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Abstract

Infectious diseases have profound effects on life, both in nature and agriculture. However, a quantitative genetic theory of the host popula-
tion for the endemic prevalence of infectious diseases is almost entirely lacking. While several studies have demonstrated the relevance of
transmission of infections for heritable variation and response to selection, current quantitative genetics ignores transmission. Thus, we lack
concepts of breeding value and heritable variation for endemic prevalence, and poorly understand response of endemic prevalence to se-
lection. Here, we integrate quantitative genetics and epidemiology, and propose a quantitative genetic theory for the basic reproduction
number R0 and for the endemic prevalence of an infection. We first identify the genetic factors that determine the prevalence.
Subsequently, we investigate the population-level consequences of individual genetic variation, for both R0 and the endemic prevalence.
Next, we present expressions for the breeding value and heritable variation, for endemic prevalence and individual binary disease status,
and show that these depend strongly on the prevalence. Results show that heritable variation for endemic prevalence is substantially
greater than currently believed, and increases strongly when prevalence decreases, while heritability of disease status approaches zero. As
a consequence, response of the endemic prevalence to selection for lower disease status accelerates considerably when prevalence
decreases, in contrast to classical predictions. Finally, we show that most heritable variation for the endemic prevalence is hidden in indirect
genetic effects, suggesting a key role for kin-group selection in the evolutionary history of current populations and for genetic improve-
ment in animals and plants.

Keywords: quantitative genetics; infectious diseases; response to selection; indirect genetic effects; disease transmission; artificial
selection; breeding programs; R0

Introduction
Pathogens have profound effects on life on earth, both in nature
and agriculture, and also directly on the human population
(Schrag and Wiener 1995; Russel 2013). In nature, infectious
pathogens are a major force shaping evolution of populations by
natural selection, both in animals and plants (reviewed in
Karlsson et al. 2014; Ebert and Fields 2020). In livestock, the an-
nual cost of fighting and controlling epidemic and endemic infec-
tious diseases is substantial, and much greater than the annual
value of genetic improvement (Rushton 2009; Knap and Doeschl-
Wilson 2020). Moreover, while antimicrobials have revolutionized
medicine, the rapid appearance of resistant strains has resulted
in a global health problem, both in the human population and in
livestock (EFSA 2012; Thanner et al. 2016). Thus, there is an ur-
gent need for additional methods and tools to combat infectious
diseases. For livestock and plant production, artificial genetic se-
lection of (host) populations for infectious disease traits may

provide such a tool. To quantify and optimize the potential bene-
fits of such selection, however, we need to understand the quan-
titative genetics of infectious disease traits.

The integration of quantitative genetics and epidemiology for
livestock populations was pioneered by Bishop and co-workers.
They demonstrated unexpected effects, such as responses to se-
lection for gastro-intestinal parasite infections clearly greater
than expected from ordinary quantitative genetics (Bishop and
Stear 1997, 1999, 2003). Bishop and co-workers also identified the
basic reproduction number, R0, as a key parameter for genetic
improvement and demonstrated the need for further integration
of quantitative genetics and epidemiology (e.g., MacKenzie and
Bishop 1999, 2001; Bishop and MacKenzie 2003; Nieuwhof et al.
2009; see also Doeschl-Wilson et al. 2021). These studies clearly
show that classical quantitative genetic approaches do not pre-
dict response to genetic selection for disease traits, because they
ignore the feed-back dynamics in the transmission of the
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infection. Several later studies have demonstrated the relevance
of these transmission dynamics for heritable variation and re-
sponse to selection in the host population (Lipschutz-Powell et al.
2012; Anche et al. 2014; Tsairidou et al. 2019; Hulst et al. 2021),
mostly using stochastic simulation.

However, despite the findings of Bishop et al. (see references
above) and the availability of well-established epidemiological the-
ory (e.g., Diekmann et al. 2012), a quantitative genetic theory of the
host population for the prevalence of infectious diseases is almost
entirely lacking. The current theoretical framework of quantitative
genetics and the approaches for genetic selection against infectious
diseases in livestock and crops are largely based on the individual
host response, ignoring transmission dynamics of the infection in
the population. Moreover, we lack general expressions for the
breeding value and genetic variance in key epidemiological parame-
ters, in particular, for the basic reproduction number R0, even
though such parameters may have a genetic basis.

Infections for which recovery does not confer any long-lasting
immunity typically show endemic behavior, where the infection
remains present in the population. For such infections, the endemic
prevalence is defined as the expected fraction of the population
that is infected. Because we lack a theoretical quantitative genetic
framework for infectious diseases, we do not know which genetic
effects of the host population determine the prevalence of an infec-
tious disease, and have no concepts of breeding value and heritable
variation for endemic prevalence. Hence, we do not understand the
response of the endemic prevalence to genetic selection for disease
traits at present. The main parameter determining the prevalence
of endemic infections is the basic reproduction number R0, defined
as the average number of individuals that gets infected by a typical
infected individual in an otherwise noninfected population. In this
article, we will propose a quantitative genetic framework for herita-
ble variation and response to selection for R0 and for the endemic
prevalence of infectious diseases.

Individual phenotypes for infectious diseases are often
recorded as the binary infection status of an individual, zero indi-
cating noninfected and one indicating infected. The prevalence of
an infection is then defined as the fraction of individuals that is
infected, which is the fraction of individuals that has infection
status y¼ 1. Because the average value of individual binary infec-
tion status is equal to the fraction of individuals infected, re-
sponse to genetic selection in binary infection status is identical
to response in prevalence, and vice versa. Binary infection status
(0/1) typically shows low heritability, which suggests that re-
sponse to selection is limited, also for prevalence (Bishop and
Woolliams 2010; Bishop et al. 2012; Martin et al. 2018).

Geneticists have long realized that the categorical distribution
of binary traits does not agree well with quantitative genetic
models for polygenic traits, such as the infinitesimal model
(Fisher 1919). For this reason, models have been developed that
link an underlying normally distributed trait to the observed bi-
nary phenotype, such as the threshold model (Dempster and
Lerner 1950; Gianola 1982) and the equivalent generalized linear
mixed model with a probit link function (e.g., de Villemereuil et al.
2016). In such models, the underlying scale is interpreted as
causal, and genetic parameters are assumed to represent
“biological constants” on this scale. The genetic parameters on
the observed scale, in contrast, depend on the mean of the trait,
and thus change with the mean even when the change in allele
frequencies at causal loci is infinitesimally small. In a landmark
paper, Robertson (1950) showed that the observed-scale heritabil-
ity of binary traits reaches a maximum at a prevalence of 0.5,
and approaches zero when the prevalence is close to 0 or 1.

Hence, observed-scale heritability vanishes when artificial selec-
tion moves prevalence close to zero, hampering further genetic
change.

Infectious disease status, however, differs fundamentally
from binary phenotypes for noncommunicable traits, such as,
say, heart failure. Because pathogens can be transmitted between
host individuals, either directly or via the environment, the infec-
tion status of an individual depends on the status of other indi-
viduals in the population. This suggests that indirect genetic
effects (IGEs) may play a role, which would fundamentally alter
heritable variation and response to selection (Griffing 1967;
Moore et al. 1997; Wolf et al. 1998; Bijma and Wade 2008; Bijma
2011). Results of simulation studies indeed suggest that selection
response in the prevalence of infectious diseases may differ qual-
itatively from response in noncommunicable traits (Nieuwhof
et al. 2009; Doeschl-Wilson et al. 2011; Anche et al. 2014; Hulst
et al. 2021), and this has also been observed in an actual popula-
tion (Heringstad et al. 2007). Results of Hulst et al. (2021), for ex-
ample, show that genetic selection may result in the eradication
of an infection via the mechanism of herd immunity, just like
with vaccination (Fine 1993). This result contradicts predictions
based on the observed-scale heritability for noncommunicable
binary traits, where heritability vanishes when prevalence
approaches zero (Robertson 1950).

While quantitative geneticists and breeders typically focus on
individual disease status and (implicitly) interpret prevalence as
an average of individual trait values, epidemiologists interpret
the endemic prevalence of an infectious disease as the result of a
population-level process of transmission of the infection
(Kermack and McKendrick 1927; Keeling and Rohani 2011;
Diekmann et al. 2012). In the latter perspective, both R0 and the
prevalence are emergent properties of a population, similar to
the size of a termite colony or the number of prey caught by a
hunting pack, rather than an average of individual trait values.
Because such emergent traits do not belong to single individuals,
we cannot apply the common partitioning of individual pheno-
typic values into individual additive genetic values (breeding val-
ues) and nonheritable residuals (“environment”). Nevertheless,
the genetic effects that determine the response to selection in an
emergent trait and the heritable variation for an emergent trait
can be defined based on the so-called total heritable variation
(Bijma 2011). The total heritable variation in a trait is based on
the individual genetic effects on the level of the emergent trait,
rather than on a decomposition of individual trait values into ge-
netic and residual effects. This suggests we can develop a quanti-
tative genetic theory for the endemic prevalence of infectious
diseases by combining epidemiological theory with the theory of
total heritable variation.

Here, we propose a quantitative genetic theory for the basic re-
production number R0 and for the endemic prevalence of infec-
tious diseases. We first identify the genetic factors that
determine the prevalence of an infectious disease. Similar to the
threshold model, we will assume an underlying additive infinites-
imal model for those genetic factors. However, the link between
the underlying additive scale and the observed endemic preva-
lence will be founded in epidemiological theory, with a key role
for R0. Subsequently, we investigate the population-level conse-
quences of genetic variation in individual disease traits for R0 and
for the endemic prevalence. Next, we move to the individual
level, and derive expressions for the breeding value and heritable
variation, for R0, endemic prevalence and individual binary infec-
tion status, and show how these parameters depend on the level
of the endemic prevalence. Results will show that heritable
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variation for endemic prevalence increases when prevalence
approaches zero, while heritability of individual infection status
goes to zero. Then we investigate response to selection against in-
dividual binary infection status (0/1), and show that response of
prevalence to selection accelerates considerably when prevalence
goes down. Finally, we partition the breeding value for prevalence
into direct and IGE, and show that most of the heritable variation
in the endemic prevalence of the infection is indirect, and thus
hidden to classical genetic analysis and selection. We focus solely
on the development of quantitative genetic theory, and do not
consider the statistical estimation of the genetic effects underly-
ing prevalence. Such methods have been developed elsewhere
(Anacleto et al. 2015; Biemans et al. 2017; Pooley et al. 2020).

The theory we develop here applies to endemic microparasitic
infections, i.e., where transmission depends just on whether an indi-
vidual is infected or not, and where the infection is endemic in the
local population (e.g., farm). It may also apply to endemic macro-
parasitic infection, such as coccidiosis or parasites, but we do not
study this here. Endemic infections are of daily concern to farmers,
and the very fact that they are endemic indicates that the existing
management tools are insufficient. Thus, those are the infections
likely to be targeted by breeding. Examples include mastitis, infec-
tious claw disorders, respiratory infections in young animals (young
replacement stock, meat calves, and fattening pigs), and fecal-oral
transmitted infections causing gastro-intestinal diseases (diarrhea
and so on.), but also several endemic and potentially zoonotic infec-
tions, such as Salmonella spp. and Campylobacter jejuni in poultry,
Hepatitis E virus and MRSA in pigs, and Bovine Tb, Leptospira,
Brucella, and Johne’s disease in cows.

Theory and Results
The genetic factors that determine R0 and the
endemic prevalence
We consider an endemic infectious disease, where individuals
can either be susceptible (i.e., in the noninfected state), denoted
by S, or in the infected state, denoted by I. We use corresponding
symbols in italics to denote the number of individuals with that
status. Thus, with a total of N individuals in the population in
which the endemic takes place, S denotes the number of suscep-
tible individuals, I the number of infected individuals, and Sþ I ¼
N (see Table 1 for a notation key). We will assume that infected
individuals are also infectious, and can thus infect others. When
individuals recover they become susceptible again. This model is
known as the SIS compartmental model (Hethcote 1989), and
was first discussed by Weiss and Dishon (1971; In the Discussion,
we will consider the validity of our results for other compartmen-
tal models).

The prevalence (P) of an endemic infection is defined as the
fraction of the population infected (Diekmann et al. 2012),

P ¼ I
N
: (1)

When individual infection status is coded in a binary fashion,
using y¼ 0 for noninfected individuals and y¼ 1 for infected indi-
viduals, the prevalence is also equal to the average individual in-
fection status in the population,

P ¼ y: (2)

The prevalence of an infectious disease is determined by R0.
The R0 is defined as the average number of individuals that get

infected by a typical (i.e., average) infected individual in an other-
wise noninfected population, and is a property of the population
(Kermack and McKendrick 1927; Anderson and May 1979;
Diekmann et al. 1990). When R0 > 1, an average infected individ-
ual on average infects more than one new individual in an infec-
tion free population, and the infection can persist in the
population.

The prevalence of an endemic infection reaches an equilib-
rium value, known as the endemic prevalence, when a single typ-
ical infected individual on average infects one other individual
(R¼ 1; the endemic steady state). In a population where all indi-
viduals are the same, i.e., in the absence of genetic heterogeneity
among host individuals, this occurs when the product of R0 and
the fraction of contact individuals that is susceptible is equal to
one; R0 1� Pð Þ ¼ 1: For example, when R0 ¼ 3, an infected indi-
vidual could in principle infect three other individuals. However,
when only one-third of its contact individuals is susceptible (i.e.,
not infected), meaning 1 � P¼ 1/3, then the (average) total num-
ber of individuals that becomes infected by a single infected indi-
vidual (the effective reproduction number, R) equals
3 � 1=3 ¼ 1. Hence, when 1 � P¼ 1/3, an infected individual is
on average replaced by a single newly infected individual, so that
an equilibrium occurs at P ¼ 1 � 1=3 ¼ 2=3: In the absence of
heterogeneity, therefore, the endemic prevalence is given by
(Weiss and Dishon 1971),

P ¼ 1� 1=R0: (3)

Throughout, we will use the symbol P to denote the endemic
prevalence. The actual prevalence tends to fluctuate around the
equilibrium value because of random perturbations and tran-
sient effects, for example when new animals replace some of the
resident animals. Equation (3) is an approximation when there is
variation among individuals, which is commonly referred to as
“heterogeneity” in the epidemiological literature, and which will
be addressed in the section on the impact of genetic variation on
the endemic prevalence below.

