. As mentioned
by Jalilipour Alishah et al. (2015), Ma and Jemai (2019), and Xu
and Cao (2019) the problem setting resembles inventory rationing, a
topic that has received significant attention in the literature since the
seminal work by Topkis (1968). Rationing is often used to connect
different types of demand with different fulfilment options. These types
of demand are mostly referred to as classes, which are similar to
sales channels in our research. The initial rationing work by Topkis
(1968) is a static strategy. Since then, research has moved from static
to dynamic rationing strategies, which have been shown to be su-
perior (Teunter and Klein Haneveld, 2008). In the remainder of this
section, we therefore only focus on dynamic rationing strategies.

The dynamic rationing literature can be classified along several
dimensions: replenishment policy, lead time, the number of demand
classes, how shortage is dealt with, the objective of the study, and the
method that is applied. The replenishment policy considers how much
should be ordered and when an order should take place. Most papers
consider simple policies while some consider the policy to be dynamic.
A few papers do not consider replenishment in their study at all. The
lead time in the studies can be either zero, a deterministic value, or a
stochastic value. The shortage treatment of demand can be divided into
backordering or lost sales. The number of demand classes considered is
either two or a more generic 𝑁 . The objective of the studies is either
to reduce cost, increase profit, or improve service level. The method
the authors applied can be differentiated in MDP, simulation, or math-
ematical analysis. Table 1 presents a chronologically ordered overview
of the literature on dynamic rationing, including the classification on
the six dimensions.
3

2.2.1. Replenishment policy and lead time
From Table 1, it is observed that the first papers investigating dy-

namic rationing only considered an (𝑠,𝑄) replenishment policy, which
s the optimal replenishment strategy for static rationing according
o Ha (1997a). Not all papers consider a replenishment policy. Some
apers only investigate a single period with a fixed initial inventory
evel, while other consider a manufacturing system in which some pro-
uction planning decisions are considered instead (Carr and Duenyas,
000; Turgay et al., 2015).

Wang and Tang (2014) concluded that, for periodic review, a base-
tock replenishment policy is the optimal ordering policy in situations
ith zero lead time. Chew et al. (2013) were the first to study a
ynamic replenishment policy and concluded that the optimal dy-
amic replenishment policy resembles a base-stock replenishment pol-
cy, which is confirmed in later studies (e.g. Bao et al., 2018; Xu and
ao, 2019). However, optimal replenishment policies in situations with
on-zero lead times could not be derived due to the complexity of the
roblem.

The replenishment policy is relevant for the rationing decision,
s the rationing decision is based on current and future inventory
evels. Thus outstanding replenishment orders influence the rationing
ecision. It can be concluded that the optimal dynamic replenish-
ent policy for situations with deterministic lead times has yet to be

ddressed in the literature.

.2.2. Demand
Wang and Tang (2014) were the first to compare the backordering

nd lost-sales setting. From the comparison, it was found that in a
ackordering setting the rationing level increases occasionally to en-
ure inventory for future demand. With lost sales, the rationing level
ecreases when coming closer to replenishment. In general, considering
ost sales increases the complexity of the system, as the inventory level
oes not change with unmet demand (Frank et al., 2003; Fadıloǧlu and
ulut, 2010; Chen et al., 2012; Hung and Hsiao, 2013).

Melchiors (2001) was the first to propose a model with 𝑁 demand
lasses, although the numerical results are only presented for 2 demand
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classes. Most papers propose a model for 𝑁 demand classes, but are not
able to derive exact solutions if the demand classes exceeds 2 due to
the complexity (Melchiors, 2003; Chew et al., 2013). Bao et al. (2018)
is able to derive an exact solution for 𝑁 demand classes but mentions
introducing non-zero lead time makes finding the optimal policy much
more complicated.

2.2.3. Optimisation focus
The rationing decision is often based on minimising costs. This

is also related to how shortages are considered: if demand is always
satisfied (through backordering), the rationing decision only influences
cost and not profit. Studies that consider lost sales and base their
rationing on minimising cost, consider a shortage cost for the lost sales.
By applying different shortage costs, they are able to achieve different
service levels for the demand classes (Chew et al., 2013; Liu et al.,
2015).

Carr and Duenyas (2000) and Turgay et al. (2015) were the first
to base their rationing decisions on profit maximisation for a make-to-
stock production system, concluding that the structure of the optimal
policy is complex, and therefore exploring the solution with a simpler
policy. Xu and Cao (2019) used profit to seek a balance between
fulfilling online demand and the related high fulfilment cost. In gen-
eral, using profit as optimisation focus increases the complexity of
the structure of the optimal policy. However, it better captures the
omni-channel fulfilment strategies as it allows the balancing between
satisfying in-store and online demand.

2.2.4. Method
In most papers, dynamic programming is used to find the optimal

solution and find the structure of the rationing policies. However, as
mentioned previously, the structure of the system can become com-
plex for certain system characteristics. As the problem easily become
multi-dimensional, the curse of dimensionality results in complex and
not insightful formulas (Teunter and Klein Haneveld, 2008). There-
fore, research often resorts to finding near-optimal policies for the
problem (Liu and Zhang, 2015).

By applying MDP to solve the dynamic rationing model, an exact
solution can be derived. Most literature using MDP to find the optimal
solution also uses the structure of the solution to derive simple heuris-
tics (e.g. Wang et al., 2013a; Chew et al., 2013) as MDP can require
high computational time.

2.3. Knowledge gap

The dynamic rationing problem resulting from the ship-from-store
context is characterised by deterministic lead times and lost sales.
Because online demand cannot be backlogged as the consumer requires
same day shipment, shortages lead to lost sales. As the in-store and
online channel have different cost and benefits, only the profit is able
to encompass the trade-off between the different channels.

In the literature review we can see that the paper by Chew et al.
(2013) is closely related as it applies a dynamic order policy with
deterministic lead time. They do however not include lost sales, but
mentions its importance for further research. Melchiors (2001, 2003)
and Wang and Tang (2014) are also related as they investigate the lost
sales problem using MDP. Wang and Tang (2014) specifically mention
the investigating of different order policies and the inclusion of lead
time as potential future research. Although Melchiors (2001, 2003)
does add lead time in their research, they limit themselves by fixing
the order policy. Finally, Xu and Cao (2019) study an omni-channel
retailer in a similar setting, but acknowledge that their assumption of
zero lead time limits their findings.

Based on these findings, we conclude that no lost sales model exits
that integrates the ordering and rationing decision for a profit max-
imising retailer who serves both an online and an offline demand from
a stock point with non-zero replenishment lead time. We contribute to
the existing literature by deriving heuristics and compare them with the
exact solution obtained from the MDP. In the next section we present
4

the problem and a model to derive an exact solution. P
3. Markov decision problem

3.1. Problem definition

The problem that is studied is determining an optimal rationing and
replenishment policy. A typical setting for a retailer is that they can
order new products every week but can ration their products on a daily
basis. Managing the in-store inventory thus happens quite regularly,
while ordering and replenishment are more dependent on fixed delivery
schedules. The rationing decision at the start of every day is motivated
by practices in which the online sales will be packed and shipped at
the end of a day. Which is very common to happen after some cut-off
time for online orders. The rationing decision is needed to ensure that
enough products are left to fulfil the online orders placed during the
day. These two decision problems can be formulated as a hierarchical
decision problem. The problem has two levels, where at level I the
replenishment decision is made and at level II the rationing decision
is made. The time between two ordering decisions (at level I) is called
a period. As the rationing decision at level II is taken more frequent,
level II is split into 𝑅 = 7 sub-periods.

The objective of the problem is to maximise the profit resulting
from sales revenues on the one hand and holding costs, shipment costs,
and procurement costs on the other hand. We differentiate two types
of customers: those who visit the offline channel (the physical store)
and those who use the online channel. It is assumed that there is no
channel substitution and that the cost of the online and offline channels
differ. Shipment costs only applies to online sales. Nowadays, customers
expect free delivery thus the costs are carried by the retailer. The sales
price in the two channels are the same in an omni-channel setting.

