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ScienceDirect
Insect herbivores interact via plant-mediated interactions in

which one herbivore species induces changes in plant quality

that affects the performance of a second phytophagous insect

that shares the food plant. These interactions are often

asymmetric due to specificity in induced plant responses to

herbivore attack, amount of plant damage, elicitors in herbivore

saliva and plant organ damaged by herbivores. Parasitoids and

their symbiotic polydnaviruses alter herbivore physiology and

behaviour and may influence how plants respond to parasitized

herbivores. We argue that these phenomena affect plant-

mediated interactions between herbivores. We identify that the

extended phenotype of parasitoid polydnaviruses is an

important knowledge gap in interaction networks of insect

communities.
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Introduction
Insect herbivores sharing a food plant often interact

indirectly through plant-mediated effects [1–3]. Plant-

mediated interactions occur when one herbivore species

induces changes in plant morphology, defence chemistry

or nutrition that affects the performance of a second

phytophagous insect that is feeding on other plant organs

or occupies the plant at a different time [1,2]. Although

predators are predominantly considered to directly affect

herbivore interactions by preying on herbivores [4], pre-

dators and parasitoids may also affect the outcome of

plant-mediated interactions among herbivores through

non-consumptive interactions [5,6,7��]. With their
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presence, predators cause changes in herbivore behaviour

such as shifts in the feeding intensity and feeding position

of herbivores [7��,8,9]. Parasitoids that use phytophagous

insects as hosts for their offspring even manipulate host

physiology and behaviour that result in altered interac-

tions of the phytophagous host with the food plant [10–

15]. In the past decade, it has been identified that the

induced plant responses by parasitized herbivores affect

the performance of other herbivores feeding on the plant

[16,17], food plant preference of herbivores [18,19��], as

well as responses of parasitoids and hyperparasitoids to

plant volatiles [11,20]. Recently, functional analyses of

the mechanisms underlying the plant-mediated interac-

tions initiated by parasitoids identified that not the larvae

of the parasitoid, but the parasitoid associated polydna-

viruses (PDVs) that are injected into the caterpillar host

along with the parasitoid egg are the key drivers of the

interaction network [19��,21��,22,23].

Here we argue that parasitoid-associated polydnaviruses

have an impact on plant-mediated interactions among

insect herbivores by altering insect host physiology and

behaviour (Figure 1). We illustrate how PDVs may influ-

ence interactions beyond host manipulation, discuss

whether these effects are adaptive to the parasitoid and

provide evidence for a key role of PDVs in altering plant-

mediated interactions among herbivores. Although para-

sitism of aphids affects plant responses [17], aphid asso-

ciated parasitoids do not have a symbiosis with PDVs. We

therefore focus our review on PDVs and caterpillar asso-

ciated parasitoids.

How do PDVs affect plant responses to
herbivore attack?
Although PDVs have long been described as viruses

allowing the parasitoid offspring to escape the immune

response of herbivore hosts [24�,25], it is now increasingly

evident that PDVs also interact with the food plant of the

herbivore [19��,21��,22,23,26]. One question that remains

to be explored is whether PDVs actively manipulate plant

responses to herbivory, or instead the effects that PDVs

induce on plants are simply a by-product of the action that

PDVs exert on the infected herbivore.

An evidence in favour of the ‘active manipulation

hypothesis’ is that PDV-induced plant-mediated effects

enhance the fitness of the parasitoid larva growing inside

the parasitized caterpillar [19��,21��]. Indeed, plants have

been shown to reduce their chemical defences when

attacked by herbivores experimentally injected with
www.sciencedirect.com
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Figure 1
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Impact of PDVs on plant-mediated interactions between two herbivores.