Figure 1 illustrates the relationship between the endemic prev-
alence and R0. When R0 is smaller than one the endemic preva-
lence is zero (the infection is not present in the long run), and
Equation (3) does not apply. For large R0 the endemic prevalence
asymptotes to 1. This threshold phenomenon, i.e., P¼ 0 when
R0 < 1 and P> 0 when R0 � 1, is exact also with heterogeneity
(Diekmann et al. 1990). Note that the curve is steeper the closer R0

is to 1. This pattern will have considerable consequences for the
relationship between the heritable variation in the endemic prev-
alence and the level of the endemic prevalence, as will be shown
in the section on individual genetic effects for the endemic preva-
lence below.

Because the endemic prevalence is determined by R0

(Equation 3), the response of prevalence to selection (on any crite-
rion), i.e., the genetic change in the endemic prevalence from one
(host) generation to the next, follows from the genetic change in
R0. Thus, to measure the value of an individual with respect to re-
sponse to selection, we should base this measure on the genetic
impact of the individual on R0. In other words, the definition of
an individual breeding value for endemic prevalence should be
based on R0. The next step, therefore, is to find the individual ge-
netic factors underlying R0.

In the absence of variation among individuals (heterogeneity),
R0 is the product of the transmission rate parameter (b) and the
mean duration of the infectious period (1/a; Kermack and
McKendrick 1927; Diekmann et al. 1990),
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R0 ¼ b=a (4)

where a is the recovery rate parameter. The b is the average num-
ber of individuals infected per unit of time by a single infected in-
dividual when all its contact individuals are susceptible, and a is
the probability per unit of time for an infected individual to re-
cover. With heterogeneity, Equation (4) is an approximation

(Diekmann et al. 1990); the effect of heterogeneity on R0 will be
addressed below.

With heterogeneity, the transmission rate parameter may
vary between pairings (contacts) of individuals. The transmission
rate parameter between infectious individual j and susceptible
individual i may be modelled as the product of an overall effec-
tive contact rate (c) for the population, and two individual quanti-
tative genetic traits: the susceptibility (c) of recipient individual i
and the infectivity (u) of donor individual j (e.g., DeJong et al. 1996;
Lipschutz-Powell et al. 2014; Anacleto et al. 2015; Biemans et al.
2017),

bij ¼ cciuj (5)

where bij refers to transmission from individual j to i, and may
differ from bji. The overall effective contact rate c is the transmis-
sion rate parameter bij for the average pair of individuals ij, for
which ci ¼ uj ¼ 1. The susceptibility ci is the propensity of the
noninfected individual i to become infected, expressed relative to
a value of 1. Analogously, the infectivity uj the propensity of an
infected individual j to infect another individual, expressed rela-
tive to value of 1. Note that i and j are distinct individuals in
Equation (5), so that ci and uj are independent when individuals i
and j are genetically unrelated.

Equations (3) through (5) show that the factors underlying the
endemic prevalence of an infection are the contact rate c, the sus-
ceptibility, c, the infectivity, u, and the recovery rate a. We define
c as a fixed parameter for the population (or, for example, for a
sex, herd or age class combination), whereas c, u, and a are

Table 1 Notation key

Symbol Meaning

N Total number of individuals in the population in which the endemic takes place;
N¼ Iþ S

I Number of infected individuals in the population
S Number of susceptible (i.e., noninfected) individuals in the population
P Prevalence in the endemic equilibrium; P¼ I/N; P ¼ y
R0 Basic reproduction number
RP Response of prevalence to selection, i.e., change in prevalence per generation
R0;i R0-like quantity that determines the prevalence for type i (see Equation 20)
A Breeding value
Alc, Alu, Ala Breeding value for the logarithm of susceptibility, infectivity and recovery rate
AlR0

, AR0 Breeding value for the logarithm of R0; breeding value for R0

Ay, AP Breeding value for individual binary disease status; breeding value for prevalence
GR0 Genotypic value for R0

Gy, GP Genotypic value for individual disease status; genotypic value for prevalence.
T2

P Ratio of variance in breeding value for prevalence over phenotypic variance in y
c Effective contact rate. Without heterogeneity R0 ¼ c.
h2

y Heritability of individual binary disease status
y Individual binary infection status; infected: y¼ 1; noninfected: y¼ 0.
i, j Subscript denoting an individual.
a Recovery rate (relative to a value of 1)
bij Transmission rate parameter from individual j to individual i.
c Susceptibility (relative to a value of 1)
u Infectivity (per unit of time, relative to a value of 1)
u inf Mean infectivity of the infected individuals in the endemic equilibrium
/ Life time infectivity (relative to a value of 1)
/typ / for the typical infected individual in an otherwise noninfected population
i Intensity of selection; selection differential expressed in SD units
qAy ;y Accuracy of mass selection, correlation of Ay and y in the selection candidates
r2

Alc
Variance of Alc among individuals; analogous for r2

Alu
and r2

Ala

rAlcAlu Covariance of Alc and Alu; analogous for rAlcAla and rAluAla

r2
AlR0

Variance of the breeding values for the logarithm of R0

r2
AP

Additive genetic variance for endemic prevalence
r2

Ay
Additive genetic variance in individual binary infection status

r2
APD

, r2
API

Direct and indirect additive genetic variance for endemic prevalence, respectively
rAPD API

Direct-indirect additive genetic covariance for endemic prevalence

0 1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R0

P

Figure 1 The relationship between the endemic prevalence (P) and the
basic reproduction number (R0) for a homogeneous population (from
Equation 3).
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quantitative traits that may show random variation among indi-
viduals. Note, while the actual contact rate may vary among indi-
viduals, it is convenient to include such variation in the
individual susceptibility and infectivity traits. Thus, we also as-
sume that all the individuals are mixing randomly within the (lo-
cal) population, such as a herd. In principle, bij might also depend
on the specific combination of i and j, so that we cannot fully sep-
arate bij into a product of components due to i and j. However, in
a quantitative genetic perspective, such a combination effect rep-
resents interactions between genes in distinct individuals (say
“between-individual epistasis”), which does not contribute to the
heritable variation, and which we will therefore ignore. In epide-
miological terminology, we assume separable mixing (Diekmann
et al. 1990). Hence, conceptually we define c as the average effec-
tive contact rate for the population, while variation in contact
rate among individuals is included in c and u. Moreover, to define
the scale of Equations (4) and (5), it is convenient to include the
scale in c, and to express c, u, and a relative to a value of 1. Hence,
with this parameterization, the c is on the scale of R0, and R0 and
c are identical in the absence of heterogeneity. With heterogene-
ity, however, R0 may deviate from c (see below).

Genetic models for susceptibility, infectivity, recovery,
and R0

Genetic variation is potentially present in susceptibility, infectiv-
ity, and the recovery rate. In this section, we propose a genetic
model for these traits, which subsequently leads to a genetic
model for R0.

We assume that susceptibility, infectivity, and the recovery
rate are affected by a large number of loci, each of small effect,
so that genetic effects approximately follow a normal distribu-
tion. However, as c, u, and a represent rates, i.e., probabilities per
unit of time, their values are strictly positive. Moreover, in the
expressions for the epidemiological parameters of the previous
section (Equations 4 and 5), all these parameters appear in prod-
ucts. For these reasons, following Anacleto et al. (2015), we define
normally distributed additive genetic effects for the logarithm of
these rates, so that effects are multiplicative on the actual scale,
and the rates themselves follow a log-normal distribution,

ci ¼ eAlc;i (6a)

ui ¼ eAlu;i (6b)

ai ¼ eAla;i (6c)

where Al:;i denotes the Normally distributed additive genetic
value (breeding value) for the logarithm of the corresponding rate
for individual i, and has a mean of zero,

Alc
Alu
Ala

2
4

3
5 � N

0
0
0

0
@

1
A;

r2
Alc

rAlcAlu rAlcAla

rAlcAlu r2
Alu

rAluAla

rAlcAla rAluAla r2
Ala

0
BB@

1
CCA

2
664

3
775: (7)

Throughout, we use subscript l to denote the natural loga-
rithm. Thus, the breeding values for logðcÞ, logðuÞ, and logðaÞ
follow a multivariate normal distribution, as common in quanti-
tative genetics. Moreover, for the average individual the Al: ¼ 0,
so that its rates are equal to one (c ¼ u ¼ a ¼ 1). Hence, those
rates should be interpreted relative to a value of 1. An individual
with c ¼ 2, for example, is twice as susceptible as the average in-
dividual. Also note that, by defining breeding values to have a
mean of zero, we put the mean into the contact rate c. Hence, in
the following, c will refer to the model where the mean breeding

value on the log scale is equal to zero (Equation 7, see also
Discussion).

The breeding values on the log-scale can approximately be
interpreted as a relative change of the corresponding rate. For ex-
ample, since e0:1 � 1:1, an Alc of 0.1 corresponds approximately to
a 10% greater than average susceptibility (c � 1:1). Similarly, an
Alc of �0.1 corresponds approximately to a 10% smaller than av-
erage susceptibility (c � 0:9). Realistic values for the genetic var-
iances on the log-scale are probably smaller than �0.52 (Hulst
et al. 2021). For example, with r2

Alc
¼ 0:52, the 10% least suscepti-

ble individuals have c ¼ e�0:88 ¼ 0:42, while the 10% most suscep-
tible individuals have y ¼ e0:88 ¼ 2.40. Thus, the average
susceptibilities of these top and bottom 10% of individuals differ
by a factor of 5.7, which is substantial. Therefore, we will con-
sider additive genetic variances on the log-scale no greater than
0.52. With a prevalence of 0.3, this value corresponds to an
observed-scale heritability of individual binary infection status of
about 0.05 (Hulst et al. 2021).

Genotypic value and breeding value for R0

Based on Equations (4) and (5), we may define an individual geno-
typic value for R0,

GR0 ;i ¼ cciui=ai: (8)

In contrast to the pair-wise transmission rate parameter bij in
Equation (5), an individual’s genotypic value for R0 is entirely a
function of its own rates, as can be seen from the index i on all
elements of Equation (8). This is because GR0 ;i refers to the genetic
effects that originate from the individual, rather than to those
that affect its trait value. As a consequence these rates may be
correlated, as defined in Equation (7) above. Hence, GR0 ;i repre-
sents a total genotypic value (Bijma et al. 2007; Bijma 2011). We
focus on the total genotypic value, because our ultimate interest
is in response to selection. In the next section of this manuscript,
we will show that R0 is indeed the simple population average of
GR0 .

From Equations (6a, b & c) and (8),

GR0 ;i ¼ c eAlc;i eAlu;i=eAla;i

¼ elnðcÞþAlc;iþAlu;i�Ala;i

¼ elnðcÞþAlR0 ;i ;

(9)

where AlR0 ;i is a normally distributed additive genetic effect
(breeding value) for the logarithm of R0,

AlR0 ;i ¼ Alc;i þ Alu;i � Ala;i; (10a)

AlR0
� N 0; r2

AlR0

� �
; (10b)

r2
AlR0
¼ r2

Alc
þ 2rAlcAlu � 2rAlcAla þ r2

Alu
� 2rAluAla þ r2

Ala
: (10c)

Hence, our model of the genotypic value for R0 is additive with
normally distributed effects on the log-scale. Thus, the genotypic
value for R0, as defined in Equations (8) and (9), follows a log-
normal distribution,

GR0 � logN l ¼ ln cð Þ; r2 ¼ r2
AlR0

� �
: (11)

The genotypic value for R0 for the average individual, which
has AlR0

¼ 0, is equal to the contact rate, c. Hence, the genotypic
value is defined here including its average, it is not expressed as a
deviation from the mean. Moreover, we refer to GR0 as a genotypic
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value, rather than a breeding value, because the eAlR0 in Equation
(9) is a nonlinear function, so that GR0 will show some nonaddi-
tive genetic variance, even though AlR0

is additive.
The log-normal distribution of GR0 agrees with the infinitesi-

mal model and the strictly positive values for R0 (Anacleto et al.
2015), and is also convenient because the mean and variance of
GR0 follow from the known properties of the log-normal distribu-
tion,

E GR0ð Þ ¼ c e
1
2r

2
AlR0 (12)

var GR0ð Þ ¼ c2ðe
2r2

AlR0 � e
r2

AlR0 Þ: (13)

Equations (12) and (10c) show that genetic (co)variation in sus-
ceptibility, infectivity and/or recovery, and thus in the breeding
value for the logarithm of R0, leads to an increase in the mean ge-
notypic value for R0. For example, for r2

AlR0
¼ 0:52, E GR0ð Þ � 1.13c.

While this 13% increase in GR0 may suggest limited impact of het-
erogeneity, a 13% increase in R0 has a considerable impact on the
endemic prevalence when R0 is close to one (Figure 1).

Equations (12) and (13) show that a log-normal distribution for
susceptibility, infectivity and recovery results in a positive mean-
variance relationship for GR0 . Figure 2 illustrates this relationship,
for r2

AlR0
¼ 0:32 and genetic variation in susceptibility only. The x-

axis shows the contact rate, which is equal to the genotypic value
for R0 of the average individual in the population (i.e., an individ-
ual with ci ¼ ui ¼ ai ¼ 1). Hence, the x-axis reflects the level of R0.
The small circle represents a population with a prevalence of
�0.33, for which observed-scale heritability of binary infection
status is �0.02 (Hulst et al. 2021). For that population, R0 is �1.5,
and the genetic standard deviation in R0 is �0.48. Hence, despite
the small observed-scale heritability, R0 has considerable genetic
variation and some individuals will have a genotypic value
smaller than 1, which agrees with the findings of Hulst et al.
(2021). In the context of artificial selection against infectious dis-
eases, the positive mean-variance relationship resulting from our
model may be interpreted as conservative, because it implies a
reduction of the genetic variance in R0 with continued selection
for lower prevalence.

In summary, this section has presented a genetic model for
susceptibility, infectivity and recovery, leading to expressions for
the genotypic value and genetic variance in R0 (Equations 8, 9,
and 11). Note however, that we have not yet provided formal
proof that the individual genotypic value for R0 indeed predicts
the actual R0 (of the population so to say). In fact, the definition
of GR0 in Equation (8) is an educated guess based on the expres-
sion for R0 in a homogeneous population (Equation 4). In epide-
miology, however, R0 is an emerging property of a population-
level process of the transmission of an infection, rather than an
average of individual (genotypic) values. Thus, it remains to be
proven that the GR0 defined in Equation (8) indeed predicts the R0

of a genetically heterogeneous population. In the next two sec-
tions, therefore, we will focus on the population-level consequen-
ces of genetic heterogeneity, and investigate the impact of
genetic variation on the level of R0 and on the endemic preva-
lence.

