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Summary

Preterm birth interrupts the natural, intrauterine growth path of infants that occurs during
the third trimester. As a result of preterm birth, there is a discrepancy between the maturation
status of the gastrointestinal tract and the process of microbial colonization in early life. Yet, the
concordant maturation of the gastrointestinal tract and the microbiome is pivotal for growth
and health of the preterm infant. Neonatal support in the early life of preterm infants offers
the opportunity to orchestrate the maturation of the immature gastrointestinal tract and the
colonizing microbes. Despite continuous improvements in preterm infant care, optimal feeding
is challenging due to the infant’s immaturity.

The intestinal bacteria and fungi are pivotal in health and disease. In preterm infants, variation in
the gut microbiota (in this thesis the bacterial community) and mycobiota (the fungal community
of the microbiota) is introduced due to a unique set of environmental conditions. Within this
thesis, we hypothesized that prematurity of the gut microbiota may be an inconspicuous challenge
in nutritional neonatal care. Moreover, we expected the intestinal fungi to be affected by clinical
variables in early life. A better understanding of the development of the gastrointestinal tract and
the microbes in preterm infants is key for optimal nutritional support. The work in this thesis
therefore studied the maturation of the gastrointestinal tract and of the intestinal microbes in
preterm infants with their implications for infant growth, development and health.

The infants studied in this thesis participated previously in a single-center, observational study
in which they were admitted to the neonatal intensive care unit or the pediatric ward of the Isala
Women and Children’s Hospital (Zwolle, The Netherlands). The preterm and full-term infants
were born between 24 and 42 weeks of gestation and were followed in the first six postnatal
weeks, during which clinical variables and feces were collected weekly. Gastric aspirates were
additionally collected daily in preterm infants during the first two postnatal weeks. Within this
thesis, infants were selected from this cohort based on gestational age and antibiotic use of the
mother and the infant. The infant’s gastrointestinal and microbial functionality was assessed by
enzyme activity analyses of host proteins and by metaproteomics with LC-MS/MS analyses.
The mycobiota’s composition was characterized by sequencing the internal transcribed spacer
region 2 (ITS2).

Functional analyses on the host and the microbiota were performed to improve the understanding
of gastrointestinal maturation during the early life of preterm infants. We identified host
and microbial marker proteins for digestion and barrier defense, which were indicative for
gastrointestinal maturation in the first six postnatal weeks. The combination of enzyme activity
analyses and metaproteomics showed that preterm infants were capable to digest human
milk, albeit to a lesser extent than full-term infants. Moreover, gastrointestinal barrier proteins
were compromised in preterm infants compared to full-term infants in the first six postnatal
weeks. The maturation status of the infant was additionally found to have implications on the
microbiome. Despite the immature status, human milk offers a protective function as shown by

multiple bioactive proteins detected in the preterm gastrointestinal tract.



Summary

Within this thesis we also present a clinical study design for the “From Mum to Bum” study,
in which we aim to investigate the effect of preterm birth on the microbiota’s functionality
and its relation to anthropometric outcomes. This pilot study will be an observational, single-
center study performed at the neonatal intensive care unit at Isala Women and Children’s
Hospital. A cohort of preterm and full-term mother—infant pairs will be followed during the
first six postnatal weeks with follow-up at three- and six-months postnatal age. Compositional
and functional methods will be combined to analyze multiple samples along the length of the
gastrointestinal tract. As such, we follow digestion of human milk from the breast of the mother
throughout the gastrointestinal tract of the infant, or “From Mum to Bum”.

Besides the preterm intestinal bacteria, the work in this thesis also describes preterm intestinal
fungi. Like bacteria, the colonization and development of the mycobiota in the preterm intestine
was hypothesized to be affected by clinical variables. We detected fungi and other eukaryotic
kingdoms in the intestinal tract of preterm and full-term infants in the first six postnatal weeks.
The gut mycobiota composition and development was influenced by gestational and postnatal
age patterns, individuality and mode of delivery. Our data support the hypothesis of vertical
transmission of fungi and underpin the role of the mode of delivery in the development of the
mycobiota in preterm infants.

The research described within this thesis contributes to current knowledge of the preterm
gastrointestinal maturation and its intestinal microbes during the eatly life of preterm infants,
as well as the clinical influences on their development. The intestinal barrier proves to be an
important environment where microbes interact with the intestinal epithelium and the immune
system to drive growth, development and health of the preterm infant. In light of its clinical
relevance, future research should consider the functionality of the preterm microbiota in human
milk digestion coupled to anthropometric outcomes as well as the interkingdom interactions in
the (preterm) infant intestine. Based on the research described in this thesis, the microbiome and
nutrition hold promising applications for preterm infant care that help to orchestrate maturation
of the gastrointestinal tract. Microbiota modulation offers hope for future improvements
in preterm infant care that pave the way for systemic and lifelong effects. Before nutritional
therapies targeting the microbiome can be implemented in preterm infant care, the mechanisms
by which microbes are involved in preterm infant health need to be thoroughly assessed. As
such, the preterm infant gut microbiome remains a research priority.
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CHAPTER 1

Preterm birth and its complications

One out of ten infants are born prematurely each year, which amounts to a total of approximately
fifteen million infants per year on a global scale'. In addition to burdening the health of the infant
and causing psychological stress for parents, premature birth is associated with rising healthcare
costs and a major socioeconomic impact>. Preterm birth is defined by the World Health
Organization as babies born alive before 37 weeks of pregnancy, and these births are subdivided
according to gestational age in extremely preterm (< 28 weeks); very preterm (28—32 weeks); and
moderate to late preterm (32-36 weeks)'. Preterm births can either be spontaneous or iatrogenic®.
Spontaneous preterm birth occurs due to early induction of one of the labor processes,
including increased uterine contractility, cervical dilatation and rupture of the chorioamniotic
membranes®’. These processes can be triggered spontaneously or by inflammatory processes at
the mother-child interface®. Contrastingly, iatrogenic preterm birth is medically indicated due
to complications during pregnancy and includes medical labor induction or caesarean delivery
without undergoing labor. While genetics are most likely involved in spontaneous preterm birth,
other risk factors include previous pregnancies, a multifetal pregnancy, malnutrition, infections,
stress and chronic conditions of the mother'*. Interestingly, preliminary results suggest that the
recent incidence of preterm birth has declined with the implementation of policies related to the
COVID-19 pandemic®®. The proposed undetlying mechanisms for this decline are a decrease in

the incidence of infections and in maternal stress®®.

Prematurity and associated complications are responsible for one third of the deaths in children
under the age of five years'’. Over the past decades, advances in technology have increased
chances of surviving preterm birth and have decreased mortality rates, although these are
dependent on the countries’ income'’. Clinicians have made major efforts to support the infants
optimally, but care is often a double-edged sword in which advantages of preventing infections
must be weighed against contraindications. Strategies to support the infant include nutritional
support, respiratory support and medication (including antibiotics and antimycotics)". Fact
is, the younger the gestational age at which an infant is born, the higher the chances are for
short- and long-term complications''. Short-term complications associated with prematurity are
increased risk of developing neonatal respiratory conditions, necrotizing enterocolitis (NEC),
sepsis, neurological conditions and feeding difficulties'?. NEC and sepsis are among the most
prevalent nosocomial infections and are associated with high mortality rates among preterm
infants in early life. LLong-term consequences include asthma, impaired cognitive development

and psychosocial problems''.

Meeting the nutritional needs of preterm infants

Preterm birth interrupts the natural, intrauterine growth of infants that occurs during the third
trimester. While all anatomical parts of the gastrointestinal tract are developed within the first
12 weeks of gestation, structural and functional properties only develop within 24 weeks of
gestation'’. Consequently, digestive enzymes are being produced upon preterm birth, albeit
below their full potential concentration and activity'®. The activity of lactase—important for
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General introduction and thesis outline

lactose degradation from milk—increases progressively from 24 weeks onwards and reaches
maximum activity at term age'’. Furthermore, the processes of sucking, swallowing and gastric
emptying have not been developed completely at preterm birth and their effective coordination
is only reached at term age'’. As such, the preterm gastrointestinal tract is structurally and
functionally not fully developed to process human milk feedings as it would at a term age.
Maturity of the gastrointestinal tract is needed to digest and absorb nutrients from milk feedings
efficiently. Therefore, nutritional support is a crucial part of neonatal care that supports the
infant in accordance with its gastrointestinal maturation status.

Nutritional strategies are needed to support the growth and (organ) development of the
preterm infant optimally, in which tissue growth and body composition of a fetus of the
same postmenstrual age is approximated”. The rapid growth that infants normally undergo
in the third trimester can hardly be reached by the preterm infant due to an abrupt change
in environment from womb to “world”®. The preterm infant is suddenly exposed to an
environment outside the maternal uterus that requires high energy expenditure for thermal
and metabolic homeostasis®. Particularly high amounts of protein are required to develop
new tissues®'. Consequently, fat-free mass accretion is pursued in nutritional support. Preterm
infants develop a lack of fat-free mass accretion at term equivalent age, subsequently negatively
affecting neurodevelopment®. Fat-free mass accretion is stimulated by human milk proteins that
are an important source of amino acids. Yet, the importance of nutritional strategies reaches
further than growth and developmental outcomes alone. The gastrointestinal tract and immune
system mature simultaneously in early life. A complex community of microorganisms in the
gastrointestinal tract—the gut microbiota—interacts with both processes and orchestrates
further intestinal and immunological development of the infant'. Additionally, human milk
stimulates the maturation of these three elements: the gut microbiota, the gastrointestinal tract
and the immune system®-”. First, human milk establishes and shapes the gut microbiota with
its pre- and probiotic components**. Second, human milk feeding stimulates the structural
and functional development of the gastrointestinal tract and maintains the intestinal barriet'*,
The intestinal barrier is compromised upon preterm birth and makes infants prone to NEC and
sepsis*". Lastly, human milk contains many immunoglobulins and protective components with
which it supports the naturally immature immune system of neonates®. Even more so than full-
term infants, preterm infants have an immature immune system that supposedly contributes to
the risk of NEC*. In summary, the support of the infant’s fat-free mass accretion together
with the stimulation of the gut microbiota, the gastrointestinal tract and the immune system

should be important aspects of nutritional neonatal care.

Immediately after birth, nutritional care is initiated with parenteral feeding in which amino acids,
lipids and other macro- and micronutrients are administered intravenously**°. While parenteral
feeding improves growth in the first postnatal weeks, it is also associated with metabolic and
infectious complications™. In contrary, enteral feeding stimulates the development of the
gastrointestinal tract—including endocrine and metabolic processes—and reduces local and
systemic inflammation®’. Therefore, the aim is to transition to full enteral feeding as soon as
possible and to use parenteral feeding only complementary™. In practice, however, full enteral
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feeding is often delayed due to concerns for increased risk of NEC. As such, the nutritional
recommendation is to feed parenterally in the early phase while transitioning into minimal enteral
feeding of (donated) human milk and human milk fortifiers™*>*™* Minimal enteral nutrition is
practiced widely in neonatal intensive care units (NICUs), in which small volumes of human
milk, which is the golden standard for enteral feeding, or formula are provided and are gradually

739 Besides the aforementioned

increased (15-30 ml./kg/day) to continuous enteral feeding
bioactive components, the major nutritious constituents of human milk are lactose and lipids*’.
When mother’s production is insufficient, pasteurized donor milk can be used as alternative
and may potentially be personalized in the future with mother’s own milk as inoculum*~*.
Additionally, fortification of human milk with micro- and macronutrients deriving from bovine
milk is necessary to provide sufficient nutrients to the infant and to improve growth in weight,

length and head circumference® "%,

In practice, nutritional management proves to be a major challenge in preterm infants.
Recommended full enteral feeding is not always feasible in critically ill infants or infants born
before 32 weeks of gestation who are prone to be intolerant to feeding, which is characterized

by abdominal distension, emesis and diarrhea**"’

. Aspirates of gastric residuals generally act as
putative indicator for feeding intolerance and are used to monitor the infant’s status and guide
feeding advancements as such®'. Despite these efforts, more than half of the hospitalized
preterm infants are being discharged with ongoing severe postnatal growth impairment®.
With a central role for nutrition, optimal maturation of the preterm infant is stimulated with

nutritional care.

The intestinal microbiota and mycobiota and their interactions
with the host

Technological advances have made it possible to progress our understanding on the prevalence
and diversity of microorganisms associated with the human body. Various human body
sites—including skin, vagina and gastrointestinal tract—harbor a complex community of
microorganisms®**. Microbial diversity depends on body site, complexity and aggregate functions
of the community and is correlated to health status, diet and hygiene™. Of those body sites, and
along the length of the gastrointestinal tract, the large intestine is most densely populated with
bacteria, fungi, archaea and viruses® . Collectively, the assembly of these living microorganisms
comprise the gut microbiota®. Within this thesis, however, we will refer to the “microbiota”
and “mycobiota” to indicate the assembly of microorganisms solely belonging to the kingdom
“Bacteria” and “Fungi”, respectively. The terms “microbiome” and “mycobiome” will be used to
indicate this assembly of microorganisms and their “theater of activity” comprising of microbial
structures, molecules, mobile genetic elements and relic DNA embedded in the environmental
conditions of the habitat. While bacteria reach high cell densities of approximately 10" cells per
gram of feces in the adult large intestine (collectively called the “microbiota”), fungi are present
in substantially lower numbers®®. Fungi are estimated to comprise 0.1% of the microorganisms
in the large intestine and consist of 10°-10° cells per gram of feces (collectively called the
“mycobiota”), although these numbers may be an underestimation®**®’. While smaller in cell
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counts, fungal cells are 10-fold longer and 100-fold larger in volume than bacterial cells. Hence,
the fungal biomass and the metabolites they produce cannot be compared with the microbiota

by solely considering cell counts®’.

Both bacteria and fungi have indispensable functions that influence many processes in the

human body and thereby are pivotal for health>**

*. The microbiome and mycobiome ate
therefore increasingly appreciated as a fundamental and necessary component of human
physiology>”. The microbial gene pool in the intestine consists of five million unique genes®.
Despite interpersonal differences in microbial community composition, there is a high level of

functional redundancy between microbial community members®.

The gut microbiome’s functions

The microbiome interacts with the physiology and the maturation of the gastrointestinal
tract. First, the gut microbiota’s metabolic functions are distinct, yet complementary to human
enzymes. Certain intestinal bacteria are involved in the biosynthesis of vitamins B9, B12 and K
and of amino acids®. Others aid in absorption of ions such as calcium, iron and magnesium®.
Second, the gut microbiota degrades undigested carbohydrates such as those in human milk.
While infants can digest lactose from human milk, other complex carbohydrates remain
undigested and pass to the colon where members of the gut microbiota consume the so-called
“human milk oligosaccharides” (HMOs). More specifically, Bifidobacterium spp. and Bacteroides
spp. have genes encoding for glycosyl hydrolases, enzymes involved in HMO degradation®®".
One of the intermediate metabolites of HMO degradation is lactate and, thus, is dominant
in early life. HMO degradation by the microbiota yields short-chain fatty acids (SCFAs)
including butyrate, acetate and propionate™, and thereby contributes to intestinal homeostasis
and microbiota development™. SCFAs act as nutrient for the microbiota itself’™?, and are
important for gastrointestinal maturation by upregulating tight junction proteins that maintain

the intestinal barrier’"”

. Butyrate is the main energy source of epithelial cells and specifically
stimulates epithelial cell differentiation while inhibiting epithelial cell proliferation™. Yet, the
levels of butyrate and the abundance of butyrate-producing bacteria are low in infant’s feces
and succeed with increasing age™”. Given their predominance in early life, acetate and lactate
may thus be more relevant for maturation of the infant intestine’”. The importance of the
microbiome in intestinal epithelial development is epitomized in germ-free mice that have a
smaller intestinal surface area, decreased epithelial cell turnover and underdeveloped villi and
crypts compared to mice colonized with intestinal bacteria”. However, not only the presence,
but also the composition of the microbiota may affect intestinal epithelial development”.

The microbiome also develops and regulates the immune system. The simultaneous development
of the microbiota and the immune system in early life is critical for intestinal homeostasis, as
it may prevent inappropriate inflammatory responses toward commensal bactetia®®’. Thereby,

0778 Interactions

disturbances in these processes can have long-lasting health consequences
between the microbiota and the immune system occur at the gut-associated lymphoid tissue

(GALT), which is part of the mucosal immune system and is the primary site of interaction
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between the microbiome, the immune system and antigens®’. Pathogen Recognition Receptors
(PRRs) or G-protein coupled receptors can recognize Microbial Associated Molecular Patterns
(MAMPs). Also, Microfold (M) cells facilitate direct interaction of bacteria in the lumen with
lymphoid cells by transporting bacteria across the epithelial cell layer. The intestinal mucus
lining forms a niche for bacteria with mucin-degrading capacities, including Bifidobacterium
Spp., Bacteroides spp., Ruminococcus gnavus and Akkermansia muciniphila”. Niche occupation of
the mucosal surface establishes a physical barrier for potential pathogens, but also leads to the
production of compounds forming a chemical barrier’. Moreover, attachment and invasion
of pathogens is inhibited by competing for nutrient availability along with production of
antimicrobials. These mechanisms contribute to so-called “colonization resistance”, defined as

the ability of commensal bactetia to prevent expansion of potential pathogens™.

The gut mycobiome’s functions

There are many similarities and interactions between the microbiota and the mycobiota as they
share a niche environment. Although it is still unclear if fungi are residents of the intestine or
rather transients, it is likely that fungi can exert bioactive functions™. Like bacteria, intestinal
fungi are involved in gastrointestinal physiology and maturation. First, fungi exert metabolic
functions, although these are not studied extensively in the infant intestine. One example is
the production of SCFAs, of which particulatly butyrate is produced®®*#2. Moreover, some
fungi may be related to carbohydrate digestion as the fecal abundance of Candida spp. has

been positively correlated to a carbohydrate-rich diet”%¢

!. These metabolites may then be
fermented by intestinal bacteria into several by-products”. Besides degrading carbohydrates
directly, Saccharomyces bounlardii has been reported to stimulate the activity of brush border
enzymes—amongst others sucrase, lactase and maltase—and nutrient transport®’. Additionally,
some fungal species may promote growth of lactic acid bacteria by secreting amino acids®.
In that way, fungi might stimulate lactose degradation indirectly and play an important role in
human milk degradation. Future studies are needed to elucidate the ability of fungi to degrade
human milk components directly and the possible products this would generate, as well as the
effects of these products on host processes.

The mycobiome additionally affects the host immune system functions®®®¢

»8 Upon stimulation
by fungi in the intestine, structural development of lymph nodes is initiated and lymphocyte
homing to the intestine is induced®. Furthermore, fungi can modulate immune responses
reaching further than the gastrointestinal tract, as fungal dysbiosis in the intestine has been shown
to affect immune responses in distal organs® . Such immune responses are mediated through
some of their immunomodulating metabolites. The most studied immunomodulators include
B-glucans and mannans that both derive from the fungal cell wall, as well as prostaglandin E2-%.
Although understudied, the commensal fungi may provide local and systemic protection. For
example, commensal intestinal fungal species can functionally replace intestinal bacteria by
reducing susceptibility to intestinal injury and extra-intestinal infection®. These benefits are
mediated by the fungal cell wall mannans that confer protection against mucosal tissue injury
and upregulate the responsiveness of circulating immune cells”. Additionally, commensal
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Candida albicans protects against systemic invasive infection by extracellular pathogens through
the stimulation of systemic Th17 immune responses”. Other reported protective actions by
the probiotic yeast S. boulardii include pathogen binding and the production of antimicrobial
peptides, although many of the mechanistic details underlying these observations are still

missing®.

Studying the intestinal microbiota and mycobiota

The intestinal microbiota and mycobiota are mostly studied by using fecal samples as proxy
for the intestinal content. Collection of feces is non-invasive compared to other used methods
such as biopsies and endoscopic procedures”. However, microbiota, and possibly mycobiota,
composition varies along the intestinal tract, as well as across the biostructure of a stool sample

and with the consistency of the stool” "

Conventionally, the gut microbiota has been studied by culturing and characterizing bacterial
isolates. The major limitation of these techniques is the selectivity toward the readily cultivatable
bactetia'®, which has been termed “the great plate count anomaly”'™. Yet, new high-throughput
techniques have revived microbial cultivation'>'">'””. Nowadays, the microbiota composition
is most often characterized by a culture-independent method that sequences the highly variable
regions of the conserved ribosomal RNA (rRNA) 16S subunit with amplicon sequencing. Due
to its vatiability, the 16S tRNA subunit allows to classify identified bacteria up to species level'"’.
Amplicon sequencing comprises extraction of DNA from complex, biological samples containing
a mixture of microorganisms. Additionally, many technological and computational advances now
allow for culture-independent, high-throughput “-omic” methods. These methods include the use
of DNA (metagenomics), RNA (metatranscriptomics), proteins (metaproteomics) and metabolites
(metabolomics). With the advances in “-omic” techniques the questions “Who are there?”, “What
can they do?” and “What are they doing?” have become the mantra of the gut microbiologist. In
fact, it is easier than ever to study composition, functionality and activity of microorganisms in any
given ecosystem although interpretation of biological implications can still be challenging,

In contrast to prokaryotes, no consensus has been reached in biomarkers for studying eukaryotic
fungal communities™ """, The internal transcribed spacer (ITS) region has been proposed as
“universal barcode marker for fungi”''*. The I'TS regions of fungal ribosomal DNA (tDNA)
consists of two regions, termed “ITS1” and “ITS2”, that allow for classification at species
level™"> The ITS2 region has been recommended because of its better taxonomic resolution
and low primer bias compared to ITS1'">!"%!"7 Other biomatkers for the fungal community
include the small (18S) and large (28S) fRNA subunit'*. Although being more conserved, its
variability is too low for classification at species level''". Besides the ongoing debate on the
genomic target regions and the optimal primer sets, the fungal databases present another
challenge®®!"t112118 While bacterial 16S rRNA databases are well-characterized, the fungal
reference sequence database is still more limited”. Moteover, within the fungal databases, many
of the fungal sequences are annotated as “uncultured””. Lastly, sexual (telecomorph) and asexual

(anamorph) forms of a fungus atre often classified into a different taxon™.
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Intestinal microbiota development in preterm infants

In early life, the gut microbiota of a healthy full-term, vaginally delivered and exclusively breastfed
infant is considered the golden standard for an optimal microbiota development'”’. The mode
of delivery is important for which bacteria first colonize the infant intestine®'*™'*. Vaginally
born infants typically acquire bacteria resembling the vaginal microbiota of their mother,
whereas caesarean (C-)section infants acquire bacteria resembling the skin microbiota and show
reduced diversity'*'~'*. Generally, the intestine of infants is colonized with facultative anaerobic
bacteria during and shortly after birth due to the presence of low amounts of oxygen in this
environment'*. These facultative anaerobic bacteria belong to the genera Enterobacter, Enterococcus,

Staphylococcus and Streptococcus'®

. As facultative anaerobic bacteria consume the residual oxygen
in the infant intestine, the resulting lowered redox potential allows obligate anaerobic bacteria
to thrive'*. Bifidobacterium spp., Bacteroides spp. and Clostridium spp. proliferate and become the
predominant genera, of which particularly Bifidobacteriunm and Bacteroides species have a selective

25,08-70.126-128 ' Bregstfed infants are for this

advantage in early life in light of HMO degradation
reason typically characterized by a microbiota dominated by bifidobacteria, while formula-fed
infants have a more diverse microbiota®. The degradation of HMOs by Bifidobacterium spp.
and Bacteroides spp. generates beneficial nutritious components for epithelial cells and intestinal
bacteria, and is therefore considered a beneficial process supporting gastrointestinal health in
68-70

carly life

Microbial colonization of the neonate’s intestine is already impacted before birth by maternal
factors, such as the microbiota composition of the mother, and prenatal or intrapartum antibiotic
administration'”. From the moment after birth, the gut microbiota composition develops by
selective pressures, including gestational age, antibiotic treatment and diet (Fig. 1.1)"*% Of
those variables, gestational age influences the gut microbiota development strongly'>>"**. Preterm
infants typically display delayed microbial colonization of obligate anaerobes and limited
microbial diversity compared to full-term infants'>"*". At the same time, potential pathogenic
and facultative anaerobic bacteria are increased'™* . The genera Ewnterobacter, Enterococcus,
Escherichia, Klebsiella and Prevotella are predominantly present in preterm infants and less in

full-term infants!?"1#1-143

. Contrastingly, Bifidobacterium spp. levels are generally less abundant
in preterm infants compared to full-term infants'”'*. Other selective pressures relevant in
preterm infants are the NICU environment, antibiotic treatment of the infant and respiratory
support (Fig. 1.1). The hospital environment may act as reservoir for microbes, selected by lavish

antibiotic use, that subsequently colonize the infant intestine''*

. Moreover, antibiotic exposure
and respiratory support have been shown to affect microbiota composition and functionality in
preterm infants considerably by delaying colonization with beneficial, obligate anaerobic bacteria
like Bifidobacterium spp.”"'*+1%. As a consequence, shifts in obligate and facultative anaerobic
bacteria may have an impact on HMO degradation in the preterm infant intestine'"”". In turn,
this may affect acetate and lactic acid production that is important to reduce intestinal pH and

inhibit growth of pathogens'".
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Figure 1.1 Environmental influences on the microbiome and mycobiome of (preterm) infants.