In Fig. 1 the problem is presented with its two levels, where at
level I the retailer makes the replenishment decision is based on the
actual inventory level. At level II, the rationing decision is set based
on the actual inventory level and the outstanding order (which was set
at level I). Every week (𝑀) the replenishment decision is made at the
start of the first day, which will be delivered after a fixed lead time
𝓁. The replenishment occurs at the start of the delivery day 𝓁. At the
start of every day, the inventory is rationed. The rationing decision 𝑎𝑡
ets how much products are made available for the offline channel on
ay 𝑡, with the remainder made available for the online channel. We
o not assume that throughout the day the retailer checks for excess
tock in one channel if the other channel has a stockout. A product
old through the online channel is not directly removed from stock (as
hipment occurs at the end of the day), thus the retailer needs to be
ertain the product is not already sold. Additionally, online customers
ight have their product in their online basket, thinking the product

s available while the retailer might be using their product to fulfil in-
tore demand. Furthermore, it is difficult to capture lost demand, as
onsumers who face empty shelves often walk out of the store. Hence
o avoid lost sales in the offline channel by taking a product from the
nline channel requires keeping track of the in-store inventory level.
ut as the retailer often has many products, continuously replenishing
he store from the back storage is cumbersome and might also influence
he shopping experience of consumers. For the replenishment decision
e assume the retailer orders every 𝑅 = 7 days and faces a lead time
𝓁) of at most 7 days. After 𝑅 = 7 days, the process repeats with the
nventory level at the start of week 𝑚+1, equal to the closing inventory
f week 𝑚.

.2. MDP model

The problem described above can be formulated as a MDP, where
he demand in the channels introduces uncertainty in the MDP. With
he ordering and rationing decision the retailer can control its inventory
evels in both channels. As the MDP consists of two different decisions
n different time periods, it can be integrated in a Hierarchical Markov

rocess as described in Kristensen (1988).
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Fig. 1. Visualisation of the actions for the hierarchical problem.
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.2.1. States and state spaces
The state at level I of the MDP consists of the inventory level 𝐼 at

eek 𝑚 and is given as 𝑆𝑚 = 𝐼 . It is assumed that the retailer will
ot have more products in store than the maximum demand until the
ext replenishment. As holding cost are positive and no fixed ordering
ost applies, there is no motivation for the retailer to order more than
he maximum demand as excessive stock would negatively influences
he profit. Therefore, the state space at level I is 𝐼 ∈  with  =
0, 1,… , (7 + 𝓁) ⋅𝐷}, in which the maximum demand of a day is 𝐷 =
𝑖 𝐷𝑖. 𝐷𝑖 indicates the maximum possible demand of the individual

hannels with 𝑖 ∈ {1 = offline, 2 = online}. The demand in both
hannels during each sub-period is modelled by Poisson distributions,
𝑖(𝑑𝑖) is the probability that the demand of channel 𝑖 is 𝑑𝑖 where 𝑑𝑖 ∈
0, 1..., 𝐷𝑖

}

.
The state at level II consist of the inventory level and the outstand-

ng replenishment quantity and is given as 𝑠 =
(

𝐼𝑡, 𝑄𝑡
)

. The state
pace of the inventory at level II is the same as at level I, 𝐼𝑡 ∈ .
he state space of the replenishment quantity depends on expected
emand and the current inventory level, 𝑄𝑡 ∈ 𝑡

(

𝐼𝑡
)

with 𝑡
(

𝐼𝑡
)

=
0, 1,… , 7 ⋅𝐷 − 𝐼𝑡

}

. The upper bound of the state space is set under the
ssumption that the retailer will not replenish more products than total
aximum expected demand per 7 days minus the current inventory.

.2.2. Actions and action spaces
At level I of the MDP, a replenishment quantity 𝑞 is set at the

eginning of the period. The action space is thus equal to the state
pace of the replenishment quantity at level II thus 𝑞 ∈ 𝑡(𝐼𝑡) =
0, 1,… , 7 ⋅𝐷 − 𝐼𝑡

}

.
At level II of the MDP, the rationing across the inventory 𝑎𝑡 is set.

t indicates how many products of the total inventory is withheld from
he online channel and placed in the offline channel. The action space
f 𝑎𝑡 is dependent on the inventory 𝐼𝑡 at sub-period 𝑡 since the rationing
uantity is clearly limited to the current inventory. Thus, 𝑎𝑡 can be
efined as 𝑎𝑡 ∈ 𝑡

(

𝐼𝑡
)

with 𝑡
(

𝐼𝑡
)

=
{

0, 1,… , 𝐼𝑡
}

. We assume that
he rationing decision is made at the beginning of the sub-period and
ill not be revised during the sub-period.

.2.3. Transitions
At level I of the MDP, the state only transitions at the end of

he week, while at level II the states transition every day. At level
I of the MDP, we model the transition from state 𝑠𝑡 = (𝐼𝑡, 𝑄𝑡) to
𝑡+1 =

(

𝐼𝑡+1, 𝑄𝑡+1
)

. The transition of 𝐼𝑡 to 𝐼𝑡+1 depends on the current
nventory, the rationing decision, demand of the individual channels,
nd the inventory replenishment:

𝑡+1 =
(

𝑎𝑡 − 𝑑1
)+ +

(

𝐼𝑡 − 𝑎𝑡 − 𝑑2
)+ + 𝛿(𝓁 = 𝑡) ⋅𝑄𝑡 (1)

here 𝑥+ = max(𝑥, 0) and 𝛿(𝑥) denotes the Kronecker delta, which re-
urns the value 1 if 𝑥 = True, otherwise 0. Eq. (1) refers to the inventory
eing rationed across the two channels and the replenishment, with
𝑡 and 𝐼𝑡 − 𝑎𝑡 being the inventory level of the individual channels at
eekday 𝑡 from which the fulfilled demand of the individual channels

s subtracted from. The replenishment takes place at 𝑡 = 𝓁, which is at
5

he beginning of day 𝓁.
The transition of 𝑄𝑡 to 𝑄𝑡+1 depends on the weekday. At the first
eekday the state 𝑄1 takes the value of replenishment quantity 𝑞. 𝑄𝑡+1

emains 𝑄𝑡 until the replenishment is added to the stock at time 𝓁 after
hich it is set to zero:

𝑡+1 =

{

𝑄𝑡 if 1 < 𝑡 ≤ 𝓁

0 else
(2)

At level I of the MDP, the next state is noted by 𝑆𝑚+1 which equals
s the closing inventory of the week 𝑚, which is obtained from the last
tate transition on level II of the MDP:

𝑚+1 =
(

𝑎7 − 𝑑1
)+ +

(

𝐼7 − 𝑎7 − 𝑑2
)+ + 𝛿(𝓁 = 7) ⋅𝑄7 (3)

3.2.4. Expected profit
The objective of the MDP is to maximise the expected profit (over

an infinite horizon) which consists of revenue generated from selling
products, and the cost of shipment, holding, and replenishment. At level
I of the MDP the cost only consists of the replenishment cost:

E𝐶I(𝑞) = −𝑐 ⋅ 𝑞 (4)

The replenishment cost is based on a variable replenishment cost 𝑐
and the replenishment quantity 𝑞.

For level II of the MDP the expected profit depends on the revenue
from selling products, cost of shipment and holding cost of the indi-
vidual channels. The expected profit depends on the action 𝑎𝑡 taken in
state 𝑠𝑡 = (𝐼𝑡, 𝑄𝑡):

E𝐶II(𝑠𝑡, 𝑎𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝

(

∑

𝑑1<𝑎𝑡
𝑑1 ⋅ 𝑃1

(

𝑑1
)

+
∑

𝑑1≥𝑎𝑡
𝑎𝑡 ⋅ 𝑃1

(

𝑑1
)

)

+(𝑝 − 𝑢)

(

∑

𝑑2<𝐼𝑡−𝑎𝑡
𝑑2 ⋅ 𝑃2

(

𝑑2
)

+
∑

𝑑2≥𝐼𝑡−𝑎𝑡
(𝐼𝑡 − 𝑎𝑡) ⋅ 𝑃2

(

𝑑2
)

)

−
(

ℎ1 ⋅ 𝑎𝑡 + ℎ2 ⋅
(

𝐼𝑡 − 𝑎𝑡
))

(5)

The first term is the revenue from the offline channel for price 𝑝 and
the second term the revenue from the online channel. The same sales
price is applied but when satisfying an online demand from the store a
unit shipment cost 𝑢 is incurred. The quantity sold through one channel
depends on the demand and rationing. Shortage cost is not included
into this model, if shortage occurs the retailer faces a lost sales causing
in a penalty by losing profit margins. Next to shipment costs, the model
accounts for the holding cost in the last term.