The impact of genetic heterogeneity on R0

R0 is a key parameter for infectious diseases, because infections
can persist in a population if and only if R0 is greater than one
(Kermack and McKendrik 1927; Diekmann et al. 1990). In other
words, an endemic equilibrium can exist only when R0 is greater
than 1. Conversely, eradication of an infectious disease, either by
vaccination or other measures such as genetic selection of the
host population, requires that R0 is reduced to a value smaller
than one. Here, we address the consequences of genetic (co)varia-
tion in susceptibility, infectivity and recovery for the value of R0,
and provide a proof that R0 is indeed the simple population aver-
age of the individual genotypic values for R0, as defined in
Equations (8), (9), and (11). Because our interest is in the impact
of genetic heterogeneity on R0 and in the genotypic value for R0,
we consider genetic (co)variation only, disregarding environmen-
tal sources of (co)variation. Note that R0 is strictly defined for the
infection free state of the population (i.e., where the infected frac-
tion is infinitesimally small). Hence, in this section we consider
the infection free state, while the endemic equilibrium will be
addressed in the next section.

Genetic (co)variation in susceptibility, infectivity and recovery
has two consequences for R0. First, it increases the mean geno-
typic value for R0 because the expectation of a log-normal variate
increases with the variance on the log-scale. This effect is trivial;
it follows directly from Equations (12) and (10c) and is not the
main focus of this section. Second, as stated above, R0 is the aver-
age number of individuals that gets infected by a typical infected
individual in an otherwise noninfected (large) population
(Kermack and McKendrick 1927; Diekmann et al. 1990). The ex-
pression for R0 given in Equation (4) ignores the “typical” term in
the definition of R0, and is therefore an approximation in case of
heterogeneity (Diekmann et al. 1990). The focus of this section is
on the consequences of heterogeneity for the properties of the
typical infected individual, and thus for R0.

The properties of the “typical infected individual” will depend
on the magnitude and nature of the heterogeneity among the
individuals in the population, because the susceptibility and re-
covery determine which animals are infected, while the infectiv-
ity of those individuals may differ from the population average.
In contrast to the conclusion of Springbett et al. (2003), therefore,
genetic heterogeneity can affect R0 (Diekmann et al. 1990, 2012).
Suppose, for example, that individuals differ in both susceptibil-
ity and infectivity, and that susceptibility is positively correlated
to infectivity. Because individuals with greater susceptibility are
more likely to become infected, the typical infected individual
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Figure 2 Genetic standard deviation in R0 as a function of the level of R0

(as approximated by the contact rate c here). From Equation (13), for
three values of r2

AlR0
¼ r2

Alc
¼ 0:12, 0.32, and 0.52, and no variation in u and

a: The circle represents a population with a prevalence of �0.33, for
which observed-scale heritability of binary infection status is �0.02
(Hulst et al. 2021).
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will have an above-average susceptibility. Moreover, because of
the positive correlation with infectivity, this will also translate
into an above average infectivity of the typical infected individ-
ual, leading to higher R0. Hence, variation among individuals to-
gether with a positive (negative) correlation between
susceptibility and infectivity results in an increase (decrease) in
R0 (Diekmann et al. 1990). A similar argument holds for genetic
covariation between recovery and infectivity. For this reason, R0

in general deviates from the right-hand side of Equation (4)
obtained using the averages of a, c, and u.

In Appendix A, we derive the relationship between R0 and the
genetic parameters for susceptibility, infectivity and recovery.
The first step is the derivation of the lifetime infectivity of the
typical infected individual. Lifetime infectivity is the total infec-
tivity of an individual, aggregated over its average infectious pe-
riod, and is the product of its infectivity per unit of time (u,
Equations 5 and 6) and the mean duration of its infectious period,
1=ai,

/i ¼ ui=ai: (14)

Hence, c/i is the average total number of individuals that be-
come infected by individual i over its entire infectious life time.
By introducing life time infectivity, we summarize the infectivity
(per unit of time, u) and the recovery of an individual into a single
variable (/), which simplifies the analysis. Appendix A shows
that the lifetime infectivity of the typical infected individual
equals

/typ ¼ /erAlcAl/ (15)

where / is the simple average of lifetime infectivity in the entire
population, and rAlcAl/ the covariance between the breeding val-
ues for the logarithms of susceptibility and lifetime infectivity.
Thus, Equation (15) is the average lifetime infectivity of infected
individuals in the population at the (almost) infection free state,
and can be interpreted as an average weighted for differences in
susceptibility. It shows that the typical infected individual has an
above (below) average life-time infectivity when the covariance
between susceptibility and life-time infectivity is positive (nega-
tive), as argued verbally in the previous paragraph.

From the definition of R0 and Equations (4), (5), and (15), it fol-
lows that

R0 ¼ c c / erAlcAl/ (16)

where c is the simple population average value of susceptibility.
The last term of this expression shows that a positive covariance
between susceptibility and life-time infectivity indeed increases
R0. Note that this R0 is the reproduction number in the large in-
fection free population, as it is normally defined in epidemiology.
Hence the distribution of susceptibility in the susceptible individ-
uals remains equal to the population distribution, in contrast to
the distribution of infectivity in the infected individuals (see
Appendix A).

Equation (16) can be simplified by substituting the expression
for c and /, which follow from the log-normal distribution,

c ¼ e
1
2r

2
Alc (17a)

/ ¼ e
1
2r

2
Al/ : (17b)

Substituting Equations (17a) and (17b) into Equation (16), and
expressing the genetic variance of life-time infectivity in terms of
infectivity per unit of time and recovery, reveals that R0 is equal
to the simple population average of the individual genotypic
value for R0 (see Appendix A and Equation 12),

R0 ¼ c e
1
2r

2
AlR0 ¼ E GR0ð Þ: (18)

Thus, R0 depends on the variance in the breeding value for the
logarithm of R0, but is still equal to the mean genotypic value for
R0. In other words, a positive covariance between susceptibility
and life-time infectivity indeed increases R0, but this effect is fully
captured by the effect of the variance in the breeding values for
the logarithm of R0 on the mean genotypic value for R0 (the e

1
2r

2
AlR0

term in Equation 18). This result, therefore, provides formal proof
that the genotypic value for R0, as defined in Equations (8)–(11),
indeed represents the individual genetic value for R0.

Note that, while R0 is equal to the simple average genotypic
value for R0, it still differs from the product of the simple aver-
ages of the rates when susceptibility, infectivity and/or recovery
are correlated; R0 6¼ c c u=a: Moreover, R0 may also differ from
the simple b=a with heterogeneity. A numerical investigation of
the erAlcAl/ term in Equation (16) shows that a correlation between
susceptibility and life time infectivity may change R0 by a maxi-
mum of about 25% for realistic levels of heterogeneity and log-
normally distributed genetic effects. For example, for r2

Alc
¼ r2

Al/
¼

0:52, and a correlation rAcA/ ¼ 0:8, R0 is 22% greater than c c u=a.
For values of R0 close to 1, this 22% may be the difference be-
tween absence of an infection vs. a significant endemic preva-
lence. Thus, a correlation between susceptibility, infectivity and/
or recovery may have a meaningful impact on R0.

In summary, this section has shown that heterogeneity and a
positive correlation between susceptibly and life-time infectivity
lead to an increase of R0, and thus increase the probability that
an infectious disease persists in the population. However, when
genotypic values for R0 follow a log-normal distribution, R0 is still
equal to the simple average of those genotypic values.

The impact of genetic variation on the endemic
prevalence
In this section, we present an expression for the endemic preva-
lence in a population with genetic variation in susceptibility, in-
fectivity and recovery, and also briefly investigate the
quantitative effect of such variation for the endemic prevalence.
Figure 1 and Equation (3) show the relationship between R0 and
the endemic prevalence for a homogeneous population. With
variation among individuals, however, more susceptible individu-
als are more likely to be in the infected state in the endemic equi-
librium. For this reason, the mean susceptibility of the remaining
noninfected individuals will be lower than the population aver-
age susceptibility. This in turn translates into an endemic preva-
lence lower than expected based on R0 [Equation 3; Springbett
et al. 2003; Diekmann et al. 2012; Note, however, that the thresh-
old value of R0 ¼ 1 remains, so that endemic prevalence is zero if
and only if R0 � 1, and in that sense the R0 given in Equation (18)
is exact]. Similar arguments can be used to show that prevalence
depends on the variation in the recovery rate, and on the covaria-
tion of infectivity, susceptibility and recovery. Thus, Equation (3)
is exact only in the absence of heterogeneity in these parameters.
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The endemic prevalence in a heterogeneous population can be
found by realizing that the prevalence must have reached an
equilibrium value for each type of individual (Biemans et al. 2017;
Aznar et al. 2018). Suppose, for example, that susceptibility, infec-
tivity, and recovery would be governed by the same single bi-
allelic locus in a diploid organism. Then, for the entire population
to be in equilibrium, each of the three genotypic classes should
be in equilibrium as well. In other words, the prevalence should
have reached an equilibrium value within each genotypic class,
but this value may differ among the three classes. Here, we adapt
this approach to continuous variation in polygenic traits.

In the endemic equilibrium, the number of susceptible individ-
uals of each type, say i, should not change over time (apart from
random fluctuation). Thus, for each type i, the number of newly
infected susceptibles should be equal to the number of recover-
ing infecteds,

cciu inf Si tð Þ I
N
¼ aiIi tð Þ (19)

where SiðtÞ is the number of susceptible individuals of type i at
time t, c the contact rate, ci the susceptibility of type i, u inf the
mean infectivity of the infected individuals in the endemic equi-
librium, I the total number of infected individuals in the endemic
equilibrium, N total population size, ai the recovery rate for type
i, and IiðtÞ the number of infected individuals of type i at time t.
The left-hand side in Equation (19) represents the decrease in the
number of susceptibles due to transmission (infection), while the
right-hand side represents the increase of the number of suscep-
tibles due to recovery of infected individuals. Our interest is in
the solution of Equation (19) for Ii (or equivalently, for Si ¼ Ni—Ii).
Above, we used i to index individuals. Here, we use i also to index
types, since each individual will be genetically unique for poly-
genic traits, so that a type corresponds to an individual.
Moreover, we treat Si and Ii as noninteger because our interest is
in their expectation. Note that the mean infectivity of the
infected individuals in the endemic equilibrium (u infÞ will differ
from the simple population average of infectivity (uÞ when infec-
tivity is correlated to susceptibility and/or recovery.

Equation (19) can be solved for the endemic prevalence in type
i, Pi ¼ Ii=Ni, Ni denoting the total number of individuals of type i
in the population, and substituting Ni ¼ Si þ Ii,

Pi ¼
R0;iP
R0;iPþ 1

(20a)

where P ¼ I=N denotes the overall endemic prevalence in the
population (Equation 1), and

R0;i ¼
cciu inf

ai
: (20b)

Equations (20a) and (20b) make no assumptions on the distri-
bution of c, u, and a, and are thus not restricted to log-normal dis-
tributions. Although Equation (20b) is similar to Equation (8),
note that R0;i differs from the genotypic value for R0 (GR0 ;i; We use
a symbol slightly different from R to highlight this difference).
The R0;i is a function of the mean infectivity of the infected indi-
viduals in the endemic equilibrium (u inf ), while GR0 ;i is a function
of the infectivity of the individual itself (ui). Our interest here is in
the prevalence for an individual with susceptibility ci and recov-
ery rate ai in the endemic equilibrium, where i is exposed to the
mean infectivity of the infected individuals. For this reason, R0;i

is a function of uinf rather than ui. The GR0 ;i, in contrast, defines
the contribution of an individual’s genes to R0 (Equation 18),
which is relevant for response to selection. Note that u inf

depends on the multivariate distribution of c, u, and a.
To find the endemic prevalence, we need to solve Equations

(20a) and (20b) for P. While we found an approximate analytical
solution for the case without (correlated) genetic variation in in-
fectivity, the resulting expression is very complex (not shown).
We therefore used a numerical solution, which is easily obtained
(see Appendix B for methods, and Supplementary Material 1 for
an R-code). We validated the numerically obtained solution using
full stochastic simulation of actual endemics, following standard
methods in epidemiology. Results of these simulations confirmed
the numerically obtained solutions (Appendix C).

The solutions of Equations (20a) and (20b) show that variation
in susceptibility and/or recovery reduces the endemic prevalence,
compared to the simple prediction based on R0 (Equation 3).
Hence, with variation in susceptibility and/or recovery, preva-
lence is always lower than predicted by Equation (3) (Figure 3; as
expected with heterogeneity; Greenhalgh et al. 2000). Note that
genetic variation in infectivity has no effect on the prevalence
(beyond its trivial effect on the mean of GR0 , Equation 18), as long
as infectivity is not correlated to susceptibility and/or recovery.

Moreover, it follows from Equations (20a & b) that the effects
of genetic variation on the endemic prevalence are identical for
susceptibility and recovery, since the R0;i of an individual
depends on the difference between its breeding values for log-
susceptibility and log-recovery, Alc;i � Ala;i,

R0;i ¼ cu inf eAlci
�Alai : (21)

Hence, with a log-normal distribution of susceptibility and re-
covery, and in the absence of correlated variation in infectivity,
the equilibrium prevalence depends only on (R0 and) the variance
of this difference,
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Figure 3 The impact of heterogeneity on the endemic prevalence. The
solid line shows the prevalence predicted from Equation (3). The three
other lines show the true prevalence (from numerically solving
Equations 20a and 20b), for three levels of the additive genetic standard
deviation in log susceptibility (rAlc

), and no genetic variation in infectivity
or recovery. The line for rAlc

¼ 0:1 is almost identical to the solid line.
Note that identical results would have been obtained with the same
amount of heterogeneity in the recovery rate, or more generally in
Alc;i � Ala;i, instead of in susceptibility.
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var Alc � Ala
� �

¼ r2
Alc
� 2rAlcAla þ r2

Ala
: (22)

Figure 3 illustrates the impact of heterogeneity on the en-
demic prevalence for a limited number of scenarios with genetic
variation in susceptibility only. For rAlc ¼ 0:1, the effect of hetero-
geneity is imperceptible. For rAlc ¼ 0:3, the true prevalence is up
to 2 percent point lower than the value from Equation (3). For
rAlc ¼ 0:5, true prevalence is up to 6 percent point lower. This
maximum difference occurs at a contact rate of two. Moreover,
when c¼ 2 and there is no variation in infectivity, prevalence is
always equal to 1 � 1=c ¼ 0:5, irrespective of the genetic varia-
tion in susceptibility and recovery. (This is not visible in Figure 3,
because the x-axis shows R0 rather than c). This occurs because
the two opposing effects mentioned at the beginning of this para-
graph exactly cancel each other. More detailed results can be
found in Supplementary Material 2.