The disrupted microbiota development in preterm infants is a risk factor for development of
NEC and sepsis'**"*". As mentioned before, other risk factors include a decreased intestinal bartier
and a naive immune system, which is common in preterm infants**"*"*2 Although the etiology
of these nosocomial infections is multifactorial, the microbiota plays an indispensable role in
the development of both diseases™'**'*. While no causative microorganism has been identified,
low microbial diversity and predominance of a single genus of the Proteobacteria phylum are
frequently observed in preterm infants with NEC*"*!% In sepsis, Gram-negative bacteria including
Escherichia coli, Klebsiella spp. and Pseudomwonas spp., and Gram-positive bacteria including Enterococcus
spp., Streptococcus spp. and coagulative-negative Staphylococci (CoNS) are frequently identified™".
Moreovet, a delay in colonization with obligate anaerobic bacteria may be a predisposing factor™".
However, some bacteria may have protective effects as indicated by their decreased abundance in
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preterm infants with NEC or sepsis. More specifically, the abundance of phyla Actinobacteria,
Bacteroidetes and Firmicutes are generally decreased in NEC cases, while low bifidobacterial
abundance has been observed in preterm infants with sepsis'>*. Furthermore, these taxa are more
abundant in healthy preterm infants'*. Yet, the mechanisms of the involvement of microbes in

pathogenesis or protection of NEC and sepsis are still largely unknown.

Intestinal mycobiota development in preterm infants

Normally, the intestine of a vaginally delivered infant is colonized by Candida spp. through vertical

transmission from mother to infant>-!>>1%

. Although the fungal genus Candida is a commensal of
the vaginal mycobiota, Candida species ate also frequently identified in vaginal infections'”. Other
fungal species observed in infants include Aspergillus, Cladosporinm, Cryptococcus, Debaryomyces,
Elmerina, Eurotiomycetes, 1 eptosphaernlina, Malassezia, Nectriaceae, Penicillinm, Saccharomyces, Stereun,

54,58,155—

Tremellomycetes and Trichosporon 8, In contrast to healthy infants, the preterm infant gut

mycobiota is often dominated by a single species, typically a yeast such as Candida spp.””">*. More
specifically, C. albicans and C. parapsilosis are highly prevalent and persistent in preterm infants'’.
Other fungi identified in stools of extremely low birth weight and preterm infants include those

of the Saccharomycetales order and species of the Cladosporium and Cryptococcus genus™ .

Similar to the microbiota, environmental variables drive mycobiota development and include
gestational and postnatal age, mode of delivery, hospital environment, antibiotic exposure and
diet (Fig. 1.1)>%">%1%1 "The mothet’s mycobiota and the infant’s bacterial microbiota additionally
influence the mycobiota composition and diversity'. At birth, the mode of delivery determines
vertical transfer of fungi from mother to infant. This is well studied for Candida spp. in particular,
but has also been described for the Saccharomycetales order and species of the Cladosporinm and
Cryptococens genus'™*'%, Furthermore, the mycobiota is affected by the hospital environment, which
may hold a reservoir of fungi that could colonize the intestine of hospitalized (preterm) infants'".
After birth, fungal diversity generally increases with gestational and postnatal age'’. Diet continues
to shape the mycobiota with increasing postnatal age. Early in life, human milk may be a source
of viable fungi for the infant gut mycobiota'*"'%"'%". Moreover, HMOs within human milk inhibit
hyphal morphogenesis as well as fungal interaction with premature intestinal epithelial cells and

16

thereby shape the mycobiota'®®. After weaning, the food-associated Saccharomyces cerevisiae becomes
most abundantin infants"’. As mentioned before, itis unclear if this food-associated yeast becomes

a resident of the intestine or rather is a transient.

Fungal colonization in eatly life and its potential health effects is a relatively new field of research™®.
Important to note is that fungi can be dimorphic®. For example, Candida spp. have the ability
to grow in unicellular budding yeast forms and in filamentous hyphal forms. Immune cells may
recognize these two morphologies differently, which therefore can have implications for the fungi’s
pathogenicity and their role in immuneprogramming'®"". Many fungi are commensal and some
have been shown to confer health benefits®®%>*>!">. For example, administration of the probiotic
strain S. boulardii has been shown to be effective in ameliorating gastrointestinal diseases'*!”. In
contrast to health benefits, the mycobiota can, however, also act as a reservoir for opportunistic
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161 Preterm infants often

pathogens in immunocompromised hosts such as preterm infants
experience overgrowth of an opportunistic pathogenic fungus after antibiotic treatment, which
typically results in invasive systemic candidiasis'™"*". Morbidity and associated mortality rates of
invasive systemic candidiasis in preterm infants are as high as 10% and 30%, respectively'®"**,
Invasive candidiasis is most often caused by C. albicans, which might transition from commensal
to opportunistic pathogen in response to perturbations in the microbiota and/or weakening of
the immune system'®'%, Another suggested mechanism is the primary invasion and subsequent
infection of physiological barriers after they have been breached, for example by NEC'H#6-185,
Factors that might trigger the transition include long-term or repeated use of broad-spectrum
antibiotics, use of central venous catheters, parenteral nutrition and a naive immune system'*"'%>1%,
Indeed, antibiotics may promote overgrowth by Candida spp. through induction of genetic changes

leading to increased fitness of C. albicans in the intestine'™.

Interkingdom interactions in the intestine

Different types of microorganisms in the intestinal tract have co-evolved with their host into a
complex ecosystem. Sharing the same niche environment allows for intimate crosstalk between
bacteria, fungi, archaea and viruses'". Such interactions—referred to as “interkingdom” (used in
this thesis), “transkingdom” or “multibiome” interactions—have been observed in the intestine.
Interkingdom interactions start in early life, in which bacteria and fungi correlate inversely in
the infant intestine'”!. Causal implications have been established in mice for intestinal fungi
with microbial ecology and with host immune functionality'”?. Described interactions between
bacteria and fungi are mutualistic, commensalistic and competitive®.

Most mutualistic interactions have been observed in the oral and vaginal environments

01193195 Bacteria and

between C. albicans and various Streptococcus species in mixed biofilms
fungi co-occur in mixed biofilms providing extra protection against host immune responses
compared to monoculture biofilms'>"”. On the one hand, bactetia are protected by a fungal
polysaccharide matrix and become more resistant to antibacterial compounds'>"""*". On the
other hand, fungi benefit from the extracellular matrix of bacteria that enhances virulence

d202,203

factors for fungal filamentation®, even though inhibition by bacteria is also reporte

Indeed, emerging evidence suggests that mixed biofilms decrease antimicrobial efficacy 7 vitro'*®.
Another mutualistic, interkingdom interaction is cross-feeding. The yeast S. cerevisiae has been
shown to enable growth of lactic acid bacteria iz vitro. In nitrogen-rich environments, S. cerevisiae
adapts its metabolism by secreting metabolites, of which especially amino acids®. Subsequently,
Lactiplantibacillus plantarum and Lactococcus lactis benefit from these amino acids and produce

galactose and glucose that are consumed by the yeast™.

One of the described commensal interactions is the ability of C. albicans to promote growth
and proliferation of bactetia, such as Clostridium difficile®. The yeast consumes oxygen by
mitochondrial activity and thereby creates a favorable anaerobic environment for obligate
anaerobic bacteria like C. difficile™**”. Other commensal interactions have been described in

which Enterobactetiaceae positively affect growth of yeasts in the mouse’s intestine™”.
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Competitive interactions between bacteria and fungi are mainly described from the bacterial
perspective. The negative effect of bacteria on fungi is most evident in fungal overgrowth
after antibiotic treatment. Both in murine models and in humans, antibiotic treatment has been
shown to support Candida spp. colonization and fungal overgrowth'® "% Intestinal bacteria
have a diverse repertoire of molecules capable of disturbing fungal growth and differentiation®’.
Bacteria can reduce virulence factors of C. albicans by affecting their filamentation, adherence
and biofilm formation®”'%. Reduction of virulence factors of C. albicans may in turn lead
to reduced protection of filamentous bacteria in mixed biofilms®. Future research should
shed light on deleterious effects of fungi on bacteria, as these are currently understudied. As
mentioned before, bacteria outnumber fungi substantially in the intestine. For this reason, future
studies additionally need to account for the absolute abundance of bacteria and fungi in these

interkingdom interactions.

Research aim and thesis outline

Preterm birth interrupts the natural, intrauterine growth of infants that occurs during the third
trimester. As a result of preterm birth, there is a discrepancy between the maturation status
of the gastrointestinal tract and the process of microbial colonization in eatly life. Yet, the
concordant maturation of the gastrointestinal tract and the microbiome is pivotal for growth
and health of the preterm infant. Neonatal support in the early life of preterm infants offers
the opportunity to orchestrate the maturation of the immature gastrointestinal tract and the
colonizing microbes. A better understanding of the development of the gastrointestinal tract
and the microbes in preterm infants is key for optimal nutritional support. The work in this
thesis therefore aimed to study the maturation of the gastrointestinal tract and of the intestinal
microbes in preterm infants with their implications for infant growth, development and health.
To this end, we provide new understanding on how the intestinal maturation status of the
infant and the microbiota’s functionality are affected by preterm birth. Moreover, we present
a novel clinical study design toward a targeted approach to investigate the role of the preterm
microbiome in human milk digestion. We additionally describe the composition of intestinal

fungi in preterm infants and the effect of clinical variables on them.

This thesis comprises of six chapters, including a literature review, research papers and a study
protocol.

Chapter 2 reviews the interaction between prematurity and nutrition in the concordant
maturation of gut microbiota, gastrointestinal tract and immune system in early life of
preterm infants. This chapter describes the preterm gut microbiota composition and unique
environmental conditions contributing to this, and the interaction between human milk and the
gut microbiota, the gastrointestinal tract and the immune system.

Chapter 3 discusses the functionality of the preterm gastrointestinal tract and of the microbiota
therein. A functional gastrointestinal tract and microbiome are essential for growth and
development of preterm infants. As such, the aim of this study was to improve the understanding
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of gastrointestinal functionality and maturation during the early life of preterm infants by means
of gastrointestinal enzyme activity assays and metaproteomics. This study was part of the EIBER
study; an observational, single-center, non-intervention study conducted between 2011-2014 at
Isala Women and Children’s Hospital (Zwolle, The Netherlands). The main objective of the
EIBER study was to investigate early life colonization and establishment of the gut microbiota
in extremely and vey preterm infants as well as to understand the effect of antibiotic treatment
duration on gut microbiota development in preterm and full-term infants.

Chapter 4 describes the study protocol for the clinical study “From Mum to Bum”. The “From
Mum to Bum” study is an observational, single-center, non-intervention study, with the main
objective to investigate how the intestinal microbiota of preterm and full-term infants differ in
their ability to extract energy and nutrients from oligosaccharides and proteins in human milk.
As a follow-up of the EIBER study, the “From Mum to Bum” study started in 2020 at the Isala
Women and Children’s Hospital (Zwolle, The Netherlands) and in the area of Zwolle.

Chapter 5 elaborates on the fungal colonization in early life of antibiotic-treated preterm
infants. Like bacteria, the colonization and development of intestinal fungi in preterm infants
was hypothesized to be affected by interactions with clinical variables. We therefore aimed to
characterize the composition and diversity of the preterm infant mycobiota and the effect of
clinical variables on it in the first six postnatal weeks. This study was part of the EIBER study.

Chapter 6 summarizes the research findings generated within this thesis and discusses its

main findings in a broader ecological and clinical context. Furthermore, this chapter identifies

challenges and future research directions that could complement future neonatal care.
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CHAPTER 2

Abstract

The nutritional requirements of preterm infants are unique and challenging to meet in neonatal
care, yet crucial for their growth, developmentand health. Normally, the gut microbiota has distinct
metabolic capacities, making their role in metabolism of dietary components indispensable. In
preterm infants, variation in microbiota composition is introduced while facing a unique set of
environmental conditions. However, the effect of such variation on the microbiota’s metabolic
capacity and on the preterm infant’s growth and development remains unresolved. In this
review, we will provide a holistic overview on the development of the preterm gut microbiota
and the unique environmental conditions contributing to this, in addition to maturation of
the gastrointestinal tract and the immune system in preterm infants. The role of prematurity,
as well as the role of human milk, in the developmental processes is emphasized. Current
research stresses the early life gut microbiota as cornerstone for simultaneous development
of the gastrointestinal tract and the immune system. Besides that, literature provides clues
that prematurity affects growth and development. As such, this review is concluded with our
hypothesis that prematurity of the gut microbiota may be an inconspicuous clinical challenge
in achieving optimal feeding besides traditional challenges, such as preterm human milk
composition, high nutritional requirements and immaturity of the gastrointestinal tract and the
immune system. A better understanding of the metabolic capacity of the gut microbiota and
its impact on intestinal and immune maturation in preterm infants could complement current
feeding regimens in future neonatal care and thereby facilitate growth, development and health in
preterm infants.
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Background information

Preterm infants, born before 37 weeks of gestation, are increasingly affected both by prematurity
and by complications associated with decreasing gestational age. Complications of prematurity
include impaired maturation of the gut microbiota, gastrointestinal tract and immune system
(Fig. 2.1). Yet, simultaneous maturation of the gut microbiota, gastrointestinal tract and
immune system in early life orchestrates further infant growth—that is, weight gain—and
organ development. As they are playing a cornerstone role in infant growth and development,
impaired maturation of the gut microbiota, gastrointestinal tract and immune system could have
serious health consequences. Preterm infants with extremely low birth weight are susceptible to
infections, which in turn is associated with poor neurocognitive functioning ***"*. Therefore,
preterm infants would benefit from weight gain, implicating growth can be considered as health
indicator”?". Strict feeding regimens are needed in the neonatal period to stimulate maturation

processes, growth and organ development.

Preterm birth

Maturation processes Nutrition

Gastrointestinal tract

O

Postnatal growth -@-

Gut Microbiota | Y _—_—_————_ |/ ™"\ | T
> & organ development

@ Immune system

Figure 2.1 Preterm birth influences human milk composition and affects maturation processes. Human milk stimulates

maturation of the gastrointestinal tract, gut microbiota and immune system, which, together with its dietary components,
promotes postnatal growth and organ development. While preterm birth influences human milk composition and affects
maturation processes, it remains unknown to what extent the preterm gut microbiota is involved in human milk digestion

and how it contributes to postnatal growth and organ development.'

1 Icons were retrieved from The Noun Project. All retrieved icons are licensed as public domain or creative commons (CC BY). Icons
were designed by: Cristiano Zoucas (Measuring tape), Design Science (Immune System), Gregor Cresnar (Gears), Jannie Henderickx
(baby), Julia Amadeo (Gastrointestinal tract), Julie McMurry (breastfeeding) and Maxim Kulikov (Gut microbiota).
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Despite continuous improvements in preterm infant care, optimal feeding for individual infants
is challenging, One of the challenges is the differential composition of human milk associated
with preterm delivery*'® (Fig, 2.1). Besides that, the specific nutritional needs of preterm
infants are challenging to meet*. Another difficulty to achieve optimal feeding regimens is
underdevelopment of the gastrointestinal tract that hinders motility and nutrient absorption,
factors that might lead to abdominal distension, vomiting and gastric retention®. Lastly,
underdevelopment of the immune system could trigger exacerbated inflammatory responses to
antigens, such as those from undigested food or bacterial compounds, which could contribute
to the development of necrotizing enterocolitis (NEC)*. As a consequence of these challenges,
more than half of the hospitalized preterm infants are being discharged with ongoing severe
postnatal growth impairment®.

While meeting nutritional needs is challenging partly due to underdevelopment of the
gastrointestinal tract and immune system, there is a gap in knowledge on the involvement
of the gut microbiota in meeting nutritional requirements of preterm infants (Fig. 2.1). The
gut microbiota has distinct metabolic capacities, making their role in metabolism of dietary
components indispensable to the host. In preterm infants, variation in gut microbiota
composition is introduced due to a unique set of environmental conditions, including the
hospital environment of the neonatal intensive care unit (NICU) and its associated common
clinical practices and feeding regimens. This variation in microbiota composition could interfere
directly and indirectly with energy harvest and storage and thereby with weight gain of the

preterm infant®>*>*!7,

In this review we hypothesize that variation in gut microbiota composition could have serious
consequences on growth and development in preterm infants by differential digestion and
absorption of human milk. We will support this hypothesis by describing the preterm gut microbiota
composition and unique environmental conditions contributing to this; and by describing the

interaction between human milk and the gut microbiota, gastrointestinal tract and immune system.

A unique set of conditions shapes the gut microbiota of preterm
infants

In eatly life, the gut microbiota of a full-term, vaginally delivered and exclusively breastfed infant
is considered the golden standard for a healthy infant microbiota'”’. Generally, the intestine
of these infants is colonized with facultative anaerobic bacteria during and shortly after birth
due to the presence of low amounts of oxygen in this environment'?. These facultative
anaerobic bactetria belong to genera Enterobacter, Enterococcus, Staphylococcus and Streptococcus'™.
As facultative anaerobic bacteria thrive on residual oxygen in the infant intestine, the resulting
lowered redox potential allows obligate anaerobic bactetia to grow'*'. Bifidobacterium, Bacteroides
and Clostridium proliferate and become the predominant genera associated with early life'*. Further
gut microbiota development is driven by host and environmental factors, such as antibiotic
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treatment, delivery mode, diet and gestational age'”. Gestational age is among the strongest

influencers of gut microbiota development'”**'. In comparison to full-term infants, the gut
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microbiota of preterm infants is characterized by delayed colonization and by limited microbial

1%, In addition, levels of commensal, obligate anaerobic bacteria are generally decreased,

diversity
while levels of potential pathogenic and facultative anaerobic bacteria are increased'*"**'* (Fig,
2.2). Comparison of the gut microbiota composition of preterm and full-term infants showed
that Ewnterobacter, Enterococcus, Escherichia and Klebsiella were predominantly present in preterm

infants and not so much in full-term infants!*-142,
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Figure 2.2 The preterm and full-term situation of the intestine in eatrly life. In the intestine of infants, maturation of
the gut microbiota, gastrointestinal tract and immune system occur at the same time. In the preterm situation, the gut
microbiota is low in abundance and in diversity due to the unique set of environmental conditions the infant is exposed
to. In the full-term situation, the gut microbiota is higher in abundance and diversity and more oriented toward human
milk digestion. The gastrointestinal tract is more mature in full-term infants compared to preterm infants with regard to
enzyme production and activity, nutrient absorption and intestinal motility. Lastly, the preterm situation is characterized
by a pro-inflammatory state partly due to a discrepancy in crosstalk between the gut microbiota and immune system,

while in the full-term situation there is oral tolerance.

Not only gestational age shapes gut microbiota composition of preterm infants, but an additional
unique set of environmental conditions, including the hospital environment, common clinical
practices in neonatal care and feeding regimens further contributes to abnormal gut microbiota

development™?"”.

The hospital environment converges differences in microbiota composition of
preterm infants

Environmental conditions are acknowledged for having great influence on bacterial

colonization of the intestine'

. Most preterm infants are exposed to a restricted hospital
environment during the first postnatal weeks of life, in which the length of hospital stay is

strongly associated with gestational age and bodyweight at birth****!. Not surprisingly, inter-
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individual differences in microbiota composition of hospitalized very low birth weight
(VLBW) infants become smaller with increasing stay'*'**%. More specifically, the microbiota of
hospitalized VLBW infants converges toward a core microbiota mainly composed of bacterial
families Enterobacteriaceae (genera Klebsiella and Escherichia in particular) and Enferococcaceac®>.
The NICU-associated core microbiota is very different from healthy full-term infants, which
is commonly composed of Bifidobacterium, Bacteroides and Clostridium species in eatly life'”. In
addition to decreased differences in microbiota composition between infants within one care
unit, variations in infant microbiota composition and succession between different hospitals
have been observed, further supporting the influence of the hospital environment on the
microbiota composition**. A NICU-specific microbiota composition might be explained by
the hospital environment acting as reservoir for microbes, selected by lavish antibiotic use,
that subsequently colonize the infant intestine'”. Another explanation for a NICU-specific
microbiota is transmission of bacteria between patients within one care unit and between

patients and caregivers™>>*’

. Knowledge on the role of the hospital environment on the
gut microbiota composition is particularly relevant in preventing colonization with potential
pathogenic bacteria, such as Enterobacter species that cause outbreaks of nosocomial infections
within NICUs**. Among prevalent nosocomial infections are NEC and sepsis, these ate both

infections in which the gut microbiota has been implicated'***.

