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Abstract 

The Tilman model of consumers competing for resources has some aspects that appear 

counterintuitive. Within the standard Tilman model for a single consumer and a single 

resource, when a very efficient consumer rapidly eats all available food, the resource density 

becomes zero, but if there is no food, how can the consumer survive? The paradox can be 

lifted by realising that on the short term indeed rapid consumption may lead to starvation and 

a decline in the consumer population, but in the long term a finite resource and consumer 

density remain. A single consumer living on two essential nutrients leaves the density of the 

non-limiting nutrient above its critical level, so what is done with the extra food? We explain 

that this does not imply extra food is consumed, just for fun, but that in fact the food is left 

untouched because there is no use for it. For a model with two consumers competing for a 

single nutrient one of the consumers will eventually disappear, even if the food economics of 

the surviving one is worse and there is still much food wasted. Both are inherent aspects of 

the model, and the paradox can be avoided if the difference between the consumers is small, 

in which case it will take very long to reach equilibrium. We argue that in general an extended 

stability analysis, in which not only the asymptotically stable state is considered, but also the 

unstable steady states and all time scales involved in the transient dynamics, can help in 

avoiding apparent contradictions in ecological models, or accepting them. 

 

 

1. Introduction  

Paradox noun, UK  /ˈpær.ə.dɒks/, US  /ˈper.ə.dɑːks/: a situation or statement that seems 

impossible or is difficult to understand because it contains two opposite facts or 

characteristics. (Cambridge Dictionary Online) 

 

Philosophers have used the idea of a paradox since ancient times in order to stimulate a 

critical discussion about a subject, to sharpen the mind. Here we apply this same approach to 

discuss some issues that may arise when using simple models for ecological systems. If the 

model does not perform as expected, what is wrong? Maybe it is the model, but it is well 

possible that it is the expectation, or the interpretation of the model, or something else. By 

formulating several paradoxes, and analyzing these in detail, we want to discuss and elucidate 

some aspects of simple ecological systems that still often lead to confusion. For the sake of 

argument we will not stop at misleading the reader first in formulating an alleged paradox, 
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which, admittedly, may cause frustration, but it comes with the territory and obviously we 

hope in the end it adds to the understanding. In particular we discuss some paradoxes of the 

Tilman model of competition for resources: a single consumer eating so rapidly that no food 

is left to survive, a consumer eating very rapidly but not using the food to build a sizeable 

population, still outperforming one that does, and a consumer seemingly eating one food out 

of luxury, while not actually needing it. As an introductory example we start with a very 

simple textbook model in ecology, not the Tilman model, to show what we mean.  

 

A farmer grows lettuce, which is eaten by snails. In a very simple model the ecosystem 

represented by the biomass )(tL  of lettuce and snails ( )S t  is modelled as 

 

( )
( ) ( ) 1 ( ) ( )

( ) ( ) ( ) ( )

L t
L t aL t bL t S t

x

S t cS t dL t S t

  
 = − −  

 
  = − +

 (0) 

with a, b, c, and d positive constants. In the absence of snails, the lettuce grows at an initial 

rate a, until it reaches a density x (the carrying capacity). In the absence of lettuce, the snails 

die at a rate c. If both are present the snails eat the lettuce at a rate proportional with both 

densities and proportionality constant b, with the lettuce biomass turned into snail biomass, as 

given by the constant d. The equilibrium densities are /sL c d=  and (1 / ) /s sS L x a b= −  for 

the lettuce and snails respectively. We assume the carrying capacity for the lettuce is much 

larger than to the equilibrium density ( sx L ). In equilibrium any increase in lettuce 

biomass is eaten away by the snails, and any increase in snail biomass is nullified by snails 

dying. In equilibrium the farmer is producing dead snails rather than lettuce.  

 

Assuming this is not what the farmer had in mind, two agricultural options are available: (I) 

kill off the snails, or (II) speed up the growth of the lettuce. The first option amounts to an 

increase in c, the mortality rate of the snails. The second option amounts to an increase in a, 

the growth rate of the lettuce. The parameters b and d describe the interaction between the 

snails and the lettuce, which is no business of the farmer. Because of the (changed) 

interference of the farmer with the ecosystem, the equilibrium shifts.  

 

Now we find a paradox. If the mortality rate c of the snails is increased, it is not the snail 

density at equilibrium that is heavily affected, but rather the lettuce density that increases. If 

on the other hand the growth rate a of the lettuce is increased, the equilibrium lettuce density 

is fully unaltered, instead the snail density goes up. This is counterintuitive, killing off snails 

should bring the snail density down. Similarly boosting lettuce growth should increase lettuce 

density. Indeed that is exactly what happens, right after the parameter is changed, but after a 

while the effect is counteracted by the response from the interacting snail-lettuce system.  

 

If the we investigate the dynamics for increased snail removal in detail (numerically 

integrating the equations using an forward Euler method with sufficiently small time step), we 
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see (fig 1) that an initial decrease in snails leads to an increase in lettuce, which does not go 

unnoticed by the snails. Their density increases as well, until an equilibrium is reached in 

which all lettuce growth is converted into dead snails. More dead snails, because their 

mortality rate is much higher.  

 

a.     b.  

fig. 1. Effect of an increase in death rate c of the snails in the snail-lettuce model. For 

parameter values see the appendix. On the short term the snail mass S (cyan line in fig a) goes 

down as expected, while the lettuce mass L goes up (blue line). On the long term the lettuce 

mass does go up less, the snail mass goes down only slightly. The phase diagram (fig b) 

shows how the system spirals from the original equilibrium to the new one (red dots), with an 

increased lettuce mass (horizontal axis) and almost the same snail mass (vertical axis).  

 

More fertilizer leads to an increase in lettuce (fig 2), and again the snails seize the 

opportunity. Lettuce density goes down again until an equilibrium value is reached with the 

same amount of lettuce, more snails, and hence an elevated dead snail production.  

a.     b.  

fig 2. Effect of an increase in growth rate a of the lettuce. On the short term the lettuce mass L 

(blue line in fig a) indeed goes up, but so does the snail mass S (cyan line). On the long term 

the lettuce mass returns to the original equilibrium value, the snail mass goes up. The phase 

diagram (fig b) shows how the system moves from the original equilibrium value to the new 

one, with the same lettuce mass and an increased snail mass.  

 

In fact there is no contradiction, it only looks like there is one, so we have a paradox indeed. 