Genotypic value for individual binary infection
status
In the previous two sections, we have considered the population-
level effects of genetic heterogeneity. In the next two sections, we
move to the individual level. This section focusses on the effects
of an individual’s genes on its own infection status, while the
next section focusses on the effect of an individual’s genes on the
prevalence in the population.

By definition, the genotypic value for binary disease status is
the expected infection status of an individual given its genotype,

Gy;i ¼ EðyijAlc;i;Ala;iÞ: (23)

Thus, the Gy represents the direct genetic effect (DGE) on the
own phenotypic value (including the mean, y, here; Note the dis-
tinction between subscript y, indicating individual binary infec-
tion status, and c, indicating susceptibility). The genotypic value
of an individual is not a function of its breeding value for log-
infectivity, since an individual’s infectivity does not affect its own
infection status. Hence, Equation (23) does not condition on Alu;i.

In the previous section, we used Equations (20a) and (20b) to
investigate the effect of heterogeneity on the endemic prevalence
in the population. Equation (20a) shows the expected prevalence
of an individual of type i. However, since prevalence is simply the
mean of binary infection status, Equation (20a) may also be inter-
preted as the expected phenotypic value for infection status
(y¼ 0,1) of an individual, given its genotype (specifically, the ci

and ai components of R0;i). Hence, Equation (20a) also represents
the genotypic value for binary infection status,

Gy;i ¼
R0;iP
R0;iPþ 1

(24)

where R0;i follows from Equation (20b). The same result was
found by Bijma (2020), but based on a different approach. Thus,
the Gy refers to the expected binary infection status of individual
i, conditional on its genotype, in a population with prevalence P.
Equations (21) and (24) imply that susceptibility and recovery are
equally important for the infection status of an individual. For
example, an individual with Alc ¼ �0:1 has the same expected in-
fection status as an individual with Ala ¼ þ0:1.

Calculation of Gy from Equation (24) requires knowledge of the
endemic prevalence P. In the previous section, we used a numeri-
cal approach to find P, because our interest was in the effects of
heterogeneity on P. In applied breeding, however, breeders may
often have a reasonable idea of realistic values for the endemic

prevalence, and a numerical solution may not be needed to find
Gy, or have little added value. (The dependence of the breeding
value for binary infection status on the endemic prevalence will
be given in Equation 34 below).

Validation
We used stochastic simulation of endemics, following standard
methods in epidemiology (Appendix C), to validate Equation (24).
Figure 4, A–C shows the mean observed infection status of indi-
viduals as a function of their genotypic value Gy. For all three
panels in Figure 4, regression coefficients were very close to 1,
showing that Gy is an unbiased linear predictor of individual in-
fection status.

We numerically investigated the relative amount of nonaddi-
tive genetic variance in Gy by comparing the full variance in Gy

(with Gy calculated from Equation 24) with the variance
explained by linear regression of Gy on Alc, using simulated data
with variation in susceptibility only. (Note that simulation of var-
iance in recovery would give identical results, as can be inferred
from Equation 21). Results (not shown) revealed only little nonad-
ditive genetic variance. For example, for P¼ 0.2 and r2

Alc
¼ 0:52,

more than 96% of the genotypic variance in y was additive. Thus,
the breeding value for own infection status is very similar to the
genotypic value,

Ay � Gy � P; (25)

where the “�P” term simply reflects subtraction of the average,
Gy ¼ P, so that the mean breeding value is zero by definition. We
defer further investigation of the breeding value and the additive
genetic variance for individual infection status to the next sec-
tion, to facilitate comparison with the corresponding measures
for endemic prevalence.

Individual genetic effects for the endemic
prevalence
The previous section focused on the genetic effects of individuals
on their own infection status. In this section, we will consider
the genetic effects of individuals on the endemic prevalence in
the population. In other words, the previous section focused on
the contribution of genetic effects to the variation in infection
status among individuals, while this section considers the genetic
effects that are relevant for response to selection. We will present
expressions for the genotypic value, breeding value and additive
genetic variance for the endemic prevalence. The genotypic value
will reflect the full genetic effect of an individual on the endemic
prevalence in the population, while the breeding value reflects
the additive component thereof. The last part of this section con-
tains a comparison of the breeding value for endemic prevalence
and that for individual infection status.

The relationship between R0 and the endemic prevalence
(Equation 3) suggests we can translate the individual genotypic
value for R0 (Equations 8 and 9) to the scale of prevalence, by de-
fining an individual genotypic value for prevalence as

GP;i ¼ 1� 1
GR0 ;i

(26a)

Because this definition is based on Equation (3), it ignores the
of effect heterogeneity on the relationship between P and R0

(Figure 3). We will investigate the relevance of this approximation
numerically in the section on response to selection. Substituting
Equation (9) into Equation (26a) yields an expression for the
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genotypic value of an individual for the endemic prevalence, in
terms of its breeding value for the logarithm of R0,

GP;i ¼ 1� e�ln cð Þ�AlR0 ;i (26b)

Because the term in the exponent is normally distributed,
1� GP follows a log-normal distribution,

ð1� GPÞ � logN l ¼ �ln cð Þ; r2 ¼ r2
AlR0

h i
(27)

The mean and variance of the genotypic values for prevalence,
therefore, follow from the properties of the log-normal distribution,

E GPð Þ ¼ 1� c�1 e
1
2r

2
AlR0 (28)

var GPð Þ ¼ c�2 e
2r2

AlR0 � e
r2

AlR0

� �
(29)

To enhance the interpretation of Equation (29), we can express
it as a function of R0 or of the endemic prevalence. Substituting
Equation (18) into Equation (29) yields an expression for the ge-
netic variance in prevalence as a function of R0,

var GPð Þ ¼ 1
R2

0

e
3r2

AlR0 � e
2r2

AlR0

� �
(30a)

Given the definition of GP in Equation (26a), Equation (30a) is
exact. Next, substituting Equation (3) into Equation (30a) yields
an expression for var GPð Þ as a function of the endemic preva-
lence,

var GPð Þ � 1� Pð Þ2 e
3r2

AlR0 � e
2r2

AlR0

� �
(30b)

Equation (30b) is approximate, because the relationship be-
tween P and R0 given in Equation (3) is approximate with hetero-
geneity. Equations (30a) and (30b) show how the genotypic
variance for endemic prevalence depends on the level of R0 or
equivalently, on the level of the endemic prevalence. Hence, in
contrast to ordinary additive genetic traits, the genetic variance
for endemic prevalence is a function of the level of the endemic
prevalence (Equation 30b).

Figures 5A and B illustrate that the standard deviation in ge-
netic values for endemic prevalence is considerably larger at
lower R0, or equivalently, at lower prevalence. Hence, even
though the genetic variance in R0 decreases with the level of R0

(Figure 2), the genetic variance for prevalence increases
strongly when R0 decreases. This result originates from the in-
creasing slope of the relationship between prevalence and R0

when R0 decreases (Figure 1). In other words, an equal change
in R0 has much greater impact on the endemic prevalence at
low R0 than at high R0, which is well-known in epidemiology
(e.g., Metz 1978; Bolker and Grenfell 1996). Hence, for a con-
stant variance in the breeding value for the logarithm of R0, the
genetic variance for endemic prevalence is much greater at
lower prevalence. Moreover, genetic selection for lower preva-
lence will lead to an increase in the genetic variance for preva-
lence.

Figure 6 shows some examples of the distribution of the ge-
notypic value for endemic prevalence, for different values of
R0 and the corresponding endemic prevalence. For the scenar-
ios in Figure 6, the observed-scale heritability of individual
infection status does not exceed 0.022 (see Figure 7 below).
The panels illustrate that the genotypic standard deviation for
endemic prevalence is relatively large, particularly when prev-
alence is small. For example, for R0 ¼ 1.67 (P � 0.4; Panel B),
the standard deviation in genotypic values for prevalence is
around 0.19 (see also Figure 5), and values between �0 and
�0.7 are quite probable. Hence, despite the low observed-scale
heritability of individual infection status, the probable values
of GP span as much as 70% of the full 0-1 range of endemic
prevalence.

Breeding value and additive genetic variance for
prevalence
The genotypic value for prevalence is not identical to the additive
genetic value (i.e., breeding value) for prevalence, because the ex-
ponential function in Equation (26b) is nonlinear, so that GP

contains a nonadditive component. Appendix D shows that the
linear regression coefficient of GP on AlR0

is equal to
c�1 exp 1

2 r2
AlR0

� �
. Substituting c�1 ¼ e

1
2r

2
AlR0 =R0 (from Equation 18),

shows that the breeding value for prevalence is given by

Figure 4 Validation of the genotypic value for individual binary infection status. Panels show a scatter plot of the mean observed infection status of
individuals (y-axis) as a function of their genotypic value for infection status (Gy, x-axis, Equation 24). For genetic variation in susceptibility only, with
r2

Alc
¼ 0.32 N¼ 2000 individuals, and a total of 300,000 events (sum of recoveries and infections). (A) P¼ 0.2; b̂y;Gc ¼ 0:997. (B) P¼ 0.5, b̂y;Gc ¼ 1:007. (C)

P¼ 0.8, b̂y;Gc ¼ 1:005:
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Figure 5 Genetic standard deviation for endemic prevalence as a function of R0 (A), and as a function of the level of the endemic prevalence (B). From
Equations (30a) and (30b). For r2

AlR0
¼ 0:32. In (A), x-axis values below R0 ¼ 1 are omitted, because equilibrium prevalence is zero (the infection is not

present) and Equation (30a) does not apply.

Figure 6 Distribution of individual genotypic values for prevalence (GP), for different values of R0, or equivalently, different (approximate) values of the

endemic prevalence. (A) R0 ¼ 1.25, P ¼ 0.2. (B) R0 ¼ 1.67, P ¼ 0.4. (C) R0 ¼ 2.5, P ¼ 0.6. (D) R0 ¼ 5, P ¼ 0.8. The distribution is given by

f GPð Þ ¼ 1
1�GPð ÞrAlR0

ffiffiffiffi
2p
p exp � log 1�GPð Þþlog cð Þð Þ2

2r2
AlR0

 !
, with domain GP ¼ ð�1; 1Þ. For r2

AlR0
¼ 0:32: The dashed vertical line shows the mean of GP. Note that GP can

take negative values while prevalence cannot. This is because GP reflects the genetic effect of an individual on the prevalence of the population, not the
expected value of its own infection status. Thus, negative values for GP are possible, as long as P is positive. Note that P is very close to the average of the
distributions shown.
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AP;i ¼
1
R0

e
r2

AlR0 AlR0 ;i (31a)

Given the definition of GP in Equation (26a), this result is exact.
With limited heterogeneity, this result is approximately equal to

AP;i �
1
R0

AlR0 ;i (31b)

Thus, the breeding value for prevalence is proportional to the
reciprocal of R0. The additive genetic variance for prevalence
equals

r2
AP
¼ 1

R2
0

e
2r2

AlR0 r2
AlR0

(32a)

and, with limited heterogeneity,

r2
AP
� 1

R2
0

r2
AlR0

(32b)

or, expressed as a function of endemic prevalence,

r2
AP
� 1� Pð Þ2 r2

AlR0
(32c)

Equation (32c) shows that the additive genetic variance in en-
demic prevalence increases strongly when prevalence decreases,
similar to the relationship between the genotypic variance and
endemic prevalence (Figure 5). This result suggests that response
of endemic prevalence to selection will be greater at lower levels
of the prevalence, which we will further investigate below in the
section on response to selection.

The relative amount of nonadditive genetic variance in the en-
demic prevalence is determined by the magnitude of r2

AlR0

(Appendix D). For realistic values of r2
AlR0

, the vast majority of the
genotypic variance in prevalence is additive. For example, for
r2

AlR0
¼ 0.52, 88% of the variance in GP is additive. Hence, the

distinction between the breeding value for prevalence (AP) and
the genotypic value for prevalence (GP) seems of minor impor-
tance, and results in Figures 5 and 6 will closely resemble those
for the additive genetic effects.

Breeding value and heritability for infection status vs
prevalence
Appendix E shows that, in the absence of genetic variation in in-
fectivity, the breeding value for endemic prevalence is approxi-
mately a factor 1/P greater than the breeding value for individual
infection status,

AP;i �
1
P

Ay;i (33)

Note, in contrast to genotypic values, breeding values are
expressed as a deviation from their mean here. The Ay is the ordi-
nary observed-scale breeding value for binary infection status
that breeders are familiar with.

Equation (33) implies that the impact of an individual’s genes
on the response of the endemic prevalence to selection is consid-
erably larger than their impact on the infection status of the indi-
vidual itself, particularly when the endemic prevalence is small.
Consider, for example, an individual with Ay;i ¼ �0:02 in a popu-
lation with an endemic prevalence of P¼ 20%. The expected in-
fection status of this individual in the current population equals
0:20 � 0:02 ¼ 0:18. Hence, on average, this individual will be
infected 18% of the time. However, its breeding value for preva-
lence equals AP;i ¼ �0:02=0:2 ¼ � 0:10: Hence, if we select indi-
viduals with Ay;i ¼ �0:02 as parents of the next generation, then
the endemic prevalence will go down to 0.20–0.10¼ 0.10. In other
words, the response to selection will be fivefold greater than sug-
gested by the ordinary breeding value for individual infection sta-
tus (since 1/P¼ 1/0.2¼ 5). We will numerically validate this
theoretical result in the section on response to selection below.

The relationship between the breeding value for prevalence
and the breeding value for own infection status shown in

Figure 7 (A) Observed-scale heritability (h2
y ) of individual binary infection status (y ¼ 0/1) as a function of the endemic prevalence, for different additive

genetic standard deviations in the logarithm of R0 (SDðAlR0
)) (from Equation 36). (B) Ratio of additive genetic variance for prevalence and phenotypic

variance in infection status (T2
P ), as a function of the endemic prevalence. From Equations (37) and (32a). In both panels, there is no genetic variation in

infectivity.
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Equation (33) suggests a relatively simple expressions for Ay.
Such a simple expression would be convenient, because the alter-
native is to calculate Ay from Equation (25), which requires solv-
ing Equations (20a) and (20b) numerically. On combining
Equations (31a) and (33), and assuming limited heterogeneity, so
that e

r2
AlR0 � 1 and 1=R0 � ð1� PÞ, the breeding value for individ-

ual infection status becomes

Ay;i � P 1� Pð ÞAlR0 ;i (34)

We used stochastic simulation to validate this expression and
investigate its precision. Results show that Equation (34) closely
matches the regression of individual binary infection status on
the breeding value for the logarithm of R0 for realistic levels of
heterogeneity (r2

AlR0
� 0:52; Supplementary Material 3; the good

fit results from compensating errors due to the approximations).
Hence, Equation (34) is sufficiently precise for practical purposes.
Note that, since infectivity does not affect the infection status of
an individual itself, a potential component due to infectivity has
to be left out of the AlR0 ;i term when calculating Equation (34). In
other words, in Equation (34) the AlR0 ;i should include only the
breeding values for the logarithm of susceptibility and recovery
(see Equation 10a).