Caesarean delivery enriches the gut microbiota for skin and environmental
microbes

The mode of delivery is considered the first and foremost determinant that affects early life
microbiota composition'*'**. The maternal fecal and vaginal microbiota serve as inoculum for
the infant’s gastrointestinal tract during passage through the birth canal®. As such, the gut
microbiota of vaginally delivered infants resembles the maternal fecal and vaginal microbiota,
with a dominance of genera Lactobacillus, Prevotella and Sneathia'™'*. In contrast, the microbiota
of infants born by caesarean (C)-section is dominated by common skin and environmental
microbes, including the genera Staphylococcus, Propionibacterinm and Corynebacterinm'*"'%. Changes
in microbial diversity and colonization with specific taxa have been associated with C-section
during the first three postnatal months'”. Although microbiota composition of infants born by
natural birth or C-section gradually becomes similar, differences in abundance and diversity of

specific bacterial taxa can remain appatrent until 12-24 months of age'**.

More frequently than full-term infants, preterm infants are born by C-section'’, thereby

>
contributing significantly to perturbations of their gut microbiota. These perturbations may
have health consequences on both short term and long term®'. On short term, perturbations
of the gut microbiota, as a result of caesarean delivery, may affect developing mucosal and
systemic immune functions®>*”. Together with limited diversity and pathogen dominance, this
makes preterm infants prone to nosocomial infections, such as NEC and sepsis'******. Long-
term consequences, like asthma, allergies and obesity, are a result of a discrepancy between the
simultaneously developing gut microbiota and immune system. Commensal bacteria are responsible

for stimulating development of the immune system and for educating the immune system which
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antigens it should respond to or should tolerate**

. Normally, immune responses toward orally
administered antigens, including commensal bacteria, are not triggered, a phenomenon known as
“oral tolerance”. Abnormal microbiota development in preterm infants could have long-lasting
changes in the way the immune system was programmed, resulting in a “skewed” tolerance that
plays a role in diseases, such as asthma, allergies and obesity””. Indeed, these diseases have been

related to the changes in microbiota composition upon caesarean delivery™.

In attempt to alleviate changes in microbiota composition associated with C-section, pioneer
pilot studies transferred vaginal bactetia from mothers to full-term, caesarean-delivered infants™’.
This vaginal microbial transfer, or “vaginal seeding”, partially restored the infant’s intestinal, oral
and skin microbiota to become more similar to the microbiota of vaginally delivered infants™’.
Albeit of great potential to beneficially alter the gut microbiota, vaginal seeding has not yet
been performed in preterm infants. There is a great need to further assess the ratio between the
benefit and risk of vaginal seeding in infants™®. At the moment, there is a negative advice for
extending this practice, because not enough evidence currently exists about the proposed long-

term benefits outweighing the costs and potential risks™®.

Antibiotic treatment perturbs gut microbiota development

Antibiotic treatment is one of the most common practices in NICUs for preventing and
treating infections and sepsis'*. Prenatal and perinatal antibiotic treatment of the mother
has been associated with abnormal gut microbiota establishment in the preterm infant™**.
In addition, broad-spectrum antibiotics, such as amoxicillin, ceftazidime, erythromycin and

144

vancomycin are often administered from birth onwards'*. While antibiotics decrease mortality

and morbidity rates on the one hand, they disrupt gut microbiota development on the other
hand*!. Such disruptions are characterized by: (1) decreased bacterial diversity****¥; (2)
delayed Bifidobacterinm spp. colonization'; and (3) increased presence of antibiotic resistance
genes or abundance of multidrug resistant members of Klebsiella, Escherichia, Enterobacter and/
ot Enterococcus genera'?>'*+22%22% Not only administration of antibiotics, but also the duration
of the treatment has an effect on the gut microbiota'******, For example, microbial diversity
decreases significantly with increasing duration of antibiotic treatment in preterm infants®***.
In addition, the time to recover from low Bifidobacterinm spp. abundance prolongs in preterm
infants receiving long antibiotic treatment (= 5 days) compared to preterm infants receiving
short treatment (< 3 days)'*. The influence of antibiotics is sustained for at least two months

after termination of treatment®*.

The disturbance of the gut microbiota development by antibiotic administration may influence
crosstalk with the immune system. As such, sustained alterations in gut microbiota composition
could have long-lasting consequences for health. In fact, pre- and postnatal antibiotic use
increases the risk of disease later in life, such as asthma and other allergic diseases*”>'. Also,
other regularly prescribed medication in neonatal healthcare, like gastric acid suppressive
medication, has been associated with allergic disease in eatly childhood, possibly by causing
intestinal dysbiosis**.
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Respiratory support shifts the ratio of facultative to obligate anaerobic bacteria
in the intestine

Respiratory support has recently been shown to drive differences in microbiota development
etween extremely and very preterm infants'’. Prolonged duration of respiratory suppotrt in

betw: t ly and very pret fants"’. Prolonged durat f tory t

preterm infants was associated with predominance of fecal aerobic and facultative anaerobic

P! The presence of aerobic and facultative anaerobic bactetia suggests that respiratory

bacteria
support in the form of positive airway pressure may introduce oxygen in the otherwise anoxic
gastrointestinal tract”""”"!. As a result of an immature gastrointestinal tract, oxygenation of
the gastrointestinal tract could also occur through a permeable intestinal epithelium'!. This
oxygenation could impede passage and survival of obligate anaerobic bacteria, allowing aerobic

and facultative anaerobic bacteria to thrive!?’.

With a shift in the ratio of facultative to obligate anaerobic bacteria, defense against pathogenic
bacteria may be impaired. The most relevant nosocomial infectious agents for preterm infants

are among facultative anaerobic bacteria™’.

Obligate anaerobic bacteria prevent bacterial
translocation by strengthening the intestinal mucosal barrier, adhering to the intestinal mucosa
and impeding pathogen invasion®*. As such, absence or reduction of obligate anaerobic bactetia
in the intestine increases the risk of facultative anaerobic bactetia crossing the intestinal barrier®*.
Another effect that accompanies a shift in the ratio of facultative to obligate anaerobic bacteria,
is that metabolism may become aerobic in specific niches of the intestine®’. Overall, this could
result in aerobic degradation of human milk or infant formula instead of anaerobic fermentation,

which presumably affects production of energy, nutrients and bioactive compounds*”.

Glycosylated compounds in human milk are affected by preterm delivery

Human milk is the preferred source of nutrition for preterm infants because of its immunological
and nutritional benefits. Besides that, mother’s own milk contains prebiotic and probiotic
components and thereby has the ability to shape the infant’s microbiota®**. In absence of
257

mother’s milk, preterm infants receive pasteurized donor human milk as alternative®’. Recently,

also pasteurized donor human milk has been shown to shape the microbiota by favoring a gut
microbiota composition more similar to breastfed infants compared to formula-fed infants™’.
Yet, more research is needed to investigate the impact of pasteurized donor human milk on the

preterm infant’s gut microbiota composition and its potential biological implications.

In mother’s own milk, human milk oligosaccharides (HMOs) are prebiotic components
belonging to a group of glycosylated compounds in human milk called “glycans”. They comprise
a collection of structurally complex sugars that display an array of a-linkages and p-linkages***.
Particularly Bifidobacterium species, but also some Bacteroides species, have genes encoding for

enzymes requited for HMO digestion®®”

. The milk of mothers who deliver preterm is
much more variable in HMO composition and percentage of fucosylated HMOs compared
to mothers delivering at term®”’. Bacteria thriving on selective HMOs will be affected by this
higher variation in fucosylated HMOs, which is supported by findings showing that colonization

by Bifidobacterium breve in the preterm infant’s intestine was influenced by HMO fucosylation*”.
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In addition, fucosylated HMOs prevent intestinal bacterial adhesion to epithelial surfaces and

can have an impact on the gut microbiota composition as such®”*.

Digestion of HMOs results in production of short-chain fatty acids (SCFAs) that not only
serve as energy source for the infant, but also lower luminal pH that subsequently inhibits
potential pathogens from colonizing’®**. Like HMOs, SCFAs are thus involved in managing
gut microbiota composition. In preterm infants it has been shown that the total fecal SCFA
concentrations increased with gestational or postnatal age, regardless of diet?***. However, it
remains unknown if lower fecal SCFA concentrations in preterm infants is due to lower bacterial
production, due to higher uptake by epithelial cells or both?®.

Besides prebiotic components, human milk has its own (probiotic) microbiota that is mainly
composed of bacteria associated with the skin and the intestine, like the genera Bifidobacterium,
Staphylococcus, Streptococcus and Pseudomonas®™=>"". Many other bactetial genera, such as Bacteroides,
Lactobacillus and  Ruminococcus have been reported in human milk'*?%2%2® " Methodologic
differences in human milk collection, DNA extraction, amplification, sequencing and
bioinformatics may have contributed to the discrepancy in reported human milk microbiota
composition®’. So far, only few studies have investigated the effect of preterm birth on the
human milk microbiota, while many more studies have investigated the effect of preterm birth
on nutrient composition of human milk*”". The bacterial composition of preterm vs. full-term
human milk has been reported to be comparable**!. The colosttum of mothers who delivered
preterm contained the genera Staphylococcus, Streptococcus and Lactobacillus, while in more mature
milk of the same mothers the genera Enterococcns and Enterobacter were additionally found®.
Besides changes in composition, bacteria are less abundant in preterm human milk*”'. The
enteromammary pathway involves translocation of bacteria by intestinal monocytes from the
intestine to mesenteric lymph nodes and mammary glands, and occurs solely in the last weeks
before term delivery”>*”. In preterm birth, this pathway is not functional or less active, which
results in a reduced absolute abundance of bacteria in human milk. In addition, mothers who
deliver preterm may already receive antibiotics during delivery, which could impact bacterial
counts in the mammary glands*™*. Still, more research is needed to assess the impact of preterm
birth on the human milk-associated microbiota composition and absolute abundance of bacteria.

Prematurity and diet interact with maturation of the immune
system

While at term birth both the innate and adaptive immune system are not fully functional, they
are competent to handle infections and to respond to immunization™. Together with microbiota
development, the immune system matures in an age-dependent manner from a Th2-biased
immune response toward a balanced Th1/Th2 immune response’™. The complete process of
immune system maturation and its interaction with the gut microbiota is beyond the scope of
this review but is described extensively for the first 1000 days of life by Wopereis et al. (2014)%". In
short, the gut-associated lymphoid tissue (GALT) is the primary site where the immune system

interacts with environmental antigens and commensal bacteria® (Fig. 2.2). These commensal
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bacteria and their products interact with the host via, for example, Pathogen Recognition
Receptors (PRRs) that specifically recognize Microbial Associated Molecular Patterns (MAMPs)
ot by signaling through G-protein-coupled receptors, such as GPR43%".

Breastfeeding plays a crucial role in immune system development™. Besides nutrients,
it continuously provides immunological components that promote immune system

development**”

. Among them are secretory immunoglobulin A (SIgA); leukocytes—primarily
macrophages and neutrophils—that actively engulf microbial pathogens by phagocytosis; and
lymphocytes**"*”. In addition to these components, HMOs interact with the immune system by
modulating cytokine production of lymphocytes, subsequently influencing the balance between
Th1and Th2 cells®. It also reduces selectin-mediated cell-cell interactions and decreases leukocyte
rolling on activated endothelial cells®®. This could lead to reduced mucosal leukocyte infiltration
and activation®. Human milk additionally contains non-specific factors that have antimicrobial
and antipathogenic effects. These non-specific factors include enzymes and proteins that inhibit
growth of many bacterial species by disrupting the proteoglycan layer; and lactotransferrin,
which limits bacterial growth by removing essential iron*. Other components contribute to
passive protection in the gastrointestinal tract by preventing adherence of pathogens to the
mucosa®. A meta-analysis investigating the health benefits of breastfeeding has shown a lower
risk of gastrointestinal infection and other diseases in breastfed infants™.

Preterm birth has major consequences on immune system development. One consequence of
preterm birth is a change in the immunological composition of human milk. For example, milk
of mothers who delivered before 32 weeks of gestation contained more SIgA in comparison
to mothers who delivered term®. Higher levels of SIgA in preterm human milk offer greater
protection against infections, implicating compensation for immaturity of the immune system

of preterm infants*®

. In addition to changes in immunological human milk composition,
immaturity of the immune system is more pronounced in preterm infants compared to full-term
infants. According to Melville and Moss (2013) this immaturity is characterized by: “a smaller
pool of monocytes and neutrophils, impaired ability of these cells to kill pathogens and lower
production of cytokines which limits T cell activation and reduces the ability to fight bacteria and
detect viruses in cells, compared to full-term infants””. The immune system of preterm infants
also plays a role in NEC, a disease characterized by an exacerbated inflammatory response of the
intestines™’®. In full-term infants, the response of the innate immune system is biased toward
a Th2 phenotype and against Th1-cell-polarizing cytokines®. This bias allows for microbial
homing and colonization, but also makes the infant susceptible to opportunistic pathogens
shortly after birth*. After multiple pathogenic encounters, a time- and age-dependent shift takes
place from Th2 toward a balanced Th1/Th2 response™. A state of disrupted gut microbiota
composition in preterm infants promotes a strong Th1 bias, pushing the immune system to be
pro-inflammatory under the influence of 1L-12 and IFN-y secretion, supposedly contributing to
NEC? (Fig 2.2). Another mechanism contributing to gastrointestinal inflammation is disruption
of the liver-bile acid-microbiota axis upon alterations in gut microbiota composition®”.
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Prematurity and diet interact with maturation of the
gastrointestinal tract

Structural and functional maturation of the gastrointestinal tract are required for efficient
digestion and absorption of nutrients from milk feedings. Development of the gastrointestinal
tract during gestation is generally subdivided in processes involved in cytodifferentation,
digestion, absorption and motility'*"®. Anatomically, all parts of the gastrointestinal tract are
developed within the first 12 weeks of gestation, while it takes up to 20 weeks for the villi
and crypts to develop'”. Many structural and functional properties of the gastrointestinal tract
develop within 24 weeks of gestation. Digestive enzymes (e.g., lactase, sucrase, maltase and
peptidase) can be detected from 8 weeks of gestation, but some enzymes are far below their full
potential concentration and activity at that stage'®. Lactase activity, important for the degradation
of lactose from milk, increases progressively from 24 weeks onwards and reaches maximum
activity at 40 weeks of gestation'”. Sucking, swallowing, gastric emptying and intestinal motility
develop during the third trimester and effective coordination of these processes is reached at
term. Although not yet reaching its full potential, the gastrointestinal tract of infants born at
term is ready to receive and process milk feedings. Further maturation of gastrointestinal tract
functioning is stimulated by milk feeding itself. This particularly accounts for lactase activity,
which rapidly increases from the first milk feeding onwards'”.

In case of preterm birth, the infant particularly suffers from immaturity related to digestion and
motility, since these develop during the third trimester (Fig. 2.2). The combination of decreased
activity of digestive enzymes,immature motility functions, limited absorptive capacity and increased
protein demands in preterm infants, raises a major challenge in meeting their nutritional needs™.
Preterm infants, particularly those born before 32 weeks of gestation, are prone to be intolerant
to enteral feeding and therefore nutrients are provided intravenously via parenteral feeding for
the first 2—4 weeks. Withholding enteral feeding is not favorable and has been associated with
reduced gastrointestinal function and structural integrity. These include a decrease in hormone
activity, intestinal mucosa maturation, digestive enzyme activity, nutrient absorption and motility
maturation; and an increase in intestinal permeability and bacterial translocation®®****. To
stimulate functional maturation of the gastrointestinal tract of preterm infants, minimal enteral

nutrition has been practiced widely in NICUs*"!

. During minimal enteral nutrition, small volumes
of human milk or formula are given to the infant without nutritive intent, but with the aim to
prevent mucosal atrophy and to stimulate intestinal motility in order to reach full enteral feeding
as quick as possible. Human milk in particular can aid in intestinal maturation, as HMOs in
human milk directly affect intestinal epithelial cells and modulate their gene expression, leading
to changes in cell surface glycans and other cell responses®. Furthermore, the presence of dietary
components in the intestinal lumen is essential for establishing and shaping of the gut microbiota.
In turn, bacteria residing in the human gastrointestinal tract play an essential role in metabolism
of dietary components, with their metabolic capacity being distinct, but complementary, to the
activity of human enzymes*” In addition, the gut microbiota is involved in the degradation of
some host-generated compounds, including bile acids and mucus*”. Besides its role in digestion,

the gut microbiota plays an essential role in structural development of the gastrointestinal tract.
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Germ-free mice, among others, have smaller intestinal surface area, decreased epithelial cell
turnover and underdeveloped villi and crypts compared to specific pathogen-free and wild-type
mice’®. The essential role of gut microbiota in structural development of the gastrointestinal
tract has been further supported in a study with preterm infant’s gut microbiota, showing that
gut microbiota, body weight and intestinal epithelial development are closely related””. Microbiota
transplantation from preterm infants with normal weight gain to germ-free mice increased villus
height, crypt depth, cell proliferation and numbers of goblet and Paneth cells when compared to
mice inoculated with microbiota from preterm infants with poor weight gain. In addition, tight
junctions were enhanced in germ-free mice colonized with microbiota from normal-weight-gain
infants”. Although findings in mice cannot be extrapolated to humans directly, it demonstrates
that structural development of the gastrointestinal tract is affected by the microbiota. Hence,
abnormal microbial colonization of the intestine in preterm infants affects the gastrointestinal
tract in terms of the intestinal barrier and nutrient absorption.

The preterm gut microbiota challenges nutritional neonatal care

As described throughout this review, prematurity and nutrition affect maturation of the gut microbiota
S > gu >
gastrointestinal tract and immune system. These processes are rather intertwined, and consequences

of prematurity affect the infant on a systemic level in terms of growth and development.

Preterm infants require adequate feeding and subsequent digestion and absorption of nutrients.
However, caretakers have to overcome nutritional challenges in feeding preterm infants to reach
optimal growth and development. The first challenge is the high nutritional requirement of
preterm infants in particular for protein®>'. Even though protein content is higher in preterm
human milk, it still is not sufficient to meet the preterm infant’s high nutrient requirements™*-'°.
Therefore, fortification of preterm human milk with proteins, minerals and vitamins is needed

to achieve adequate growth and development™?*.

Another challenge that caretakers need to overcome in preterm infant feeding is the immature
gastrointestinal tract. As a result of ongoing gastrointestinal development, carbohydrate,
protein and lipid digestion does not occut to the full extent in preterm infants® (Fig. 2.2). In
case of carbohydrate digestion, most importantly, lactase activity is low in preterm infants;
its activity increases from 24 to 40 weeks of gestation’. Being built on a basic lactose core,
low lactase activity could affect HMO digestion**®. Also, mechanisms for protein digestion
are underdeveloped in preterm infants. While activity of most milk-derived proteases is not
affected by gestational age, limited gastric acid secretion and low enterokinase activity impedes
protein hydrolysis®**?%. Consequently, preterm infants digest proteins to a lesser extent than
full-term infants® . Lastly, lipid digestion in VLBW infants is affected by lower duodenal
concentrations of bile acids that are critical for efficient fat digestion and absorption®. Lower
duodenal concentrations of bile acids are a result of lower synthesis and ileal reabsorption of
bile’'. After digestion of carbohydrates, proteins and lipids, subsequent nutrient absorption
could additionally be lower. The intestine and thus the absorptive surface is still elongating
in the third trimester'”. In addition, hampered motility could lead to retention of undigested
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content in the intestinal lumen for a considerable longer time period, which may initiate an

inflammation cascade'”.

Practical hurdles with regard to nutrient requirements and gastrointestinal prematurity are
relatively conspicuous. However, we hypothesize that prematurity of the gut microbiota may be
an additional inconspicuous challenge in preterm nutritional care (Fig. 2.2). In a healthy state,
the gut microbiota contributes to growth and development in two ways. First, the gut microbiota
has a distinct, yet complementary, metabolic capacity to human gastrointestinal enzymes. As
a result of bacterial digestion, otherwise unavailable energy and nutrients are provided to the
host?™™. Second, the gut microbiota is involved in host body weight management*™*"*2 The
gut microbiota manages body weight by being involved in production of metabolites and
in the harvest, storage and expenditure of energy from food components by affecting the
intrinsic metabolic machinery of host cells®**?. The most convincing involvement of gut
microbiota in body weight management is the induction of an impaired growth phenotype upon

microbiota transplantation from undernoutished children to germ-free mice®”?

. While germ-
free mice receiving microbiota from undernourished children showed growth impairment, their
littermates receiving microbiota from healthy children showed a healthy phenotype®?. Moreover,
the impaired growth phenotype could subsequently be ameliorated by introducing two invasive

bacterial species, Ruminococcus gnavus and Clostridium symbiosunr®.