(a) Insect herbivores indirectly interact via plant-mediated interactions in which one herbivore species (initiator H1) induces changes in plant traits

that affects the performance of a second phytophagous insect (receiver H2) that shares the food plant. Parasitoids and their symbiotic

polydnaviruses (PDVs) can also act as initiators (P) by inducing phenotypic changes in herbivores that alter the interaction network. (b) PDV

particles injected by parasitoid females into a caterpillar host infect several tissues (including salivary glands and the gut) which eventually alter

herbivore physiology and behaviour (drawing based on scheme by Utsumi et al. [7��]).
PDV particles, which in turn likely increased the nutri-

tional quality of the host food plant for the parasitized

herbivore [19��,21��]. This outcome is mediated by the

effect that PDVs induce on the caterpillar oral secretions

which often contain elicitors that the plants use to recog-

nize the identity of the herbivore attacker [27,28]. Once

PDV particles are delivered in the herbivore hemocoel,

they infect several tissues among which salivary glands

can be targeted [22,29]. PDVs impact the composition of

caterpillar salivary glands via quantitative effects leading

to a reduction of the activity of caterpillar-resident elici-

tors (i.e. beta-glucosidase and glucose oxidase) [21��,22]
as well as qualitative effects resulting in the production of

viral-encoded peptides [23]. The recent discovery of viral

‘alien’ proteins (GlyPro1_Hd2, GlyPro2_Hd2) in salivary

glands of infected herbivores opens new lines of research

to investigate their possible role at the plant–insect

interface.

Alternatively, PDV-induced effects on plants may be a

by-product of the complex effects that PDVs induce in

the infected caterpillar: the fundamental functions of

PDVs are to suppress the host immunity and regulate the

caterpillar metabolism in order to allow the successful

development of the parasitoid progeny inside the
www.sciencedirect.com 
herbivore host [24�,25]. Concerning the latter, PDVs

exert a wide range of effects on the caterpillar which

experiences inhibition of protein synthesis [30,31], dis-

ruption of hormone balance [32–39], developmental

arrest [35,37,40], inhibition of growth [41–45] and pre-

vention of metamorphosis [46]. Because the herbivore

phenotype is extensively affected after PDV infection,

one may argue that such alterations subsequently affect

the interactions that the herbivore establishes with its

food plant. An evidence supporting the by-product

hypothesis is that plant-mediated PDV-induced

responses are not always beneficial to the parasitoid

and can result in increased mortality by its hyperpara-

sitoid enemies [22]. Yet the ecological costs of PDVs due

to plant-mediated effects are probably minor when com-

pared to the benefit conferred by PDVs to their parasit-

oid partners via herbivore-mediated effects.

While it is challenging to disentangle the active versus

passive effects of PDVs in plant–insect interactions,

there is clear evidence showing that PDVs truly alter

plant phenotypic responses to herbivory [19��,21��,22,
23,26]. As a result, PDVs can also act as hidden players

affecting indirect plant-mediated interactions among

herbivores.
Current Opinion in Insect Science 2022, 49:56–62
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Parasitoids and their PDVs affect
plant-mediated interactions between
herbivores
Plant-mediated interactions between herbivores are

often asymmetric due to specificity in plant induced

responses to herbivores and herbivore adaptations to

plant defences [2,47]. Plant responses to insect feeding

are specific for the phytophagous insect that is feeding

on the plant, because herbivores differ in the mode of

feeding (leaf chewing or phloem feeding), the amount

and pattern of damage they cause, the plant organ they

feed on as well as the composition of elicitors in oral

secretions that trigger an induced plant response [2,3].

Moreover, herbivore species differ in how they are

affected by plant responses such as their resistance or

tolerance to morphological and chemical defences and

the plant tissue they feed on [47]. Since parasitoids and

their PDVs alter how plants respond to feeding by their

herbivore host, this may lead to an important route of

how parasitoids affect plant-mediated interactions

among herbivores (Figure 2).

Physiological changes in herbivores

In regulating the host metabolism for the benefit of the

parasitoid offspring, PDVs may affect the development

and nutritional needs of the host. Many solitary parasi-

toids and their associated PDVs reduce the host devel-

opment to fewer instar stages, which is associated with
Figure 2
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reduced plant damage [16]. For example, when PDVs

isolated from the solitary wasp Hyposoter didymator are

injected in Spodoptera frugiperda caterpillars, a reduction

of feeding damage is observed on corn leaves, compared

with uninfected caterpillars [23]. Some gregarious para-

sitoids have been found to extend the host development

with increased plant damage or even with an additional

more ferociously feeding instar stage [48]. Such quantita-

tive variation in plant damage by parasitized and PDV-

infected herbivores may correspond with the magnitude

of induced plant responses that affect subsequent herbi-

vores feeding from the plant [16]. Parasitism of Pieris
rapae by the solitary parasitoid Cotesia rubecula reduced