It follows from Equation (34) that the additive genetic variance
in individual binary infection status equals

r2
Ay
� P2 1� Pð Þ2r2

AlR0
: (35)

Next, the observed-scale heritability of binary infection status
follows from dividing Equation (35) by the phenotypic variance of
binary infection status, r2

y ¼ Pð1� PÞ, giving

h2
y � Pð1� PÞ r2

AlR0
: (36)

Hence, the observed-scale heritability for binary infection sta-
tus has a maximum at a prevalence of 0.5, and goes to zero at a
prevalence of zero or one, just like the heritability of binary phe-
notypes for noncommunicable polygenic traits (Robertson 1950;
Figure 7A; assuming the infinitesimal model at the level of the
logarithm of R0, so that r2

AlR0
is constant).

The ratio of additive genetic variance for prevalence over phe-
notypic variance in binary infection status is given by,

T2
P ¼

r2
AP

Pð1� PÞ �
1� P

P
r2

AlR0
(37)

with r2
AP

taken from Equation (32a) or Equation (32c). The T2
P is an

analogy of heritability, but the numerator represents the additive
genetic variance relevant for response to selection in endemic
prevalence, rather than for individual binary infection status.
The T2

P , therefore, reflects the genetic variance that can be used
for response to selection, whereas h2

y reflects the relative contri-
bution of additive genetic effects to the phenotypic variance in bi-
nary infection status (Bijma et al. 2007; Bijma 2011).

Figures 7A and B show a comparison of h2
y and T2

P for a popula-
tion without genetic variation in infectivity, with genetic varian-
ces in the logarithm of R0 ranging from 0.12 through 0.52. In
Figure 7A, the maximum value of h2

y equals 0.0625, for P¼ 0.5 and
r2

AlR0
¼ 0:52. Given that genetic variances greater than r2

AlR0
¼ 0:52

are very large (as argued above), observed-scale heritabilities of
binary infection status greater than �0.06 are unlikely for en-
demic infectious diseases. The heritabilities in Figure 7A agree

with the findings of Hulst et al. (2021), who used stochastic simu-
lation of actual endemics and analysis of the resulting binary in-
fection status data with a linear animal model. Figure 7B shows
that T2

P increases strongly when prevalence goes down. Figure 7
illustrates that T2

P and h2
y differ by a factor of approximately P2, so

that the additive genetic variance in prevalence is (much) greater
than the additive genetic variance in individual infection status,
and may even exceed the phenotypic variance at low values of
the endemic prevalence (i.e., T2

P > 1).
In conclusion, in this section, we have presented expressions

for the breeding value for prevalence (Equation 31) and for indi-
vidual infection status (Equation 34), and for the corresponding
genetic variances. With realistic levels of heterogeneity, the
breeding value for prevalence is a factor 1/P greater than the
breeding value for individual infection status. This result sug-
gests that response to selection should be considerably greater
than expected based on ordinary heritability of individual infec-
tion status. We will test this hypothesis in the next section.

Response to selection
The higher genetic variance for prevalence at lower values of the
prevalence (Equations 30 and 32, Figures 5B and 6) suggests that
the response of the endemic prevalence to selection should in-
crease when the prevalence decreases. To validate and illustrate
this hypothesis, we stochastically simulated an endemic infec-
tious disease in a large population undergoing mass selection for
individual infection status. Hence, the individuals with the lowest
observed average infection status were selected as parents of the
next generation. Simulations were based on standard methods in
epidemiology, not making use of the above theory (Appendix F).

Figure 8A shows the observed prevalence (i.e., the mean binary
infection status in each generation), the mean breeding value for
prevalence and the mean breeding value for binary infection sta-
tus, for �70 generations of selection. Response in prevalence
increases strongly when prevalence decreases, and the infection
disappears in the final generation. There is excellent agreement
between the observed prevalence and the breeding value for
prevalence, showing that the change in AP indeed predicts the
change in prevalence. In contrast, the response in prevalence
deviates substantially from the response in the breeding value
for individual infection status (Ay), particularly at lower values of
the prevalence. Hence, while the breeding value for infection sta-
tus correctly predicts the average individual infection status
within a generation (Figure 4), the change in Ay considerably
underestimates the response to selection. Furthermore, given the
weak selection and the low value of the observe-scale heritability
of binary infection status, which did not exceed 0.022 in
Figure 8A, response to selection in prevalence is remarkably
large, unless prevalence is high. This result agrees with findings
of Hulst et al. (2021).

We also investigated the prediction of response to mass selec-
tion with a very simple expression assuming linearity, with ge-
netic variation in susceptibility only, and only for r2

Alc
¼ 0:32. The

response of prevalence to selection follows from the ordinary
breeder’s equation, applied to prevalence,

RP ¼ i qAP ;SC rAP (38a)

where i is the intensity of selection, qAP ;SC the accuracy of selec-
tion, being the correlation between the selection criterion and the
true breeding value for prevalence in the candidates for selection,
and rAP the additive genetic standard deviation for prevalence.
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However, at present breeders are not familiar with genetic parame-
ters for prevalence. For this reason, we based our predictions on ge-
netic parameters for binary infection status, because these are
typically available to breeders. Because the breeding value for prev-
alence and the breeding value for individual infection status differ
by a factor 1/P when there is no genetic variation in infectivity
(Equation 33), we simply upscaled the response to mass selection
predicted for individual infection status from the breeder’s equation
(Walsh and Lynch 2018) by this factor, giving

RP ¼ i qAy ;y rAy

1
P

(38b)

where the intensity of selection, defined as the standardized
selection differential in mean individual infection status, was
i ¼ ðyselected � yÞ=ry , the accuracy qAy ;y is the correlation between
the selection criterion (yi here) and the true breeding value for
individual infection status, and P is the prevalence in the gener-
ation of the selection candidates. Thus, the selection criterion
was the observed average infection status of the individual itself
(yi, mass selection). Hence, the numerator of Equation (38b) rep-
resents the predicted response for individual binary infection
status, which is multiplied by a factor 1/P to find response in
prevalence. To implement Equation (38b), we calculated the
qAy ;y as the observed correlation between the true breeding val-
ues for binary infection status (Ay; Equation 34) and the selec-
tion criterion (yÞ in the candidates for selection. Hence, we did
not attempt to predict the accuracy of selection. (Note that
Equation 38b also applies to selection on EBV for infection
status, where the accuracy refers to the accuracy of these EBV,
being the correlation between the true and the estimated
breeding value for infection status, qAy ;Ây

).

Figure 8B shows a comparison of observed and predicted prev-
alence. Above a prevalence of �0.5, response predicted from
Equation (38b) is somewhat larger than observed response, while
the reverse is true below a prevalence of �0.5 (Note, response to
selection in a generation is reflected by the slope of the figure).
Nevertheless, agreement between observed and predicted re-
sponse is remarkably good given the very unrealistic assumption
of linearity in Equation (38b) (i.e., bivariate normality of Ay and y).
Because selection was based on mean individual infection status
recorded over a period lasting on average only 1.25 events per in-
dividual (see legend Figure 8), many values were either 0 or 1, im-
plying strong deviations from normality.

When the prevalence was smaller than 0.5, response to selec-
tion was quite large. Hence, there was a meaningful difference in
prevalence between parent and offspring generations. Because
the P in Equation (38b) refers to the prevalence in the parent gen-
eration, while response is realized in the offspring generation,
Equation (38b) resulted in underprediction of response to selec-
tion when response was large. This underprediction disappeared
when using prevalence in the offspring generation in the 1/P term
in Equation (38b). However, because prevalence in the offspring
generation is initially unknown, as it depends on the response to
selection, this prediction required solving the expression
R ¼ iqAy ;yrAy=ðPþ RÞ, yielding

RP ¼
1
2
�Pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ 4iqAy ;yrAy

q� �
: (39)

For a prevalence smaller than �0.5, predictions from Equation
(39) were very close to the observed response in prevalence
[Figure 8B; for P> 0.5, results of Equations (38b) and (39) are al-
most identical].

Figure 8 Response to selection in prevalence for 70 generations of mass selection of the host population. (A) compares observed prevalence to observed
true breeding values for prevalence and for individual disease status. (B) compares observed prevalence to predicted prevalence. For two populations,
one starting at a prevalence of �90% (c¼10), the other starting at a prevalence of �50% (c¼ 2). Each generation, the 50% individuals with the lowest
average infection status were selected as parents of the next generation. With genetic variation in susceptibility only, and r2

Alc
¼ 0:32: For a population of

N¼ 4,000 individuals, a total of 15,000 events (sum of infections and recoveries) per generation, consisting of a burn-in of 10,000 events and 5,000
recorded events. Hence, selection is based on 1.25 events per individual on average, indicating a limited amount of phenotypic data. Observed-scale
heritability for binary infection status in any generation can be read from Figure 7A using an x-axis value corresponding to the prevalence in that
generation. (A) Observed prevalence (circles), breeding value for prevalence (AP, solid blue line) and breeding value for individual infection status (Ay,
dashed red line). Results for breeding values are the cumulative change in breeding value in each generation plus the initial prevalence. Breeding values
were taken from Equation (31a) for AP and from Equation (34) for Ay. (B) Predicted (lines) versus observed (circles) prevalence. Prevalence was predicted
from Equation (38b) (blue solid line) or Equation (39) (red dashed line).
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In conclusion, results in this section show that response to se-
lection in the prevalence of endemic infectious diseases is a fac-
tor 1=P greater than suggested by the ordinary breeding values
for individual binary infection status. Thus, breeders can predict
response to selection by upscaling the selection differential in the
usual estimated breeding values for binary infection status by a
factor 1=P.

Direct and indirect genetic variance for endemic
prevalence
In this section, we partition the total additive genetic variance for
endemic prevalence into direct and indirect genetic components.
This partitioning is relevant, because IGE respond fundamentally
different to selection than DGE (Griffing 1967, 1977; Wright 1985;
Moore et al. 1997; Muir 2005; Bijma 2010, 2011; see Discussion).
We can partition the total breeding value for prevalence into a di-
rect and an indirect component,

AP ¼ APD þ API (40)

Analogously, we can partition the full additive genetic vari-
ance in prevalence into components due to direct genetic vari-
ance, indirect genetic variance and a covariance,

r2
AP
¼ r2

APD
þ 2rAPD API

þ r2
API

(41)

In the absence of genetic variation in infectivity, the breeding
value for own infection status is a fraction P of the breeding value
for prevalence (Equation 33). Hence, a fraction P of the additive
genetic effects of susceptibility and recovery on prevalence
affects the infection status of the individual itself and thus repre-
sents a direct effect, while the remaining fraction ð1� PÞ repre-
sents an indirect effect. For infectivity, the entire genetic effect is
indirect, because an individual’s infectivity does not affect its
own infection status. It follows from Equations (31a) that

APD ¼
e
r2

AlR0

R0
P Alc � Ala
� �

(42a)

API ¼
e
r2

AlR0

R0
1� Pð ÞAlc þAlu � ð1� PÞAla

� �
(42b)

Note that Equation (42a) represents the breeding value for in-
dividual infection status (Ay), but the current expression empha-
sizes the partitioning of AP into direct and indirect effects. The
direct and indirect genetic (co)variances are given by

r2
APD
¼ e

2r2
AlR0

R2
0

P2 r2
Alc
� 2rAlcAla þ r2

Ala

� �
(43a)

rAPD API
¼ e

2r2
AlR0

R2
0

P 1� Pð Þ r2
Alc
� 2rAlcAla þ r2

Ala

� �
þ rAlcAlu � rAlcAla

n o
(43b)

r2
API
¼ e

2r2
AlR0

R2
0

1� Pð Þ2 r2
Alc
� 2rAlcAla þ r2

Ala

� �n

þ 2 1� Pð Þ rAlcAlu � rAluAlað Þ þ r2
Alu

o
(43c)

Figure 9 shows the total additive genetic variance for the en-
demic prevalence and the fractions due to DGE, IGE and their co-
variance, for a scenario with equal genetic variances in
susceptibility, infectivity and recovery and covariances equal to
zero. For an endemic prevalence smaller than 0.5, IGE contribute

the majority of the genetic variance. For example, for an endemic
prevalence of 0.3, the total additive genetic variance consists of
6% direct genetic variance, 66% indirect genetic variance and 28%
direct-indirect genetic covariance. These results imply that IGE
dominate the heritable variation and response to selection for
the endemic prevalence of infectious diseases, unless prevalence
is high.

Discussion
We have presented a quantitative genetic theory for endemic in-
fectious diseases, with a focus on the genetic factors that deter-
mine the endemic prevalence. We defined an additive model for
the logarithm of individual susceptibility, infectivity and rate of
recovery, which results in normally distributed breeding values
for the logarithm of R0. Next, we investigated the impact of ge-
netic heterogeneity on the population level, for both R0 and the
endemic prevalence. Results show that, despite heterogeneity, R0

remains equal to the mean individual genotypic value for R0.
Subsequently, we considered genetic effects of individuals on
their own infection status and on the endemic prevalence in the
population. Building on the breeding value for the logarithm of
R0, we showed that genotypic values and genetic parameters for
the prevalence follow from the known properties of the log-
normal distribution. In the absence of genetic variation in
infectivity, genetic effects for the endemic prevalence are a factor
1/prevalence greater than the ordinary genetic values for individ-
ual binary infection status. Hence, even though prevalence is the
simple average of individual binary infection status, breeding val-
ues for prevalence show much more variation than those for in-
dividual infection status. These results imply that the genetic
variance that determines the potential response of the endemic
prevalence to selection is largely due to IGE, and thus hidden to
classical genetic analysis and selection. For susceptibility and re-
covery, a fraction 1-P of the full genetic effect on endemic preva-
lence is due to IGE, whereas the effect of infectivity is entirely due
to IGE. Hence, the genetic variance that determines the potential
response of the endemic prevalence to selection must be much
greater than expected based on classical quantitative genetic the-
ory, particularly at low levels of the prevalence (Figure 7). We
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Figure 9 Total additive genetic variance in endemic prevalence (Vtotal;
secondary y-axis) and the relative contributions of DGE, IGE and their
covariance (fdirect, findirect, and fcovariance; primary y-axis). For constant
values of r2

Alc
¼ r2

Alu
¼ r2

Ala
¼ 0.32 and covariances equal to zero. Results

are obtained from Equations (32b), (3), and (43a)–(43c).
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evaluated this implication using stochastic simulation of endem-
ics following standard methods in epidemiology, where parents
of the next generation were selected based on their own infection
status (mass selection). The results of these simulations show
that response to selection in the observed prevalence and in the
breeding value for prevalence increases strongly when preva-
lence decreases, and closely matches our predictions, which sup-
ports the theoretical findings presented here.