The system does react instantaneously as we would expect it to do, but in the long run it does 

quite the opposite, and the effect can be explained and understood by looking at the detailed 
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dynamics of the system. There is not just one equilibrium, in fact the system has three (red 

dots in fig 3b). Starting near the saddle point at zero snail and lettuce density, the system first 

moves towards a saddle point with only lettuce. Because there are still a few snails, they 

eventually start multiplying and eating a sizeable portion of the lettuce, so the system moves 

away from the second saddle point as well, starting a series of loops with alternating high and 

low snail and lettuce density that will ultimately bring it to a stable coexistence equilibrium. 

Any sensible farmer growing lettuce will not wait for this, but harvest the lettuce right before 

the snails claim their share. Better avoid the snails than attack them. 

 

a.   b.  

fig 3. Dynamics of the snail-lettuce system starting at low lettuce and snail mass. The lettuce 

mass grows rapidly (a), while the snail mass remains very low. Once the snails start 

multiplying seriously, they eat away most of the lettuce, snails die, and the cycle repeats. 

Eventually the system will spiral towards the stable coexistence point (phase plot b).  

 

The time scale at which the lettuce is harvested by the farmer is much shorter than that at 

which the system relaxes towards the final equilibrium. The relevant time scale in this case is 

the short one, the relevant equilibrium an unstable one. The cause of the paradox, from the 

perspective of the farmer growing lettuce, is looking at the wrong time scale. For a farmer 

growing snails, a different perspective gives a different picture, of course, and similarly for 

the snails, the lettuce and the theoretical biologist. 

 

This is an example of how a relatively simple mathematical model, and a simple model 

analysis, can lead to a paradox. We will show how similar paradoxes can occur in a simple 

system of consumers competing for resources, the Tilman model. The Tilman model is 

substantially more complicated than the simple toy model treated above, but is not immune to 

the same effect. Indeed we have used the toy model as a somewhat peculiar type of 

introduction, in order to provide the right perspective for biologists. The main lesson is to 

never put blind trust in your biological intuition when it comes to assessing equilibrium 

dynamics in models of ecological systems, the main question is what one would want to do 

with the resulting paradoxes; accept, or remove them. This will be the focus of the discussion 

below. For a single consumer of a single resource, which we treat in paragraph 2.1, the 

maximal consumer density is reached if the consumers eat away all of the resource, but if 

there is no food, how can there be consumers at all? For two consumers competing for a 
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single resource we show in paragraph 2.2 it may happen that a consumer with a bad food 

efficiency, when invading a system with a consumer with a (much) better efficiency, still 

outperforms the latter and takes over the system. Why isn’t there a bonus on food efficiency, 

and why does the one with the better efficiency becomes extinct when there seems to be still 

plenty of food around? In Paragraph 2.3 we show for a single consumer depending on two 

resources, it seems as if the consumer is always eating more than is needed of one of the two 

resources, without any positive effect on its survival, so why would that consumer bother 

eating an excessive amount of that resource?  

 

 

2. The Tilman model 

Competition is an important concept in how we think of ecosystems. Whether on an 

individual level or on that of a population or species, the idea that behaviour provides an 

advantage which promotes survival or procreation is seen as a driving force of the 

development of the system, intentional or not. In the Tilman model, different consumers 

compete for resources, not in the sense that one consumer actively fights with another about 

access to resources, but effectively, for instance by faster consumption of the resource, or 

more economic use. While in reality a wide variety of behavioural and physiological aspects 

may come into play, in the models we treat there are just a few parameters that describe the 

interaction between the consumer and the resource and its reaction on intake of resources. We 

will use the term foraging for those parameters that can be associated with the intake of 

resources. In the models we compare the competition between two different consumers and 

look for the one with the combination of parameter values that gives an advantage over the 

other. These describe the strategy that in the long run makes the better consumer prevail. Note 

that the term strategy, like competition, suggests intentional behaviour; in the models there is 

no reason to assume there is, but the effect is the same. 

 

In an earlier paper [1] we have extensively described the competition model as introduced by 

Tilman, and performed a stability analysis. We summarize the discussion briefly. In the model 

there are consumers that inhabit a given ecosystem, and resources that the consumers need for 

their maintenance and growth. The model describes the development of the consumer and 

resource densities in time. There is no direct interaction between the consumers, nor between 

the resources. The dynamics of the densities is described by a system of coupled ordinary 

differential equations. The form for a system with a single consumer population with a 

biomass density ( )B t  and a single resource biomass density ( )R t  is 
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The parameter 
Bm  is the mortality rate of the consumer. The growth rate of the consumer is a 

function ))(( tRfB
 of the resource density only. We use a Holling type II functional response,  

 
RB

mBB
ktR

tR
ftRf

+
=

)(

)(
))(( , (2) 

with maximum rate mBf  and half saturation constant 
RBk . Decrease in resource density as a 

result of feeding leads to a proportional increase of the consumer density, with a fixed and 

constant conversion factor 
RBq . In the absence of consumers the resource density is described 

by a chemostat equation, with a dilution rate 
Ra  and a supply density 

Rs . Additional 

consumers and resources can be added to the model along the same lines, each consumer 

having a growth rate depending only on the resource densities and the depletion of the 

resources simply being the sum of the consumption by all consumers. 

 

The system has two stationary states, a trivial one in which the consumer is fully absent 

 ,0, == BsR R  (3) 

and one in which the consumer coexists with the resource at a finite density 
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Even for a single consumer and a single resource the model contains quite a number of 

parameters, one for the consumer ( )Bm , two for the resource ( , )R Ra s , and three for their 

interaction ( , , )mB RB RBf k q . All ecological effects within a complex ecosystem must enter the 

model through these parameters.  

 

2.1. A single consumer and a single nutrient 

In the absence of consumers the dynamics of abiotic resources is given by  

 ))((
)(

tRsa
dt

tdR
RR −= , (5) 

the so called chemostat equation. There is a paradoxical aspect to this equation. The equation 

describes the working of a chemical device called a chemostat, used in controlled chemical 

experiments and production processes. It consists of a reaction tank of volume V, containing a 

well-mixed solution of a nutrient at a varying concentration ( )R t . The reaction tank is 

supplied with a nutrient solution at a constant rate F from a feeder tank, with a constant 

concentration Rs , and there is an outflow at the same rate, keeping the volume of the reaction 

tank fixed. The ratio FV /  is the average residence time of a nutrient molecule inside the 

reaction tank, defining a time scale of the process. Inversely VFaR /=  is called the dilution 

rate of the chemostat. The inflow into the reaction vessel is fixed at RRsa , the outflow )(tRaR  
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depends on the resource density. A chemostat will also apply for instance to a lake with 

nutrients delivered and removed through inflowing and outflowing streams.  