3.3. Value iteration

The aim of the MDP is to maximise the long-term weekly expected
profit. With value iteration, the problem is solved iteratively back-
wards, where one iteration relates to a single sub period, e.g. a day.
Hence a sequence of 𝑅 = 7 iterations relate to one week. To ease the
explanation of the algorithm, the two levels of the MDP are integrated
into one level.

Let 𝑛 be the iteration counter. The maximum expected profit over

𝑛 consecutive days when starting in state 𝑠𝑡 is defined as 𝑣𝑛(𝑠𝑡). The
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long run weekly profit is thus 𝑔 = lim𝑛→∞
(

𝑣𝑛 − 𝑣𝑛−7
)

, which does not
epend on the initial state s, and is thus the same for all s (the value of
is called the gain of the underlying Markov chain). To determine the

alue of 𝑔 by value iteration one starts setting 𝑣0(𝑠) = 0 for all states
𝑠. Next, one computes for all 𝑠 ∶ 𝑣1

(

𝑠𝑡
)

= max𝑎𝑡∈𝑡(𝐼𝑡)
{

E𝐶II
(

𝑠𝑡, 𝑎𝑡
)}

,
and continues by computing 𝑣2, 𝑣3, etc. using the so called recursive
Bellman equations in (6) and (7). The day 𝑡 can be calculated from the
iteration 𝑛 as follow: 𝑡 = (7 − (𝑛 − 1) mod 7). The distinction of day 𝑡
is relevant to keep track of whether next to the rationing decision an
order decision should be taken or an outstanding order has arrived.

For 𝑡 = 1, the Bellman equation incorporates ordering and ra-
tioning decision and the respective costs and revenues to maximise the
expected profit:

𝑣𝑛
(

𝑠1
)

= max
𝑞∈1(𝐼1)

{

E𝐶I
(

𝑠𝑡, 𝑞
)

+ max
𝑎1∈1(𝐼1)

{

E𝐶II
(

𝑠1, 𝑎1
)

+
𝐷1
∑

𝑑1=0

𝐷2
∑

𝑑2=0
𝑃1

(

𝑑1
)

𝑃2
(

𝑑2
)

𝑣𝑛−1(𝑠2)

}}

(6)

For 𝑡 = 2, 3,… , 7 the Bellman equation has to consider the rationing
decisions:

𝑣𝑛(𝑠𝑡) = max
𝑎𝑡∈𝑡(𝐼𝑡)

{

E𝐶II
(

𝑠𝑡, 𝑎𝑡
)

+
𝐷1
∑

𝑑1=0

𝐷2
∑

𝑑2=0
𝑃1

(

𝑑1
)

𝑃2
(

𝑑2
)

𝑣𝑛−1
(

𝑠𝑡+1
)

}

(7)

As 𝑛 → ∞, the span of the average weekly expected profit decreases,
thus ‖𝑣𝑛 − 𝑣𝑛−7‖ converges to 0, which implies that the difference
between the largest and the smallest element of 𝑣𝑛 − 𝑣𝑛−7 becomes
zero, and all elements equal the maximum expected long run weekly
profit. If ‖𝑣𝑛 − 𝑣𝑛−7‖ is smaller than 𝜀 the value iteration stops, we
specify 𝜀 = 0.001. Algorithm 1 formalises the algorithm and shows
how value iteration can be implemented. In particular it demonstrates
that the two maximisation actions in Eq. (6), can be implemented in
serial to reduce the computation complexity of value iteration. The
algorithm applies backward induction. The first for loop deals with the
rationing decisions at level II. Next the ordering decision is optimised
and the procurement costs are added to 𝑣𝑛. As the average weekly
expected profit converges to an vector consisting of equal values, the
value iteration is stopped.

Algorithm 1: Value iteration of the MDP
initialisation: 𝑛 = 0; 𝑣0 = 0;
repeat

for 𝑡 = 7 ∶ −1 ∶ 1 do
𝑛 = 𝑛 + 1
for 𝑠𝑡 = (𝐼𝑡, 𝑄𝑡) ∈

{

(𝐼𝑡, 𝑄𝑡)| 𝐼𝑡 ∈ , 𝑄𝑡 ∈ 𝑡(𝐼𝑡)
}

do
𝑣𝑛

(

𝑠𝑡
)

=

max
𝑎∈𝐴𝑡(𝐼𝑡)

{

E𝐶II(𝑠𝑡, 𝑎) +
𝐷1
∑

𝑑1=0

𝐷2
∑

𝑑2=0
𝑃1

(

𝑑1
)

𝑃2
(

𝑑2
)

𝑣𝑛−1
(

𝑠𝑡+1
)

}

where: 𝑠𝑡+1 is from equation (1) and (2)
end

end
for 𝐼1 ∈  do

𝑤(𝐼1) = max
𝑞∈(𝐼𝑡)

{

E𝐶I(𝑞) + 𝑣𝑛
(

𝑠1
)}

where: 𝑠1 = (𝐼1, 𝑞)

end
for 𝐼 ∈  do

𝑣𝑛(𝐼, 0) = 𝑤(𝐼)
end

until ‖𝑣𝑛 − 𝑣𝑛−7‖ < 𝜖;

The (nearly) optimal strategy for the two levels of the MDP can
e obtained from the results of the value matrices. First the optimal
6

a

Table 2
Parameter values.

Parameter Values

Review period 2, 3, 4, 5, 6, 7
Lead time 2, 3, 4, 5, 6, 7

𝜇1 2, 4, 6
𝜇2 2, 4, 6

𝑝 100
𝑐 20, 30, 40
𝑢 0, 5, 20
ℎ1 1, 2, 3
ℎ2 0.5

replenishment policy 𝜋I (𝑠1
)

at 𝑡 = 1 for level I is found by Eq. (8):

𝜋I(𝑠1) = arg max
𝑞∈1(𝐼1)

{

E𝐶I
(

𝑠𝑡, 𝑞
)

+ max
𝑎1∈1(𝐼1)

{

E𝐶II
(

𝑠1, 𝑎1
)

+
𝐷1
∑

𝑑1=0

𝐷2
∑

𝑑2=0
𝑃1

(

𝑑1
)

𝑃2
(

𝑑2
)

𝑣𝑛−1(𝑠2)

}}

(8)

Second, the optimal rationing decision 𝜋II
𝑡 (𝑠𝑡) for all states in 𝑡 =

1, 2,… , 7 for level II is found by Eq. (9):

𝜋II
𝑡
(

𝑠𝑡
)

= arg max
𝑎𝑡∈𝑡(𝐼𝑡)

{

E𝐶II
(

𝑠𝑡, 𝑎𝑡
)

+
𝐷1
∑

𝑑1=0

𝐷2
∑

𝑑2=0
𝑃1

(

𝑑1
)

𝑃2
(

𝑑2
)

𝑣𝑛−1
(

𝑠𝑡+1
)

}

(9)

. MDP computational complexity and results

.1. Data and design of experiments

The optimal policy is investigated for a range of instances, con-
isting of a base test case and various alterations. The data set used
s based on recent literature on similar omnichannel retail environ-
ents (Jalilipour Alishah et al., 2015; Li et al., 2015; Ovezmyradov

nd Kurata, 2019; Xu and Cao, 2019; Bayram and Cesaret, 2021). We
lter different parameters to investigate the performance of the MDP.
n Table 2, the parameter values are found for the review periods, lead
ime, mean daily demand, cost of product, fulfilment cost, and holding
ost of the channels are given. Without loss of generality, we set 𝑝 = 100
nd ℎ2 = 0.5, and vary the other cost parameters in relation to these
ixed parameters. The different instances are all created by varying
pecific subsets of parameters.

One typical instance is used as a base test case. The demand is
ndependently Poisson distributed with a mean daily demand of 𝜇1 = 6
nd 𝜇2 = 2, with a maximum demand of 𝐷1 = 12 and 𝐷2 = 6.
n line with related papers, such as Jalilipour Alishah et al. (2015),
u and Cao (2019) and Bayram and Cesaret (2021), we assume no
ubstitution between offline and online demand. The cost of the product
= 30, the handling cost incurred for satisfying an online order with

tore inventory is 𝑢 = 5. The holding cost of the offline is ℎ1 = 1.
eplenishment orders are placed on Monday (𝑡 = 1) and delivered on
ednesday (𝑡 = 3), where both events occur at the beginning of the

ay. In the remainder of this paper, if an instance does not specify a
ertain parameter value, it will be equal to their base test case setting.