While several studies suggest the involvement of the gut microbiota in body weight and
growth management in adults and children, little is known about this role in preterm infants®*.
Literature on this topic is scarce and thereby represents a major gap in this field of research.
Given that preterm birth impedes “normal” gut microbiota development, the role of the
preterm gut microbiota in altered digestion of milk feedings and in intestinal maturation—and
thereby affecting postnatal growth and development—becomes increasingly likely. Even though
research is scarce and mechanisms remain unknown, some studies in preterm infants suggest

215 Grier et al.

an association between the gut microbiota, growth and development in early life
(2017) identified microbiota phases in preterm infants that were each characterized by distinct
metabolic functions™. Significant associations were found between nutrition, microbiota phase
and preterm infant growth™. Also, Arboleya et al. (2017) associated specific bacterial families and

215

genera with weight gain®. Especially Enterobacteriaceae and Streptococcus levels at two days of age

and Bacteroides-group levels at 10 days of age were associated with weight gain at one month of
age?™. In addition to that, some bacterial genera—including Staphylococcns and Enterococcns—were
negatively associated with weight gain, while Weissella spp. were positively associated with weight

gain in preterm infants®"

. These genera, or specific species or strains within these genera, may
affectinfant food digestion capacity and subsequent energy harvest*'’***’!. Possible mechanisms
of these taxa could be differential abundance of genes involved in metabolism of carbohydrates,
proteins and/or lipids™. In fact, differences have been reported in microbial proteins involved in
metabolic activity between preterm infants of varying gestational and postnatal age'”*>. Most
likely, microbial effects on infant growth are strain-specific, each having distinct genes encoding
for proteins involved in metabolism*>*. Besides specific taxa, also microbial diversity appears

to play a role in achieving digestive tolerance and weight gain'®.
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Based on these clues in current research, it becomes increasingly likely that prematurity of the
gut microbiota may be an additional clinical challenge in achieving optimal feeding. The preterm
gut microbiota may have a differential metabolic capacity compared to full-term infants due to
variation in the abundance of genes that are involved in metabolism of carbohydrates, proteins
and/or lipids. By having a differential food digestion capacity and energy harvest, the preterm
gut microbiota could be involved in preterm infant weight gain and development as such. We
expect that the variation in gut microbiota of preterm infants will be mainly emphasized in
digestion of glycosylated carbohydrates (HMOs) and proteins (glycoproteins) from human
milk, since intestinal bacteria have genes encoding for enzymes that digest these components®.
However, we should not exclude the possibility of changes in the type of bioactive compounds,
or in the activity of these compounds, considering that human milk contains many bioactive
compounds and the gut microbiota is involved in their production”®. Changes in bioactivity of
degraded compounds could subsequently influence the antimicrobial properties or crosstalk with
the intestinal epithelium and immune system that manage inflammatory responses. However, to
date, it remains undiscovered to what extent HMO and glycoprotein digestion takes place in the
preterm intestine and how the intact or digested compounds contribute to the nutritional value

and the health benefits for preterm infants.
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Conclusion

The preterm infant is predisposed to health complications, both on short and long term, due to
underdevelopment of the gut microbiota, gastrointestinal tract and immune system. Specifically,
the gut microbiota of preterm infants is shaped by a unique set of environmental conditions,
which we hypothesized as inconspicuous clinical challenge in nutritional neonatal care. Current
research provides clues that prematurity affects infant growth and development. Exploration of
the metabolic capacity of the preterm gut microbiota, with HMO-degrading Bifidobacterinm spp.
and Bacteroides spp. in particular, would contribute to a better understanding of production
of energy and metabolites that become available to the preterm infant and impact intestinal
maturation and overall host metabolism. This knowledge could complement current nutritional
neonatal care and benefit infant growth, development and health in the future. As such, the
preterm infant gut microbiota remains a research priority, in which a reference for a healthy,
preterm microbiota composition and its interactions with the gastrointestinal tract and immune
system need to be incorporated to thoroughly understand mechanisms by which the gut
microbiota is involved in preterm infant growth, development and health.
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CHAPTER 3

Abstract

Functionality of the gastrointestinal tract is essential for growth and development of newborns.
Preterm infants have an immature gastrointestinal tract, which is a major challenge in neonatal
care. This study aims to improve the understanding of gastrointestinal functionality and
maturation during the early life of preterm infants by means of gastrointestinal enzyme activity
assays and metaproteomics. In this single-center, observational study, preterm infants born
between 24 and 33 weeks (#» = 40) and full-term infants born between 37 and 41 weeks (7
= 3), who were admitted to Isala Women and Children’s Hospital (Zwolle, The Netherlands),
were studied. Enzyme activity analyses identified active proteases in gastric aspirates of preterm
infants. Metaproteomics revealed human milk, digestive and immunological proteins in gastric
aspirates of preterm infants and in feces of preterm and full-term infants. The fecal proteome
of preterm infants was deprived of gastrointestinal barrier-related proteins during the first six
postnatal weeks compared to full-term infants. In preterm infants, bacterial oxidative stress
proteins were increased compared to full-term infants and higher birth weight correlated to
higher relative abundance of bifidobacterial proteins in the third until sixth postnatal weeks. Our
findings indicate that gastrointestinal and beneficial microbial proteins involved in gastrointestinal
maturity are associated with gestational and postnatal age.
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Introduction

Preterm birth interrupts the natural, intrauterine development of the gastrointestinal tract,
immune system and microbiota that occurs during the third trimester'’. The gastrointestinal
tract continues to develop after birth with the environment deviating from mother’s womb.
Early exposure to a deviating environment affects the infant and maturation processes on a
systemic level.

Strict feeding regimens are implemented to orchestrate optimal maturation of the gastrointestinal
tract, which is crucial for infant growth, development and health. Human milk is the first choice
for both full-term and preterm infants as it has nutritious, immunomodulatory and microbial
benefits®’. Whether nutritional components of human milk can be absorbed and digested largely
depends on gastrointestinal maturity of the infant'’. Some digestive enzymes and gastrointestinal
motility functions develop during later stages of gestation, leading to suboptimal functioning
upon preterm birth'™*®. This affects proteolysis of major milk proteins in preterm infants for
example, even though it still occurs®**”. Incomplete breakdown of proteins can be beneficial

or harmful, depending on which proteins remain intact®™®

. Additionally, underdeveloped
gastrointestinal motility may lead to nutrient retention that could initiate a sequence of events

with translocation of microbes or their toxic products as a consequence™®.

Gastrointestinal maturity additionally plays an important role in gastrointestinal barrier
functioning, which is crucial for maintaining gastrointestinal homeostasis and infant health®”.
Preterm infants have a leaky gut in the first weeks of life as the intestinal bartier develops™ .
Along with gestational age, multiple factors affect intestinal permeability in preterm infants,

including infection, inflammation, feeding type and antibiotic exposure™' =",

Host-microbe interactions occur at the intestinal barrier and impact physiological development
of the gastrointestinal tract, the immune system and human milk digestion'"’®. Preterm infants
are particularly susceptible to sepsis and necrotizing enterocolitis (NEC) due to immaturity of

the intestinal epithelial bartier, the immune system as well as their microbiota development™-#**%,

Metaproteomics offers great potential to functionally characterize organisms and is increasingly
used to supplement compositional profiling of the human microbiome>**>=%. This study aims
to improve the understanding of gastrointestinal functionality and maturation during the early
life of preterm infants by means of gastrointestinal enzyme activity assays and metaproteomics.
Here, we add new enzyme activity analyses to previously acquited metaproteomics data'”.
Moreover, gastric aspirates and full-term infants were newly added to the metaproteomics
analyses, which focus on human proteins and their implications for interactions with previous

findings on the microbiome'”".
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Materials and methods

Ethics declaration

The board of the Medical Ethics Committee of Isala Women and Children’s Hospital (Zwolle,
The Netherlands) concluded that this study does not fall under the scope of the Medical Research
Involving Human Subjects Act (WMO). Informed consent was obtained from both parents of
all individual participants included in the study.

Study description

The study was part of the EIBER study; a single-center, observational study involving full-
term and preterm infants admitted to the neonatal intensive care unit or the pediatric ward of
Isala Women and Children’s Hospital in Zwolle, The Netherlands. Mothers were encouraged
to breastfeed at all times. If needed, infants were supplemented or fed with preterm formula
(Nutrilon Nenatal Start, Nutricia, The Netherlands).

As part of the EIBER study, gastric aspirates were obtained on a daily basis during the first
14 days of life in all preterm infants having a nasogastric tube on clinical grounds (Fig. 3.1,
gestational age of 24-33 weeks, » = 40 infants). Enteral feeding was started as soon as possible
with gradual increments but was supplemented with parenteral nutrition if necessary. Samples
of this part were used to perform pH measurements and enzyme activity analyses.

Another part of the EIBER study included gastric aspirate and fecal sample collection
immediately after birth and at postnatal weeks one, two, three, four and six. This part included
both preterm and full-term infants that were selected based on gestational age (Fig. 3.1). Out
of the forty preterm infants, ten preterm infants were selected based on a gestational age < 32
weeks, whereas three full-term infants were selected based on a gestational age between 37 and
41 weeks. The amount of collected gastric aspirate was roughly 1 mL; the minimal amount of
collected feces was one scoop. Samples of this part were used to perform metaproteomics and
were used previously for 16S fRNA gene amplicon sequencing as well'?’.

Subjects and sample selection

pH and enzyme activity analyses

From the ten preterm infants (# = 100 samples), as well as thirty additional preterm infants (7 = 325—
334 samples), aspirates of residual gastric content were collected daily during the first two postnatal
weeks (Fig. 3.1). The thirty additional preterm infants were selected if gastric aspirates of minimally
eight timepoints were available. At collection, samples were frozen at —20 °C and stored at —80 °C.

Metaproteomics

Ten preterm infants and three full-term infants from the EIBER study were selected based
on gestational age (Fig. 3.1, Table S3.1)"?". From all these infants, fecal samples were collected
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right after birth and at postnatal weeks one, two, three, four and six (» = 81). Sixty-four samples
derived from preterm infants and 17 from full-term infants. On the same timepoints, gastric
aspirates were collected from preterm infants in the first two postnatal weeks (# = 35). The
metaproteomes of these infants have been generated and described previously, with the main

objective to characterize the bacterial part of the preterm infant’s fecal metaproteomes'”.

Enzyme activity analysis

Gastric aspirate samples were thawed on ice, centrifuged (3000 rpm; 4 °C) and the cream layer
was removed””. pH of the supernatant was determined (# = 425 samples) and samples were
centrifuged to remove any remaining cream fraction (14,000 rpm; 4 °C)*”. Total protease (7 =
433 samples) and pepsin activity (# = 434 samples) were determined using the green fluorescence
EnzChek Protease Assay Kit (Molecular Probes, Eugene, OR, USA) in duplicate according to
manufacturer’s instructions. For determining total protease activity, 10mM TRIS buffer (pH 7.8)
was used and the standard curve was generated using pancreatin from porcine pancreas (Sigma-
Aldrich, Saint Louis, MO, USA)™”. For determining pepsin activity, 10mM HCI buffer with pH
2.2 was used and the standard curve was generated using pepsin from porcine gastric mucosa

(Sigma-Aldrich)™”.

Sample processing for metaproteomic analysis

Extraction of proteins from feces was performed mechanically by repeated bead beating as
described previously (# = 81 samples)””™'". Gastric aspirates were thawed on ice, centrifuged
(3000 rpm; 4 °C) and pellet was removed (7 = 35 samples). pH of the supernatant was determined,
and samples were centrifuged to remove debris (max rpm; 4 °C). Fecal and gastric proteins were
quantified using Qubit Protein Assay Kit on a Qubit 2.0 fluorometer (Life Technologies, Catlsbad,
CA, USA) and diluted in PBS to obtain a 3 pg/pl and 5 pg/pl concentration, respectively. In gel
digestion procedures, database construction, analysis of MS/MS spectra and protein grouping
with MaxQuant 1.3.0.5°"" were performed as previously described'”. In the current study, no
additional mapping of initial search results was performed to functionally classify proteins.

Metaproteomic database construction

The metaproteomic database has been constructed by Zwittink et al."”. The in-house database
was accommodated to the study group in order to decrease the chance of false identification.
Bacterial genera were selected based on their identification in infants by the Human Microbiome
Project reference genomes and by 454 pyrosequencing'’. Selected bacterial genera were retrieved
from UniProt and their proteomes were merged with proteomes of human, cow, Candida spp.
and common contaminants'”’. In total, 87 bacterial species and 438,537 sequences were captured
in the in-house database (contents of the in-house generated protein database are presented in
Zwittink et al."”"). Taxonomic classification of MS/MS spectra was performed until genus level

as there was high protein sequence homology among species of the same genusm.
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Data transformation

Eight fecal samples of preterm infants were not collected on correct timepoints and were
excluded, resulting in 73 fecal samples (7 = 56 preterm samples; » = 17 full-term samples) and
108 samples in total for further analyses. In Perseus version 1.6.2.1°"%, Label-Free Quantification
(LFQ) intensities were log, -transformed. Resulting NaN values were replaced by the value 4.0,
which was lower than minimally observed, and further processed as described before'’. These
pre-processed LFQ) intensities were used for analyses. Intensity Based Absolute Quantification
(iBAQ) intensities were used to determine relative abundances of iBAQ intensities (riBAQ) like

described previously®".

Growth velocity was calculated based on clinical data according to the exponential model as
described by Patel et al.’'*:

[1000 % 1n(Wn/W1)] / (Dn - Dl)

where W is the weight in grams, D is day; 1 indicates the beginning of the time interval and n is
the end of the time interval, in days®'*. In all cases, birth weight was selected as W..

Statistical analysis

All analyses were performed in R version 3.6.1°". In all cases, (adjusted) P-values below 0.05
were considered statistically significant.

Redundancy analysis (RDA) was petformed with the vegan package version 2.5-6'°. Missing
values of explanatory variables were omitted and LFQ) intensities were mean centered. Forward
and reverse automatic stepwise model selection for constrained ordination was performed using
ordistep from the vegan package. For robustness, ordiR2step was also performed. Both methods
corresponded in selection of significant terms. Resulting P-values were adjusted with p.adjust

from the S7ats package’ using FDR correction.

Volcano plots were generated in Perseus version 1.6.2.1°", First, distribution of LFQ values was
visually inspected per sample for normality. A two-sided Student’s t-test on LFQ intensities of
human- and bovine-derived proteins between two groups was performed with an sO of 1 and a
permutation-based FDR with 250 permutations and an FDR of 0.01.

Temporal dynamic plots were generated per protein of interest with the ggp/or2 package version
3.3.0°". Default non-parametric LOESS regression was performed with a 95% confidence
interval to generate a smooth fitted line. Individual data points were additionally plotted.

Spearman correlations of clinical data to bifidobacterial proteins were performed on riBAQ
intensities using the ggscatter function of the ggpubr package version 0.3.0°'%. Birth weight was
not significantly higher in very preterm infants compared to extremely preterm infants based
on a one-sided Mann-Whitney U test (P > 0.99) and were therefore grouped for correlation
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analyses. Mean riBAQQ intensities were calculated per gestational age category and postnatal week.
Individual data points as well as a regression line with a 95% confidence interval were plotted.
For bacterial oxidative stress proteins, mean riBAQ intensities were calculated per gestational
age category and postnatal week. Of each sample, the sum iBAQ intensities of listed oxidative
stress proteins were divided by the sum iBAQ intensities of all bacterial proteins (Table S3.6).
Comparison between gestational age groups in specific postnatal weeks was performed with
Dunn’s test.

Data availability

The mass spectrometry data have been deposited to the ProteomeXchange Consortium®” via
the PRIDE partner repository with dataset identifier PXID005574.
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Results

Metaproteomic characterization

740,343 MS/MS spectra were recorded of which 89,294 were identified. After omitting samples
(Fig. 3.1), metaproteomics generated 11,885 unique peptides and 3181 protein groups in 108
samples. 2317 protein groups remained after protein filtering. Of the identified protein groups,
886 proteins were human- and/or bovine-derived and 1431 proteins were bacterial-detived. On
average, 1409 £ 456.6 unique peptides and 206.3 £ 66.5 protein groups were detected in a
sample. 199.3 £ 62.8 and 243.8 £ 74.6 protein groups were detected on average in preterm and
full-term infants, respectively.

Preterm infants
(n=40)

Selection on GA

Preterm infants Full-term infants
(n=10) (n=3)
4 ¢ ¢ Y
Gastric aspirates Feces Gastric aspirates Feces
Postnatal d: S 1-14 Postnatal week 1-6 Postnatal week 1-2 Postnatal week 1-6
4 (n=64) (n = 35) (n=17)
¢ A4 ¢ v A 4 Y
4 A
pH Totaa:ftirsittease Pepsin activity Metaproteomics
(n = 425) (n= 43%') (n=434) Total samples: n = 116
- J
Y
/ Processing data A
Omit samples based on timepoints
\ Omitted samples: preterm feces n =8 )
\ 4

Data analysis
Total samples n =108
Feces total n = 73; preterm feces n = 56; term feces n = 17
Gastric aspirates n = 35

Figure 3.1 Overview and workflow of this study. Preterm and full-term infants were part the EIBER study. Of forty
preterm infants, gastric aspirates were collected during postnatal days 1-14 (left). From ten out of forty preterm infants,
feces were additionally collected in postnatal week 1-6 with the exception of week 5; gastric aspirates of the first two
postnatal weeks were included for metaproteomics if they were collected on similar timepoints as the fecal samples.
Three full-term infants were included as healthy reference. Feces of those infants were collected in postnatal week 1-6

with the exception of week 5. GA: gestational age.
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Gastric proteases and peptidases are present and active in the preterm gastric
proteome

Forty preterm infants were part of this study. Of all these infants, gastric aspirates were collected
during postnatal days 1-14 (Fig. 3.1). These samples were used for pH measurements, total
protease activity and pepsin activity. At some timepoints, samples were unavailable or insufficient
in volume to conduct all measurements, resulting in 425 samples for pH measurement, 433 for

total protease activity assays and 434 for pepsin activity assays (Fig, 3.1).
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Figure 3.2 Gastric pH and enzyme activity during the first two postnatal weeks of preterm infants. Dynamics of (A)
gastric pH, (B) total protease activity and (C) pepsin activity. Boxplots show the median, 25th and 75th percentiles, and

minimal and maximal values with the exception of outliers (circles, lower or higher than 1.5 * inter-quartile range).

Median gastric pH of preterm infants fluctuated between 4.5 and 5.5 over time (Fig. 3.2A). In
ten out of forty infants, the gastric pH was exceptionally high (> 8.0 pH) at day of birth but
mean gastric pH did not differ significantly from the other infants in the days thereafter (P >
0.99). Intra-individual differences were high, with a mean difference of 4.2 £ 1.3 (SD) between
the lowest and highest pH measured during the first two weeks of life. Total protease and pepsin
activity showed high variation between and within infants. While median total protease activity
was higher in the second than the first postnatal week, pepsin activity remained relatively stable
(Fig. 3.2B and C). Being a pH-dependent enzyme, pepsin activity decreased with higher gastric
pH and was not affected by postnatal age (p = -0.32, P = 1.3 X 107'"). Interestingly, pepsin was
not detected in the gastric proteome by means of LC-MS/MS. Howevert, other proteases, like
trypsin and chymotrypsin-like elastase family members 2A, 3A and 3B could be identified.

Human and microbial proteins across the gastrointestinal tract

Ten out of the forty preterm infants were selected for metaproteomics based on gestational
age (Fig. 3.1, Table S3.1)"". Additionally, three full-term infants from the EIBER study were
included as reference. From all these infants, fecal samples (7 = 81) were collected right after

birth and at postnatal weeks one, two, three, four and six. Sixty-four fecal samples derived from
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the ten preterm infants and 17 from the three full-term infants. Gastric aspirates collected from
the ten preterm infants during the first two postnatal weeks were included for metaproteomics if
they were collected on similar timepoints as the fecal samples (# = 35). Eight fecal samples from
preterm infants were collected in between the intended timepoints and were therefore omitted

before data analysis, leaving a total of 56 fecal samples of preterm infants (Fig. 3.1).

Specific human milk proteins resist degradation in the preterm
gastrointestinal tract

In addition to the presence of proteases, milk-derived proteins were present in gastric aspirates
and feces of preterm infants throughout the first two postnatal weeks. These included bile-
salt activated lipase, lactotransferrin, caseins, alpha-lactalbumin and serum albumin (Table S3.2).
In the gastric aspirates of extremely preterm infants in the first two postnatal weeks, more
than 30.0% of identified human milk proteins consisted of casein fragments. In feces, only
0.07% and 0.2% of identified human milk proteins were casein fragments in week one and
two, respectively. In contrast to extremely preterm infants, the relative abundance of casein
fragments in gastric aspirates of very preterm infants was higher with 48.1% and 47.5% in week
one and two respectively. No casein fragments were detected in feces. Human milk-derived
lactotransferrin and serum albumin were also detected in fecal samples of all preterm and full-

term infants, while no bovine-derived proteins were observed (Fig. 3.3 and Fig. S3.1).

Birth weight positively correlates to bifidobacterial protein abundance in
preterm infants from the third postnatal week onwards

In full-term infant’s feces, relative abundance of bacterial proteins gradually increased from
18% to 34% over the first six weeks, while the abundance of host- and dietary-derived proteins
decreased. The ratio bacterial to eukaryote proteins developed more stochastically in preterm
infants (Fig. S3.2). The bacterial proteins’ abundance in extremely preterm infants was 6%
and remained significantly lower than that of full-term infants up till the end of the six weeks
(P = 0.04). For very preterm infants, bacterial protein abundance increased to 31%, reaching
similar levels as that of full-term infants in week six. Moreover, extremely preterm infants were
characterized by a low mean relative abundance of bifidobacterial-derived proteins fluctuating
between 6% and 10% throughout the six-week period (Fig. S3.3). In contrast, bifidobacterial-
derived proteins reached proportions as high as 41% and 52% in the sixth week of very preterm
and full-term infants, respectively.

Weight parameters were correlated to relative abundance of bifidobacterial-derived proteins in
preterm infant’s feces. For full-term infants, no data on weight gain was available. For preterm
infants, higher birth weight was significantly correlated to higher proportions of bifidobacterial
proteins from week three onwards (p > 0.75 and P < 0.05) (Fig. S3.4). In contrast, higher
Bifidobacterium spp. relative abundance did not significantly correlate to growth velocity during
the first six postnatal weeks (P = 0.23) (Fig. S3.5).
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Figure 3.3 Normalized abundance of milk-derived proteins of human and bovine source in gastric aspirates and feces
during the first two postnatal weeks. Milk-derived proteins in gastric aspirates and feces of (A) extremely preterm, (B)
very preterm and (C) full-term infants. Log, -transformed LFQ values are shown. Coloring is based on abundance from

least abundant (yellow) to most abundant (blue).

Gastrointestinal barrier-related proteins are less abundant in preterm
infant’s feces

Based on redundancy analysis, gestational age was identified as significant driver for differences
in the fecal proteome of preterm and full-term infants during the first six postnatal weeks (Fig;
3.4, Table S3.3). Thirteen (out of 804) human-derived proteins’ abundances were significantly
lower in preterm infants’ feces compared to full-term infants’ feces during the first six postnatal
weeks (Fig. 3.5, Table S3.4). These proteins included gastrointestinal barrier and innate mucosal
immune proteins mucin-5AC (MUC5AC), trefoil factor 2 (TFF2), trefoil factor 3 (TFF3) and
neutrophil defensin 3 (DEFA3) and proteins involved in lipid metabolism. As such, these
proteins were further analyzed longitudinally by temporal dynamic patterns. MUC5AC showed
a 2.7-fold change in full-term infants compared to preterm infants (Fig. 3.5) and was detected
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in low levels of preterm infants during the first two postnatal weeks (Fig. 3.6A). From the third
week onwards, MUC5AC intensity decreased further in preterm infants while it increased in
full-term infants. From the third postnatal week onwards, MUC5AC levels were significantly
higher in full-term infants compared to that of preterm infants (P < 0.05). A similar pattern was
observed for TFF2 (Fig. 3.6B) with a 3.6-fold change difference between full-term infants and
preterm infants (Fig. 3.5). In contrast to full-term infants, TFF3 was not detected in preterm
infants during the first six weeks of life (Fig, 3.6C). TFF3 had a 2.5-fold change in full-term
infants compared to preterm infants (Fig. 3.5). DEFA3 was significantly higher in full-term
infants compared to preterm infants during the whole period six-week period (P < 0.05) (Fig;
6D) and reached 4.5-fold change difference in full-term infants compared to preterm infants
(Fig. 3.5).