 

  

  

 

Now what is the paradox? If there are no consumers, eventually a stable resource density 
Rs  

is reached, inflow matches outflow and all nutrients pass the system untouched. If there are 

consumers, part of the inflow is used, leading to an extra term in the equation. The resource 

density drops and the outflow is reduced proportionally. In the optimal situation, from the 

consumer perspective, consumers manage to eat all inflowing nutrients, nothing goes to 

waste, and the net outflow is zero. The nutrient density then is zero too. More precisely, in 

equilibrium there is a finite positive nutrient density *R  (eqn 4), and what the consumers 

cannot manage to eat flows out of the system. Consumers can use a more efficient foraging 

strategy to increase the amount eaten. Regardless of whether improved consumer behaviour 

leads to a decrease in mortality ( )Bm  or the half saturation constant ( )RBk , or increase in the 

intake rate ( )mBf , the equilibrium density *R  goes down. For the chemostat there is a 

negative relation between the density of the nutrient and the net resource supply rate (inflow 

rate minus outflow rate, Fig. 5). This is the basis of the paradox; a very efficient consumer 

eats all nutrients that flow into the system, leaving the nutrient concentration at zero, and if 

there are no nutrients to feed on left, how can the consumer survive?  

 

A better look at the model shows that in the limit of RBk  becoming zero, indeed the 

equilibrium nutrient density becomes zero, and the equilibrium consumer density *B  goes to 

its maximum. The full inflow of nutrients is converted into consumer biomass at the maximal 

rate, independent of the nutrient concentration (eqn 2) and in that sense the consumer 

behaviour is optimal. The model also indicates we shouldn’t worry about the consumers 

having no food, because the intake is independent on the food concentration. The question is 

whether this provides a realistic model, can we set RBk  to zero and leave all other parameters 

the same? If food becomes scarce, because it is eaten rapidly by the consumers, finding the 

last remaining nutrients will come at a cost. If the mortality goes up as a result of the 

increased effort needed to forage for the food, the net effect on the biomass can even be 

negative. So indeed the contradiction is virtual, there is nothing inherently wrong with the 

Figure 4. Schematics of a chemostat. 

Nutrient flows at a rate F from a supply 

vessel with a constant concentration s to a 

reactor with a constant volume V. 

Figure 5. Phase plot of a chemostat. The 

net nutrient inflow R´ decreases linearly 

with concentration R and is maximal at 

zero concentration. 
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model, it is simply an extreme case. In practice optimized consumer behaviour will not focus 

at reducing the nutrient spill to zero, that is a human perspective. A consumer in this model 

system may want to maximize its biomass, and if some food is spilled in the process, so be it, 

there is still plenty coming in. It is the net inflow that is relevant, not the concentration.  

 

Moreover, there was nothing wrong with our intuition, if the consumers rapidly eat the food, 

there will not enough be left to survive on and they will die. It depends on the rate of the 

nutrient and consumer dynamics, which in the model is given by the parameters Ra  and mBf

respectively, what will happen in practice. If the rates are comparable, the system will move 

gradually to equilibrium, but if the rate of the consumer dynamics is much larger than that of 

the nutrient (implying the associated time scale is much shorter) the consumer density can 

overshoot the stable one. In fig 6 this is shown for parameter values 0.05Ra = , 1Bm = , 

1,Rs =  2.5mBf = , 0.2RBk = , 1RBq = . The orbit in the phase plane starts near the saddle point 

where the nutrient density is at the supply level. The dilution rate is small compared to the 

consumption rate and consequently the consumers eat all the available food, as expected. 

Once the food is gone, the consumers die, consumption drops, gradually food levels increase, 

and the cycle starts again. The orbit spirals towards the equilibrium, which is a stable vortex. 

We have * 0.13R = , so 67% of the available food supply is used. The maximum value of the 

consumer mass density reached during the process is about 0.40, much higher than the 

equilibrium density * 0.043B = . Far away from equilibrium the system behaves as expected, 

but eventually it is a subtle balance that determines the fate of the consumer. 

 

a.   b.  

fig 6. Dynamics of the nutrient and consumer dynamics for a system according eqn 1 with 

parameters 0.05Ra = , 1Bm = , 1Rs = , 2.5mBf = , 0.2RBk = , 1RBq = . The low value of the half 

saturation constant RBk  indicates efficient consumption. Initially there is plenty of food, so the 

consumption rate is maximal and (almost) independent of the nutrient concentration. 

Consequently consumer mass density increases exponentially (a), while nutrient mass 

decreases likewise, because of the low dilution rate. When the food runs out, consumer mass 

drops exponentially, until the food level is high enough to turn things around. Eventually the 

system reaches the stable equilibrium at which most of the food supply is consumed. Because 

the food supply rate is low, the equilibrium consumer density is low too.  
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2.2. Two consumers competing for a single resource. 

Above we have looked at some aspects of the simplest Tilman model, with one consumer and 

one nutrient. Whether or not the consumer can survive on the available food supply depends 

on its properties. As expressed in the model parameters: * RR s , or ( )1 /mB B RB Rf m k s + , 

otherwise the food supply is not enough to maintain a positive stable population. The other 

parameters further determine the mass density the consumer can reach at equilibrium. We 

now ask the question whether a consumer can do better than just (barely) survive. Given 

fluctuations that are present in any ecosystem, a consumer can increase its chances of survival 

by increasing the stationary consumer mass density *B . Apart from issues of identifiability of 

model parameters within a given real system, when it comes to foraging, all parameters but 

Ra and Rs  are open for improvement. That implies that in order to have a higher *B , 

according to eqn (4), either the maximal growth rate mBf  can be increased, or the half 

saturation constant RBk  can be lowered, or the conversion factor RBq  (the inverse of the yield 

factor) can be decreased. These parameters directly affect the consumption. In the process the 

mortality must not go up too much, otherwise all effort is in vain. In most cases better 

behaviour will be a trade-off between all four effects, so that the net result is positive. Let us 

assume a consumer develops a behavioural pattern that reduces the energy involved in 

acquiring the resource. Lower energy losses in acquiring the food make that an individual 

consumer can reach the same growth rate with a smaller amount of food, or a higher growth 

rate with the same amount. The question is what would be the better strategy. Since the 

Tilman model itself is intended to describe competition, we use the same model, but add 

another consumer, with the same mortality, but with one of the other parameters slightly 

different. Again we will find a paradox. 