.2. Computational implementation

The number of transitions from one state to the other depends on
he action space and demand distribution. The action space is already
imited by inventory and demand level. As is common in numerical

nalysis of MDPs, we truncate the demand distribution to cover 99%
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Table 3
Computational complexity of the MDP for different instances.

Instances States CPU time (s) RAM (MB)

𝑅 = 7, 𝑙 = 1 127 890 180 52.56
𝑅 = 7, 𝑙 = 2a 143 766 448 74.14
𝑅 = 7, 𝑙 = 3 159 642 810 101.00
𝑅 = 7, 𝑙 = 4 175 518 1570 133.72
𝑅 = 7, 𝑙 = 5 191 394 2710 172.89
𝑅 = 7, 𝑙 = 6 207 270 3780 219.10
𝑅 = 7, 𝑙 = 7 223 146 5110 270.41

𝑅 = 2, 𝑙 = 2 5 256 33 6.33
𝑅 = 3, 𝑙 = 2 14 742 76 12.75
𝑅 = 4, 𝑙 = 2 31 392 144 22.00
𝑅 = 5, 𝑙 = 2 57 150 204 34.91
𝑅 = 6, 𝑙 = 2 93 960 321 52.09

𝑅 = 3, 𝑙 = 3 17 658 163 21.33
𝑅 = 4, 𝑙 = 4 41 760 505 50.52
𝑅 = 5, 𝑙 = 5 81 450 1430 98.61
𝑅 = 6, 𝑙 = 6 140 616 2970 170.33

𝜇1 = 2, 𝜇2 = 2 64 092 173 25.43
𝜇1 = 4, 𝜇2 = 4 143 766 478 65.01
𝜇1 = 2, 𝜇2 = 6 143 766 478 74.14

aBase test case.

of the cumulative distribution function to limit the state space. The de-
mand distribution is reshaped as a right-truncated Poisson distribution
as described in Cohen (1954).

Additionally, to ensure that enough memory is available to compute
all the expected reward matrices, not all matrices are stored. Matrices
at level I older than 𝑛−1 are deleted. At level II, matrices older than 𝑡+1
are not stored. However, to find the optimal rationing policy, matrices
older than 𝑡 + 1 are needed to derive the optimal policy. This is solved
by storing the action 𝑎𝑡 in 𝜋II(𝑠𝑡) after the second Bellman equation. In
the last, iteration the optimal rationing strategy is approximated by the
action 𝜋II(𝑠𝑡).

Since the transition probabilities require high computation time,
they are calculated beforehand and stored in a matrix. This ensures that
all transition probabilities are only calculated once. As the amount of
transition probabilities is only 4.3 ⋅ 106, it is possible to store them.

For solving the MDP, the policy needs to be calculated for a large
number of states. The results were obtained by implementing the MDP
in Python version 3.7.2. The model was run on a Personal Computer
with Intel Xeon W-2133 CPU @ 3.60 GHz and 16 GB of RAM. Table 3
shows for all instances the total number of states, the CPU time in
seconds, and RAM usage in megabyte (MB) for the MDP. The instances
with different cost structures are not presented as they do not increase
the complexity of the model.

From Table 3 it is observed that an increase in lead time or review
period increases the computational complexity of the MDP. A longer re-
view period increases the inventory and ordering state space. A longer
lead time means that the ordering state is included in more states,
increasing the total amount of states. The total amount of states grows
linearly with the lead time, but exponentially with the review period.
The time to solve the MDP grows with the number of states; as the
problem becomes bigger, more RAM is needed to solve an instance. A
higher average daily demand also increases the complexity of the MDP,
as the maximum demand increases with a higher average demand. As
the required number of states for the inventory and ordering decisions
is related to the maximum demand, the total amount of states increases
with a higher average daily demand.

Table 3 shows that solving the MDP can take more than one hour,
which is impractical for retailers. To avoid long computation time
heuristics are preferred. By analysing the structure of the optimal
policy, we can derive effective rules that are able to encompass the
7

complexity of the MDP. t
4.3. Structure of the optimal policy

We numerically investigate the optimal policy and derive general
rules from the structure of the policy so that the heuristics are applica-
ble for all instances presented in Table 2. The structure of the optimal
replenishment policy and rationing policy is identified for the base test
case.

4.3.1. Replenishment policy
Fig. 2(a) shows the order-up-to level at the day when orders are

placed for different inventory levels. The order-up-to level is given
by adding the ordered quantity to the inventory level. From the fig-
ure it can be concluded that at lower inventory levels the optimal
replenishment policy resembles an (𝑅,𝑄) replenishment policy, as the
eplenishment quantity remains (almost) the same. At higher inventory
evels, it resembles a base stock policy as observed by the maximum
rder-up-to level at inventory levels above 22.

In order to get better insight in which order-up-to levels occur more
requently the optimal policy is simulated for 100 000 weeks. From the
imulation the frequency of different inventory levels can be found, as
een in Fig. 2(b). It is seen that both replenishment policies occur with
he base stock policy being more common. As the average demand is
1 + 𝜇2 = 8, and the inventory being below 8 is 0.2%, the chance of a
ost sale is small.

By using an approach similar to Haijema et al. (2007), a frequency
able is used to find the structure of the optimal policy for different
nventory and order-up-to levels. Table 4 shows the simulation results
f the frequency of each order-up-to level with inventory level. The
otal frequency of each order-up-to level is presented in the last column.
rom this table, the optimal order quantities can also be derived. For
nstance, when looking at the columns for inventory level 17 and 18,
e can see that in 100 000 simulations, there were 1 523 occasions

n which the retailer had an inventory level of 17 upon ordering, and
570 occasions in which the inventory level was 18. For both these

ases, the optimal order-up-to level is 83 (represented in the row).
From Table 4 it is observed that for inventory levels 0 to 10 no fixed

rder-up-to level but a fixed order quantity of 68 applies. This indicates
hat the optimal policy expects and anticipates that the available inven-
ory will be sold during the procurement lead time. At higher inventory
evels there is a chance that leftovers occur upon replenishment, thus
ower quantities are ordered. When plenty of inventory is left, an
ncertain amount is carried over to the next week. For stock levels
igher than 22 a base stock policy applies, which occurs around 85%
f the time. At most 17 products are reserved for demand during lead
ime, as the base stock is 85 and the optimal inventory level is 68.

The behaviour of the optimal replenishment policy can be explained
y the lead time. Current orders that are placed will be replenishment
fter the lead time has exceeded. The optimal inventory level when
rders are replenished is 68, thus the replenishment policy tries to
chieve this. At low inventory levels it is expected that the stock is
epleted at 𝑡 = 𝓁, thus 68 products are ordered, following an (𝑅,𝑄)

order policy. At higher inventory levels, a certain amount of left-over
products is expected at 𝑡 = 𝓁, and to compensate for these left-overs
hey are subtracted from the order quantity, resembling an (𝑅,𝑆) order
olicy.

.3.2. Rationing policy
Fig. 3(a) displays the optimal rationing policy at day 2, which is

he day before replenishment. Day 2 is chosen for this analysis, as the
ay before replenishment inventory levels are lowest, thus rationing
s most important. The order quantity 62 is chosen, as it is the most
requent order quantity. At high inventory levels, the amount of in-store
nventory is a fixed amount as additional in-store inventory would not
e worth the additional costs. This base stock level can also be proven
nalytically, which can be seen in Appendix. At low inventory levels,

here is a choice between whether to store products in-store or offline.
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Fig. 2. Order-up-to level (a) and inventory frequency (b) for different inventory levels at the beginning of day 1.
Fig. 3. Rationing policy (a) and inventory distribution (b) of different inventory levels at the beginning of day 2 if the order quantity is 62.
able 4
requency table of order-up-to level with inventory level.
Inventory 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 (23,24,. . . ,70) Total

Up-to 85 83 733 83 733
84 1950 2289 2591 3170 10 000
83 1523 1570 2823
82 707 994 1701
81 499 499
80 391 391
79 295 295
78 125 185 310
77 90 90
76 66 66
75 41 41
74 26 26
73 11 11
72 8 8
71 2 2
70 1 1
69 3 3
68 0 0
.. ..
0 0
This trade-off is based on different drivers such as expected future sales
and holding cost. It is seen that the trade-off between storing a product
in-store or online is almost a fixed ratio.