Model assumptions
Following Anacleto et al. (2015, 2019), Biemans et al. (2019), and
Pooley et al. (2020), we assumed a linear additive model with nor-
mally distributed effects for the logarithm of susceptibility, infec-
tivity and recovery, leading to a normal distribution of the
additive genetic values for the logarithm of R0 (Equation 10). For
complex traits, it is common to assume normally distributed ge-
netic effects, based on the central limit theorem (Fisher 1919).
Because susceptibility, infectivity and recovery act multiplica-
tively in the expression for R0, and because R0 is nonnegative, we
specified a normal distribution for its logarithm. This resulted in
an additive model on the log scale, which agrees with the infini-
tesimal model, and also translates the ½0;1Þ domain of R0 to the
ð�1;þ1Þ domain of the normal distribution. Hence, we assumed
constant genetic parameters for the logarithm of R0. The same
approach has been used to model genetic variation in the resid-
ual variance, which is also restricted to nonnegative values
(SanCristobal-Gaudy et al. 1998; Hill and Mulder 2010). The log-
normal distribution of genotypic values for R0 results in a de-
crease of the genetic standard deviation in R0 with decreasing R0

(Figure 2), which seems reasonable given the presence of a lower
bound for R0. Moreover, the log-normal distribution for R0 is con-
venient, because it results in simple expressions for the breeding
value and the genetic variance for prevalence (Equations 31 and
32).

The assumption of a normal distribution for the logarithm of
genotypic values for R0 also agrees with the standard implemen-
tation of generalized linear (mixed) models (GLMM; Nelder and
Wedderburn 1972). R0 refers to an expected number of infected
individuals; In other words, R0 is the expected value of count
data. In GLMM, the default link function for count data is the log-
link (McCullagh and Nelder 2019). Hence, our linear model for the
logarithm of R0 also agrees with common statistical practise.

The strong increase of the genetic variance in prevalence with
decreasing R0 (Figure 5A) is not due to the assumption of lognor-
mality of R0. On the contrary, the log-normal distribution results
in a decrease of the genetic standard deviation in R0 with decreas-
ing R0 (Figure 2). The strong increase in the genetic variance in
prevalence with decreasing R0 results from the relationship be-
tween R0 and the prevalence in the endemic steady state
(Figure 1; Equation 3), which becomes steeper when R0 is closer to
one. This relationship is very well established in epidemiology
since Weiss and Dishon (1971; e.g., Keeling and Rohani 2011).

While we defined an additive genetic model for the logarithm
of R0, we can also find the additive genetic effect (breeding value)
for R0 itself. Using results of Appendix D, the breeding value for
R0 follows from

AR0 ;i ¼ ce
1
2r

2
AlR0 AlR0 ;i

Hence, the AR0 represents the additive component of the geno-
typic value for R0. However, because our model is additive on the
log-scale, while the genotypic value for R0 includes nonadditive

genetic effects, we decided to build our theory on the breeding
value for the logarithm of R0.

Throughout this manuscript, we have assumed that the
means of the breeding values on the log scale are equal to zero
(Equations 7 and 10). With this assumption, the expected value of
a log-normal variate simplifies to e

1
2r

2
, which we have used at

many places in this manuscript. This assumption can be satisfied
easily by moving the mean breeding value on the log scale into
the contact rate, whenever it is not zero. Thus, this assumption
does not put any restriction on the validity or generality of our
work, but in the application of the results, the mean of the breed-
ing values on the log scale should be moved to the contact rate.
Suppose the mean breeding values on the log scale are given by
lAlc

, lAlu
and lAla

. Then the genotypic value for R0 is given by

GR0;i ¼ clA 6¼0 eðlAlc
þ Alc;iÞ þ ðlAlu

þ Alu;i Þ � ðlAla
þ Ala;iÞ

where clA 6¼0 is the contact rate for the model parameterization
where the mean breeding value on the log scale is nonzero, and A
denotes a breeding value on the log scale expressed as a deviation
from its mean (thus A has mean zero by definition). This model
can be reparametrized into Equation (9)

GR0;i ¼ c e Alc;i þ Alu;i � Ala;i

using

c ¼ clA 6¼0 elAlc
þ lAlu

�lAla

Hence, to move the mean breeding value on the log scale into
the contact rate, we have to multiply the original contact rate by
expðlAlc

þ lAlu
� lAla

Þ. While both parameterizations are obvi-
ously equivalent, the second results in simpler expressions and
has been used throughout this manuscript. Thus, c rather than
clA 6¼0 must be used when applying our results. This is essential,
because breeding values and genetic variances for the endemic
prevalence depend on the contact rate (e.g., Equations 31 and 32).

In our results for response to selection (Figure 8), we have as-
sumed that the population has reached the endemic steady state
at any time. In other words, we assumed that, after a selection,
the population has reached the new endemic prevalence before
the next selection takes place. Whether this assumption holds
true will depend on the rate of convergence of the feedback pro-
cess in the disease transmission (discussed below and illustrated
in Figure 10) versus the rate of genetic improvement. Hulst et al.
(2021) show examples of convergence to the new equilibrium. If
the genetic improvement goes gradually, for example when
replacing part of the animals each year like in dairy cattle, and
when the pathogen survives only briefly in the environment,
then the prevalence of the local population will track the gradual
genetic changes in the population and the improvements pre-
dicted will be observed immediately. On the other hand, if the ge-
netic changes are large and abrupt, like when restocking broilers
or fattening pigs with a new genetic stock, and when the new
stock is exposed to the infectious material from the previous
stock, either because the pathogen survives in the environment
or from neighboring stables or pens, then it may take some time
before the full effect of genetic improvement materializes.

Nevertheless, the full effect of genetic improvement will mate-
rialize over time, also when the next selection takes place before
the population has reached the new endemic prevalence due to
the previous selection. Thus, incomplete convergence to the new
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equilibrium before the next selection takes place is a transient
phenomenon. It does not affect the ultimate genetic improve-
ment, because the ultimate endemic prevalence is determined by
the genetic value for R0, not by the previous prevalence.
Incomplete convergence to the new equilibrium may actually
lead to a slightly greater response, because the accuracy of selec-
tion will be a bit higher at higher prevalence, leading to a larger
genetic change. In other words, the qAy ;y in Equation (38b) will be
higher, due to higher heritability (This follows from Figure 7A,
where heritability is higher at higher prevalence, as long as
P< 0.5).

Other compartmental models
In this study, we focused on endemic infectious diseases follow-
ing a SIS-model, where individuals can be either susceptible (S,
i.e., noninfected) or infected (I). Hence, we assumed the infection
does not confer any long-lasting immunity, and we ignored the
potential existence of infected classes (“compartments”) other
than S and I, such as recovered infected individuals that are not
yet susceptible again. Moreover, we ignored the influx of new
individuals into the population due to births, and the removal of
individuals due to deaths.

A key condition for validity of our results is that the pathogen
can replicate only in the host individual, meaning that a reduc-
tion in infected individuals fully translates into reduced exposure
of the host population to the pathogen. The mere survival of the
pathogen in the environment does not violate our assumptions
(see Hulst et al. 2021 for a discussion). Our conclusions are not
limited to SIS models if this condition is met, but apply to all
models with no longer lasting immunity. For models with tempo-
rary immunity (e.g., SIRS) or lifelong immunity (e.g., SIR) the con-
clusions with respect to infectivity and susceptibility will be true,

but the genetic variation in recovery may a different more re-
stricted role.

Also, infections that do confer long-lasting immunity may
show endemic behavior when a population is large enough.
Measles in the human population before the introduction of vac-
cination are is a well-known example. For such infections, the
same mechanisms as discussed above will play a role and the en-
demic prevalence for a homogeneous population still follows
from Equation (3). However, the introduction of new susceptibles
by birth can no longer be ignored, and recovery of infected indi-
viduals does not result in new susceptible individuals. Thus, the
role of recovery will change, and the genetic make-up of the new-
born individuals becomes relevant, particularly in populations
undergoing selection.

Positive feedback
The increasing difference between the breeding value for preva-
lence and the breeding value for individual infection status at
lower prevalence (Equation 33) is a result of the increasing slope
of the relationship between R0 and the endemic prevalence
(Equation 3, Figure 1). Equation (3) follows directly from a simple
equilibrium condition (see text above Equation 3). However, the
focus on the equilibrium partly obscures the underlying mecha-
nism.

For a disease caused by exposure, the effect of genetic selec-
tion depends on future exposure. For an infectious disease, future
exposure depends on the future number of infected individuals
in the local population and on their (lifetime) infectivity, both of
which are affected by the genetic selection. Thus, for infectious
diseases future exposure depends on selection, leading to feed-
back effects. Figure 10, A and B illustrates that the difference be-
tween AP and Ay originates from positive feedback effects in the
transmission dynamics. (Figure 10 shows results for selection

Figure 10 Positive feedback after selection for lower susceptibility. (A) Diagram of the SIS compartmental model illustrating the feedback, with the
number of susceptible (S) and infectious (I) individuals and the transmission and recovery rates (ignoring heterogeneity for simplicity). A reduction in
the transmission rate parameter b reduces I, which in turn reduces the transmission rate, leading to a further reduction in I, etc. (B) Convergence of the
prevalence to the new equilibrium after selection. For two populations; one starting at P¼ 0.25 (red triangles; c¼ 1.333), the other at P¼ 0.125 (blue
circles; c¼ 1.143). The x-axis represents cycles of the transmission loop. The horizontal dotted lines show the prevalence predicted by the breeding value
for binary infection status, and represent the direct effect. The Asterix shows the equilibrium prevalence after convergence, which occurs around t¼ 22
for the upper line, a little later than t¼ 50 for the lower line. The genetic selection differential for binary infection status equals DAy ¼ �0:01 for each of
the two populations. The initial response to selection (the y-axis difference between t¼ 0 and t¼ 1) is equal to the DAy of �0:01 for both scenarios. Total
response is �0.04 for the scenario with P¼ 0.25, and �0.08 for the scenario with P¼ 0.125, corresponding to �0.01/0.25 and �0.01/0.125. Results in (B)
follow from iterating on Equation (20a), using a single value forR0;i, with ai ¼ u inf ¼ 1 and choosing c so that the selection differential DAy ¼ �0:01

(using c ¼ Gy

P 1�Gyð Þ =c from Equation 20a). In each iteration, the P in the righthand side of Equation (20a) is replaced by the Pi calculated from Equation

(20a) in the previous iteration. This iteration converges to the prevalence given by Equation (3) (assuming negligible heterogeneity).
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against susceptibility, selection for faster recovery would yield
identical results). With lower susceptibility fewer individuals will
become infected, which subsequently translates into a reduced
transmission rate, followed by a further reduction in the number
of infected individuals, etc, resulting in a positive feedback loop
(Figure 10A). The initial change in prevalence before feedback
effects manifest is equal to the selection differential in breeding
value for individual infection status (DAy; horizontal lines in
Figure 9). This change represents the direct response due to re-
duced susceptibility, and does not include any change in expo-
sure of susceptible individuals to infected herd mates. Next,
prevalence decreases further because the initial decrease in prev-
alence reduces the exposure of susceptible individuals to infected
herd mates. This additional decrease represents the indirect re-
sponse to selection via the “social” environment. Without genetic
variation in infectivity, the direct response makes up a fraction P
of the total response in prevalence, and the indirect response a
fraction 1� P.

The feedback mechanisms outlined here will also play a role
in macroparasitic infections. For example, also for macropara-
sitic infections infectivity will have a nonlinear effect, susceptibil-
ity does not have to be zero to eradicate an infection, and
prevalence will go down more than linear with a genetic decrease
in infectivity. However, we did not investigate how this works out
precisely, for example for gastro intestinal parasites.

Herd immunity
In Figure 8A, the infection ultimately goes extinct due to mass se-
lection for individual infection status. This happens due to a phe-
nomenon known as herd immunity (Fine 1993). In the final
generation, the infection disappears because R0 falls below a value
of one; not because all the individuals have become fully resistant
to infection. This result is similar to the eradication of an infection
by means of vaccination, which also does not require full immunity
of all individuals and can also be achieved when only part of a pop-
ulation is vaccinated (Anderson and May 1985). As can be seen in
Figure 10 and in simulation results of Hulst et al. (2021), herd immu-
nity develops over cycles of the transmission-recovery loop. Thus,
the full benefits of genetic selection or vaccination do not manifest
immediately, as it takes some time for a population to converge to
the new endemic steady state.

The relevance of herd immunity for response to genetic selec-
tion can be illustrated using the data underlying Figure 8A. For
the population starting at a prevalence of 0.5, the contact rate is
equal to two, and the mean breeding value for log-susceptibility
is equal to zero in the initial generation (c¼ 2, Alc ¼ 0, so that R0 �
ceAlc ¼ 2). In the final generation, the mean breeding value for log-
susceptibility has dropped to �0.73, so that R0 � 2e�0:73 ¼ 0.96.
Hence, R0 < 1, explaining extinction. However, if the average in-
dividual of the final generation would have been exposed to the
infection pressure of the first generation, then the expected prev-
alence for this individual would have been 0.32 (from Equation
20a, with R0;i ¼ 0:96 and P¼ 0.5). Hence, the individual would
have been infected 32% of the time. Nevertheless, in a population
consisting entirely of this type of individual, as is the case in the
final generation, the infection will no longer be present in the
long term. This example illustrates the relevance of reduced ex-
posure due to indirect effects for herd immunity and for response
to selection of infectious diseases.