 

The model of two consumers (A and B) and a single resource is 
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with BA mm = . Apart from the trivial equilibrium without consumers ( 0A = , 0B = , RR s= ), 

we now also have the equilibria 
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(A survives, B dies, food level determined by consumption by A), and 
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(B survives, A dies, food level determined by consumption by B). Which equilibrium is the 

stable one in the presence of both consumers depends on the critical resource densities *

AR  and 

*

BR  only. Assuming that the stable resource level Rs  is sufficiently high to have positive 

stationary consumer densities, there are two possibilities. Either **

BA RR  , and species A 

prevails, or **

BA RR  , in which case eventually B gets the upper hand. The other species dies 

out. The special case **

BA RR =  will be discussed momentarily. Note that the conversion factor 

q is fully irrelevant in this context, because it is not contained in the equation for the critical 

resource densities. Within the model a consumer can use an improved foraging strategy to 

increase its growth rate in order to outcompete other consumers foraging for the same 

resource, even if in the process the conversion factor is increased. If that is the case the final 

density of the survivor invading in a stable system may even be lower than the original stable 

density of the one now becoming extinct. It is sufficient that the prevalent species outperforms 

the lesser one in terms of eating away so much of the food supply, that the other is unable to 

survive on what remains. It is competition for the resource only, what the consumer does with 

the resource is irrelevant. That contradicts our initial assumption, where we assumed the 

chances of survival could be increased by increasing the consumer mass, so was that 

assumption wrong, or is the model wrong, or do we have the wrong perspective? 

 

 

Figure 7. Time development of the densities of two species competing for a single resource. 

The half saturation constant for A is 10% smaller than that for B (left plot), the conversion 

factor q of A is four times that of B. All other parameters are the same for A and B. Initially 

species B and the resource are at equilibrium, but eventually A successfully invades and B 

becomes extinct. Even if the difference in kR is just 2% (right plot), still A prevails, but it takes 

much longer.  

 

In Figure 7 parameters are chosen such that the paradoxical scenario is exactly what happens. 

For the resource 1=Ra  and 2.1=Rs . For the consumers 1== BA mm , 2,mA mBf f= =  

9.0=RAk , 1=RBk , 1=RAq , and 25.0=RBq . This means that A is slightly more effective than 

B in acquiring the nutrient, growing at a higher rate at the same nutrient density, but A needs 

much more of the nutrient in order to do so. The equilibrium values are 3.0* =A , * 0B = , and

9.0* =AR , respectively * 0A = , 8.0* =B , and 1* =BR . As initial value we chose (0) 0.001A = , 
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(0) 0.8B = , and (0) 1R = , very close to the stationary point (8) of the system, which is a 

saddle point in the presence of A. Indeed after a while the density of both B and R can be seen 

to drop, while that of A slowly increases. The system moves away from the saddle point and 

eventually reaches the stable node without presence of B given by eqn (7). Even though 

species B needs much less food to grow than species A, it is the rate at which the species 

grows that eventually decides the balance. Because of the food requirements for A, which is 

removing only 25% of the stable supply level of the resource, there simply is just not, and 

only just not enough left for B. Even if the difference is much smaller 0.98RAk =  the 

dynamics is the same, but the takeover is much slower. 

 

There is a paradox in this. Initially the net rate (inflow – outflow) at which food is supplied is 

at 17% of the maximal rate 1.2R Ra s = ; the majority of the inflowing nutrient (83%) leaves the 

system untouched ( * 1R Ba R = ). This is sufficient to maintain a sizeable, stable population of B 

in the absence of A. Eventually the net supply rate is at 25% of its maximum ( * 0.9R Aa R = ), as 

A is eating away more, sustaining a substantially smaller population of A than that of B. The 

food density has barely dropped, implying there is still plenty of food around for B to forage 

for. In fact if B would eat at the same total rate it did originally, the resource density would 

drop to 0.7 instead of 0.9. One would think that with a little bit of extra effort both A and B 

would be able to obtain enough food to happily coexist, without putting a serious dent in the 

food supply. Not according to the model. Once the food density drops below unity, the growth 

function for B mercilessly convicts the species to extinction. The growth function depends on 

the resource density (R), not on the resource supply rate (R´). It looks like here the paradox is 

in the original assumption about survival potential and the detailed working of the model. A 

paradox of a different nature is that an intruder A could invade a system with B living on R, 

voraciously eat away the food, making B disappear, and then the bad food economy of A 

leaves it vulnerable to extinction as well. Not a paradox at all, just a possible, be it 

unattractive scenario of a real ecosystem. It is exactly what happens in the Tilman model if 

the equilibrium density of A is even lower than in the above example. Within the model the 

consumer survives, in practice it becomes doubtful it will in the long run. 

 

A special case of the Tilman model is **

BA RR = . If all parameters are independent this is not 

very likely to happen, but it may answer the question what happens if part of a population 

develops a slightly more efficient foraging strategy that allows it to grow with less food. We 

consider the case that the growth functions for A and B are identical, only the conversion 

factor of A is slightly less than that of B: RBRA qq  , which means that A consumes slightly less 

of the nutrient to reach the same growth rate. The answer is disappointingly simple, nothing 

happens. The reason is that for this particular case the stationary state is not a single point 

with fully specified values for all three densities, but the whole line connecting the 

equilibrium points (7) and (8). There are infinitely many equilibria. One of the eigenvalues at 

the equilibrium points is identically zero, implying that the dynamics along the associated 
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eigenvector, which is directed along the line, is infinitely slow. Along the line the resource 

density is fixed at the critical value, and both consumer densities are constant, but not 

uniquely specified. The equilibrium consumer densities, because the resource density is 

constant, satisfy 

 
* *( ) ( )R R A R R B

RA s RB s

A B

a s R a s R
q A q B

m m

− −
+ = =   (9) 

At which point on the line segment the system will end is determined by the point where it 

starts. The first two equations in (6) are fully identical, so we have  

 
( ) ( ) ( )

ln 0 (0) (0)
( ) ( ) ( )

s s

dA t dB t d A t
A B B A
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This means the ratio between the consumer densities is constant. If (0) 0A = , the mass density 

of A will stay zero ( 0sA = ), and *sB B= , if B is absent initially *sA A=  and 0sB = . An 

invading species that just consumes slightly less food than an existing one will remain at a 

low density if it invades at low density. The total consumer mass density will increase slightly 

(fig 8), making the combined population slightly less vulnerable to sudden temporary changes 

in the food supply, but the “better” foraging behaviour of A does not give it any advantage 

over B. 