plant damage compared to unparasitized caterpillars and

resulted in similar performance of a second generation of

unparasitized P. rapae caterpillars feeding on parasitized

caterpillar induced plants compared to undamaged plants

[16]. However, the congeneric gregarious parasitoid Cote-
sia glomerata slightly increased feeding by its host and

reduced performance of a second generation of P. rapae
feeding on induced plants. Because in this host–parasitoid

system C. glomerata bracoviruses (CgBV) have been iden-

tified to be key regulators of the host [49] and these

specific PDVs affect plant induced responses [19��,22],
we may speculate that PDVs were responsible for the

differential plant-mediated effects on performance of a

second generation of P. rapae. For the two genera of

PDVs, bracoviruses (BVs) and ichnoviruses (IVs), plant
V-mediated change in
terpillar physiology

V-mediated change in
terpillar behaviour

Plant flower Trait

Trait

Inducer (H2)
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 plants by parasitized caterpillars. This phenotypic change in infected
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induction by PDV-injected caterpillars leads to effects on

subsequent performance of the herbivore host [21��,23].
In pepper plants parasitism of aphids attenuated the

enhanced performance of thrips feeding on plants previ-

ously attacked by unparasitized aphids [17]. This exam-

ple in aphid parasitoids that do not carry PDVs illustrates

that parasitoids may affect plant-mediated interactions

among different herbivore species, even though these

interactions may also be neutral [50]. Whether PDVs are

responsible for parasitoid effects on plant-mediated her-

bivore interactions is still largely unexplored. The poten-

tial of interspecific plant-mediated interactions initiated

by PDVs is established for herbivore preference. The

diamondback moth Plutella xylostella prefers to lay eggs on

cabbage leaves that have been previously induced by

unparasitized Pieris caterpillars over leaves induced by

Pieris caterpillars carrying PDV-associated parasitoids.

By controlling for the amount of plant damage using a

pattern wheel and applying oral secretions of parasitized

and unparasitized Pieris caterpillars, it has become evi-

dent that parasitoids affect the plant-mediated interaction

through qualitative changes in herbivore oral secretions

[18]. Microinjection of PDVs separate from the parasitoid

eggs, yielded evidence that indeed the PDVs were driv-

ing these effects [19��].

The mechanisms by which PDVs may affect induced

plant responses and thereby plant-mediated interactions

among herbivores may involve a complex interplay of

microorganisms. Recent studies on parasitoids carrying

PDVs identify that parasitisation alters the host micro-

biome [51] with organ specific changes such as the com-

position of the gut microbiome [52�]. We speculate that

PDVs may also alter the microbiome of herbivore oral

secretions and thereby affect induced plant responses.

This includes a role for the microbiome of the salivary

gland and the foregut that is regurgitated by some herbi-

vores on the plant during feeding [53]. Similar to how

Colorado potato beetles use microorganisms to suppress

plant responses to their feeding [54], PDVs may alter food

plant quality through changes in caterpillar microbiome

for the benefit of the parasitoid offspring. Since specificity

in induced plant responses is leading to asymmetry in

plant-mediated interactions among herbivores, we argue

that PDVs may directly or indirectly affect – through

herbivore physiology – plant-mediated herbivore

interactions.

Behavioural changes in herbivores

In addition to herbivore physiology, PDVs may alter

herbivore behaviour [10,55,56]. Changes in herbivore

behaviour, such as their feeding position on the plant

or the feeding duration by for example relocation to

neighbouring plants affects patterns of induced plant

response and thus plant-mediated interactions among

herbivores [3,7��].
www.sciencedirect.com 
Usurpation of herbivore behaviour by parasitoids is

widespread. Many parasitoids that parasitize aphids or

caterpillars manipulate the movement of their herbi-

vore host just before parasitoid pupation [56]. The

parasitoid directs the herbivore to a position where

the parasitoid pupa is less conspicuous to its predatory

and hyperparasitic enemies [57–59]. Usurpation of her-

bivore movement may establish itself early in host

development to reduce exposure of the parasitized

caterpillar to predators. Alteration in movement pat-

terns will cause changes in feeding duration, distribu-

tion of damage across a plant and the specific position

where the herbivore feeds. These quantitative aspects

of herbivore damage to plants have been found to affect

plant induced responses to herbivory and contributes to

variation in plant-mediated herbivore interactions

[3,7��]. Parasitoid-associated viruses have been shown

to be involved in usurpation of host movement. For

example, when the coccinellid Coleomegilla maculata is

parasitized by the endoparasitoid Dinocampus coccinellae,
it displays – after parasitoid egression – a ‘zombie-

behaviour’ that protects the wasp larvae from predators.