Relationship to previous work
Bishop and co-workers have pioneered the integration of quanti-
tative genetics and epidemiology for livestock populations (see

references in the Introduction). Some of their work considers
both the prevalence of an infection and the negative effect of the
infection on performance traits (resilience) in an integrated ap-
proach, mostly using stochastic simulation. In this study, in con-
trast, we focus exclusively on prevalence, since our primary
purpose was to develop a quantitative genetic theory for the en-
demic prevalence of an infection. In particular, we aimed to find
expressions for the breeding value and the additive genetic vari-
ance in the endemic prevalence. Our results show that these are
fundamentally different from quantitative genetic expressions
for noncommunicable traits, exhibiting a very large component
due to IGE. The effect of an infectious disease on performance
traits, in contrast, can be modelled using classical quantitative
genetic approaches, such as reaction norm models where trait
values are regressed on pathogen load. Hence, resilience may not
exhibit indirect genetic variation, i.e., when it is independent of
susceptibility, recovery or infectivity, and there is no need to in-
clude resilience in theoretical models for prevalence.

MacKenzie and Bishop (2001) and Tsairidou et al. (2019) inves-
tigated the prediction of response to selection in the prevalence
of infectious diseases, considering both quantitative genetics and
epidemiology. MacKenzie and Bishop (2001) directly modeled a
constant rate of genetic improvement for the transmission pa-
rameter b, treated as a genetic property of the susceptible (i.e., re-
cipient) individual only, and used a stochastic epidemic model to
study the impact of genetic improvement in b on R0 and on the
probability of a major epidemic. Tsairidou et al. (2019) used a sim-
ilar approach, but considered both infectivity and susceptibility.
They directly modelled response in susceptibility and infectivity,
assuming a fixed accuracy of selection for these two traits, and
also used a stochastic epidemic model to study the impact of ge-
netic improvement in susceptibility and infectivity on R0 and on
the severity of the epidemic. Hence, these two studies combine a
classical quantitative genetic approach for response to selection
for the parameters of an epidemiological model with stochastic
simulation of epidemics. In this study, in contrast, we extend
quantitative genetic theory to include R0 and the endemic preva-
lence, aiming to understand the genetic variation and potential
response to selection in these population-level parameters.
Hence, we aim to bring epidemiology into the quantitative ge-
netic domain, rather than to combine classical quantitative ge-
netics models for epidemiological parameters with simulation of
epidemics.

The breeding value and additive genetic variance for the loga-
rithm of R0 are central to this work. Anche et al. (2014) and
Biemans et al. (2019) presented a breeding value and additive ge-
netic variance for R0, rather than its logarithm. Anche et al. (2014)
considered a two locus model with additive effects for suscepti-
bility and infectivity. They derived a breeding value for R0 using
partial derivatives of R0 with respect to the allele frequencies at
each of the two loci. While their model is additive for susceptibil-
ity and infectivity, it contains some epistasis for R0 because R0

depends on the product of these two parameters. For locus-based
models with a few loci of fixed effect, it is probably not very rele-
vant on which scale the model is additive (if any). For polygenic
models, in contrast, an additive model on the scale of susceptibil-
ity and infectivity, or on the scale of R0, may result in negative
values for R0 and in an unrealistically large additive genetic vari-
ance in R0 with recurrent genetic selection for lower prevalence.
Hence, for polygenic traits, an additive model on the log scale is
more appropriate, as argued above.

Biemans et al. (2019) presented an expression for the additive
genetic variance for R0 treated as a polygenic traits, with the aim
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to quantify the amount of heritable variation in R0 in a data
analysis. Their expression extends the concept of Anche et al.
(2014) to the polygenic case, but can also be interpreted as the
variance of a first-order Taylor-series linearization of R0, assum-
ing independence of susceptibility and infectivity (combining
Equations 4 and 5 of the current manuscript). The expression of
Biemans et al. (2019) is suitable when the objective is to find a
point estimate for the additive genetic variance in R0 in a popula-
tion, and when the additive genetic variances in susceptibility
and infectivity are not too large and susceptibility and infectivity
are independent. For a quantitative genetic theory of R0, however,
an approach based on the breeding value for the logarithm of R0

is superior, as argued above.

Utilization of hidden genetic variation for genetic
improvement
In this study, we have shown that a fraction 1� P of the full indi-
vidual genetic effect on the endemic prevalence represents an
IGE, because only a fraction P of the full effect surfaces in the in-
fection status of the individual itself (excluding genetic variation
in infectivity; Equation 33 and Appendix E). In other words, a frac-
tion 1� P of the individual genetic effects of susceptibility and re-
covery on the prevalence are hidden to direct selection and
classical genetic analysis. Nevertheless, results in Figure 8 show
that prevalence responds rapidly to selection, particularly when
prevalence is small. Hence, prevalence responds faster to selec-
tion when a greater proportion of its heritable variation is hidden,
and when heritability is low (Figure 7A), which seems a paradox.

However, the IGEs due to susceptibility and recovery are a spe-
cial kind, because they are fully correlated to the corresponding
DGE. For each of the two traits, there is only a single genetic ef-
fect (Alc and Ala, respectively), which has both a direct effect and
an indirect effect on the prevalence. Hence, when selection
changes the mean DGE, the mean IGE changes correspondingly.
This can be seen from Equation (38b), where the term rAy=P rep-
resents the full additive genetic standard deviation in prevalence
(as is clear from Equation 33), while the accuracy (qAy ;y ) refers to
selection for the direct effect only. Hence, without genetic varia-
tion in infectivity, the total response of prevalence to selection,
either for individual infection status or for any other selection cri-
terion, can be interpreted as the sum of a direct response in DGE
and a correlated response in IGE,

RP;direct ¼ iqAy ;yrAy

RP;correlated ¼ iqAy ;yrAy

1� P
P

and the sum of RP;direct and RP;correlated is equal to Equation (38b).
The RP;direct is the expected response to selection based on ordi-
nary genetic analysis and estimated breeding values for individ-
ual infection status. The RP;correlated represents the additional
response due to IGE. The direct response occurs immediately in
the first cycle of the transmission loop (Figure 10B), while the in-
direct response manifests gradually over several cycles of the
transmission-recovery loop, particularly when prevalence is
small (see also result in Hulst et al. 2021).

The response due to the IGE of susceptibility and recovery
arises naturally when selecting for lower individual infection sta-
tus (i.e., for the direct effect); it does not require any specific
measures of the breeder. Thus, on the one hand, our results im-
ply that response to genetic selection against infectious diseases
should be considerably greater than currently believed, even
when no changes are made to the selection strategy. While

empirical studies are scarce, the available results support this ex-
pectation (discussed in Hulst et al. 2021).

On the other hand, however, classical selection for direct
effects is not the optimal way to reduce prevalence, for the fol-
lowing two reasons. First, classical selection does not target ge-
netic effects on infectivity, because an individual’s infectivity
does not affect its own infection status (Lipschutz-Powell et al.
2012). Hence, infectivity changes merely due to a potential ge-
netic correlation with susceptibility and/or recovery. When this
correlation is unfavorable, infectivity will increase and response
in prevalence will be smaller than expected based on the genetic
selection differentials for susceptibility and recovery (and thus
smaller than the result of Equation 38b). In theory, this could
even lead to a negative net response (Griffing 1967). This is simi-
lar to the case with social behavior-related IGEs on survival in
laying hens and Japanese quail, where selection for individual
survival has sometimes increased mortality (Craig and Muir
1996; Muir 2005). This scenario seems unlikely for infectious dis-
eases, but at present we lack knowledge of the multivariate ge-
netic parameters of susceptibility, infectivity and recovery to
make well-founded statements.

Second, even in the absence of genetic variation in infectivity,
individual selection for susceptibility and recovery is nonoptimal
because the accuracy of selection is limited due to limited herita-
bility, particularly at low prevalence (Figure 7A). The response to
selection in traits affected by IGE can be increased by using kin
selection and/or group selection (Griffing 1976; Muir 1996; Bijma
2011), and by including IGE in the genetic analysis (Muir 2005,
Bijma et al. 2007b; Muir et al. 2013; Anacleto et al. 2015; Biemans
et al. 2019; Pooley et al. 2020). Kin selection occurs when transmis-
sion takes place between related individuals, for example within
groups of relatives (Anche et al. 2014). Group selection refers to
the selection of parents for the next generation based on the
prevalence in the group in which transmission takes place, rather
than on individual infection status (Griffing 1976). Both theoreti-
cal and empirical work shows that kin and group selection lead
to utilization of the full genetic variation, including both DGE and
IGE (Griffing 1976; Muir 1996, 2005; Bijma and Wade 2008; Bijma
2010, 2011). For infectious diseases, the work of Anche et al. (2014)
illustrates the effect of kin selection, where favorable alleles for
susceptibility increase much faster in frequency when disease
transmission is between related individuals. Simulation studies
on IGE in pig populations suggest that the benefits of kin selec-
tion also apply to breeding schemes based on genomic prediction
(Chu et al. 2021).

Do pathogens create kin selection?
Exposure to infectious pathogens is a major driver of the evolu-
tion of host populations by natural selection, both in animals and
plants (reviewed in Karlsson et al. 2014 and Ebert and Fields
2020). In the human species, for example, a study of genetic vari-
ation in 50 worldwide populations reveals that exposure to infec-
tious pathogens is the primary driver of local adaptation and the
strongest selective force that shapes the human genome
(Barreiro and Quintana-Murci 2010; Fumagalli et al. 2011). The
key role of infectious pathogens in natural selection, together
with the large contribution of IGE to the genetic variation in prev-
alence in the host population, indicates that IGE must have been
an important fitness component in the evolutionary history of
populations. This, in turn, suggests that associating with kin may
have evolved as an adaptive behavior. In other words, the key
role of infectious diseases in natural selection might lead to so-
cial structures where individuals associate preferably with kin,
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because such behavior has indirect fitness benefits. This is be-
cause interactions among kin lead to utilization of the full herita-
ble variation in fitness, including both DGE and IGE (Bijma 2010),
and thus considerably accelerate response of fitness to selection.
At low to moderate levels of the endemic prevalence the indirect
genetic variance in prevalence might be sufficiently large for
such behavior to evolve, even in the absence of direct fitness ben-
efits such as preferential behavior toward kin. While this is a
complex issue requiring careful quantitative modelling, including
migration and the emergence of selfish mutants, the key role of
pathogens in natural selection together with the large IGE dem-
onstrated here strongly suggest the importance of kin selection
in the history of life.

In agriculture, the implementation of kin selection may be fea-
sible when animals can be kept in kin groups or plants can be
grown in plots of a single genotype or a family in the breeding
population. In many cases, however, this will not be feasible, and
other methods will be required to optimally capture the IGE un-
derlying the prevalence of infectious diseases. In particular, we
need more and better phenotypic data on disease traits (Bishop
and Woolliams 2014). Current developments in sensing technol-
ogy and artificial intelligence enable the development of tools for
large scale automated collection of longitudinal data on individ-
ual infection status, and also on the contact structure between
individuals (relevant mainly in animals). These advances, to-
gether with genomic prediction and recently developed statistical
methods for the estimation of the direct and IGE underlying the
transmission of the infection (Biemans et al. 2019; Pooley et al.
2020) could represent a much-needed breakthrough in the artifi-
cial selection against infectious diseases in agriculture. Our
results on genetic variation and response to selection suggest
that such selection is way more promising than currently be-
lieved.

Data availability
An R-code to numerically find the endemic equilibrium preva-
lence is provided in the file Supplementary Material 1 -
Numerical Solution Prevalence Heterogeneity.

Supplementary material is available at GENETICS online.
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Appendices

Appendix A
R0 with heterogeneity and log-normally
distributed susceptibility, infectivity en recovery
We assume that the transmission rate from infected individual j
to susceptible individual i is proportional to the product of the in-
fectivity of j and the susceptibility of i (Equation 5),

bij ¼ cciuj:

So there is no interaction between i and j. (This property is
known as separable mixing in the epidemiological literature;
Diekmann et al. 1990, 2013). Moreover, we assume that suscepti-
bility, infectivity, and recovery follow a log-normal distribution
(Equations 6 and 7). We also assume that the population is not
very small, so that in the early phase of an endemic where only
few individuals are infected, the composition of the remaining
susceptible individuals is not affected.

Because R0 refers to the “total number of individuals that be-
come infected by a typical infected individual over its entire in-
fectious lifetime,” we define an individual lifetime infectivity,
which is the product of an individual’s infectivity per unit of time
and the average duration of its infectious lifetime,

/i ¼ ui=ai;

which follows a log-normal distribution with parameters follow-
ing from those of u and a. Hence, we have condensed our three
genetic effects into two.

We can find R0 from

R0 ¼ c c /typ

where /typ is the lifetime infectivity of the typical infected individ-
ual, and c is the simple average susceptibility in the population,

c ¼
ð1
0

c g cð Þ dc:

where g cð Þ is the pdf of c. We can use the simple average of sus-
ceptibility in this expression because we assume the population
is large.

With separable mixing, the typical infected individual is cre-
ated immediately in the first generation of disease transmission.
This is the case because there is no interaction between c and u,
so that the properties of the typical infected individual are deter-
mined entirely by susceptibility. Hence, the pdf of c for the typical
infected individual follows from weighing gðcÞ by c,

gtyp cð Þ ¼
1
c

c g cð Þ

Since the properties of the typical infected individual depend
on susceptibility only, we can find /typ by averaging / over its dis-
tribution conditional on c, and subsequently averaging over the
distribution of c,

/typ ¼
ð1
0

ð1
0

/ f /jcð Þ d/

0
B@

1
CA gtyp cð Þ dc

Hence, we now have the elements of R0, but still need to solve
the integral expression.

Because conditional Normal distributions are also Normal and
the logarithm is a bijective function, /jc follows a log-normal dis-
tribution with parameters being the conditional mean and vari-
ance of the Normal distribution,

/jc � Lnorm l ¼ b/;cAlc; r2 ¼ 1� q2
c;/

� �
r2

Al/

� �

with b/;c ¼ covðAlc;Al/Þ=varðAlcÞ denoting the regression coeffi-
cient of Al/ on Alc, and q2

c;/ ¼ cov2ðAlc;Al/Þ=½var Alc
� �

var Al/
� �

� the
squared correlation, where Al/ denotes the breeding value for
logarithm of lifetime infectivity.