From Fig. 3(b) it is seen that there is a risk of shortage, as the
expected average daily demand is 8 and inventory levels below 8 occur
in a significant number of instances. For 95.7% of the weeks, the
inventory is able to satisfy the average daily demand at day 2. For 4.3%
of the weeks, the inventory is however below 8. Comparing Figs. 2(b)
to 3(b), the average inventory level shifts from 30 to 22. This shift is
expected for the inventory levels of two consecutive days if the average
daily demand is 8.
8

5. Heuristic

Solving the MDP for the base case takes around eight minutes
for a single product and can take over an hour for instances with
long lead times. Heuristics to reduce computational time are then
preferred, especially when a retailer manages multiple products. There-
fore, we develop heuristics for the ordering and rationing decision that
approximate the structure of the optimal policy identified above.

From Figs. 2 and 3, it is clear that the ordering and rationing deci-
sions turn out to have a threshold. When the inventory level is below
the threshold, the optimal ordering decision can be approximated by, a
fixed order quantity. At high inventory levels, a base-stock policy seems
to fit. For the rationing decision, at low inventory levels a trade-off
exists between the channels which is driven by expected future sales
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Fig. 4. Visualisation of the parameters of the ordering heuristic (a) with the algorithm (b).
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nd holding costs. At high inventory levels, we already identified an
ptimal strategy which consists of a fixed amount of products stored in-
tore (found in Appendix). In the following, these results and insights
re used to develop ordering and rationing heuristics.

.1. Ordering heuristic

The heuristic for ordering is based on having a fixed order quantity
t low inventory levels and a base-stock policy at high inventory levels,
s it was found in Fig. 2 to be optimal. In between the low and high
nventory levels the optimal ordering policy is a combination of a fixed
rder quantity and base-stock policy.

Fig. 4(a) illustrates the structure found for the optimal ordering
olicy. In the figure, two inventory level points are presented which are
sed to derive a heuristic for ordering. The first inventory level point
ndicates that if the inventory is below the level it is assumed there is
o inventory when replenishment occurs. This inventory level point is
ound from the average sales procurement lead time (𝓁 ⋅

∑

𝑖 𝜇𝑖), as this
is the amount of products that likely will be sold before replenishment
occurs.

The second inventory level point indicates the point in which it is
certain there is left-over inventory at replenishment. This is given if the
inventory level exceeds the average sales with safety stock procurement
lead time

(

𝓁 ⋅
∑

𝑖 𝜇𝑖 + 𝑧 ⋅ 𝜎𝓁
)

, it is unlikely the retailer will sell more
roducts during lead time before replenishment occurs. The safety stock
follows the critical fractile ratio

(

(𝑝 − 𝑐) ∕
(

𝑝 − 𝑐 + 𝑅 ⋅ ℎ2
))

. As the
safety stock is often a formula consisting of the lost sale cost and
holding cost, it is assumed in this heuristic that the lost sale cost is
equal to the profit of selling a product in the offline channel. Reason
is that the optimal policy is to sell the product through the offline
channel. The holding cost is assumed to be from the online channel,
since excess stock is preferred to be stored in the online channel. 𝐹−1

denotes the inverse of the Normal distribution function with mean zero
and variance of one. 𝜎𝑖 is the standard deviation of the total demand
during period 𝑖.

The region between the two inventory level points indicate there
is uncertainty if there will be inventory left-over at replenishment or
not. If the inventory level is closer to the average sales procurement
lead time it is more likely that at replenishment the inventory level is
zero. However, if the inventory is closer to the average sales with safety
stock procurement lead time there is a higher change of left-overs at
replenishment.

The region which assumes that no inventory is left at replenishment
follows an fixed order quantity policy, where 𝑄 is the order quantity as
seen in Fig. 4(a). The order quantity is derived from the average sales
with safety stock during the review period and is calculated as follow:
𝑅 ⋅

∑

𝑖 𝜇𝑖 + 𝑧 ⋅ 𝜎𝑅.
If the inventory level exceeds the average sales with safety stock

procurement lead time, it is certain that there is left-over inventory at
9

replenishment thus a base-stock policy is used. The order-up-to level
𝑆 is derived from the average sales during the review period and lead
time. The order-up-to level uses the same formula as the fixed order
quantity however, takes the average sales and safety stock over the
review period plus lead time: (𝑅 + 𝓁) ⋅

∑

𝑖 𝜇𝑖 + 𝑧 ⋅ 𝜎𝑅+𝓁 .
In between the fixed order quantity and base-stock policy, the

ptimal policy is a combination of the two. Therefore, we linearly
nterpolate the two policies in the region where the inventory level is
etween the two inventory level points. By using a weight ratio (𝑤)
e decide whether the order policy should follow more a fixed order
uantity or base-stock policy. The weight ratio is a linear interpola-
ion between the two inventory level points where the values ranges
etween 0 and 1. By using the weight ratio the fixed order quantity
olicy changes to a base-stock policy as the inventory level increases.

Fig. 4(b) gives the algorithm for ordering, where first the parameters
re derived followed by checking in which region the inventory level
s. As no closed form exist for the inverse of the Normal distribution
unction, this takes a numerical procedure. Except for this calculation,
he heuristic is able to find the order quantity fast.

.2. Rationing heuristic

The heuristic for rationing is based on operating the channels
ndividually and trying to find the optimal quantity to allocate to
ach channel by considering the marginal costs and revenue for each
dditional product allocated to the two channels. Excess products the
etailer has available are stored in the channel with the lowest inven-
ory cost. The optimal quantity for each individual channel is found
sing the newsvendor model, however, the ordering cost is replaced by
he holding cost. If the inventory level is below the optimal quantity of
he individual channels, the decision on where to allocate a product is
ased on which channel gives the highest expected contribution for the
roduct. 𝐺−1

𝑖 denotes the inverse of the Poisson distribution function of
ither channel.

Fig. 5(a) illustrates the structure found for the optimal rationing
olicy. In the figure the threshold inventory level where excess products
re stored in the channel with the lowest inventory cost is indicated as
1 + 𝑟2. This inventory level point is found by calculating the optimal
uantity for each individual channels. At inventory levels below this
hreshold, a trade-off is made between storing the product in the offline
r online channel. This trade-off is based on which channel gives the
ighest expected contribution for an extra product.

Fig. 5(b) gives the algorithm for rationing, where first the optimal
uantity of the channels is derived as this takes a numerical procedure.
he calculation of the highest expected contribution for the product is
umbersome however, unavoidable for the heuristic. Nevertheless, the
euristic for the rationing is able to find the rationing decision fast.
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Fig. 5. Visualisation of the parameters of the rationing heuristic (a) with the algorithm (b).
0
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6. Performance of the heuristics

The result of the heuristics is evaluated for the different problem
instances described in Section 4.1. We evaluate the heuristics on three
different performance measures, the goodness of fit of the policy,
the optimality gap and the service level. The first performance is to
evaluate how much the heuristics results resembles the optimal policy,
the second performance indicator gives us an indication how good the
heuristics performs on the different revenue and cost parameters. The
last performance measures gives an indication on the performance of
the fulfilment of the individual channels.

6.1. Goodness of fit

To evaluate the goodness of fit of the heuristic, a weighted root-
mean-square-error (wRMSE) is used. RMSE sums the squared differ-
ences between the optimal actions and the actions set by the heuristic
over all feasible states. We chose to use RMSE because it penalises
large deviations from the optimal decisions more than small deviations.
Furthermore, we chose to use a weighted version of this measure
because not all states are equally likely to occur, and it is important
that the heuristics fits well to the optimal policy in the states that
are most predominant. To achieve this, we use weights set by the
probabilities that the states occurs. These probabilities can be obtained
from solving the steady state distribution by Markov chain analysis, or
by only considering actions that are made during a simulation period.
We apply simulation, and compute the wRMSE with weights set to the
relative frequency that states are visited during a simulation. Similar as
described in Section 4.3, we simulate the heuristics for 𝐽 periods and
calculate the wRMSE as follows:

wRMSE =

√

∑𝐽
𝑗=1

(

𝜋𝑗 − 𝑘𝑗
)2

𝐽
(10)

where 𝜋𝑗 is the optimal action to be taken in simulation period 𝑗
and 𝑘𝑗 is the action chosen by the heuristic in the same period. For
the ordering action the simulation period 𝐽 = 100 000 weeks and
for the rationing action 𝐽 = 700 000 days. By using a relatively
long simulation period, we implicitly include the frequency of states
occurring, as the error encountered for common states will be included
many times in this weighted average. In Table 5 the wRMSE of both
the ordering and rationing decision is presented.