This host manipulation has been shown to correlate

with infection in the coccinellid brain by the D. cocci-
nellae paralysis virus (DcPV) which has remained inside

the host after parasitoid egression [60]. A similar zom-

bie-behaviour occurs in Pieris brassicae caterpillars when

attacked by the wasp C. glomerata, and it would be

interesting to investigate if C. glomerata bracovirus

(CgBV) is involved in such host manipulation. Thus

the changes that parasitoids and their associated viruses

induce on the movement patterns of herbivores may

generate spatial effects in the plant-mediated interac-

tion network [7��].

A few studies identified intricate qualitative changes in

feeding behaviour by parasitized herbivores that are

likely to affect plant-mediated herbivore interactions,

although in these studies the parasitoids are not associ-

ated with PDVs. Parasitoids of gall midges affect the

shape and size of gall formation in plants, likely to

enhance the protection that the gall offers to the para-

sitoid against its hyperparasitoid enemies [12]. The

induction of gall formation is an apparent form of a

change in plant quality and is likely to result in plant-

mediated effects on performance of other herbivores

feeding on the gall itself or leaves on which galls have

formed. Parasitoids of aphids have been found to alter

feeding of their aphid host from phloem to xylem. Such

markedly different plant tissues being damaged by

parasitized herbivores is likely to affect other herbi-

vores feeding from the same plant via plant-mediated

interactions [61]. We hypothesize that PDVs in cater-

pillar associated parasitoids may affect plant-mediated

interactions through similar changes in feeding behav-

iour of caterpillars as found for parasitoids not carrying

PDVs.
Current Opinion in Insect Science 2022, 49:56–62
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Although we lack causal evidence that these effects of

parasitoids on behaviour of their herbivore host can be

directly attributed to PDVs, evidence of these extended

effects of viruses is found in Baculoviruses, which are

closely related to Bracoviruses. Baculoviruses in caterpil-

lars interfere with Protein tyrosine phosphatase (PTP)

activity of the host and cause hyper-active and abnormal

herbivore movement [62–64]. The ptp genes are widely

represented in Bracoviruses and these PDVs are thus

likely to cause the behavioural manipulation of the host

in similar ways as Baculoviruses.

Future perspective
Current evidence for PDVs affecting plant-mediated

interactions among herbivores is indirect and arises when

bringing together different fields of research such as PDV

host usurpation and induction of plant responses by

parasitized herbivores. Nevertheless, the extended phe-

notype of parasitoid associated PDVs on plant quality and

the fact that each parasitoid species is associated with its

own specific symbiotic virus, suggest that PDVs contrib-

ute to variation in plant-mediated interactions among

herbivores. Future studies should explore whether para-

sitoids and their PDVs developing in one herbivore

species affect the performance of other herbivore species

sharing the food plant. These studies should deepen

functional understanding of the mechanisms by which

PDVs interact with the host and food plant. Drawing

parallels with host manipulation by Baculoviruses will

stimulate the functional understanding of PDV — host

interactions. This will be especially beneficial for Bra-

coviruses whereas the yet unknown origin of Ichnoviruses

makes this group of PDVs particularly challenging to

characterize from a functional perspective [65]. Interac-

tion networks in insect communities induced by PDVs

are also likely to extend to interactions among higher

trophic level organisms such as connecting parasitoids

that develop inside different herbivores feeding on other

plant organs or that occupy the plant at a different time

[16]. To understand evolution of host manipulation by

PDVs in parasitoids, we should include the costs and

benefits of PDVs interacting directly and indirectly with

the food plant of their herbivore host. Moreover, the

extended phenotype of PDVs on the food plant may

cascade to plant-mediated effects across trophic levels

and impact common interaction networks that are unex-

plored in insect community ecology [66].
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