 

a.   b.  

fig 8.  Tilman system with two consumers and one resource. Consumer B is in equilibrium 

with the nutrient when A invades at high density. For the resource 1=Ra  and 1.6Rs = . For 

the consumers 1== BA mm , 2== mBmA ff , 1RA RBk k= = , 0.9RAq = , and 1RBq = . Because 

with both consumers the food supply is insufficient to sustain the initial mass, the nutrient 

density drops, but so do the consumer densities. The ratio of the consumer densities stays the 

same, and in the end the nutrient density veers back to R*, while the sum of the consumer 

mass densities is just a little bit higher than the original density of B. In the phase plot (b) of 

the AB-plane the trajectory (blue) follows a straight line towards the origin, ending on the line 

of the equilibria (red). 

 

Within the model only a change in the growth function can accommodate an effect of 

improved foraging that will lead to an advantage of one strategy above the other. If only a 
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single resource is involved, it will always lead to the consumer with the better strategy 

overtaking the full system, there cannot be sustainable coexistence of two consumers. That 

latter conclusion is typical for the model, coexistence within the Tilman model needs at least 

two resources.  

 

2.3. A single consumer depending on two resources. 

For a single species depending on two different resources, the dynamical equations are 
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Note the different conversion factors for the two resources. The growth rate of the species 

depends on both densities. The growth function we use is  
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implying that for a given growth rate both resources need to have a certain minimal level, the 

presence of either resource is essential for growth and stability of the consumer. Both 

resources have a stable replenishing level, different for different resources, and independent 

of the other resource. Also the dilution rates are in principle different, but fixed. If there is a 

physical background, such as a river delivering the nutrients to a lake, in practice the dilution 

rates may be identical. Before we start investigating what may happen in such a system, we 

first recapitulate some of the mathematics.  

 

There are two stationary states. One is the trivial equilibrium ( 0B = , PP s= , RR s= ) without 

consumers and both resources at their replenishment level. The nontrivial coexistence point 

can be found as the intersection of two curves in the PR-plane. One curve is the zero growth 

isocline for B, in this case two semi lines, parallel to the P-axis and R-axis, and starting in 

( *, *)P R  
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The second curve in this case is a straight line  
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through the so-called supply point ( , )P RP s R s= = . At the intersection not only ( ) 0B t = , 

which defines the isocline, but also ( ) 0P t =  and ( ) 0R t = , so we have equilibrium. The 
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exact location of the intersection lies on one of the branches of the isocline for B (see also Fig. 

9b). The stationary point ( , , )B BB P R  is one of the following two 
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In order that the stationary consumer population is positive, *PsP   and *RsR  . That 

means that the supply point lies between the two branches of the B-isocline. If such is the 

case, the stationary point is a stable node or stable vortex, while the trivial equilibrium is a 

saddle point. If not, the trivial equilibrium is a stable node, leading to extinction. 

 

Now that we have the mathematical background covered, we can turn to the ecology. We 

want to know whether there is a way for the consumer to use some sort of trade-off between 

the two nutrients. Both are essential, but if one is above its minimal level, is there an option 

for the consumer to use that to its advantage? We choose a system with parameter values 

1== RP aa , 1== RP ss  (the two nutrients have the same parameters), 1=Bm , 3=mBf (the 

maximal intake rate is substantially larger than mortality), 8.0=PBk , 1.2RBk =  (the intake rate 

for P increases steeper than that of R), 2.1=PBq , and 6.0=RBq  (the consumer eats more of P 

than of R). This implies that the minimal required levels of the nutrient are 4.0* =P  and 

* 0.6R = , and the equilibrium is at 4.0=BP , 0.7BR = , and 5.0* =B . We start at 

(0) 0.001, (0) 0, (0) 0B P R= = = . Figure 9 shows the time development of the three densities 

(Fig.9a) and the phase plot (Fig.9b) indicates how the trajectory navigates between the 

stationary points. Note that the phase plot only shows the PR-plane, the consumer density B is 

not shown. In the present case the coexistence point lies on the semi line of constant P, this 

nutrient is brought down to the lowest level needed to support the consumer. The density of R 

remains above the value that is minimally needed to compensate for the innate mortality of 

the consumer. The reason is the relatively low conversion factor for R ( )RBq , or inversely, the 

relatively high associated yield factor. Because the consumer eats P at a higher rate than R, 

the intake ratio /RB PBq q  and thus the slope of the dashed line in fig 9 is such that we end up 

in the equilibrium given by eqn 15b 
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a.  b.  

Figure 9. Dynamics of a single consumer depending on two essential resources. Parameter 

values are 1== RP aa , 1== RP ss , 1=Bm , 3=mBf , 8.0=PBk , 1.2RBk = , 2.1=PBq , and 

6.0=RBq . The time plot (a) shows that initially the two resource densities increase to their 

stable levels, while the consumer remains at low density. Once the consumer density starts 

increasing the resource densities drop and the stable coexistence point is reached. The phase 

plot (b) in the PR-plane shows the same behaviour. The small dots are the equidistant time 

points of the numerical integration. Starting from the initial point close to the trivial 

equilibrium (red dot) it rapidly moves to the supply point (blue dot), which lies inside the 

quadrant defined by the B-null cline (thick black semi lines). From there it moves along the 

dotted line as defined by equation (14) to the stable coexistence point. The slope of the dotted 

line is determined by the intake ratio. 

 

It looks like we have another paradox here. In order to survive, according to (11) a minimal 

concentration of R* is needed, and indeed the actual concentration BR at equilibrium is larger, 

as expected. But with more of R around, the consumption of this nutrient is increased beyond 

what is actually needed, so why would the consumer take the luxury of eating more of R than 

the minimal requirement, what is the use of this luxury consumption? The answer is in the 

chemostat equation paradox. When the density of R is higher than R*, the consumption rate of 

R is actually lower than the one at the critical density. The additional flow is not consumed, 

but leaves the system untouched. It is all about the growth rate, as expressed by (11), and that 

does not depend on the consumption rate, but on the density of the nutrient. There is no such 

thing here as “luxury” consumption of R, unless one would want to use that for any 

consumption of that resource. If we take 0=RBq , the consumption of that resource is zero as 

well, and its density reaches its supply level. In this case the full B population survives on P 

only, and more importantly, at the same population size. Any effort invested in foraging for R 

seems wasted from this perspective. Obviously that is not what the model is intended to 

describe. Both resources are needed and both need to be present at a certain level. Resources 

are consumed at a fixed ratio until one of them reaches that level. At that point the other 

resource is at a higher level than minimally needed, because it is consumed at a lower rate. 

The consumption of the other resource could, in principle be increased further to alter the 

model parameter such that an increased growth potential is obtained. In hindsight the paradox 
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should maybe be that B can survive with a smaller intake of R than at the critical density of 

that resource, but that is the same chemostat paradox as we have seen before. There is no 

luxury consumption, instead there is some nutrient flow that might be used by the consumer.  