5.0-

we
o0

woe

s 0

Gestational age

INY<)

°
°
° ; 4 5
3 03
5 o ©
2.5 4 ° 430
6 3 "

AB1 duration: none

~0

AB1 duration: short

o e

Gestational age

o el 2 et

No

9
Sr' oo ° o Extremely preterm: 25-27 weeks of gestation
% el e el Sl el o Very preterm: 28-31 weeks of gestation
@ AB1 du.ratnon: medc1um ;’5 | e Full-term: 37-41 weeks of gestation
1 2 !
1 o 2 I °
1 ° 1 2 .
6 | ° Parenteral feeding (%)
(<] o 1
o 1 1 !
1 o ! "
1 ) . | e
-25 o (4]
R 2 63 3 1 °
° 1
o 1 1 ° !
1 . 1 ° : I
o
I
T T
2
° |
2 1
) |
-2 0 2 4
RDA1 (52.2%)

Figure 3.4 Redundancy analysis on the fecal proteome of preterm and full-term infants during the first six postnatal
weeks. Clinical vatiables shown by arrows significantly explain variation in the proteome as selected by forward and
reverse automatic stepwise model selection. Colored points indicate infant samples of one timepoint, numbers indicate
the corresponding postnatal week and grey points indicate centroids of identified proteins. AB1: first antibiotic treatment

including no treatment and treatment of short (< 3 days) or medium (3—5 days) duration.
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Figure 3.5 Volcano plot showing differences within the fecal proteome of preterm and full-term infants. LFQ intensities
of fecal samples from preterm (# = 56) and full-term (# = 17) infants were used to generate the volcano plot in Perseus
version 1.6.2.1°". LFQ intensities were log, -transformed, samples were assigned to its designated study group and
compared with a Student’s two-sample t-test with permutation-based FDR correction. P-values as indicated on the
y-axis are -log, -transformed. The differentially expressed proteins are marked by gene names. Upregulated proteins in
preterm infants include: LV403: Ig lambda chain V-IV region Hil; GNS: Glucosamine (N-acetyl)-6-sulfatase; FOLH1:
Glutamate carboxypeptidase 2; ACE: Angiotensin-converting enzyme; KV402: Ig kappa chain V-IV region Len; RBP2:
Retinol-binding protein 2 (fragment); LV302: Ig lambda chain V-II region LOI. Upregulated proteins in full-term infants
include PLA2G1B: Phospholipase A2; TFF2: Trefoil factor 2; NPC2: Epididymal secretory protein E1 (fragment);
DEFA3: Neutrophil defensin 3; GP2: Pancreatic secretory granule membrane major glycoprotein GP2 (fragment);
CLPS: Colipase; TFF3: Trefoil factor 3; MUC5AC: Mucin-5AC; CUZD1: CUB and zona pellucida-like domain-
containing protein 1; CEACAMT7: Carcinoembryonic antigen-related cell adhesion molecule 7; VNNT1: Pantetheinase;
CPB1: Carboxypeptidase B; IGJ: Immunoglobulin J chain (fragment).
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Gastrointestinal barrier and integrity
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Figure 3.6 Temporal dynamics of gastrointestinal barrier and integtity maturation markers in the fecal proteome of
preterm and full-term infants. (A) Mucin-5AC, (B) trefoil factor 2, (C) trefoil factor 3 and (D) neutrophil defensin 3. The
y-axis shows log, -transformed LFQ intensity. The x-axis shows the postnatal age in weeks for each gestational age group.
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Preterm infants express higher levels of microbial oxidative stress proteins
compared to full-term infants

Our previous work indicated that delayed colonization by beneficial, obligate anaerobes was
associated with respiratory support strategies'”’. Samples with low levels of bifidobacterial
proteins showed relatively high levels of proteins derived from opportunistic pathogens
including Ewnterococcus spp., Escherichia spp. and Klebsiella spp. (Fig. S3.3). Being facultative
anaerobic bacteria, expression of oxidative stress proteins may provide a competitive advantage.
These genera expressed oxidative stress proteins at different levels in the gestational age groups.
Extremely preterm infants, characterized by a low mean relative abundance of bifidobacterial-
derived proteins, had significantly higher levels of oxidative stress proteins compared to full-
term infants in the second till fourth postnatal week (P < 0.01) (Fig. S3.6).

Human digestive and immunological proteins are consistently present in
the preterm infant’s gastrointestinal tract

Many bioactive proteins were consistently identified in preterm infants. For example,
immunoglobulin structures and other innate immune proteins were attributes with highest
contribution to variation in the gastric proteome by principal component analysis (Fig. S$3.7) as
well as by comparison of fecal protein abundances in preterm and full-term infants (Fig. 3.5,
Table S3.4). Immunoglobulin structures that were significantly more abundant in preterm infants
included Ig lambda chain V-III region LOI, Ig kappa chain V-1V region Len and Iglambda chain
V-1V region Hil (-1.9-, -2.2- and -2.7-fold change, respectively, between preterm and full-
term infants). Additionally, human catabolic enzymes were more abundant in preterm infants
(Fig. 3.5, Table S3.4) including angiotensin-converting enzyme, glutamate carboxypeptidase 2
and N-acetylglucosamine-6-sulfatase (-1.7-, -2.2- and -2.6-fold change, respectively, between
preterm and full-term infants). Apart from significant differences, a big variety of human-derived
proteins involved in digestion and immune responses were consistently identified in both gastric
and fecal proteomes of preterm infants (Table S3.5).
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Discussion

Our findings show that preterm infants express enzymes for human milk protein degradation,
albeit to a lesser extent than full-term infants. Digestion likely starts in the gastric environment
with proteases detived from mother and/or infant. Moreover, the gastrointestinal barrier of
preterm infants is impaired during the first six postnatal week together with less milk-degrading
microbes and more bacterial oxidative stress proteins. Although digestive enzymes and
gastrointestinal permeability are known to be suboptimal in preterm infants, our findings address
these issues for the first time by combining the proteomic profiles of infant gastric aspirates
and feces. Other metaproteomic studies in preterm infants have addressed functionality of the
microbiota®>"". We have added a host and developmental perspective to this by monitoring in
the first six postnatal weeks.

Similar to findings by Omari et al., we found average gastric pH fluctuated during the first

20, Extremely high gastric pH at day of birth, as observed in some infants

two postnatal weeks
in our study, might be due to swallowing of alkaline amniotic fluid**'. Median pepsin activity
was relatively stable, yet very low. High pH combined with low pepsin activity could affect
gastric digestive capacity of preterm infants and thereby decrease their nutrient utilization
potential®****. Although enzyme activity analyses showed pepsin was active in the stomach, we
could not identify pepsin in the gastric proteome by means of LC-MS/MS. Yet, our results
suggest preterm infants are equipped to degrade human milk proteins, as we identified proteases,
peptidases and various other digestive enzymes in the gastric and fecal proteome. The activity
of these enzymes depends on the maturation status of the infant and may thereby introduce
variation in the protein groups identified in each infant, as was shown by our high protein identity
variety across samples. The identified enzymes could also be detived from human milk’>>. A
previous study, however, showed that human milk-derived proteases cannot compensate for
the low gastric protein digestion capacity observed in preterm infants®®. In agreement with our
findings, other studies have shown lower proteolytic capacity of gastric enzymes for human milk
proteins in preterm infants compated to full-term infants®®. Milk peptides, including caseins,
can survive gastrointestinal digestion, which we could confirm in our study in a quantitative and
longitudinal manner’. As milk peptides are an important source of peptides and amino acids
for rapidly growing infants, the impaired degradation and/or absorption of human milk proteins
in preterm infants could have serious consequences on energy acquisition and subsequent
growth in eatly life’. However, providing infants with protein hydrolysates did not improve
growth and weight gain®*. The microbiota composition in preterm infants may further influence
metabolic activities as shown by other metaproteomic studies in preterm infants that identified
microbiota-associated metabolic shifts*>". In our previous work, we similarly have shown
that a Bifidobacterium-dominated community, as observed in very preterm but not in extremely
preterm infants, is associated with increased bacterial proteins involved in carbohydrate and

7. Here, we have described a correlation between bifidobacterial proteins

energy metabolism
and birth weight in preterm infants. Infants with higher birth weight are less likely to encounter
complications and are more likely to have better early neonatal circumstances compared to low-

birth-weight infants. Less and shorter antibiotic treatments as well as less respiratory support
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might allow beneficial obligate anaerobes, such as bifidobacteria, to thrive. Delayed colonization
of such bacteria was observed with more and longer antibiotic treatments as well as with
increased duration of respiratory support"'**". As a consequence of a higher birth weight,
maturation of the gastrointestinal tract as well as bifidobacterial abundance would be promoted,
further supporting human milk utilization capacity of the microbiota and weight gain. Potential
associations between microbiome and weight gain should be further investigated in a larger
cohort of preterm infants.

In addition to digestion, we have shown impaired levels of gastrointestinal barrier-related
proteins in preterm infants over the first six postnatal weeks. While MUC5AC is a gel-forming
glycoprotein lining gastric and respiratory tract epithelia, trefoil factors are mucin-associated
peptides involved in protection and repair of the gastrointestinal mucosa by being involved in
restitution and stimulation of immunocyte migration’. Interaction of TFF2 or TFF3 with
MUC5AC has not been reported so far, but is likely due to proven interactions between trefoil
factor 1 and MUC5AC as well as homology within a conserved trefoil domain®™'. Therefore,
our findings could indicate a less thick and stable mucus layer in the gastrointestinal tract of
preterm infants that could subsequently impair the intestinal barrier as described previously™.
Other metaproteomic studies in preterm infants identified proteins related to intestinal mucosal

95307 Our results

barrier development and protection, including MUC5AC and trefoil factors®
showed an inverse association of gastrointestinal barrier-related proteins with bacterial oxidative
stress proteins of facultative anaerobes. In our previous work, delayed colonization by beneficial,
obligate anaerobes was associated with respiratory support strategies including ventilation and
continuous positive airway pressure (CPAP)". Hence, we hypothesized that respiratory support
might introduce oxygen into the lumen. Subsequently, the aerobic environment could decrease
abundance of beneficial, obligate anaerobic microbes such as Bifidobacterinm spp., that produce
short-chain fatty acids involved in the production of anti-inflammatory cytokines and stimulation
of the intestinal bartier function™ " This in turn might sustain an aerobic environment in
which facultative anaerobes, such as Enterococcus spp. and Klebsiella spp., benefit from oxygen

while restraining oxidative stress™’

. While Bifidobacterium spp. may protect against intestinal
barrier dysfunction, products of Enterococcus spp. could compromise the intestinal epithelial
barrier”*. Our previous work on the same cohort indicated a delay in bacterial colonization in
extremely preterm infants compared to infants born at later gestational ages, as well as decreased
abundance of Bifidobacterium-derived proteins, suggesting that this gestational age category is

particulatly prone to an impaired intestinal bartier and a leaky gut'”".

Digestive and immune proteins were consistently identified in the gastric and fecal proteome.
Proteins related to innate immune responses, including immunoglobulins and antibacterial

295307 1t remains unknown whether

proteins, have previously been identified in preterm infants
these proteins are active and whether they are produced by the preterm infant itself or derived
from human milk, even though many proteins have been detected in human milk and preterm

infants are immunocompromised?-?*72>33:37

. Some bioactive proteins are more evident to
detive from human milk, such as secretory immunoglobulin A**. Other bioactive proteins that

we identified in feces include casein fragments, lactotransferrin and serum albumin, as described
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previously™”. By surviving gastrointestinal digestion, these components could confer functional
properties that could protect against neonatal sepsis and NEC although certainty of evidence in

340,341

these cases is low . Human milk, thus, acts at the intestinal barrier interface where it supports

functional development of the gastrointestinal tract, shapes the microbiome and positively

influences health outcomes®*%.

While our findings indicate impaired digestion and gastrointestinal barrier defense in preterm
infants, we acknowledge the relatively small number of particularly full-term infants described
in this study. As the main objective of this pilot study was to elucidate metaproteomes of
preterm infants, few full-term infants were recruited. This should be taken into account when
interpreting the data. Moreover, metaproteomics of the human intestine has its challenges™.
Future studies should focus on increasing depth and coverage of the microbiome, sample
preparation throughput and multiplexity of MS measurements. Moreover, technical barriers for

bioinformatic data processing require additional efforts™".
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Conclusion

Our findings indicate that gastrointestinal and beneficial microbial proteins involved in
gastrointestinal maturity are associated with gestational and postnatal age. While digestive
enzymes and gastrointestinal permeability are known to be suboptimal in preterm infants, this
is the first study measuring both human and microbial proteins in stomach and feces during
the first six postnatal weeks. The intestinal barrier proves to be an important environment
where gastrointestinal epithelium, immune system and microbiome interact to drive growth,
development and health of the preterm infant. More insights might lead to the design of
optimized nutrition support strategies based on the characteristics of the preterm infant and its

intestinal maturation status.
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Maturation of the preterm gastrointestinal tract can be defined by host and microbial
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Figure 83.1 Cumulative relative abundance of casein fragments in feces of preterm and full-term infants during the first
six postnatal weeks. (A) Human-derived and (B) bovine-derived alpha-, beta- and kappa-casein fragments in feces of
preterm and full-term infants during the first six postnatal weeks. riBAQ was used to calculate relative abundances and
were calculated with respect to all human-derived or all bovine-derived proteins. Non-parametric LOESS regression with

a 95% confidence interval was used to generate a smooth fitted line per gestational age group.
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Figure 83.6 Relative abundance of bacterial oxidative stress proteins per postnatal week. Bacterial oxidative stress
proteins from opportunistic pathogens including Enterococcus spp., Escherichia spp. and Klebsiella spp. identified in feces
of (A) extremely preterm, (B) very preterm and (C) full-term infants (Table S3.6). riBAQ was applied by dividing by the

sum of all bacterial proteins.
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Figure S3.7 Principal component analysis on the gastric proteome of preterm infants during the first two postnatal
weeks. Arrows display proteins explaining most variation on the first two principal components. Colored points indicate

infant samples of one timepoint.
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Maturation of the preterm gastrointestinal tract can be defined by host and microbial markers for

digestion and barrier defense
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CHAPTER 3

Table S3.3 Tables of RDA data.
Table S3.3A

Df AIC F Pr(>F)
Gestational age 1 388.1 2.648 0.0075™
Percentage parenteral feeding 1 386 4.092 0.0075™
Duration first antibiotic treatment 3 387.2 1.506 0.0500"
Table S3.3B
R2.adj Df AIC F Pr(>F)
Percentage parenteral feeding 0.04668 1 386.3 4.5256 0.002"
All variables 0.07647
Table S3.3C
RDA1 RDA2
Eigenvalue 15.5138 7.137
Proportion explained 0.5215 0.24
Cumulative proportion 0.5215 0.761

(A) ANOVA table, (B) R -adjusted table and (C) accumulated constrained eigenvalues. Scaling 2 for species and site scores.

Species are scaled proportional to eigenvalues. Sites are unscaled: weighted dispersion equal on all dimensions. General

scaling constant of scores: 10.99205. P < 0.01, "P < 0.05. P-values are adjusted with False Discovery Rate (FDR).
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Table S3.5 Human- and bovine-derived proteins identified in more than 50% of the gastric and fecal proteomes of

preterm infants (25-31 weeks of gestation).

Fasta header

>tr | AOAO75B6L0 | AOAO75B6L.L0O_HUMAN Ig lambda-3 chain C regions (Fragment) OS=Homo sapiens
GN=IGLC3 PE=4 SV=2;

>tr | AOAO75B6K9 | AOA075B6K9_HUMAN Ig lambda-2 chain C regions (Fragment) OS=Homo sapiens
GN=IGLC2 PE=4 SV=1

2 >tr | AOAO87WW89 | AOAO87WW89_HUMAN Protein IGHV3-72 OS=Homo sapiens GN=IGHV3-72
PE=4 SV=1

3 >tr| AOAO87WXI2 | AOA087WXI2_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP
PE=4 SV=1;
>sp| QIY6R7 | FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3

4 >tr | AOAO87WZWS8 | AOAO87WZWS8_HUMAN Protein IGKV3-11 OS=Homo sapiens GN=IGKV3-11
PE=4 SV=1

5 >tr| AOAO87XON5 | AOAO87XON5_HUMAN Protein IGKV1-17 OS=Homo sapiens GN=IGKV1-17 PE=4
SV=1;
>sp | P80362 | KV125_HUMAN Ig kappa chain V-I region WAT OS=Homo sapiens PE=1 SV=1

0 >tr | AOA087X2C0 | AOA087X2CO_HUMAN Ig mu chain C tegion OS=Homo sapiens GN=IGHM PE=1 SV=1;
>tr| AOAO75B6N9 | AOA075B6N9_HUMAN Ig mu chain C region (Fragment) OS=Homo sapiens GN=IGHM
PE=1SV=2

7 >tr| C9JF17 | C9JF17_HUMAN Apolipoprotein D (Fragment) OS=Homo sapiens GN=APOD PE=4 SV=1;
>sp | P05090 | APOD_HUMAN Apolipoprotein D OS=Homo sapiens GN=APOD PE=1 SV=1

8 >sp | P00760 | TRY1_BOVIN Cationic trypsin OS=Bos taurus PE=1 SV=3;
>sp| P00760 | TRY1_BOVIN Cationic trypsin OS=Bos taurus GN=Trpl PE=1 SV=3

9 >sp | P04264 | K2C1_HUMAN Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 SV=6

10 >sp | P08779 | K1C16_HUMAN Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 SV=4

11 >sp| P13645 | K1C10_HUMAN Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=06

12 >sp | P13647 | K2C5_HUMAN Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 SV=3

13 >sp | P35527 | KIC9_HUMAN Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3

14 >sp | P35908 | K22E_HUMAN Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2
PE=1SV=2

15 >tr|G3X807| G3X807_BOVIN Histone H4 (Fragment) OS=Bos taurus PE=3 SV=1;
>sp | P62803 | H4_BOVIN Histone H4 OS=Bos taurus PE=1 SV=2

16 >tr |[F5H265 | F5H265_HUMAN Polyubiquitin-C (Fragment) OS=Homo sapiens GN=UBC PE=4 SV=1;
>tr|J3QS39|J3QS39_HUMAN Ubiquitin (Fragment) OS=Homo sapiens GN=UBB PE=4 SV=1

17 >tr | G5E5H7 | G5E5H7_BOVIN Uncharacterized protein OS=Bos taurus GN=PAEP PE=3 SV=1

18 >sp | P00450 | CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1;
>tr | EOPFZ2| E9PFZ2_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=4 SV=1

19 >sp|P01008 | ANT3_HUMAN Antithrombin-ITT OS=Homo sapiens GN=SERPINC1 PE=1 SV=1

20 >sp| P01009 | ATAT_HUMAN Alpha-1-antitrypsin OS=Homo sapiens GN=SERPINA1 PE=1 SV=3

21 >sp|P01011 | AACT_HUMAN Alpha-1-antichymotrypsin OS=Homo sapiens GN=SERPINA3 PE=1
SV=2;
>tr | G3V595 | G3V595_HUMAN Alpha-1-antichymotrypsin (Fragment) OS=Homo sapiens
GN=SERPINA3 PE=4 SV=3

22 >sp| P01023 | A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3

23 >sp| P01024 | CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2

24

>sp | P01833 | PIGR_HUMAN Polymeric immunoglobulin receptor OS=Homo sapiens GN=PIGR PE=1 SV=4
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Fasta header
25 >sp|P01876|IGHAT_HUMAN Ig alpha-1 chain C region OS=Homo sapiens GN=IGHA1 PE=1 SV=2

26 >sp|P02768 | ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2;
>tr | B7WNRO | B7ZWNRO_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=1

27 >sp| P02787 | TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3

28 >sp|P02788 | TRFL._HUMAN Lactotransferrin OS=Homo sapiens GN=LTF PE=1 SV=6;
>tr | E7ER44 | E7TER44_HUMAN Lactotransferrin OS=Homo sapiens GN=LTT PE=1 SV=1

29 >sp | P02794 | FRIH_HUMAN Ferritin heavy chain OS=Homo sapiens GN=FTH1 PE=1 SV=2;
>tr| G3V192| G3V192_HUMAN Ferritin OS=Homo sapiens GN=FTH1 PE=1 SV=1

30 >sp|P04745| AMY1_HUMAN Alpha-amylase 1 OS=Homo sapiens GN=AMY1A PE=1 SV=2;
>sp| P19961 | AMY2B_HUMAN Alpha-amylase 2B OS=Homo sapiens GN=AMY2B PE=1 SV=1

31 >sp|P05109|S10A8_HUMAN Protein $100-A8 OS=Homo sapiens GN=S100A8 PE=1 SV=1

32 >sp | P05155|IC1_HUMAN Plasma protease C1 inhibitor OS=Homo sapiens GN=SERPING1 PE=1 SV=2;
>tr| E9PGN7 | EOPGN7_HUMAN Plasma protease C1 inhibitor OS=Homo sapiens GN=SERPING1 PE=3
Sv=1

33 >sp| P05164 | PERM_HUMAN Myeloperoxidase OS=Homo sapiens GN=MPO PE=1 SV=1

34 >sp | P06702|S10A9_HUMAN Protein S100-A9 OS=Homo sapiens GN=S100A9 PE=1 SV=1

35 >sp| P07355| ANXA2_HUMAN Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2;
>tr [HOYN42 | HOYN42_HUMAN Annexin (Fragment) OS=Homo sapiens GN=ANXA2 PE=1 SV=1

36 >sp | P08727 | KIC19_HUMAN Keratin, type I cytoskeletal 19 OS=Homo sapiens GN=KRT19 PE=1
SV=4;
>tr | COJM50 | C9IM50_HUMAN Keratin, type I cytoskeletal 19 (Fragment) OS=Homo sapiens GN=KRT19
PE=1SV=1

37 >sp | P15085 | CBPA1_HUMAN Carboxypeptidase A1 OS=Homo sapiens GN=CPA1 PE=1 SV=2;
>tr | COJUF9 | C9JUF9_HUMAN Carboxypeptidase A1 OS=Homo sapiens GN=CPA1 PE=4 SV=1

38 >sp|P15144| AMPN_HUMAN Aminopeptidase N OS=Homo sapiens GN=ANPEP PE=1 SV=4

39 >sp|P25311 | ZA2G_HUMAN Zinc-alpha-2-glycoprotein OS=Homo sapiens GN=AZGP1 PE=1 SV=2;
>tr | C9JEVO | C9JEVO_HUMAN Zinc-alpha-2-glycoprotein OS=Homo sapiens GN=AZGP1 PE=3 SV=1

40 >sp | P30740 | ILEU_HUMAN Leukocyte elastase inhibitor OS=Homo sapiens GN=SERPINB1 PE=1 SV=1

41 >sp | P47989 | XDH_HUMAN Xanthine dehydrogenase/oxidase OS=Homo sapiens GN=XDH PE=1
SV=4

42 >sp | P55259 | GP2_HUMAN Pancreatic secretory granule membrane major glycoprotein GP2 OS=Homo
sapiens GN=GP2 PE=2 SV=3

43 >sp| P60174 | TPIS_HUMAN Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3;
>sp| Q5E956 | TPIS_BOVIN Triosephosphate isomerase OS=Bos taurus GN=TPI1 PE=2 SV=3

44 >sp| P63258 | ACTG_BOVIN Actin, cytoplasmic 2 OS=Bos taurus GN=ACTG1 PE=1 SV=1;
>sp| P63261 | ACTG_HUMAN Actin, cytoplasmic 2 OS=Homo sapiens GN=ACTG1 PE=1 SV=1

45 >sp| Q08380 | LG3BP_HUMAN Galectin-3-binding protein OS=Homo sapiens GN=LGALS3BP PE=1
SV=1;

>tr| K7EP36 | KTEP36_HUMAN Galectin-3-binding protein (Fragment) OS=Homo sapiens
GN=LGALS3BP PE=1 SV=1

46 >5p|Q13228|SBP1_HUMAN Selenium-binding protein 1 OS=Homo sapiens GN=SELENBP1 PE=1
sV=2

47 >sp| QIUGM3 | DMBT1_HUMAN Deleted in malignant brain tumors 1 protein OS=Homo sapiens
GN=DMBT1 PE=1 SV=2

In case protein groups consisted of multiple proteins, the two proteins with highest protein existence (PE) value were

selected.
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Table S3.6 Bacterial oxidative stress proteins from opportunistic pathogens including Enterococcus spp., Escherichia spp.
and Klebsiella spp.