From Table 5 it is observed that both the ordering and the rationing
decision show low weighted RMSEs, where the maximum values are
1.699 and 1.031 respectively. For different lead times, it is observed
that the weighted RMSE of ordering varies the most, where it increases
with longer lead times. This can be explained by the fact that the
heuristics tries to predict the quantity of products sold during lead time,
and for shorter lead times this prediction is more accurate. For different
10

review periods the weighted RMSE stays around 1.25. t
Table 5
Weighted RMSE of the heuristics during review period for all instances.

Instance Weighted RMSE

Ordering Rationing

𝑅 = 7,𝓁 = 1 0.390 0.646
𝑅 = 7,𝓁 = 2a 0.663 0.639
𝑅 = 7,𝓁 = 3 1.066 0.681
𝑅 = 7,𝓁 = 4 0.954 0.664
𝑅 = 7,𝓁 = 5 1.272 0.645
𝑅 = 7,𝓁 = 6 1.699 0.620
𝑅 = 7,𝓁 = 7 1.548 0.658

𝑅 = 2,𝓁 = 2 1.531 0.700
𝑅 = 3,𝓁 = 2 1.678 0.761
𝑅 = 4,𝓁 = 2 0.980 0.645
𝑅 = 5,𝓁 = 2 0.998 0.677
𝑅 = 6,𝓁 = 2 1.058 0.702

𝑅 = 3,𝓁 = 3 0.893 0.589
𝑅 = 4,𝓁 = 4 0.752 0.611
𝑅 = 5,𝓁 = 5 1.198 0.614
𝑅 = 6,𝓁 = 6 1.658 0.597

𝜇1 = 2, 𝜇2 = 2 0.259 0.131
𝜇1 = 4, 𝜇2 = 4 0.666 0.857
𝜇1 = 2, 𝜇2 = 6 0.592 0.122

𝑢 = 0 0.592 0.649
𝑢 = 20 0.899 0.593
ℎ1 = 2 1.237 1.031
ℎ1 = 3 1.361 0.446
𝑐 = 20 0.980 0.501
𝑐 = 40 0.499 0.970

aBase test case.

The goodness of fit of the rationing decision is relatively stable
for different review periods and lead times. The demand and cost
parameters have the largest influence on the weighted RMSE, which
is expected as these parameters are used in the rationing heuristic thus
have the largest influence.

6.2. Optimality gap

Table 6 shows the profit of the MDP and the heuristics. Additionally,
the gap of the revenue and all individual cost factors are included. From
the results of the profit, it appears that the heuristics perform quite well
and is very close to the optimum in all cases. The largest gap in profit
is 0.064% for the instance in which ℎ1 = 2. The heuristics performance
are the best for the instance in which 𝜇1 = 2, 𝜇2 = 2 with an gap of only
.002%. These results correspond with the weighted RMSE as in these
nstances they were also the smallest and largest.

From the performance results, it is observed that the heuristics are
erforming better for shorter lead times than for longer lead times, even
hough it is still close to optimal. As described above, the heuristics
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Table 6
Optimality gap of the heuristics during review period for all instances.

Instance Profit Revenue Costs

Inventory Ordering Shipment
MDP Heuristic Gap (%) Gap (%) Gap (%) Gap (%) Gap (%)

𝑅 = 7,𝓁 = 1 3626.63 3626.30 −0.009 0.031 0.858 0.020 −0.014
𝑅 = 7,𝓁 = 2a 3623.84 3623.42 −0.011 0.042 1.007 0.041 0.004
𝑅 = 7,𝓁 = 3 3621.15 3620.55 −0.017 −0.026 −0.171 −0.027 −0.089
𝑅 = 7,𝓁 = 4 3618.69 3618.07 −0.017 0.057 1.339 0.057 0.028
𝑅 = 7,𝓁 = 5 3616.36 3615.56 −0.022 0.079 1.934 0.061 0.063
𝑅 = 7,𝓁 = 6 3614.18 3613.05 −0.031 0.147 3.130 0.143 0.160
𝑅 = 7,𝓁 = 7 3612.09 3611.02 −0.030 0.106 2.355 0.106 0.107

𝑅 = 2,𝓁 = 2 1057.47 1056.99 −0.045 −0.175 −3.828 −0.176 −0.348
𝑅 = 3,𝓁 = 2 1579.53 1578.81 −0.046 −0.182 −3.606 −0.183 −0.326
𝑅 = 4,𝓁 = 2 2097.13 2096.78 −0.017 −0.061 −1.060 0.058 −0.146
𝑅 = 5,𝓁 = 2 2610.35 2609.49 −0.033 −0.060 −0.752 0.038 −0.146
𝑅 = 6,𝓁 = 2 3119.23 3118.46 −0.025 −0.055 −0.678 −0.048 −0.139

𝑅 = 3,𝓁 = 3 1577.80 1577.64 −0.010 −0.030 −0.332 −0.036 −0.284
𝑅 = 4,𝓁 = 4 2093.23 2092.93 −0.014 0.045 −3.253 0.508 −0.001
𝑅 = 5,𝓁 = 5 2604.00 2603.49 −0.020 0.076 1.992 0.071 0.052
𝑅 = 6,𝓁 = 6 3110.24 3109.30 −0.030 0.146 3.695 0.144 0.159

𝜇1 = 2, 𝜇2 = 2 1762.99 1762.95 −0.002 0.008 0.166 0.008 0.007
𝜇1 = 4, 𝜇2 = 4 3561.35 3560.84 −0.014 0.070 1.652 0.069 0.008
𝜇1 = 2, 𝜇2 = 6 3507.54 3507.41 −0.004 0.016 0.399 0.015 0.017

𝑢 = 0 3693.39 3692.97 −0.011 0.039 0.942 0.038 0.000
𝑢 = 20 3415.46 3414.91 −0.016 0.068 1.340 0.066 0.165
ℎ1 = 2 3542.67 3540.40 −0.064 0.312 5.043 0.311 0.041
ℎ1 = 3 3467.23 3465.88 −0.039 0.188 2.447 0.186 0.052
𝑐 = 20 4180.92 4180.47 −0.011 −0.055 −3.433 0.406 −0.107
𝑐 = 40 3067.30 3066.60 −0.023 0.080 1.663 0.080 −0.015

aBase test case.
try to predict the quantity of products sold during lead time, which is
more accurate for short lead times. This can also be seen by the cost of
ordering, which increases with the lead time.

For short review periods, the performance results are the lowest.
For short review periods, the amount of days with low inventory
is relatively high compared with long review periods. The rationing
decision influences the revenue and inventory cost, which can be seen
as highest in the cases with short review periods. The high shipment
cost gap indicates that more product are sold in the online channel than
offline channel, while a product in the offline channel has a larger profit
margin. The gap for profit at higher review periods remains around
0.020%.

For instances in which the review period is equal to the lead time,
the gap is the lowest when they are both equal to three days. When
decreasing or increasing the period the gap increases. The trend in gap
is similar as discussed above, where longer lead time increase the gap
and longer review period decreases the gap. However, the gap resulting
from the sub-optimal rationing policy is more significant than the order
policy, as the gap for short review period and lead time is larger than
long review period and lead time. This can also be seen in the inventory
cost, which gaps are significantly larger than the ordering gaps.

For different review periods and lead times, the heuristics are
performing effective. Additionally the heuristics are tested for different
demand distributions. Among all instances, the gap of the heuristics are
the lowest for the different demand distributions.