 

The actual question thus is not why the consumer is eating more of the non-limiting resource 

then needed, but whether the consumer could adapt its foraging strategy for the two resources 

to reach the same growth rate with less effort. This would open up possibilities to improve 

chances of survival with the same effort. Within the model there is some room. The density 

P* is limiting growth, the consumer eats at 60% of the maximal provision rate, and cannot eat 

more of P without having the density of that resource drop below *P . The density R* is not 

limiting, a consumer may eat more of this resource and use the energy gain to forage more 

efficiently for P. Note that we do not mean that the consumer might use the additional R to 

substitute for P, we still assume that in the growth function (12) both are essential, and the 

isocline is unaltered. We assume that an additional intake of R in some way can lead to a 

better food economy for P. Indeed if we drop the conversion factor of P to 9.0=PBq , we find 

stationary densities BPP =* , BRR =* , and 67.0* =B . At this point the consumer population 

still uses the same 60% of the maximal rate for P, and 40% of that for R instead of the original 

20%. So can we conclude that it helps to employ the additional food source R to improve the 

growth potential? Not really. This is simply one numerical example where the strategy does 

seem to be effective, a 25% extra food intake gives 33% more consumers. That sounds like a 

good deal indeed. But is it fair? Wouldn’t an increase in intake of R lead to a drop in 

efficiency, and is the decrease in the conversion factor of P realistic?  

 

The answer is in equation (15). If the coexistence point is along the *P P=  semi line, the 

stationary resource density is fully determined by the consumption parameter values for this 

resource. A change in for instance the conversion rate of R, with other parameters fixed, is 

simply compensated by a resulting different value for BR , to give the same B*. This effect can 

also be observed in Fig.9b, a change in the slope of the dotted line gives a change in BR , as 

long as the intersection point stays above R*. If an increase in RBq  can be used to lower PBq , 

no matter how small the decrease, the total effect, according to eqn 15b, will always be an 

increase in B*. The optimum is reached when both resources are consumed to such a level 

that both are restrictive for growth. In this case the intersection point of the semi lines is the 

stationary point. How large the effect is cannot be decided within the model, one would need 

an additional model describing the actual foraging process.  

 

 

3. Conclusions and Discussion 

For the simple snail – lettuce model in the introduction we have shown that an extended 

stability analysis, including all stationary states of the system, as well as the rates at which 

these states are approached or departed, can help avoid misunderstandings caused by just 
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looking at the asymptotically stable state. Before this asymptotic state is reached the system 

may pass along other states where it may dwell for quite a while before moving on. Not only 

are the unstable stationary states possibly important, also the time it takes to move from one 

state to the other sets the stage for what we may expect for the system to do, without the need 

to perform a full numerical simulation and follow the detailed trajectories. There is no reason 

to call for strange attractors or limit cycles or other phenomena from non-linear dynamics of 

complex systems, simply two saddle points and a stable vortex suffice to lead someone up the 

garden path. Fortunately the farmer had more horse sense. 

 

Within the Tilman model we have looked for ways how a consumer could deal with the 

available resources, for which we have loosely used the term “foraging”, and what that would 

imply to the parameters and the resulting dynamics within the confines of the model. In 

several cases that leads to paradoxes, the unravelling of which we hope adds to the 

understanding of (the working of) the model. 

 

A single consumer using a single resource has a variety of options to increase the 

consumption to the level where all of the available food is being consumed. That leads to a 

paradox, because if there is no food left, it becomes hard to find any. In practice the stationary 

food level will never become exactly zero, it simply will be lower the better the consumer is 

geared to quickly remove all incoming food. Only if all inflowing food is eaten 

instantaneously will the equilibrium density become zero, but in that case it is better to 

describe the consumer itself as the ecosystem in which the food is injected, ad see how it is 

digested within the body of the consumer. The optimal strategy in this case is indeed an 

optimum in the mathematical sense, it can be approached as close as one would want, but it 

can never be reached, not while keeping with the model. Of course it is possible to design 

models in which it is assumed that all food is being consumed and the detailed dynamics of 

the food concentration is left out of the model, and leaving the competition for the resource to 

parameters that just apply to different consumers in such models. 

 

Note that the Tilman model was developed originally for plants, and the resources were 

assumed to be abiotic compounds, such as phosphorous or nitrogen. For such an ecosystem 

the notion of foraging is much less clear than for snails eating lettuce. While snails may 

decide to switch to cabbage if the lettuce runs out, plants cannot simply decide to consume 

hydrogen sulfide once hydrogen oxide becomes scarce (though it could be a tremendous 

solution in arid regions). That does not mean plants do not have ways to adapt to their 

environment, on the contrary, they just do it in different ways than animals, and with much 

success. We have steered clear from making explicit what actual consumer behaviour is 

responsible for what specific parameter change in the model, and restricted the discussion to a 

parameter study of the model, with a clear connection to what parameters could be open for 

improvement.  
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For a Tilman system of two consumers and a single nutrient we have seen that it may take a 

long time before the “better” one fully takes over. Moreover, if the consumption parameters 

of the different consumers are such that their critical resource densities are identical, even if 

the total food economy if the consumers is different, the model allows these to coexist at a 

fixed density ratio. The conclusion can be extended to a system with any number of 

consumers and nutrients. For larger systems also more complex, chaotic dynamics is possible, 

but the same more simple dynamics of the smaller systems can already accommodate the 

existence, be it maybe for a finite but long time period, of any number of consumers. This 

forms a possible explanation of the so-called plankton paradox of the Tilman model: how can 

many species of organisms coexist in the plankton, even if they are competing for the same 

limited number basic nutrients? It is possible that such a system, when left alone, in the long 

run would see the disappearance of the majority of the species, but in practice the system is 

not left alone and undergoes major disturbances on time scales (much) smaller than what is 

needed for the slightly less performing species to become extinct. 

 

It may seem paradoxical that the better consumer, the one outcompeting the other, does not 

need to have a better food economy, it suffices to be able to survive at a lower critical 

resource density than the competition. It isn’t even necessary to eat all the available food, just 

bring the level down to below what the others need and Bob’s your uncle, like taking candy 

from a baby. In that sense it is maybe more important to realise that the bad food economy is 

actually an asset, to remove the competition it suffices to take away the food, so if winning is 

the name of the game, this is your chance of cheating. It is not what the model is intended for, 

obviously, but it may describe what happens if invasive species outperform native ones, only 

to set the stage for their own demise once the circumstances change. 