Fasta header

1 >tr]|D5CGUO| D5CGUO_ENTCC Superoxide dismutase OS=Enterobacter cloacae subsp. cloacae (strain
ATCC 13047 / DSM 30054 / NBRC 13535 / NCDC 279-56) GN=ECIL._05067 PE=3 SV=1;
>tr | AOA023V7A4| AOA023V7A4_CITER Superoxide dismutase OS=Citrobacter freundii CFNIH1 GN=CFN

2 >tr| AGLCS3 | AGLCS3_PARDS Catalase OS=Parabacteroides distasonis (strain ATCC 8503 / DSM 20701 /
NCTC 11152) GN=BDI_1740 PE=3 SV=1;
>tr| Q5L.G24 | Q5LG24_BACFN Catalase OS=Bacteroides fragilis (strain ATCC 25285 / NCTC 9343)
GN=katA PE=3 SV=1

3 >tr|AGT7U8| AGT7U8_KILEP7 Catalase OS=Klebsiella pneumoniae subsp. pneumoniae (strain ATCC 700721
/ MGH 78578) GN=katE PE=3 SV=1

4 >sp|A6TIHI | KATG_KLEP7 Catalase-peroxidase OS=Klebsiella pneumoniae subsp. pneumoniae (strain
ATCC 700721 / MGH 78578) GN=katG PE=3 SV=1

5  >tr|AGTA04| AGTA04_KILEP7 Superoxide dismutase OS=Klebsiclla pneumoniae subsp. pneumoniae (strain
ATCC 700721 / MGH 78578) GN=sodB PE=3 SV=1;
>tr | D5CBR7 | D5CBR7_ENTCC Superoxide dismutase OS=Enterobacter cloacae subsp. cloacae (strain ATCC
13047 / DSM 30054 /

6 >tr|D5CC12|D5CC12_ENTCC Catalase OS=Enterobacter cloacae subsp. cloacae (strain ATCC 13047 /
DSM 30054 / NBRC 13535 / NCDC 279-56) GN=ECI._02433 PE=3 SV=1;
>sp | P21179 | CATE_ECOLI Catalase HPII OS=Escherichia coli (strain K12) GN=katE PE=1 SV=1

7 >tr|V5VEFT2| V5VEFT2_ACIBA Catalase OS=Acinetobacter baumannii GN=P795_10275 PE=4 SV=1;
>tr | FOKKY1 | FOKKY1_ACICP Hydroperoxidase II OS=Acinetobacter calcoaceticus (strain PHEA-2)
GN=katE PE=4 SV=1

&  >sp|POA0J3|SODM1_STAAS Superoxide dismutase [Mn] 1 OS=Staphylococcus aureus (strain NCTC 8325)
GN=sodA PE=1 SV=1

9  >sp|POAE08 | AHPC_ECOLI Alkyl hydroperoxide reductase subunit C OS=Escherichia coli (strain K12)
GN=ahpC PE=1 SV=2;
>tr| Q32IW2 | Q32IW2_SHIDS Alkyl hydroperoxide reductase, C22 subunit OS=Shigella dysenteriae serotype
1 (strain Sd197) GN=ahpC PE=4 SV=1

10 >tr| Q32FB5| Q32FB5_SHIDS Superoxide dismutase OS=Shigella dysenteriae serotype 1 (strain Sd197)
GN=s0dB PE=3 SV=1;
>sp | POAGD3 | SODF_ECOLI Superoxide dismutase [Fe] OS=Escherichia coli (strain K12) GN=sodB PE=1
SV=2

11 >sp|P13029 | KATG_ECOLI Catalase-peroxidase OS=Escherichia coli (strain K12) GN=katG PE=1 SV=2

12 >sp|Q2FYU7| CATA_STAAS Catalase OS=Staphylococcus aureus (strain NCT'C 8325) GN=katA PE=2
SV=2

13 >sp| Q5HNZ5|SODM_STAEQ Supetoxide dismutase [Mn/Fe] OS=Staphylococcus epidermidis (strain
ATCC 35984 / RP62A) GN=sodA PE=3 SV=1

14 >sp| Q5HPKS | CATA_STAEQ Catalase OS=Staphylococcus epidermidis (strain ATCC 35984 / RPG2A)
GN=katA PE=3 SV=1

15 >sp|Q5HRY1| AHPC_STAEQ Alkyl hydroperoxide reductase subunit C OS=Staphylococcus epidermidis
(strain ATCC 35984 / RP62A) GN=ahpC PE=3 SV=1

16 >sp| Q83814 |SODM_ENTFA Superoxide dismutase [Fe] OS=Enterococcus faecalis (strain ATCC 700802 /
V583) GN=sodA PE=3 SV=1

17 >sp|P37689 | GPMI_ECOLI 2,3-bisphosphoglycerate-independent phosphoglycerate mutase OS=Escherichia
coli (strain K12) GN=gpml PE=1 SV=1

18 >sp|P77212| RCLA_ECOLI Probable pyridine nucleotide-disulfide oxidoreductase RelA OS=Escherichia coli
(strain K12) GN=rclA PE=2 SV=2

19 >tr|Q838J4 | Q838J4_ENTFA OsmC/Ohr family protein OS=Enterococcus faecalis (strain ATCC 700802 /
V583) GN=EF_0453 PE=4 SV=1

In case protein groups consisted of multiple proteins, the first proteins with highest protein existence (PE) value were

selected.
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CHAPTER 4

Abstract

The nutritional requirements of preterm infants are challenging to meet in neonatal care, yet
crucial for their growth, development and health. Aberrant maturation of the gastrointestinal
tract and the microbiota could affect the digestion of human milk and its nutritional value
considerably. Therefore, the main objective of the proposed research is to investigate how the
intestinal microbiota of preterm and full-term infants differ in their ability to extract energy and
nutrients from oligosaccharides and glycoproteins in human milk. This pilot study will be an
observational, single-center study performed at the neonatal intensive care unit at Isala Women
and Children’s Hospital (Zwolle, The Netherlands). A cohort of thirty mother—infant pairs
(preterm < 30 weeks of gestation, » = 15; full-term 37-42 weeks of gestation, » = 15) will be
followed during the first six postnatal weeks with follow-up at three- and six-months postnatal
age. We will collect human milk of all mothers, gastric aspirates of preterm infants and feces of
all infants. A combination of 16S rRNA gene amplicon sequencing, proteomics, peptidomics,
carbohydrate analysis and calorimetric measurements will be performed. The role of the
microbiome in infant growth and development is often overlooked, yet offers opportunities to
advance neonatal care. The “From Mum to Bum” study is the first study in which the effect of
a preterm gut microbiota composition on its metabolic capacity and subsequent infant growth
and development is investigated. By collecting human milk of all mothers, gastric aspirates of
preterm infants and feces of all infants at each timepoint, we can follow digestion of human
milk from the breast of the mother throughout the gastrointestinal tract of the infant, or “From
Mum to Bum”.
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oligosaccharides and glycoproteins from mother to preterm infant

Introduction

Human milk is strongly recommended in infant feeding®**. Besides its nutrient composition,
human milk educates the neonatal immune system by promoting selective tolerance toward

dietary and microbial components*-**-

%, Human milk digestion starts with maternal enzymes
in the breast that are subsequently accompanied by infantile enzymes in the mouth and stomach
upon ingestion®”*. Further down the gastrointestinal tract, the microbiota in the colon fulfills
an essential role in extracting nutrients from a considerable amount of food components that
are otherwise indigestible, such as oligosaccharides and glycoproteins in human milk***,
The process of human milk digestion is pivotal for development of the gastrointestinal tract,

microbiome and immune system!"!7-465,

Digestion and absorption of human milk is impaired in preterm infants, having considerable
consequences on their growth and development''*. Besides physiological immatutity of the
gastrointestinal tract, aberrant microbiota development impedes human milk digestion in

preterm infants'"'*

. Preterm infants typically have a decreased microbial diversity compared to
full-term infants, which has been shown to play a role in achieving weight gain'*'*>**". Moreover,
a differential microbiota composition may affect the abundance of the microbial gene pool
encoding for proteins involved in metabolism of macronutrients, which subsequently would alter
the metabolic activity and energy harvest'**'72#*#1 Microbial digestive proteins have already
been shown to vary with gestational and postnatal age in preterm infants""*”. Most convincing,
however, are studies in preterm infants showing associations between the gut microbiota,
growth and development in eatly life’**". For example, various microbiota phases in preterm
infants—each characterized by distinct metabolic functions—were significantly associated with
preterm infant growth®. More specifically, levels of the genera Bacteroides, Enterobacteriaceae and
Streptococcus at early age could be associated with weight gain of preterm infants at one month

of age®”.

With advances in neonatal care, the survival rates of preterm infants born at younger gestational
ages have increased’. This imposes new clinical challenges such as meeting the unique nutritional

39,51

requirements™'. In fact, more than half of hospitalized preterm infants are being discharged

with ongoing severe postnatal growth failure®>*. Growth impairment in the neonatal period
is common and increases susceptibility to infections and impaired cognitive development®>?'*,
The role of the microbiome in this process is often overlooked, yet offers opportunities to
advance neonatal care. Therefore, the metabolic capacity of the preterm gut microbiota and its

subsequent role in infant growth and development should be investigated.

The “From Mum to Bum” study

The new “From Mum to Bum” pilot study is well suited to investigate this and broadens our
previous clinical set-up of the EIBER study. In the EIBER study, gastric aspirates and feces
were collected from preterm and full-term infants with the main objective being to investigate
the colonization and development of the gut microbiota”"*!#**"  The EIBER study has
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enabled us to study maturation of the gastrointestinal tract and the microbiota in the early life
of preterm infants, as well as the relationship between microbiota composition and antibiotic
treatment”"'*1427 More specifically, gastrointestinal and beneficial microbial proteins involved
in gastrointestinal maturity were associated with gestational and postnatal age""'*. In the new
observational, single-center study at the neonatal intensive care unit (NICU) at Isala Women and
Children’s Hospital (Zwolle, The Netherlands), we aim to achieve a targeted approach to compare
the microbiota’s functionality of preterm and full-term infants with regard to the digestion of
human milk components. To this end, a group of mother—infant pairs will participate during the
first six postnatal weeks with follow-up at three- and six-months postnatal age. The group will
consist of fifteen mothers delivering vaginally and preterm (< 30 weeks of gestation) and fifteen
mothers delivering vaginally and full-term (37—42 weeks of gestation). By collecting human milk
of all mothers, gastric aspirates of preterm infants and feces of all infants at each timepoint,
we can follow the digestion of human milk from the breast of the mother throughout the
gastrointestinal tract of the infant, or “From Mum to Bum”. Previously, a similar set-up was used,
in which the comparison of human milk and corresponding infant feces showed that human
milk oligosaccharides (HMOs) are important for shaping the gut microbiota of infants**!. In
the current study, gastric aspirates of preterm infants are included in sample collection, which
will provide additional information on human milk digestion from a host perspective. Moreover,
our study aims to integrate 16S rRNA gene amplicon sequencing, proteomics, peptidomics and
carbohydrate analysis. With the integration of these methods, we can assess how the intestinal
microbiota of preterm and full-term infants differ in their ability to extract energy and nutrients
from oligosaccharides and glycoproteins in human milk. In fact, the combination of genomics
and proteomics has been key in understanding that the bacterial digestive proteins of preterm
infants vary with gestational age'’. Moreovert, the collection of multiple types of samples at each
timepoint provides longitudinal data that allow us to follow microbial composition and host/
microbial protein development during the first six postnatal months. Moreover, we will include

calorimetric measurements to assess intestinal functionality.

Aim and hypothesis

The main objective of the proposed research is to investigate how the intestinal microbiota
of preterm and full-term infants differ in their ability to extract energy and nutrients from
human milk. We expect that differences in the gut microbiome of preterm infants will mainly be
emphasized with regard to the digestion of HMOs and glycoproteins from human milk, since
Bifidobacterium spp. are equipped with genes encoding for enzymes that digest these components

and are lower in abundance in preterm infants'-*,

Other aims are to: (1) identify the composition of the microbiota in early life and its development
over time; (2) assess the bifidogenic effect of human milk; (3) establish if there is a relationship
between preterm microbiota composition, weight gain and growth in eatly life; and (4) explore

the relationship between preterm microbiota composition and registered clinical variables.
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Materials and methods

Study design and setting

The “From Mum to Bum” study is an observational, single-center pilot study that will include
a cohort mother—infant pairs followed from birth until six months postpartum. The mother—
infant pairs will comprise mothers delivering preterm and full-term. The cohort will be recruited
at the obstetrics department and at the NICU of Isala Women and Children’s Hospital, as well as
at several midwifery practices. Isala Women and Children’s Hospital is one out of nine hospitals
with a level III NICU in the Netherlands.

Sample size calculation

No published data are available to contribute to the estimation of the desired sample size.
Therefore, a non-probabilistic, convenience sampling method will be applied over a period of
two years. Based on the hospital’s statistics, it is expected that fifteen preterm mother—infant
pairs, who fulfill the inclusion criteria and not the exclusion criteria, could be recruited within
two years. The full-term mother—infant pairs group will be of equal size.

Recruitment criteria

Subjects are eligible if they fulfill all the inclusion criteria, but not the exclusion criteria. Screening
takes place when an infant is (to be) admitted to the NICU because of (suspected) preterm birth.
Full-term subjects are recruited by midwives on a voluntary basis during pregnancy. Potential
subjects are screened with respect to the inclusion and exclusion criteria. Written informed

consent is obtained before inclusion in the study.

Inclusion criteria for preterm mother-infant pairs

The inclusion criteria for preterm mother—infant pairs are: (1) mothers who deliver < 30 weeks
of gestation and of whom the infants are admitted to the NICU at Isala Women and Children’s
Hospital; (2) the infant is born vaginally; (3) the infant has a nasogastric tube; and (4) there is an
intention to breastfeed.

Inclusion criteria for full-term mother-infant pairs

The inclusion criteria for full-term mother—infant pairs are: (1) mothers who deliver between 37
and 42 weeks of gestation, of whom infants are born either in a hospital after an uncomplicated
pregnancy or at home; (2) the infant is born vaginally; (3) there is an intention to breastfeed; and (4)
both mother and infant are healthy, which is defined as not receiving any medication except vitamins.

Exclusion criteria for (pre)term mother-infant pairs

Mother—infant pairs will be excluded if they do not meet the inclusion criteria. Other exclusion
criteria include: (1) major congenital malformations (of the gastrointestinal tract) of the infant;
(2) high probability of death within six weeks postpartum; (3) expected discharge from the
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NICU or transfer to another hospital during the first postnatal week; and (4) there is no intention
to breastfeed and/or the infant does not receive any human milk after the first week postpartum.

Sampling procedures

Data collection timeline

The study will have a duration of six weeks and a follow-up at three and six months postpartum.
Samples will be collected weekly on the last day of the week during the first six weeks. Follow-
up will occur on the last day of week 12 and week 24 (Fig. 4.1A). Sample collection comprises:
(1) human milk; (2) gastric aspirate (only in preterm infants); and (3) feces of the infant (Fig,
4.1B). In case of discharge from the hospital, human milk and feces will be collected at home
and frozen at —20 °C. Home collections will be transported by courier to Isala Women and
Children’s Hospital.

Recording clinical data & nutritional information

Birth
Informed consent
Subject characteristics

Postnatal weeks 1 2 3 4 5 6 12 24

Human milk expression Infant feeding Gastric aspiration Defecation

2h
\ >4h

Preterm infants

<30 weeks of gestation
Full-term infants

37-42 weeks of gestation

|

Human milk collection Gastric aspirate collection Feces collection

Figure 4.1 Sampling and data collection scheme. Scheme of (A) sampling points over the first six months and (B) one
sampling point. While human milk and feces will be collected in full-term and preterm infants, gastric aspirates will only
be collected in preterm infants during hospital stay. Clinical data will be monitored at every sampling point throughout
the duration of the study.

Human milk

Human milk samples will be collected if the infant is exclusively fed with human milk or mixed
fed. Before feeding the infant, 4 mL of expressed human milk will be collected by manual or
mechanical expression. The sample will be stored at —20 °C until transfer to -80 °C for later
analysis. Breastfeeding the infant will always be prioritized, and mothers will be encouraged
to breastfeed their infants at all times as soon as the infant is able to drink from the breast;
otherwise, gavage feeding of expressed human milk will take place. The amount of mother’s
human milk will be registered in the Case Report Form (CRF). In case of insufficient human
milk expression, infants will receive additional infant formula to complete the amount. If the
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mother cannot express human milk at all after the first week postpartum, mother—infant pairs
will be excluded. No donor milk bank will be available at the NICU during the study period. For
infants below 1800 g, human milk will be supplemented with human milk fortifier and vitamins
according to the NICU protocol. In those cases, we will continue sample collection according

to the protocol.

Gastric aspirates

Preterm infants (< 30 weeks of gestation) admitted to the NICU will receive a nasogastric tube
for gastrointestinal feeding as per usual. Generally, the contents of the stomach will be aspirated
two hours after feeding to empty the stomach and to prepare it for next feedings. From this gastric
aspirate, 1 mL will be collected and frozen at =80 °C for later analysis. If no stomach content is
available, this will be reported and other samples will be collected according to the protocol.

Feces

Fecal samples will be collected from the first stool passed at least four hours after feeding. With
a scoop attached to the sampling bottle, at least one scoop of feces will be collected. These
samples will be stored at —20 °C and transferred to —80 °C for later analysis.

Clinical data collection

After birth, clinical data of preterm and full-term infants will be registered and will comprise
the gestational age, date of birth, mode of delivery, birth weight and parental data. During the
hospital stay, the investigator will register the study parameters of the preterm infant weekly in
a CRF at days of sampling and whenever applicable. The study parameters will include the date
and time of measurement, body weight, length, head circumference, feeding regimen, feeding
intolerance, morbidities, medication and respiratory support information. The feeding regimen
data will include the volume of human milk, the volume of formula and data on nutritional
support including parenteral and enteral feeding. In case of enteral feeding, human milk intake
will be corrected for enteral feeding.

During home sampling at follow-up of the preterm infant group and for the full-term group in
general, feeding information will be registered in online questionnaires that will be sent at the
planned time of home sampling. Feeding information will include the volume of human milk

and formula given to the infant at each sampling point.

Primary outcome

The main objective of the proposed research is to investigate how the intestinal microbiota of
preterm and full-term infants differ in their ability to extract energy and nutrients from human
milk. As such, the primary outcome will be the combination of quantitative differences between
preterm and full-term infants in (1) HMO-degrading bacteria; (2) bacterial HMO-degrading
enzymes; (3) human- and bovine-derived proteins; and (4) intestinal absorption capacity. This
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will be assessed in human milk, gastric aspirates and fecal samples collected during the first six
postnatal weeks and during follow-up at three and six months.

Secondary outcomes

* Microbiota composition in early life and its development over time, assessed using 16S
tRNA gene amplicon sequencing and quantitative PCR (qPCR).

* The effect of (corrected) human milk intake on the relative abundance of Bifidobacterium
spp.

* The relationship between preterm microbiota composition and weight gain in early life
assessed by means of 16S rRNA gene amplicon sequencing and anthropometrics (weight,
length and head circumference).

 The relationship between preterm microbiota composition and registered clinical variables.

Sample and data processing

Total carbohydrates and human milk oligosaccharides

Chemical analyses will be used to assess the compounds present in human milk, gastric aspirates
and feces. Specifically, the identity and quantity of carbohydrates present in human milk, gastric
aspirates and feces will be analyzed by gel permeation chromatography (GPC) as described by
Chia et al.?

HMOs will be measured by Liquid Chromatography Electrospray lonization Tandem Mass
Spectrometry (LC-ESI-MS?) as described by Mank et al.’>> Pre-treatment of samples for this
method will depend on the type. Human milk and gastric aspirates will be processed according to
Mank et al.” Briefly, samples will be thawed on ice and vortexed. Quantities of 15 pL of internal
standard a-L-arabinopentaose (0.05 mM) will be added to 135 pLL human milk or gastric aspirate.
The solution of the sample and the internal standard will be further diluted 1:11 (v/v) through
the addition of 150 pL Pierce Water, LC-MS Grade (ThermoFisher Scientific, Waltham, United
States, Cat. No. 51140). Subsequently, 450 uL. of diluted sample will be transferred to a 500-pL
Amicon Ultra centrifugal filter with 3-kDa cutoft and ultrafiltration (UF) will be performed at
14,000 g for 1 h. Subsequently, 300 uL. of UF permeate will be transferred to a LC-MS screw
top vial for LC-MS analysis. The protocol will be slightly adapted for fecal samples, as suggested
by Mank et al., and would include “additional microfiltration steps or SPE (...) in addition or as
an alternative to 3-kDA ultrafiltration.””> Acquired data will be processed as described by Mank
et al.’® Processed data will be used for data analysis.