The heuristics are also showing near-optimal results for instances
with different cost parameters. Higher costs for handling online de-
mand or higher costs for in-store inventory do increases the gap
slightly. Having higher costs means that having sub-optimal rationing
decisions decreases the profit more. Increasing the ordering cost de-
creases the gap of the heuristics. This can be explained by the approx-
imation of the safety stock of the ordering heuristic. It assumes that
a lost sale cost only consist of the profit of selling a product in the
offline channel, not taking into account the possibility of the lost sale
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occurring in the online channel.
6.3. Service level

Next to profit an important performance indicator is the alpha
service level, that is the fraction of time one ends a day with products
still in stock (i.e., the non-stock out probability). We report these for
every day and for each channel. In particular one is interested in
the cycle service level, that is the product availability just before a
replenishment arrives.

6.3.1. Service level per weekday
Fig. 6 shows the average service level per day resulting from using

the policy of the MDP and heuristics for each channel. The service
level is calculated by the fraction of 100 000 simulated weeks, in
which all demand can be met from stock assigned to that channel.
The figure shows that demand in the online channel is fully served
for the days following replenishment (day 3 till 7), and that there is
some lost demand during those days in the offline channel. This is due
to the rationing decision, and the holding costs being higher at the
offline channel: it deems optimal not to meet the maximum possible
demand of that channel. During the procurement lead time (day 1
and 2), the service level drops, as the retailer is experiencing lower
inventory levels, and increased probabilities that they cannot satisfy all
demand. Overall, the heuristic has a slightly higher service level than
the optimal result. This is due to a slightly larger replenishment order,
which happens mostly when the stock level is low upon ordering.

At high inventory levels, the two channels are not competing for
products and the rationing decision can be reduced to a cost min-
imisation decision to determine the optimal base stock level for the
offline channel. As having more products in the offline channel than the
base stock level causes the expected marginal revenue to become less
than the expected marginal cost, the optimal solution is to store excess
products in the online channel. In extreme cases the offline channel
might not have enough products to meet all demand. As the online
channel holds all excessive stock it is capable to satisfy all demand in

extreme cases. Both the policy of the MDP and the heuristic have this
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Fig. 6. Average service level per day of each channel for the MDP and heuristic for the base case.
base stock level for the offline demand, therefore the service level is
identical for day 3 and 4.

The day before replenishment (day 2), the trade-off between serving
the two channels is more important due to lower inventory levels.
Therefore, it is important that the heuristic is able to capture the trade-
off between expected future sales and holding cost as good as possible.
As seen in Table 5, the rationing decision has a low RMSE, indicating
that the heuristic is capable of capturing the core trade-off.

The overall higher service level was also seen in Table 7, where
the revenue is higher for the heuristic. The heuristic has an overall
higher service level due to an average higher inventory level. The
higher inventory level results from the larger replenishment orders,
which was seen in Table 6 where the ordering gap is positive, indicating
higher ordering costs for the heuristic. The average higher inventory
level comes at the expense of higher inventory costs, which offset the
higher revenue resulting in a lower profit for the heuristic.

6.3.2. Cycle service level
The service level on day 𝑙 sets the cycle service level, which is an

important performance indicator. Where Fig. 6, focuses on the base
case, in Table 7 we present the cycle service level for all instances.
The cycle service level is the service level on the day just before
replenishment. For most instances, the cycle service level is above 95%,
only for the instances in which the holding cost is higher or the cost
of the product is higher, the service level turns out to be lower. This
can be explained by the fact that the cost of trying to satisfy demand
is higher in these instances, and that it therefore is more profitable to
not always satisfy demand. In settings where holding costs are much
smaller, the fill rates may get close to one, and we observed that the
performance of the heuristic is equally close or even closer to optimal.

Table 7 shows that the cycle service level is almost always slightly
higher for the online channel than the offline channel, as the holding
costs in the offline channel are larger. Due to the higher holding costs,
fewer products are stored in the offline channel resulting in a lower
service level.

The service level remains relatively stable for different lead times,
as for the offline channel it is around 95% and for the online channel
between 95%–96%. Though not visible here, we have observed that
for a longer lead time the optimal policy resembles less a base stock
policy. This is explained by the fact the actual inventory level gives
less information on the inventory level when products are delivered
after a longer lead time. The proposed heuristic closely approximates
the optimal ordering policy by a combination of a constant order policy
and a base stock policy, as discussed in Section 6.1. Thus we achieve
comparable service levels.

When increasing the review period, the cycle service level de-
creases. Longer review periods increase the uncertainty of demand thus
12
Table 7
The cycle service level for all instances.

Instances Offline channel Online channel

MDP Heuristic MDP Heuristic

𝑅 = 7,𝓁 = 1 0.949 0.949 0.957 0.957
𝑅 = 7,𝓁 = 2a 0.951 0.953 0.959 0.959
𝑅 = 7,𝓁 = 3 0.951 0.946 0.960 0.954
𝑅 = 7,𝓁 = 4 0.947 0.951 0.956 0.958
𝑅 = 7,𝓁 = 5 0.949 0.955 0.956 0.961
𝑅 = 7,𝓁 = 6 0.945 0.956 0.955 0.965
𝑅 = 7,𝓁 = 7 0.946 0.954 0.954 0.961

𝑅 = 2,𝓁 = 2 0.985 0.977 0.990 0.983
𝑅 = 3,𝓁 = 2 0.979 0.968 0.985 0.974
𝑅 = 4,𝓁 = 2 0.972 0.966 0.979 0.973
𝑅 = 5,𝓁 = 2 0.965 0.959 0.972 0.965
𝑅 = 6,𝓁 = 2 0.957 0.950 0.966 0.958

𝑅 = 3,𝓁 = 3 0.978 0.976 0.985 0.981
𝑅 = 4,𝓁 = 4 0.969 0.971 0.976 0.976
𝑅 = 5,𝓁 = 5 0.962 0.966 0.969 0.973
𝑅 = 6,𝓁 = 6 0.953 0.964 0.961 0.969

𝜇1 = 2, 𝜇2 = 2 0.961 0.961 0.956 0.956
𝜇1 = 4, 𝜇2 = 4 0.955 0.958 0.952 0.952
𝜇1 = 2, 𝜇2 = 6 0.955 0.957 0.953 0.955

𝑢 = 0 0.950 0.952 0.961 0.960
𝑢 = 20 0.953 0.955 0.949 0.955
ℎ1 = 2 0.933 0.950 0.956 0.961
ℎ1 = 3 0.932 0.944 0.960 0.966
𝑐 = 20 0.959 0.953 0.966 0.959
𝑐 = 40 0.938 0.941 0.949 0.948

aBase test case.

the chance of hitting a stock out before replenishment increases as the
retailer is less responsive to low stock levels. This is also seen in the
instances in which the review period is equal to the lead time.

For most instances, the MDP results in a lower service level than
the heuristic. The heuristic often has higher replenishment orders than
the MDP, resulting in the higher cycle service levels at the expense
of higher inventory and ordering costs (as was shown in Table 6).
However, for short review periods, the heuristic orders fewer products
than the MDP resulting in lower cycle service levels.

7. Discussion and conclusion

Brick-and-mortar stores are increasingly adopting online shopping
channels in their portfolio, where in-store inventory is often used to ful-
fil both in-store demand as well as online orders. As the retailer serves
demand of multiple channels by one inventory, this study proposes to
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ration the inventory of the retailer among the channels. The rationing
is suggested as solution to the negative effects that occur when using
in-store inventory for the fulfilment of online demand.

The rationing is characterised by the trade-off of serving in-store or
online customers, where the profit of selling a product in-store is higher
than through the online channel but the inventory cost of the online
channel is lower. The proposed model encompasses this core trade-off
experienced by an omni-channel retailer. The underlying cost structure
and demand of both channels influence this decision. The products are
present at the same location, thus the retailer can make the rationing
decision on a daily basis.

This paper contributes to the academic literature on omni-channel
retailing by providing a novel exact method as well as heuristics for
the integration of the replenishment and rationing decision. Previous
research on dynamic rationing assumes zero lead times, no lost sales,
and static order policies which does not capture the characteristics of
an omni-channel retailer. To capture these characteristics, we study an
omni-retailer with a dynamic order policy, a deterministic lead time,
and lost sales. The problem is formulated as an MDP that was solved
through value iteration to get an exact solution. The structure of the
optimal rationing and ordering policies are numerically investigated
and captured in heuristics.