 

A single consumer of two essential resources consumes these within the model in a fixed 

ratio. The effect is that in practice always (at least) one of the resources will be limiting, and 

the limiting resource will be consumed to its limiting density. The non-limiting resource in 

this case will be consumed at a rate that is determined by the availability of the limiting 

resource and the ratio of the consumption rate. Its density at that point is higher than needed, 

implying that the excess is going to waste; it isn’t used by the consumers because they don’t 

need it, or rather, they cannot use it, because there is not enough of the limiting resource they 

would need in the process. It is essentially the same paradox as for a single consumer and a 

single resource,it is not about the density of the resource, but about its net inflow. The reverse 

of course is true, if the consumer can find ways of using the non-limiting resource to its 

advantage, it can only do so to the point where it does become the limiting one. From that 

point on the focus of any further improvements shifts to the other resource, or to both 

resources combined.  
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Appendix. The Snail-Lettuce Model 

A farmer grows lettuce, which is eaten by snails. In a very simple model the ecosystem 

represented by the biomass )(tL  of lettuce and snails ( )S t  is modelled as 

 

( )
( ) ( ) 1 ( ) ( )

( ) ( ) ( ) ( )

L t
L t aL t bL t S t

x

S t cS t dL t S t

  
 = − −  

 
  = − +

 (A0) 

with a, b, c, and d positive constants. In the absence of snails, the lettuce in the model will 

grow at an initial rate a, until it reaches a density x (the carrying capacity). In the absence of 

lettuce, the snails will die in an exponential relaxation process with rate constant c. If both are 

present the snails eat the lettuce at a rate proportional with both densities and proportionality 

constant b, with the lettuce biomass turned into snail biomass, as given by the constant d. The 

system will then tend to an equilibrium with densities / , (1 / ) /s sL c d S c dx a b= = − . We 

assume /x c d  , that is, the carrying capacity largely exceeds the equilibrium density of 

lettuce coexisting with snails. In equilibrium any increase in lettuce biomass is eaten away by 

the snails, and any increase in snail biomass is nullified by snails dying. In equilibrium the 

farmer is producing dead snails rather than lettuce.  

 

Effect of farmer interaction 

Assuming this is not what the farmer had in mind, he or she has two options to change the 

equilibrium state: (1) kill off the snails, or (2) speed up the growth of the lettuce. The first 

option amounts to an increase of the parameter c, the mortality rate of the snails. The second 

option amounts to an increase of the parameter a, the growth rate of the lettuce. The 

parameters b and d describe the interaction between the snails and the lettuce, which is no 

business of the farmer. Because of the (changed) interference of the farmer with the 

ecosystem, the equilibrium shifts.  

 

Now we find a paradox. If the mortality rate c of the snails is increased, it is not the snail 

density at equilibrium that is heavily affected, but rather the lettuce density at equilibrium that 

increases. If on the other hand the growth rate a of the lettuce is increased, the equilibrium 

lettuce density is fully unaltered, instead the snail density goes up. This is counterintuitive, 

killing off snails should bring the snail density down. Similarly boosting lettuce growth 

should increase lettuce density. Indeed that is exactly what happens, right after the parameter 

is changed, but after a while the effect is counteracted by the response from the interacting 

snail-lettuce system. An increase in lettuce density does not go unnoticed by the snails 

https://doi.org/10.1186/s40064-015-1246-6
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(fig A1), their density increases as well, until an equilibrium is reached in which again all 

lettuce growth is converted into dead snails. More dead snails, because their mortality rate is 

much higher, while the euquilibrium density is only slightly reduced. A decrease in snail 

density leads to an increase in lettuce (fig A2), and again the snails seize the opportunity. 

Lettuce density goes down again until the same equilibrium value for the lettuce is reached as 

before, but a higher snail density and a similarly increased rate of dead snail production.  

 

a.     b.  

fig. A1. Effect of an increase in the death rate c of the snails in the snail-lettuce model. The 

system is at equilibrium at parameter values a = 0.4, b = 1.6, c = 0.6, d = 0.3, x = 10 (so 

Ss = 0.2 and Ls = 2), when c is increased to 0.9. On the short term the snail mass S (cyan line 

in fig a) goes down as expected, while the lettuce mass L goes up (blue line, note the 

difference in scale of the lettuce and snail mass). On the long term the effect is considerably 

smaller; the lettuce mass does go up, the snail mass goes down only slightly. The phase 

diagram (fig b) shows how the system spirals from the original equilibrium value to the new 

one (red dots), with an increased lettuce mass (horizontal axis) and almost the same snail 

mass (vertical axis).  

 

a.     b.  

fig A2. Effect of an increase in growth rate a of the lettuce. The system is at equilibrium at 

parameter values a = 0.4, b = 1.6, c = 0.6, d = 0.3, x = 10 (so Ss = 0.2 and Ls = 2), when a is 

increased to 0.6. On the short term the lettuce mass L (blue line in fig a) indeed goes up, but 

so does the snail mass S (cyan line). On the long term the lettuce mass returns to the original 

equilibrium value, the snail mass goes up. The phase diagram (fig b) shows how the system 

moves from the original equilibrium value to the new one, with the same lettuce mass and an 

increased snail mass.  
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Lifting the paradox 

In fact there is no contradiction, it only looks like there is one, so we have a paradox indeed. 

Our notion of the system is too simple. The system does react instantaneously as we would 

expect it to do, but in the long run it does quite the opposite, and the effect can be explained 

and understood by looking at the detailed dynamics of the system. There is not just one 

equilibrium, in fact the system has three (red dots in fig 3b). One is the trivial equilibrium (T) 

at which there is no lettuce and no snails. This is a saddle point; if there are only snails, the 

snails die. A second equilibrium is where there is only lettuce (L). Also this is a saddle point; 

the lettuce grows until it reaches the carrying capacity. The coexistence equilibrium (C) as has 

been dealt with above, for the parameter values as used in the model calculations, is a stable 

vortex; in the phase plot (fig 3b) the system spirals towards it. In the current system the saddle 

point L is the most relevant equilibrium for the farmer growing lettuce, even though it is an 

unstable one. Starting from a low snail and lettuce density, that is close to the unstable trivial 

equilibrium T,  the system moves away along the unstable manifold (only lettuce) towards the 

saddle point L. Because there are still a few snails, they eventually start multiplying and 

eating a sizable portion of the lettuce, so the system moves away from the second saddle point 

as well, starting a series of loops with alternating high and low snail and lettuce density that 

will ultimately bring it to the stable coexistence equilibrium C. Any sensible farmer growing 

lettuce will not wait for this, but harvest the lettuce right before the snails claim their share. 

Better avoid the snails than attack them. 