Metaproteomic and peptidomic analysis

The metaproteome of human milk, gastric aspirate and feces will be characterized using LC-
MS/MS according to the methods outlined by Zwittink et al."”". For peptidomics, the samples

will be prepared and analyzed according to Dallas et al. ™.
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Metaproteomics and peptidomics data will be processed with MaxQuant’'! and further processed
in Perseus’” as described previously'”. Label-free quantification (LFQ) intensities will be log, -
transformed. Intensity-Based Absolute Quantification iIBAQ) intensities will be used to measure
the relative abundance of proteins. Functional profiles of proteins will be generated by assigning
protein IDs to KEGG Orthology (KO) identifiers using the KEGG Brite database. Processed
data will be used for data analysis.

Microbiota analysis

16S rRNA gene amplicon sequencing be used to assess the microbiota composition and relative
abundance in feces. Quantities of 0.13 g of feces will be weighed into a 2.0 mL screw cap tube
filled with 0.25 g of 0.1 mm zirconia beads and three 2.5 mm glass beads. Negative controls will
be included and consist of FastPrep tubes with beads. Furthermore, 300 uL. of Stool Transport
and Recovery Buffer (ST.A.R. buffer, Roche Diagnostics, Almere, The Netherlands, Cat. No.
03335208001) will be added and bead-beaten three times at 5.5 ms for 60 s with 15 s pause
(FastPrep-24 5G bead beating grinder and lysis system, MP Biomedicals, Irvine, United States).
Subsequently, samples will be incubated for 15 min at 95 °C at 100 rpm, after which they will be
centrifuged (4 °C, 5 min, 14,860 rpm) and the supernatant will temporally be stored at 4 °C. The
process will then be repeated with 200 uL. S.T.A.R. buffer. In case the first step does not yield
supernatant, 300 uL. ST.A.R. buffer will be added. A total of 250 uL of recovered supernatant
will be used for DNA extraction with Maxwell 16 Tissue LEV Total RNA Purification Kit
(Promega, Wisconsin, United States Cat. No. AS 1220).

Isolated DNA will be PCR-amplified with barcoded V4 primers (515F:
GTGYCAGCMGCCGCGGTAA™S; 806R: GGACTACNVGGGTWTCTAAT™). Next, PCR
products will be purified with the CleanPCR kit (CleanNA, Waddinxveen, The Netherlands,
Cat. No. CPCR-0050) according to the manufacturer’s protocol. DNA will be quantified with
the Qubit dsDNA BR Assay Kit (ThermoFisher Scientific, Waltham, United States, Cat. No.
Q32850) on DeNovix DS-11 FX (DeNovix, Wilmington, United States) and pooled into
libraries at an equimolar concentration of 200 ng. The pooled products will be purified with the
CleanPCR kit according to the manufacturer’s protocol and sequenced with the Illumina HiSeq
platform.

Sequencing data will be annotated with the SILVA reference database using our in-house NG-
Tax pipeline with default settings™’. In short, NG-Tax will perform read filtering, Amplicon
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Sequence Variant (ASV)-picking and taxonomic assignmen . The processed data will be

used for data analysis.

A subset of bacterial families and genera of interest will additionally be quantified using a SYBR-
based real-time qPCR. The subset of microorganisms will be selected based on reported core
microbiota in preterm infants and on their involvement in the degradation of components in
human milk®6*#1>7 The subset of bacterial families and genera will include the Enterobacteriaceae

tamily and the Bacteroides, Bifidobacterium, Clostridium, Enterococcus and Lactobacillus genera. Primer
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sequences will be used to target the family- or genus-specific regions of the bacterial 16S rRNA

gene (Table 4.1). Instead of genus-specific primers, phylogenetic cluster XIVa will be selected as

target for the Clostridinm genus as the 16S tRNA gene shares great homology between strains™.

The selected cluster is among the most abundant Clostridium phylogenetic clusters that have been

identified in the human gastrointestinal tract’®.

Table 4.1 Overview of primer sequences to target specific regions of the bacterial 16S rRNA gene for taxa within

the preterm core microbiota. The subset of selected microorganisms is based on reported core microbiota in preterm

infants and on their involvement in the degradation of components in human milk. References of primer sequences and

associated methodology are included.

Target Name Sequence (5'-3") Amplicon ~ Tm Reference
Length (bp)
16S Forward BACT_1369F CGG TGA ATA CGT TCY 142 56 Suzuki et
CGG al.?!
Reverse  PROK_1492R GGW TAC CTT GTT ACG
ACTT
Bacteroides- Forward - GGT GTC GGC TTA AGT 140 68  Jian et al
Prevotella- GC CAT
Porphyromonas
Reverse - CGG AYG TAA GGG CCG
TGC
Bifidobacterinm ~ Forward - TCG CGT CYG GTG TGA 243 58  Jianetal’?
spp- AAG
Reverse - CCA CAT CCA GCRTCC AC
Clostridinm Forward - CGG TACCTG ACT AAGC 429 55  Jianetal’®
cluster XIVa
Reverse - AGT TTY ATT CTT GCG
AACG
Enterobacteriaceae Forward  En-lsu-3F TGC CGT AACTTC GGG 428 60  Matsuda et
spp- AGA AGG CA al.’®
Reverse  En-lsu-3'R TCA AGG ACC AGT GTT
CAGTGT C
Enterococcus spp.  Forward — g-Encoc-F ATC AGA GGG GGA TAA 337 55 Matsuda et
CACTT al. >
Reverse  g-Encoc-R ACT CTC ATC CTT GTT CIT
CTC
Lactobacillus spp.  TForward F_alllact_IS TGG ATG CCT TGG CAC 92 58 Haarman et
TAG GA 21,365
Reverse  R_alllact_IS AAA TCT CCG GAT CAA
AGCTTA CTT AT
Probe P_alllact_IS TAT TAG TTC CGT CCT 68
TCATC
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Calorimetry

The energy contained within human milk and feces will be measured using bomb calorimetry,

366—

as described eatlier’*~". Intestinal absorption capacity will by defined by the energy difference

between nutritional intake and fecal losses, which is a widely accepted method and semi-
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quantitative marker for intestinal function in clinical practice’®®. Human milk will be used to

measure nutritional intake and feces will be used to measure the energy excreted in feces. Analyses

will be performed according to Hosoi et al. for human milk and Wierdsma et al. for feces™**,

Data availability

Once available, the mass spectrometry data will be deposited to the ProteomeXchange
Consortium®” via the PRIDE partner repository. Sequencing data will be made available via the
European Nucleotide Archive.

Ethics approval and consent to participate

The protocol for the “From Mum to Bum” study was approved by the board of the Medical
Ethics Committee (METC) of Isala Women and Children’s Hospital (Zwolle, The Netherlands)
in May 2019 as a study not falling under the scope of the Medical Research Involving Human
Subjects Act (WMO). The study was registered under the number 190503 with the Research
Manager of METC Isala Women and Children’s Hospital and began recruiting in August 2020.
This study will be conducted according to the principles of the Declaration of Helsinki (64"
WMA General Assembly, Fortaleza, Brazil 2013), the Personal Data Protection Act (UAVG), the
“Gedragscode Gezondheidsonderzoek™ and the “Code Goed Gedrag”.

Data management

The privacy of the participants will be guaranteed at all times. The data of participating infants
will be pseudonymized with personal codes. Samples and registered data will be collected in the
CRF using this code. The document linking codes to participants’ data will only be accessible for
the researchers of this study. The investigator is responsible for designing and updating the CRF
and other data collection forms. All documents pertaining to the conduct of the study must be
kept by the investigator for a period of 15 years.
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Results

Data analysis and assessments

Subjects with missing values will be excluded prior to data analysis. Data will be analyzed using
the statistical program R and RStudio software®; as well as dedicated in-house R scripts and
available packages.

Carbohydrates and oligosaccharides

Preterm and full-term infants will be compared with regard to the quantity of total carbohydrate
and the quantity of HMOs in their respective postnatal week, as well as within one age group
between sample types. In addition, temporal dynamic plots will be used to assess the quantity of
total carbohydrates and HMOs over the first six postnatal weeks.

Metaproteomics and peptidomics

Proteins and peptides will be compared between the preterm and full-term groups in their
respective postnatal week, as well as within one age group between sample types, using Perseus’
volcano plots®®. The quantities of proteins and peptides of interest will be further analyzed with
temporal dynamic plots over the first six postnatal weeks.

Microbiota data

16S rRNA gene amplicon sequencing data over time will be analyzed in terms of composition,
diversity and richness. Descriptive statistics such as summaries and graphics will be used to
describe the basic features of the colonization and development of the gut microbiota of
the subjects. The diversity and richness of the microbiota within and between individuals
will be analyzed at various phylogenetic levels using the Wilcoxon test or Mann-Whitney test,
respectively. Differences in microbial composition, diversity and richness between time points
will be assessed using a repeated measure Analysis of Variance (ANOVA) if the data are normally
distributed or a Kruskal-Wallis test if the data are skewed. qPCR data will be used to assess the
microbial load in each sample.

Calorimetry

Measured energy (kcal/100 g) and intestinal absorption capacity (as a percentage of nutritional
intake) will be compared between preterm and full-term groups in their respective postnatal
week as well as within one age group over the first six postnatal weeks.

Relationships between data

Metaproteomic and 16S rRNA gene amplicon sequencing will be further analyzed in relation
to clinical variables. Considering all measured variables, principal component analysis (PCA)
will be used to assess the captured variation between groups. Moreover, this technique allows

us to examine potential clusters and outliers. Next, redundancy analysis (RDA) will be used
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to estimate the relationship between quantitative and qualitative variables including 16S rRNA
gene amplicon sequencing data, metaproteomics data and clinical variables. Forward and reverse
automatic stepwise model selection for constrained ordination will be performed to build a
model with variables that significantly explain variation in the data. Additionally, correlation
network analyses will be performed between the relative abundance of intestinal bacteria,
human/bacterial proteins and the clinical vatiables.
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Discussion

The “From Mum to Bum” study is a new clinical pilot study investigating how the intestinal
microbiota of preterm and full-term infants differ in their ability to extract energy and nutrients
from oligosaccharides and glycoproteins in human milk. It capitalizes upon the set-up of our
previous clinical trial (EIBER) and broadens it by including mother’s human milk in the sample
collection. The inclusion of human milk is crucial to advance the understanding of the digestion
of human milk, from the breast of the mother throughout the gastrointestinal tract of the infant.
The microbiome plays a central role in this study as it is often overlooked in nutritional neonatal
care'’. The “From Mum to Bum” study is the first study in which the metabolic capacity of the
preterm gut microbiota and subsequent infant growth and development is investigated. We aim
to unravel microbial degradation of oligosaccharides and glycoproteins present in human milk
along the gastrointestinal tract. The proposed research is innovative in terms of the collection of
samples obtained at multiple sites along the gastrointestinal tract. Human milk, gastric aspirates
and feces have previously been studied in relation to microbial human milk digestion, but our
study is the first to combine all three types of samples. Previously, intact HMOs and glycan

digestion products have been quantified and characterized in human milk and/or feces*!”"=".

Others have characterized and compared peptides in human milk and gastric aspirates™*>*.
However, these studies have not used a combination of human milk, gastric aspirates and feces
in preterm infants. Another innovative aspect is the investigation of the microbial metabolic
capacity in relation to anthropometric data, which only few studies have focused on®**".

Moreover, we will be able to follow this process during the first six postnatal weeks.

We acknowledge a few limitations of this study. First, the single-center set-up of the study
may compromise the feasibility of recruiting solely preterm infants that are born vaginally. The
mode of delivery has been identified to strongly influence microbiota composition in (preterm)
infants'"**, Selecting infants with the same mode of delivery, therefore, eliminates differences in
microbiota composition due to confounding factors. Yet, more frequently than full-term infants,
preterm infants are born via caesarean section and this group may, thus, not be represented by
the cohort within this study ''. Additionally, preterm infants are a heterogeneous group with
many clinical variables acting as confounding factors. Selecting for mode of delivery does not
exclude the effects of other confounding factors. Second, the sample size is based on a non-
probabilistic, convenience sampling method but it remains unknown whether this sample size is
large enough to capture heterogeneity in microbiota composition amongst preterm infants. Third,
the collection of data from full-term infants relies heavily upon the compliance of participating
parents. Questionnaires need to be filled out weekly by the parents to inquire about infant
feeding practices. Additionally, human milk and feces need to be collected weekly and stored in
the correct way to allow for microbiota analysis. Storage conditions, including temperature, have
been shown to influence human milk peptidome and fecal microbiota composition”!"777,
Lastly, the absorption of proteins from human milk in the small intestine cannot be measured
directly, although it may influence metabolic activity of the microbiota in the colon.
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With increasing survival rates at lower gestational ages, the feeding of preterm infants with
unique nutritional requirements has become a new clinical challenge’**!. We expect that insights
from this study can be used to tailor nutritional care to preterm infants in such a way that optimal
growth and development can be enforced, which is beneficial for short- and long-term health.
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Conclusion

In summary, the “From Mum to Bum” study aims to investigate how the intestinal microbiota of
preterm and full-term infants differ in their ability to extract energy and nutrients from human
milk. By collecting human milk of the mother and gastric aspirates and feces of the infant, we
can determine human milk composition, gastric digestion by the infant and fermentation by the
intestinal microbiota of the infant. This may aid in the optimization of current feeding regimens
and could contribute to reductions in morbidity, mortality and healthcare costs. Additionally,
the innovative methods from this study could be used to study the digestion of bovine milk
components and thereby contribute to developments in preterm infant formulas tailored to fit
the needs of this group of infants.
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CHAPTER 5

Abstract

The role of intestinal fungi in human health and disease is becoming more evident. The
mycobiota composition and diversity of preterm infants is affected by interactions with bacteria
and clinical variables. In this study, we aimed to characterize the composition and the diversity
of the preterm infant mycobiota and the effect of clinical variables on it in the first six postnatal
weeks. Preterm infants (# = 50) and full-term infants (#» = 6) admitted to Isala Women and
Children’s Hospital (Zwolle, The Netherlands) who were born during 24-36 or 37—40 weeks
of gestation, respectively, were included in this study. Feces were collected during the first six
postnatal weeks (7 = 109) and their mycobiota composition and diversity were characterized
by ITS2 amplicon sequencing. Composition analyses identified fungi and other eukaryotic
kingdoms, of which Viridiplantae was most abundant. Of the fungal kingdom, Ascomycota and
Basidiomycota were the first and second most prominent phyla in early life of all infants. Candida
was the most abundant genus in the first six weeks of life and increased with gestational and
postnatal age. Fungal phylogenetic diversity remained stable in the first six postnatal weeks. The
individuality and the mode of delivery were identified as significant predictors for the variation
in the mycobiota composition. Vaginally delivered infants were enriched in Candida spp., whereas
infants delivered through emergency C-section were characterized by Malassezia spp. These
results indicate that fungi and other eukaryotic kingdoms are detected in the intestine of preterm
and full-term infants in the first six postnatal weeks. Similar to the microbiota, colonization of
the preterm intestine with fungi is determined by clinical variables including individuality and
mode of delivery.

122



The first fungi: mode of delivery determines early life fungal colonization in the intestine of preterm infants

Introduction

The human gastrointestinal tract harbors bacteria, fungi, archaea, protozoa and viruses that
together form the microbiota®™. Most research has emphasized the relationship between the

bacterial part of the microbiota and its link to health or disease’”*!

. By comparison, little is
known about the fungal part of the microbiota, which collectively is called the “mycobiota”.
The necessity to investigate the microbiota beyond bacteria is becoming more evident, as
“interkingdom” interactions in the intestine can affect ecosystem dynamics and immune

homeostasis®®*%2,

The initial fungal colonization occurs during early life and the process is very similar to that
of the microbiota. The acquisition of the first fungi may occur by vertical transmission from
mother to infant, in which Candida spp. is most extensively studied in this regard"™*'*. After
birth, the mycobiota composition and diversity is affected by variables very similar to those
affecting the microbiota. They include gestational age, mode of delivery, hospital environment,

antibiotic exposure and diet>*>>1>"1>%,

The mycobiota composition and diversity of preterm infants may be considerably different
compared to full-term infants due to aberrant circumstances in early life. Apart from their direct

impact, those aberrant circumstances may affect the mycobiota indirectly through interkingdom
interactions®"""*”7. The preterm infant gut mycobiota, in contrast to healthy full-term infants,
is often dominated by a single species'’. Yeasts, and more specifically Candida spp., are typically
one of those predominant species in preterm infants up to a postnatal age of six months*!’.
Within the Candida genus, opportunistic pathogens Candida albicans and Candida parapsilosis

are highly prevalent and persistent in preterm infants'’

. Other dominant genera identified in
preterm infants include Aspergillus, Davidiella, Debaryomyces, Penicillium and Saccharomyces”’. In
addition, fungi of the Saccharomycetales order and species of the Cladosporinm and Cryptococcus

genus have been identified in stools of extremely low birth weight and preterm infants™'*.

While many intestinal fungi are commensal and may confer health benefits, fungal overgrowth
may lead to infections that are associated with considerable morbidity and mortality rates'>>"",
Preterm infants are particularly prone to invasive, systemic candidiasis that affects approximately
10% of preterm infants and has an associated mortality rate of 20%'"*%. The susceptibility to
fungal overgrowth in preterm infants correlates to predisposing clinical factors including a naive
immune system, bacterial dysbiosis following exposure to a hospital environment, antibiotic

treatment and use of parenteral nutrition'”.

In this study, we aimed to characterize the composition and diversity of the preterm infant
mycobiota and the effect of clinical variables on it during the first six postnatal weeks. We
investigated the fecal mycobiota of infants born with varying degrees of prematurity during the
first six postnatal weeks.
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Materials and Methods

Ethics declaration

The board of the Medical Ethics Committee (METC) of Isala Women and Children’s Hospital
(Zwolle, The Netherlands) concluded that this study does not fall under the scope of the Medical
Research Involving Human Subjects Act (WMO). Informed consent was obtained from both
parents of all individual participants included in the study.

Study description

The samples from this study derive from the EIBER study; a single-center, observational study
involving full-term and preterm infants admitted to the neonatal intensive care unit (NICU) or
the pediatric ward of Isala Women and Children’s Hospital in Zwolle, The Netherlands. The
two objectives of the EIBER study were to investigate colonization and development of the gut
microbiota and to understand the relationship between microbiota composition and antibiotic

treatment duration!¥’144146.327,

The preterm infants were fed with mother’s own milk when available, which was increasingly
supplemented with human milk fortifier (Nenatal BMFE, Nutricia, The Netherlands) starting at
an intake of 100 mL./kg/day according to standard practice in Dutch NICUs. Whenever human
milk was insufficient or not available, preterm infants were (mixed) fed with preterm formula
(Nutrilon Nenatal Start, Nutricia, The Netherlands). Data on the percentage of human milk and
formula feeding are available (Table S5.1). No donor milk bank was available at the NICU during
the study period.

As part of the EIBER study, fecal samples of preterm and full-term infants were collected
immediately after birth and during postnatal weeks 1, 2, 3, 4 and 6. Previously, these samples
have been used to assess the composition and functionality of the preterm microbiome by

144,327 137,146

means of 16S rRNA gene amplicon sequencing and metaproteomics

Sample selection
Fecal samples were selected based on the following criteria:

* Gestational age was between 24 and 40 weeks.
* Mothers did not receive antibiotic treatment during labor until six weeks thereafter.
e Infants received at least one antibiotic treatment.

The selection criteria were formulated to yield an as homogeneous as possible group. Infants
were excluded if the mother received antibiotic treatment in the period of 48 h before birth
until six weeks after birth. After infant selection, samples of some infants were unavailable
or insufficient in volume at specific timepoints to conduct DNA extraction (Table S5.2). This
resulted in a total of 116 fecal samples from 57 infants for DNA extraction (Fig. S5.1).
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DNA extraction

DNA extraction was performed on feces. First, 0.13 g of feces were weighed into a 2.0 mL screw
cap tube filled with 0.25 g of 0.1 mm zirconia beads and three 2.5 mm glass beads. The weighed
samples were stored at —80 °C until further processing. Every run included randomly selected
fecal samples as well as a negative control consisting of one empty FastPrep tube with beads.
Then, 300 uL. of Stool Transport and Recovery Buffer (S.T.A.R. buffer, Cat. No. 03335208001,
Roche Diagnostics) were added and bead-beaten three times at 5.5 ms for 60 s with 15 s pause
(FastPrep-24 5G bead beating grinder and lysis system, MP Biomedicals). Subsequently, samples
were incubated for 15 min at 95 °C at 100 rpm after which they were centrifuged (4 °C, 5 min,
14,860 rpm) and supernatant was stored at 4 °C. The process was then repeated with 200 uL.
S.T.A.R. buffer. In the case the first step did not yield supernatant, 300 pul. of S.T.A.R. buffer
were added. Subsequently, 250 uL. of recovered supernatant were used for DNA extraction with
Maxwell 16 Tissue LEV Total RNA Purification Kit (Cat. No. AS 1220, Promega). Isolated
DNA was checked for quality with Nanodrop and quantified with Qubit dsSDNA BR Assay Kit
(Cat. No. Q32850, ThermoFisher Scientific) on DeNovix (DS-11 FX, DeNovix).

Mock community

The Mycobiome Genomic DNA Mix (MSA-1010, ATCC) was used as mock community and
was included in each sequencing library. The DNA-based mock community samples were

derived from the same stock and were used as technical replicates. Species in the Mycobiome
Genomic DNA Mix included Aspergillus fumigatus (ATCC MYA-4609D-5), Cryptococcus neoformans
var. grubli (ATCC 208821D-2), Trichophyton interdigitale (NTCC 9533D-5), Penicillinm chrysogenum
(ATCC 10106D-5), Fusarium keratoplasticum (ATCC 36031D-5), Candida albicans (ATCC 10231D-
5), Candida glabrata (NTCC 2001D-5), Malassezia globose (ATCC MYA-4612D-5), Saccharonyces
cerevisiae (ATCC 201390D-5) and Cutaneotrichosporon dermatis (ATCC 204094D-5).

Amplification and sequencing

Fecal samples, mock communities and negative controls were sent to Novogene (Cambridge,
United Kingdom). Isolated DNA was measured for DNA purity and concentration with
Nanodrop and Qubit 2.0, respectively, and integrity was visually inspected by agarose gel
electrophoresis. Subsequently, samples were PCR-amplified with primers targeting the Internal
Transcribed Spacer (ITS) 2 region (ITS3-2024F GCATCGATGAAGAACGCAGC, ITS4-2409R
TCCTCCGCTTATTGATATGC) according to Novogene’s protocol. Quality control of the
PCR-amplified samples was performed by visual inspection of amplified PCR products after gel
electrophoresis on agarose gel. Next, PCR products were mixed, purified and randomly assigned
to a library. Libraries were prepared with NEBNext Ultra IIDNA Library Prep Kit (Cat No.
E7645, New England Biolabs). After quality control of the library, I'TS amplicon metagenomic
sequencing was performed on the Novaseq6000 platform with 250 paired-end reads and a
sequencing depth of 30,000 raw tags/sample. The samples were sequenced in two independent
sequencing runs, in which mock communities were included in each library as technical replicates.