Based on our model and numerical results, we conclude that the
optimal ordering policy consists of a fixed order quantity and an order-
up-to level. At low inventory levels, a fixed order quantity is optimal,
whereas at high inventory levels an order-up-to level is optimal, this is
due to the uncertainty of demand during the procurement lead time.
For the rationing policy, a maximum threshold level for high inventory
levels is found, which is also proven analytically. At low inventory
levels there is a trade-off on whether to store products in-store or
offline. Based on these insights, heuristics are developed and tested
through extensive numerical tests. The heuristics are compared with the
optimal policy on its goodness of fit, optimality gap and service level.
The heuristics show near-optimal results, concluding that the heuristics
can be effective in encompassing the complexity of dynamic rationing.
Furthermore, the heuristics is able to closely approximate the optimal
ordering policy by mixing a base stock policy and a constant order
policy.

Even though the model studied in this paper captures the core
trade-offs presented in omni-channel retailing, several potentially com-
plicating factors were not taken into account, and could be directions
for further research. More specifically, it could be in the exploration
of a network of multiple omni-channel retailer locations who can fulfil
online demand, extending the rationing decision with the allocation of
online orders to different locations. This research contributes to such
a direction by offering heuristics that are fast and have the potential
to be upgraded to these more complex problem settings. However, it
should be noted that use of our heuristics in practice would require the
retailer to regularly update demand parameters throughout the selling
period as these might change over time. In our paper we assumed lost
sales as replenishment happens only weekly and consumers may be
impatient. By adopting the lost sales assumption, we prevent stock outs
as much as possible as they would result in lost profit. A mixture of
lost sales and backordering could be incorporated in the framework
we present, e.g. if a percentage of online customers might be willing
to wait for the fulfilment of online orders. Adding a backlog decision
will further increase the computational complexity. Based on previous
research (e.g. Benjaafar et al., 2010; Fadıloǧlu and Bulut, 2010), we
expect the amount of backorders to have a limit and that the decision of
when to backorder will dependent on the state of the system. Additional
research could be interesting to investigate the influence of product
returns in the current context. Online sales have become challenging
for retailers due to the large quantity of sold goods being returned. This
return flow influences the inventory of the retailer, thus influencing the
rationing and ordering policies. The addition of returns would however
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significantly increase the dimensionality of the MDP, as the state of the i
model would have to include the numbers of sold products (in the last
days or weeks) that will be potentially returned in the coming days or
weeks. The curse of dimensionality would result in unsolvable MDPs
for most relevant problem sizes. The development of effective heuristic
solutions would then also be highly relevant for this problem.
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Appendix. Derivation of inventory base stock level

We can prove that there is an optimal quantity to be stored in-store
in case of excessive stock. We have the following equation to calculate
the expected contribution in state 𝑠𝑡 when taking action 𝑎:

𝐶
(

𝑠𝑡, 𝑎
)

= 𝑝

(

∑

𝑑<𝑎
𝑑 ⋅ 𝑃1 (𝑑) +

∑

𝑑≥𝑎
𝑎 ⋅ 𝑃1 (𝑑)

)

+ (𝑝 − 𝑢)

(

∑

𝑑<𝐼𝑡−𝑎
𝑑 ⋅ 𝑃2 (𝑑) +

∑

𝑑≥𝐼𝑡−𝑎
(𝐼𝑡 − 𝑎) ⋅ 𝑃2 (𝑑)

)

−
(

ℎ1 ⋅ 𝑎 + ℎ2 ⋅
(

𝐼𝑡 − 𝑎
))

We add the following term:
∑

𝑑≥𝑎+1
𝑑 ⋅ 𝑃1 (𝑑) − 𝑝

∑

𝑑≥𝑎+1
𝑑 ⋅ 𝑃1 (𝑑) + (𝑝 − 𝑢)

∑

𝑑≥𝐼𝑡−𝑎+1
𝑑 ⋅ 𝑃2 (𝑑)

− (𝑝 − 𝑢)
∑

𝑑≥𝐼𝑡−𝑎+1
𝑑 ⋅ 𝑃2 (𝑑)

We know that the following two conditions will always hold
∑

𝑑<𝑎
𝑑 ⋅ 𝑃1 (𝑑) +

∑

𝑑≥𝑎+1
𝑑 ⋅ 𝑃1 (𝑑) = 𝜇1 and

∑

𝑑<𝑎
𝑑 ⋅ 𝑃2 (𝑑) +

∑

𝑑≥𝑎+1
𝑑 ⋅ 𝑃2 (𝑑) = 𝜇2

We can therefore get to the following equation after adding and
ubtracting:

𝐶
(

𝑠𝑡, 𝑎
)

= 𝑝 ⋅ 𝜇1 + 𝑝
∑

𝑑≥𝑎+1
(𝑎 − 𝑑) ⋅ 𝑃1 (𝑑) + (𝑝 − 𝑢) ⋅ 𝜇2

+ (𝑝 − 𝑢)
∑

𝑑≥𝐼𝑡−𝑎+1

(

𝐼𝑡 − 𝑎 − 𝑑
)

⋅ 𝑃2 (𝑑)

−
(

ℎ1 ⋅ 𝑎 + ℎ2 ⋅
(

𝐼𝑡 − 𝑎
))

To find the optimal action 𝑎 that maximises the expected contribu-
ion E𝐶

(

𝑠𝑡, 𝑎
)

, we take the approximate derivative:

E𝐶
(

𝑠𝑡, 𝑎
)

= E𝐶
(

𝑠𝑡, 𝑎 + 1
)

− E𝐶
(

𝑠𝑡, 𝑎
)

After subtracting and rewriting we get the following equation:

E𝐶
(

𝑠𝑡, 𝑎
)

= 𝑝 ⋅
∑

𝑑≥𝑎+1
−𝑃1 (𝑑) + (𝑝 − 𝑢) ⋅

∑

𝑑≥𝐼𝑡−𝑎+1
𝑃2 (𝑑) +

(

ℎ1 − ℎ2
)

We know that:
∑

𝑑≥𝑎+1
𝑃1 (𝑑) = 1 −

∑

𝑑≤𝑎
𝑃1 (𝑑) and

∑

𝑑≥𝐼𝑡−𝑎+1
𝑃2 (𝑑) = 1 −

∑

𝑑≤𝐼𝑡−𝑎
𝑃2 (𝑑)

We can therefore rewrite the approximate derivative as follows:

E𝐶
(

𝑠𝑡, 𝑎
)

= −𝑝+ 𝑝 ⋅
∑

𝑑≤𝑎
𝑃1 (𝑑) + (𝑝 − 𝑢) − (𝑝 − 𝑢) ⋅

∑

𝑑≤𝐼𝑡−𝑎
𝑃2 (𝑑) +

(

ℎ1 − ℎ2
)

If all possible demand in the online channel is satisfied due to excess
∑
nventory being available to this channel, we have 𝑑≤𝐼𝑡−𝑎 𝑃2 (𝑑) =
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a

𝑃

T

R

A

A

A

A

B

B

B

B

B

B

B

C

C

C

C

D

D

E

F

F

F

G

H

1. This assumes ℎ1 > ℎ2, as otherwise the excess inventory would
be allocated to the offline channel. In this situation, the approximate
derivative is reduced to the following.

𝛥E𝐶
(

𝑠𝑡, 𝑎
)

= −𝑝 + 𝑝 ⋅
∑

𝑑≤𝑎
𝑃1 (𝑑) +

(

ℎ1 − ℎ2
)

In order to find the maximum value of E𝐶
(

𝑠𝑡, 𝑎
)

, we find the largest
value for 𝑎 for which 𝛥E𝐶

(

𝑠𝑡, 𝑎
)

is negative:

𝛥E𝐶
(

𝑠𝑡, 𝑎
)

≤ 0 ⟹ −𝑝 + 𝑝 ⋅
∑

𝑑≤𝑎
𝑃1 (𝑑) +

(

ℎ1 − ℎ2
)

≤ 0

⟹
∑

𝑑≤𝑎
𝑃1 (𝑑) ≤

𝑝 −
(

ℎ1 − ℎ2
)

𝑝

Thus we get the following equation that gives us the optimum
mount of products to hold in-store:

1(𝑑 ≤ 𝑎) ≤
𝑝 −

(

ℎ1 − ℎ2
)

𝑝

he inventory base stock level 𝑎 can then be easily derived from the
inverse probability function of 𝑃1.
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