Hence, the inner integral is the mean of a log-normal variate,
which is of the form exp lþ r2

2

� �
,

ð1
0

/ f ð/jcÞ d/ ¼ E½/jc� ¼ exp b/;cAlc þ
1
2
ð1� q2

c;/Þr2
Al/

� �

¼ e
1
2ð1�q2

c;/Þr
2
Al/ eb/;cAlc :

Because the first term of this expression is a constant,

/typ ¼ e
1
2 1�q2

c;/ð Þr2
Al/

ð1
0

eb/;cAlc gtyp cð Þ dc:

Substituting gtyp cð Þ ¼ 1
c c g cð Þ, and replacing g cð Þ by the corre-

sponding log-normal pdf yields

ð1
0

eb/;cAlc gtyp cð Þ dc ¼ 1

cr
ffiffiffiffiffiffi
2p
p

ð1
0

e�
A2

2r2þbA dc

where we simplified the notation for brevity, using r2 ¼ r2
Alc

,
b ¼ b/;c, and A ¼ Alc.

Next, we change variable, using dc ¼ eAdA, and adjust the
bounds accordingly,

1

cr
ffiffiffiffiffiffi
2p
p

ð1
�1

e
�A2

2r2þbA eAdA ¼ 1

cr
ffiffiffiffiffiffi
2p
p

ð1
�1

e�A2

2r2 þ 1þbð ÞAdA

Solving the integral term in Mathematica-online yields

1

cr
ffiffiffiffiffiffi
2p
p

ð1
�1

e�
A2

2r2þð1þbÞAdA ¼ 1
c

e
1
2r

2
Alc
ð1þb/;cÞ2

/typ ¼ e
1
2ð1�q2

c;/Þr
2
Al/

1
c

e
1
2r

2
Alc
ð1þb/;cÞ2

/typ ¼
1
c

e
1
2½ð1�q2

c;/Þr
2
Al/
þr2

Alc
ð1þb/;cÞ2 �

R0 ¼ c c /typ ¼ c e
1
2½ð1�q2

c;/Þr
2
Al/
þr2

Alc
ð1þb/;cÞ2 �

:

Using c ¼ e
1
2r

2
Alc and / ¼ e

1
2r

2
Al/ this simplifies to Equations (14)

and (16) of the main text,
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/typ ¼ /erAlcAl/

R0 ¼ c c / erAlcAl/ :

Further simplification follows from expressing c; / and erAlcAl/

in terms of variances and covariances of c, u and a.

c ¼ e
1
2r

2
Alc

/i ¼
ui

ai
¼ eðAlu;i�Ala;iÞ ¼ eAl/;i

where Al/;i ¼ Alu;i � Ala;i, which is the breeding value for the loga-
rithm of lifetime infectivity, with

var Al/;i
� �

¼ r2
Alu
� 2rAluAla þ r2

Ala

From the properties of the log-normal distribution,

/ ¼ e
1
2r

2
Al/ ¼ e

1
2 r2

Alu
�2rAluAla

þr2
Ala
Þ

�

Furthermore,

erAlcAl/ ¼ eðrAlcAlu
�rAlcAla

Þ

Substitution of the expressions for c, /, and erAlcAl/ into R0 ¼
c c / erAlcAl/ yields

R0 ¼ c e
1
2r

2
Alc e

1
2 r2

Alu
�2rAluAla

þr2
Ala

� �
eðrAlcAlu

�rAlcAla
Þ

R0 ¼ c e
1
2 r2

Alc
þr2

Alu
þr2

Ala
þ2rAlcAlu

�2rAluAla
�2rAlcAla

� �
R0 ¼ c e

1
2r

2
AlR0 :

The right-hand side of this expression is identical to the mean
genotypic value for R0 (Equation 12).

Appendix B
Numerical solution to find the endemic
prevalence with heterogeneity
To find the endemic prevalence, P, we partition the population
into types, i, and numerically solve the expressions

Pi ¼
R0;iP
R0;iPþ 1

and

R0;i ¼
cciu inf

ai

for P. Here, we develop this numerical solution for the case where
susceptibility, infectivity and recovery follow a log-normal distri-
bution, assuming separable mixing (see Appendix A).

As can be seen from the expression for R0;i, the endemic preva-
lence for a type depends on both its susceptibility (ci) and its re-
covery rate (ai). Individuals with above-average susceptibility are
over-represented among the infecteds in the endemic equilib-
rium, whereas individuals with above-average recovery are
under-represented. Hence, as can be seen from the expression for

R0;i, the partitioning into types should be based on ci=ai.
Therefore, we define

hi ¼
ci

ai
¼ eAh;i

Ahi ¼ Ac;i � Aa;i
h � LnormðlAh

¼ 0; r2
Ah
¼ r2

Ac
� 2rAcAa þ r2

Aa
Þ
:

To numerically solve the two equations given above, we also
need uinf . The u inf will depends on the hi of the infecteds when in-
fectivity is correlated to susceptibility and/or recovery. Hence, we
need the distribution of ujh, which follows from

rAhAu ¼ rAcAu � rAaAu

buh ¼
rAhAu

r2
Ah

quh ¼ rAhAu=rAh rAu

EðAujAhÞ ¼ buhAh ¼ lujh
varðAujAhÞ ¼ ð1� q2

uhÞr2
Au
¼ r2

ujh

;

so that

ujh � Lnormðlujh ¼ buhAh; r2
ujh ¼ 1� q2

uh

� �
r2

Au
Þ

From the log-normal distribution:

E ujhð Þ ¼ elujh þ1
2r

2
ujh

Hence, we can partitioning h into classes i, with

R0;i ¼ c hi u inf

u inf ¼
1
P

X
i

fi Pi EðuijhiÞ

Pi ¼
R0;iP
R0;iPþ 1

P ¼
P

ifiPi

:

where fi is the fraction of individuals of type i, fi ¼ Ni=N, and Pi is
the prevalence in type i, Pi ¼ Ii=Ni. The numerical solution follows
from iterating on these four equations. An R-code is in
Supplementary Material 1.

Appendix C
Methods for simulation of epidemics and
validation of prevalence and genotypic value for
individual disease status
We simulated endemics according to standard epidemiological
theory to validate the numerical solution of the endemic preva-
lence (Equations 20a and 20b) and the genotypic values for binary
disease status (Equation 24). We considered two compartments
of individuals, susceptible individuals (S) and infected (I) individ-
uals, and a so-called stochastic SIS-model where susceptible indi-
viduals can become infected, and infected individuals can
recover and then immediately become susceptible again (Weiss
and Dishon 1971). For simplicity, we simulated genetic variation
in susceptibility only, with ci � Lnorm(0, r2

Alc
).

To limit Monte-Carlo error, we simulated a relatively large pop-
ulation of N¼ 2,000 genetically unrelated individuals for a total
of 300,000 events (infection or recovery). We used a burn-in of
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100,000 events before recording data on individual binary disease
status. Hence, in the recorded data, the average individual experi-
enced 100 events (50 infections and 50 recoveries).

The endemic was started by infecting a proportion P0 ¼ 1-1/c of
the individuals, chosen at random. Subsequently, we sampled
events (infection or recovery) and the individual involved using
Gillespie’s algorithm (Gillespie 1977). For each infected individual,
the probability of recovery was proportional to the recovery rate, a.
For susceptible individual i the probability of infection was propor-
tional to cciI=N, I/N denoting the fraction of the population that is
infected. Probabilities were accumulated over all individuals and
scaled to a sum of 1 by dividing them by their sum. Finally, the spe-
cific event was sampled by drawing a random number, say x, from
a standard uniform distribution and finding the event and the cor-
responding individual belonging to the probability interval [xl; xh],
where xl < x < xh. The disease status of that individual and I were
updated before sampling the next event. The time of each event
was not simulated. After 300,000 events, prevalence was calculated
as the disease status averaged over the entire population, and also
by individual, discarding the burn-in period. The regression coeffi-
cient of average individual disease status on Gy was also estimated.

Additive genetic variance in log-susceptibility was r2
Alc
¼ 0:33. Three scenar-

ios were considered, differing in contact rate: c¼ 1.22 giving P¼ 0.2, c¼ 2 giving
P¼ 5 and c¼ 5.15 giving P¼ 0.8. Those combinations of r2

Alc
, c and P were

found by numerically solving Equations (20a) and (20b). The actual prevalences
observed in the simulations were equal to these numerical solutions.

Appendix D
Additive genetic variance in log-normal traits.
We assumed log-normally distributed genotypic values for sus-
ceptibility, infectivity and recovery, also resulting in a log-normal
distribution for GR0 and for 1� GP. Hence, genetic effects are addi-
tive on the log-scale, but taking the exponent introduces some
nonadditive genetic variance on the actual scale. Here, we derive
the fraction of the variance that is additive on the actual scale.

Because all genetic effects had a mean of zero on the log-scale,
the problem is equivalent to finding the fraction of additive vari-
ance in z ¼ ex, where x � Nðl ¼ 0; r2Þ. From the properties of the
log-normal distribution, E zð Þ ¼ el er2=2. With a small change dm,
the mean of z becomes edl er2=2. Hence, the mean of z changes by
an amount e

r2
2 edl � 1ð Þ. Since limdl!0 edl ¼ 1þ dl, this change cor-

responds to e
r2
2 dl: Thus the least-squares linear regression coeffi-

cient of z on x equals

bz;x ¼ er2=2:

For example, the linear regression coefficient of the genotypic
value for prevalence (Equation 26b) on the breeding value for the
logarithm of R0 equals bGP ;AlR0

¼ c�1 exp 1
2 r2

AlR0
Þ

�
. Thus, the additive

effect for z equals

Az ¼ er2=2 x;

and additive variance in z equals

r2
Az
¼ r2er2

:

The total variance in z follows from the properties of the log-
normal distribution,

r2
z ¼ ðer2 � 1Þer2

:

The additive fraction of the variance in z, therefore, equals

fr2
Az
¼ r2=ðer2 � 1Þ

Figure D1 illustrates that the additive fraction of the variance
in z approaches 1 when r2 goes to zero. For r2 ¼ 0:52, �88% of the
variance in z is additive. Variances on the log scale larger than
0.52 are unrealistic (see main text). This indicates that at least
88% of the genetic variance in susceptibility, infectivity, recovery,
R0 and prevalence is additive when they follow a log-normal dis-
tribution.

Appendix E
Breeding value for individual disease status vs
breeding value for prevalence, without genetic
variation in infectivity
Without genetic variation in infectivity, we have ui ¼ u ¼ 1, be-
cause the scale is included in the effective contact rate c. From
Equation (24), the genotypic value for individual binary disease
status is,

Gy;i ¼
R0;iP
R0;iPþ 1

where, from Equation (20b),

R0;i ¼ cci=ai:

From Equation (26a), the genotypic value for prevalence is,

GP;i ¼ 1� 1
GR0 ;i

where, from Equation (8),

GR0 ;i ¼ cci=ai:
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Figure D1: The additive fraction of the variance in traits following a log-
normal distribution. sdx denotes the standard deviation on the normal
scale.
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Hence, without genetic variation in infectivity, R0;i and GR0 ;i are
identical, and we will use the symbol GR0 ;i in the following.

The linear approximation of the relationship between Gy and
GP follows from a comparison of their first derivatives with re-
spect to GR0 ,

dGp

dGR0

¼ 1
G2

R0

dGy

dGR0

¼ PðGR0 Pþ 1Þ � GR0 P2

ðGR0 Pþ 1Þ2

¼ P

ðGR0 Pþ 1Þ2

Substituting Equation (3), assuming limited heterogeneity,
yields

dGy

dGR0

¼ GR0 � 1
G3

R0

:

Hence,

dGy

dGR0

=
dGp

dGR0

¼ GR0

GR0 � 1
¼ P:

Therefore, for a small change in an individual’s genotypic
value for R0, the change in its genotypic value for binary disease
status is only a fraction P of the change in its genotypic value for
prevalence,

dGy = dGp ¼ P

Hence, when expressed relative to their mean, Gy and Gp differ
approximately by a factor P (see also Figure 4 in Bijma 2020). This
result is approximate, because the true relationship is nonlinear
and the expression Peq ¼ 1 � 1=R0 is approximate with variation
among individuals. For realistic magnitudes of the genetic vari-
ance, however, the nonlinearity is limited. Note that the above
derivation does not require the assumption of a log-normal distri-
bution of susceptibility and recovery.

So far, this appendix has considered genotypic values.
However, the factor P also applies on the level of the breeding val-
ues, which can be shown as follows. The above derivation is
based on derivatives with respect to genotypic value for R0, say
dx=dGR0 , where x is Gy or GP. Because the relationship between P
an y arises entirely via GR0 , we can translate the results to the
breeding values using

dx
dAlR0

¼ dx
dGR0

dGR0

dAlR0

:

The latter,
dGR0
dAlR0

, is the same for x is Gy or x is GP, so that the ratio
dAy=dAp is the same as dGy = dGp. Hence, we also find

dAy = dAp ¼ P:

Appendix F
Methods for observed response to selection
First a base population was generated of N¼ 4000 unrelated indi-
viduals, with genetic variation in susceptibility only. No distinc-
tion was made between males and females. For each individual,
breeding values for the logarithm of susceptibility were sampled
from Alc � N 0; 0:32

� �
, and individual susceptibility was calculated

as ci ¼ eAlc;i . The expected prevalence for the base generation was
calculated as P0 ¼ 1 � 1=c, with a c of either 2 or 10, and the ini-
tial disease status of base generation individuals was sampled at
random from BernoulliðP0Þ.

Next, an endemic was simulated following methods described
in Appendix C, for a total of 15,000 events (sum of infections and
recoveries), consisting of a burn-in of 10,000 events and 5,000
recorded events. The 4,000 individuals were ordered based on
their mean individual disease status over the 5,000 recorded
events (so based on 1.25 events on average per individual), and
the 2000 individuals with the lowest values were selected as
parents of the next generation (corresponding to a selected pro-
portion of 0.5).

Selected parents were mated at random. Each pair of parents
produced two offspring, resulting in N¼ 4,000 offspring.
Offspring inherited the breeding value for the logarithm of sus-
ceptibility in a Mendelian fashion; Alc;offspring ¼ 1

2 Alc;parent1

þ 1
2 Alc;parent2 þN 0; 1

2 r2
Alc

� �
. The initial disease status of offspring

(i.e., at the start of the burn-in period of their generation) was
sampled at random from BernoulliðPoffspringÞ, where Poffspring

denotes the expected prevalence in the offspring generation,

calculated as Poffspring ¼max 1� 1

c eA lc
; 0:02

h i
. The 0.02 guaran-

teed an average of at least 80 infected individuals at the start of

the endemic in any generation, also when the expected preva-

lence was zero (i.e, when 1� 1

c eAlc
� 0). Then an endemic was

started, as described above for the base generation, etc. This
process was repeated until the number of infected individuals
dropped to zero, implying extinction of the infection.
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