 

a.   b.  

fig 3. Dynamics of the snail-lettuce system starting at low lettuce ( (0) 0.1)L =  and snail mass

( (0) 0.01)S = . Parameter values are a = 0.4, b = 1.6, c = 0.6, d = 0.3, x = 10 (so Ss = 0.2 and 

Ls = 2). The lettuce mass grows rapidly (a), while the snail mass remains very low. Once the 

snails start multiplying seriously, they eat away most of the lettuce, snails die, and the cycle 

repeats. Eventually the system will reach the stable equilibrium. In the phase plot (b) the 

system moves away from the trivial equilibrium T at (0,0), towards the saddle point L at 

(10,0), and bends off to spiral towards the stable coexistence point C at (2,0.2).  

  

The full equilibrium properties of the system can be derived from the stability analysis below. 

This analysis not only provides the equilibria as described above, but also the stability 

properties of those equilibria, including the rates at which the system moves close to the 

equilibria. These rates in turn determine the relevant times scales of the system. Below we 
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perform the full mathematical stability analysis of this system,we now proceed with the 

conclusions of it. In this case the time scale at which the lettuce is harvested by the farmer is 

about 10 time units, related to the rate at which the system moves away from the trivial 

equilibrium ( = 2.5 units). The time scale at which the system relaxes towards the final 

equilibrium is 25 units, implying that it takes of the order of 50-100 time units to really come 

close to equilibrium. One may check the time plots, the point is that the stability analysis 

suffices, there is no need to actually solve the equations (cf make a numerical approximation 

as has been done). The relevant time scale in this case is the short one, the relevant 

equilibrium an unstable one. The cause of the paradox, from the perspective of the farmer 

growing lettuce, is looking at the wrong time scale. For a farmer growing snails, a different 

perspective gives a different picture, of course, and similarly for the snails, the lettuce and the 

theoretical biologist. 

 

Conclusion 

This is an example of how a relatively simple mathematical model, and a simple model 

analysis, can lead to a paradox. Just looking at the stable asymptotic equilibrium state of the 

system tells us little about the dynamical behaviour away, and towards that equilibrium. Apart 

from the equilibrium itself, which can relatively easily be found and which shows how 

changes in the input of the model affect the output, also the rate at which the equilibrium is 

approached is an important consideration. If that rate is very low, and consequently the time 

scale (the inverse of the rate) at which equilibrium is reached is very large compared to the 

time scales of changes in the system parameters, the equilibrium may never be reached and 

other, possibly unstable equilibria are more relevant. Important is that the same mathematical 

procedure that gives us the equilibria and their stability properties, can also produce these 

time scales, at least near the equilibrium. 

 

Mathematical Stability Analysis 

The biomass )(tL  of lettuce and snails ( )S t  is modelled as 

 




+−=

−−=

)()()()(

)()()/)(1)(()(

tStdLtcStS

tStbLxtLtaLtL
 (A1) 

This is a nonlinear homogeneous system of differential equations, which we write as 

 
( ) ( ( ), ( )) ( )(1 ( ) / ) ( ) ( )

( ) ( ( ), ( )) ( ) ( ) ( )

L t f L t S t aL t L t x bL t S t

S t g L t S t cS t dL t S t

 = = − −


 = = − +
 (A2) 

to prepare for a stability analysis. The equilibria of the system are the solutions of the 

nonlinear system of algebraic equations 

 
( , ) (1 / ) 0

( , ) 0

f L S aL L x bLS

g L S cS dLS

= − − =


= − + =
 (A3) 

This system has three solutions 
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0 0 1 1 2 2( 0, 0), ( , 0), ( / , (1 / ) / ).L S L x S L c d S c dx a b= = = = = = −  

The stability properties of the equilibria are found by looking at the Jacobi matrix 

 
/ / (1 2 / )

( , )
/ /

df dL df dS a L x bS bL
J L S

dg dL dg ds dS c dL

− − −   
= =   

− +   
 (A4) 

For the first equilibrium the Jacobi matrix is 

 
0

(0,0)
0

a
J

c

 
=  

− 
 (A5) 

with eigenvalues a and c− . Because all parameters are positive constants, this means the 

equilibrium is a saddle point (one eigenvalue positive and one negative). The eigenvalues are 

the rates at which the solution moves away from or towards the equilibrium. In the present 

case it implies that if there are no snails, the lettuce mass close to the zero point increases 

exponentially at a rate a, at a time scale 0,1 1/ a = . Similarly if there is no lettuce, the snail 

mass decreases exponentially at a rate c, at a time scale 0,2 1/ c = . In the analysis above we 

have used parameter values a = 0.4, b = 1.6, c = 0.6, d = 0.3, x = 10; the corresponding time 

scales are 0,1 2.5 =  and 0,2 1.67. =  

 

The Jacobi matrix for the second equilibrium is 

 ( ,0)
0

a bx
J x

c dx

− − 
=  

− + 
 (A6) 

with eigenvalues a−  and dx c− . The first eigenvalue is always negative. In the absence of 

snails the lettuce mass close to the equilibrium behaves as 

 ( ) ( (0) )exp( )L t x L x at= + − −  (A7) 

and again the rate a defines a time scale 1,1 1/ a = . The second eigenvalues can be either 

positive or negative, depending on the parameter values. For the values as chosen above 

2.4dx c− = , meaning that the equilibrium is a saddle point. If the snail mass is nonzero, the 

death rate of the snails is more than compensated by the growth rate due to lettuce 

consumption, and the snail mass increases exponentially at this rate, with time scale 

1,2 0.42 = . Because the lettuce mass decreases proportionally, the system moves away at a 

tangent, along the corresponding eigenvector (see fig). 

 

The Jacobi matrix for the third equilibrium for the given parameter values becomes 

 
0.08 3.2

(2,0.2)
0.06 0

J
− − 

=  
 

 (A8)  

with complex eigenvalues 0.04 0.44i−  . This implies the equilibrium is a stable vortex, 

solutions spiral towards the equilibrium point with a period 2,1 2 / 0.44 14.4 =  = at a rate 

0.04, with a time scale 2,0 1/ 0.04 25 = = . The value of the period can be checked directly in 

the time plots, the relaxation towards equilibrium should be compared with the half time, 

which is more difficult to read from the plot itself, but has the correct order of magnitude.  
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Important is that it takes the system many periods before it comes really close to the stable 

equilibrium, so the relevant equilibria are the two saddles and the relevant part of phase space 

is the line connecting them. Provided there are not too many snails to start with, they can 

readily be removed from the equation, and the remaining model is just the logistic equation 

for the lettuce 

 '( ) (1 / )L t aL L x= −  (A9) 

which can be solved fully analytically.  