DNA Mocks 1-4 and 5-8 were present as technical replicates in the first and second libraries,
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respectively. Raw sequencing data were checked for distribution of sequencing quality and error
rate. Raw sequences with barcode and primer removed and supporting metadata were deposited
in the European Nucleotide Archive (http://www.ebi.ac.uk/ena) under the accession number
PRJEB48004.

Bioinformatics

Preparing a theoretical mock community

As quality control, a theoretical mock community was prepared and used to compare to the
sequencing output of the Mycobiome Genomic DNA Mix. To this end, fasta sequences of
the I'TS region of fungal species in the Mycobiome Genomic DNA Mix were retrieved from
the nucleotide database of NCBI. ITS sequences of each fungus were trimmed by aligning
them with the primers in the MUSCLE alignment tool of MEGA X (version 10.1.8)**. A fake
mock was then created with our in-house Python code (available at: https://gitlab.com/wurssb/
gen_fake_mocks) by importing trimmed sequences as well as a file containing a barcode and a

file containing proportions of species (10.0% each).

Taxonomic assignment with Qiime2

Raw reads were processed according to the Q2-ITSxpress workflow’®. Raw reads without barcodes

and primers were imported in Qiime2. Subsequently, the conserved regions around the ITS gene

were trimmed with ITSxpress™

387

, which has been shown to improve accuracy of taxonomic
classification™’. The sequence variants were then identified in the unmerged, trimmed sequences
with Dada2’. Next, the Qiime classifier was trained using the UNITE database (version 8.3, all
eukaryotes) with highest number of reference sequences (RefS) as compared to representative
sequences (RepS)™. Fungal ITS classifiers were trained on the UNITE database on full reference

sequences. Subsequently, sequence variants were classified with the trained classifier.

Data analysis

Pre-processing

Data were imported in R version 3.6.3°" with the QimeZR package (version 0.99.6)* to make
a phyloseq object. Before pre-processing, 10,596 taxa were identified in 129 samples with
9,216,861 reads in total. The average number of reads per sample were 71,449 with a minimum
of 5 and a maximum of 138,138, showing high variability between samples. Pre-processing of
the data included various steps, of which the first was filtering ASVs on kingdoms. Non-fungal
kingdoms were removed and consisted of Alveolata, Chromista, Eukaryota kgd Incertae sedis,
Metazoa, Stramenopila and Viridiplantae (Fig. S5.2A and B). However, unassigned sequences at
kingdom level were retained. Next, as part of further downstream processing, 834 singletons
(ASVs of which the sum of reads is equal to one) were removed. Subsequently, samples with
reads below 1000 were omitted. Eight samples were omitted with reads below 1000 for further
analyses (Fig. S5.1). This resulted in a total of 121 samples, namely 109 fecal samples from 56
infants, 8 mocks, 1 theoretical mock and 3 negative controls (Fig. S5.1, Table S5.1). Infants were
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categorized according to their gestational age into extremely preterm (24—27 weeks of gestation,
n = 18 infants), very preterm (28-31 weeks of gestation, » = 15 infants), late preterm (32-36
weeks of gestation, » = 17 infants) and full-term (37—40 weeks of gestation, # = 6 infants). For
each infant, the human milk intake was corrected for enteral feeding. To this end, the fraction of

human milk intake was multiplied by the fraction of enteral feeding.

Composition plots

For the number of reads, the reads from the ASV table were used to generate composition plots.
For the relative abundance composition plots, the data were first transformed to compositional

91

data with the #ransform function from the microbiome package (version 1.8.0)*'. Composition plots

wete visualized and customized with the gop/or2 package (version 3.3.3)°".

Mock community check

Quality control was based on mock communities, in which compositions of DNA mocks were
compared to each other and to the fake mock. First, normality of the number of reads and of the
relative abundance was checked visually with the ggggplot function from the ggpubr package (version
0.3.0)’" and quantitatively with shapiro.test function from the szats package (version 3.6.3)°". The null

hypothesis (normal distribution) was rejected in both cases as the P-values were smaller than 0.05.

First, compositions of DNA mocks were compared to each other based on the number of reads
and the relative abundance. The number of reads between the deviating DNA Mock 1 and other
DNA mock samples were compared with the kruskal.test from the stats package. Although the
number of reads of DNA Mock 1 were lower, this did not yield a significant difference compared
to other DNA mock samples (P = 0.76, Fig, S5.3A). Next, technical replicates of the DNA mock
communities were correlated with a Pearson correlation matrix using pazrs.panels from the psych
package (version 1.9.12)*2 Correlation coefficients of the DNA Mock Technical Replicates 2—8
ranged between 0.85 and 1.00 indicating reproducibility of sequencing runs (P < 0.001, Fig. S5.4).
As DNA Mock 1 was in the same library as the DNA Mocks 2—4, we deemed our data reliable.

Second, compositions of DNA mocks were compared to the fake mock. The same genera were
identified in the DNA mock communities and the fake mock. However, some genera were over-
or under-represented in the DNA mock communities. In the DNA mock communities, the mean
relative abundances of Fusarium, Candida and Cutaneotrichosporon were 0.22 + 0.05, 0.16 = 0.05
and 0.16 + 0.07, respectively (Fig. S5.3B). Compared to a theoretical relative abundance of 0.1
of each genus, they were the three most overrepresented genera in the DNA mock communities
compared to the fake mock. On the other hand, compared to a theoretical relative abundance of
0.1 of each genus, Trichopython, Aspergillus and Malassezia were the most underrepresented with
relative abundances of 0.03 £ 0.01, 0.03 = 0.01 and 0.01 £ 0.01, respectively (Fig. S5.3B). Mean
relative abundances of over- and under-represented genera in DNA mocks were not significantly

different from the theoretical mock community (Mann—Whitney test, P-values not shown).

127



CHAPTER 5

Hierarchical clustering

Data were rarified on the minimum sum of reads (1184) using the rarefy_even_depth function of
the microbiome package. Distance was calculated with the distance function of the phyloseq package
(version 1.30.0)* using unweighted UniFrac and sample-wise compartisons. The dendextend
package (version 1.13.4)** was used for generating the hierarchical cluster plot.

Phylogenetic diversity

Phylogenetic diversity was calculated on rarified data with the pd function of the picante package
(version 1.8.2)*. Significance was determined with the compare_means function of the ggpubr
package with default settings except P-values were adjusted using BH correction. The plot was
generated using the ggploz2 package.

Redundancy analysis

Dimension reduction analysis was performed to identify clinical variables that significantly
explained variation in the mycobiota composition. To this end, compositional data were
transformed with centered log ratio (CLR) using the #ransform tunction of the microbiome package.
Next, core members of the mycobiota were defined with core_members trom the wmicrobiome
package with detection set to 1/1000 and prevalence set to 25/100. Detrended correspondence

)71 to determine the

analysis was performed with decorana from the vegan package (version 2.5-6
correct dimension reduction method. Redundancy analysis (RDA) was performed with the vegan
package, using Aitchison distance, defined as the Euclidean distance between CLR-transformed

compositions™®’

7. CLR-transformed ASV relative abundances were not scaled. Samples with
missing values of explanatory variables were omitted, leaving 95 samples as input. After running
the first RDA, variance inflation was checked with »/f.cca from the vegan package to omit clinical
variables with VIF = 10. Next, RDA was repeated, now with forward and reverse automatic
stepwise model selection for constrained ordination with ordistep from the vegan package with
settings p, = 0.05,p_ = 0.1 and 999 permutations. Resulting P-values were adjusted with p.adjust

from the S7ats package using BH correction.

Permutational multivariate analysis of variance

Permutational multivariate analysis of variance (PERMANOVA) was performed with adonis
from the vegan package to test for community-level differences between group centroids. CLR-
transformed compositional data of the core mycobiota were used for this analysis. Permutations
were set to 999 and Euclidean was used as dissimilarity matrix. Gestational age category was
tested with PERMANOVA. Subsequently, homogeneity of variances was checked with vegdist
and betadisper from the vegan package. For the gestational age categories, the outcome failed
to reject the null hypothesis of homogeneous multivariate dispersions, and this predictor was

therefore concluded to have homogenous multivariate dispersions.
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Linear discriminant analysis Effect Size

Linear discriminant analysis Effect Size (LEfSe) was performed to assess differences between
mode of delivery groups (vaginal delivery, planned C-section and emergency C-section) at
phylum, class, order, family, genus and species level. For this analysis, only fecal samples from
preterm infants were selected (# = 96). The samples per mode of delivery groups were as
follows: vaginal delivery » = 54; planned C-section 7 = 28; and emergency C-section, #» = 14. The
phyloseq2lefse function as provided on the Rrumen package GitHub™® was used on compositional
data to generate the input file for Huttenhower lab Galaxy server (https://huttenhower.sph.
harvard.edu/galaxy/root). The alpha value for the two-tailed non-parametric Kruskal-Wallis
test was set to 0.01 and the logarithmic LDA score for discriminative features to 3.5. For multi-

class analyses, the one-against-all method was selected.
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Results

Composition of fungal taxa in the preterm infant intestine over the first six
postnatal weeks

Besides fungi, other eukaryotic kingdoms were observed and included Alveolata, Eukaryota
ked Incertae sedis, Chromista, Metazoa, Stramenopila and Viridiplantae (Fig. S5.2A). These
kingdoms comprised 4283 taxa and 23.1% of total observed reads. For further analyses, the
fungal and unassigned kingdoms were retained, after which the relative abundance of the
fungal kingdom ranged between 95.3% and 99.2% during the first six postnatal weeks with
the remainder being unassigned (Fig. S5.2B). After pre-processing the data, the remaining fecal
samples (7 = 109) were further assessed for mycobiota composition. The first and second most
abundant phyla in feces were Ascomycota and Basidiomycota, respectively (Fig. 5.1). Mean
Ascomycota relative abundance varied between a minimum of 82.1% and a maximum of 91.7%
(+ 28.8% and £ 8.9% SD, respectively) in the first six postnatal weeks. Mean relative abundance
of Basidiomycota gradually increased until the fourth week from 3.5% to 17.0% (£ 4.2% and
+ 28.6% SD, respectively), after which it decreased in the sixth week to 5.4% (£ 11.5% SD).
Both phyla were consistently the most dominant in preterm and full-term infants in all postnatal
weeks. In twenty samples, Basidiomycota abundance was higher than the highest average of
17.0%. However, this could not be related to gestational or postnatal age.

1.00 4
0.754
0.50
0.254
0.004
0 1 2 3 4 6

Postnatal age (weeks)

@

Phylum

Ascomycota
Basidiomycota

=}

Other

Relative abundance

a

Figure 5.1 Relative abundance of the two most abundant fungal phyla in feces of preterm and full-term infants during

the first six postnatal weeks.

130



The first fungi: mode of delivery determines early life fungal colonization in the intestine of preterm infants

The relative abundance of Candida spp. increases with gestational and
postnatal age

Within the Ascomycota phylum, Candida spp. was consistently the most abundant genus in the
first six weeks. The genus was observed in all samples of preterm and full-term infants (Fig 5.2).
On average, it comprised approximately one third of observed genera in the first week (35.2%
* 40.0%) and up to more than two thirds in the last week (68.6% £ 36.3%), albeit with high
variability between samples (Fig. S5.5A and Fig. 5.2). The total number of reads for this genus
increased over time from 21,871.6 reads in meconium to 60,094.6 reads at Postnatal Week 6
(Fig. S5.6). Of the Candida species, C. albicans was predominant with relative abundances ranging
between 88.7% =+ 21.5% (Week 1) and 96.5% * 7.3% (Week 6) (Fig. S5.7).

Relative abundance of Candida spp. gradually increased both with gestational age category as
well as postnatal age (Fig. S5.5B). In extremely preterm infants, colonization with Candida spp.
was most stochastic due to high standard deviations. The relative abundance of this genus
increased from 0.39 in the first week to 0.56 in the sixth week in extremely preterm infants (£
0.38 and £ 0.41 SD, respectively), whereas Candida spp. increased from 0.02 in the first week to
an abundance as high as 1.00 in full-term infants (£ 0.02 and £ 0.00 SD, respectively, Fig. S5.5B).
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Figure 5.2 Relative abundance of the ten most abundant genera in every fecal sample of preterm and full-term infants.
The postnatal age in weeks is displayed on the outer circle; the gestational age categories are displayed on the inner
circle. The horizontal lines indicate the relative abundance in quartile percentages. Genera not belonging to the ten most

abundant ones are merged under “Other”.
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Phylogenetic diversity of the mycobiota remains stable in the first six postnatal
weeks

Diversification of the mycobiota was investigated by performing phylogenetic diversity analyses
in each gestational age group over the first six postnatal weeks (Fig. 5.3). Median phylogenetic
diversity decreased from the first week onwards in extremely and very preterm infants, although
none of these changes were statistically significant. Late preterm infants and full-term infants,
who are physiologically most similar, were stable in phylogenetic diversity in the first two
postnatal weeks. The number of samples in later postnatal weeks in the full-term infant group
were too limited to be conclusive. Interestingly, phylogenetic diversity decreased significantly in
the fourth postnatal week compared to the preceding Postnatal Week 3 in late preterm infants.
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Figure 5.3 Phylogenetic diversity of preterm and full-term infants during the first six postnatal weeks. Individual data

points are displayed as open circles, whereas outliers are filled circles. P, s S 0.05.

Individuality and mode of delivery significantly explain variation in mycobiota
composition

To investigate which clinical variables explained variation in the fecal mycobiota composition of
preterm and full-term infants, PERMANOVA and redundancy analysis were performed. The

132



The first fungi: mode of delivery determines early life fungal colonization in the intestine of preterm infants

differences between centroids of gestational age groups were assessed by PERMANOVA and
differences were statistically significant (P = 0.005, Table S5.3). Therefore, gestational age groups
were used to categorize infants in hierarchical clustering and redundancy analysis. Hierarchical
clustering was performed to investigate relatedness of samples in their respective gestational age
categories. Samples of all gestational age categories did not cluster based on unweighted UniFrac
distance of the mycobiota (Fig. S5.8). Results of hierarchical clustering were rather random and
could indicate that individual variability is high as well as the need for a larger number of samples
per gestational age category.

Subsequently, redundancy analysis was performed to investigate the effect of clinical variables on
the variation of the mycobiota composition. The mode of delivery, gestational age, birth weight,
individuality, duration of the second and third antibiotic treatment and body weight contributed
to explaining the variation in mycobiota composition before automatic stepwise model selection.
After automatic stepwise model selection, individuality and mode of delivery were predictors
= 0.005, p,,., = 0.005)
(Table S5.4). However, these predictors lost their significance after adjusting the P-value (P, i
individuatey — 0-238 and P, anop — 0-238). Subsequently, the effect of individuality was removed to
further investigate the effect of other clinical variables (Fig. 5.4). Here, mode of delivery did not

significantly explaining variation in the mycobiota composition (P,

individuality

significantly explain variation in the mycobiota composition.

Vaginal and caesarean delivery enrich for vaginal-like and skin-like fungi in
preterm infants

Being significant initially in the redundancy analysis, the mode of delivery was hypothesized to
influence mycobiota seeding. Vaginal delivery in particular is known to vertically transfer Candida
spp. As such, we investigated the effect of mode of delivery on the mycobiota composition solely
in preterm infants with Linear discriminant analysis Effect Size (LEfSe) (Fig. 5.5A and B). Each
type of delivery mode was characterized by specific taxa, with no overlap in taxa characteristic
for planned and emergency caesarean (C-)sections (Fig. 5.5B). Instead, vaginally delivered infants
indeed were enriched with the Candida genus. On the other hand, the Malasseziomycetes class
and lower taxonomic levels were mainly characteristic for infants delivered through emergency
C-section. Interestingly, the vaginally delivered and emergency C-section infants shared fungi
within the Saccharomycetes class but not for lower taxonomic levels. Infants delivered with
a planned C-section were, among others, enriched in the Microascales order and Cladosporium

genus.
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Figure 5.4 Redundancy analysis on the fecal mycobiota of preterm and full-term infants during the first six postnatal
weeks. Continuous clinical variables are indicated with arrows, whereas the centroids of categorical clinical variables are
indicated with diamonds. Mode of delivery was significant after automatic stepwise model selection (P = 0.005) and its
centroids are displayed; centroids of other clinical variables were left out for clarity. Colored points indicate individual
fecal samples colored within its respective gestational age category. The effect of gestational age categories on the
mycobiota composition was verified with PERMANOVA analysis (P = 0.005, Table S5.3).
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Discussion

Our findings show that preterm and full-term infants are colonized by various eukaryotic
kingdoms, of which fungi were most prominent. Fungal diversity remained stable in the first six
postnatal weeks and the genus Candida was the most abundant. Its abundance was additionally
shown to increase with gestational and postnatal age. Although gestational age was important for
the mycobiota composition, samples did not cluster based on gestational age categories. Instead,
individuality and mode of delivery were significant predictors for mycobiota variation. Vaginally
delivered infants were characterized by high abundance of Candida spp., whereas infants delivered
through emergency C-section were characterized by Malassezia spp. Although the mycobiome is
gaining more attention recently, this is the first time that the effect of clinical variables on the gut
mycobiota composition is described for preterm infants with varying degrees of prematurity. We

speculate these findings are relevant for clinical practice and will gain traction in the near future.

Interestingly, many other eukaryotic kingdoms were observed besides fungi. After fungi, the
next most abundant kingdom was Viridiplantae. This kingdom has been observed more often in
infants and has been suggested to be remnants from plant material ingested by the mother'?**”.
In fact, green algae are part of this kingdom and are used to generate supplements such as
docosahexaenoic acid (DHA, omega-3)*. Omega-3 is essential for fetal neurodevelopment
and is recommended in pregnancy and during breastfeeding®*"". We therefore hypothesize that
parts of this eukaryotic DNA may end up in human milk and is thus transferred to the infant.
Moreover, mother’s own milk was increasingly supplemented with human milk fortifier (Nenatal
BMEF) as part of standard neonatal care practices in Dutch NICUs, starting at 100 mL/kg/day
enteral feeding. Fortification of human milk is necessary to meet the nutritional needs of the
preterm infant. Human milk fortifier contains—besides protein, minerals and vitamins—DHA,

which might well be the origin of the detected Viridiplantae.

Within the fungal kingdom, the phyla Ascomycota and Basidiomycota were the most abundant
in the infant intestine, which has also been observed previously®. Moreover, the abundance of
Candida spp. increased with gestational and postnatal age. Similar to findings of James et al.”’, we
observed the Candida genus and the species C. albicans were most dominant in preterm infants.
Interestingly, the abundance of the Candida genus was reported in lower abundance by James
et al."”” Most preterm infants of that study did not receive antibiotic treatment after the second
day of life, which suggests antibiotic treatment may have enriched Candida spp. in the preterm
infants described herein. However, other confounding factors including the sampling period,
mode of delivery, gestational age and postnatal age should be accounted for in future studies to

assess the effect of antibiotic treatment on mycobiota development.

While previous research highlighted the abundance of Candida spp.””’, we were additionally able
to show that vaginal delivery promotes colonization with Candida spp. Vertical transfer of this
genus has been described and is therefore very likely to occur in infants described herein*'*,
Although Candida spp. is commensal in most cases, the genus may also cause disease in

immunocompromised hosts. Preterm infants often experience overgrowth of an opportunistic
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pathogenic fungus after antibiotic treatment, typically invasive systemic candidiasis'™ """

Invasive systemic candidiasis in preterm infants can lead to considerable morbidity and mortality
rates'® ¥, It is most often caused by C. albicans, which interestingly was the most abundant
Candida species during all postnatal weeks. It might transition from commensal to opportunistic
pathogen in response to perturbations in the microbiota and weakening of the immune system or

of the physiologic barriers'®"'#-

'8, Factors that might trigger the transition include long-term or
repeated use of broad-spectrum antibiotics, use of central venous catheters, parenteral nutrition
and a naive immune system'®"'¥>!® Indeed, antibiotics may promote overgrowth by Candida spp.
through induction of genetic changes leading to increased fitness of C. albicans in the gut'®. All
infants in our cohort received at least one antibiotic treatment, were predominantly colonized
by Candida spp. and the most abundant species was C. a/bicans. However, candidiasis was not
observed in the current cohort. Hence, the mycobiome may act as reservoir for opportunistic
pathogens in immunocompromised hosts such as preterm infants, which may be triggered by

specific environmental influences such as antibiotic treatment'®".

Individuality and mode of delivery were observed as significant predictors for mycobiota
variation. Similar to our results, infant mycobiomes from anal swabs exhibited high intra-
individual variation and were concluded to be individualized**. Moreover, mode of delivery has

previously been shown to shape the mycobiome composition in human milk as well as on skin,
54,165

oral and anal body sites of infants®'®. As hypothesized before', we observed that vaginally
delivered infants were enriched in Candida spp., whereas infants delivered through (emergency)
C-section were characterized by Malassezia spp. Malassezia spp. are commonly identified on the
skin of adults and infants and therefore have been hypothesized to be vertically transmitted from
parent to infant upon skin contact*>*”. In C-section infants, the gut microbiota composition has

already been described to be more similar to mothet’s skin microbiota'*!

. Our data support the
hypothesis of vertical transmission of fungi and thereby underpin the importance of the mode
of delivery in bacterial and fungal colonization. However, Malassezia spp. were not characteristic
for infants born through planned C-section. It remains unknown what has contributed to these

differences as most studies lack distinction between types of caesarean delivery.

The question remains if the observed fungi are residents of the gut or rather transients. Fungi are
present in relatively low concentrations of 10°~10° cells per gram of fecal matter, although these
numbers may be an underestimation®*%. Even though they are smaller in cell counts, fungal
cells are 10-fold longer and 100-fold larger in volume than bacterial cells. Hence, the fungal
biomass and the metabolites they produce cannot be compared with the microbiota by solely
considering cell counts®. It is plausible that fungi are able to perform bioactive functions in the
preterm gut, as metabolic, trophic and protective functions have been described®. The same
cohort of preterm and full-term infants has been studied previously by metaproteomics'”%.
Here, we did detect Candida-derived proteins sporadically in gastric aspirates and feces. With
advances in technology, we may now identify more proteins to better approximate fungal
activity in the intestinal tract of infants. Therefore, future studies should elucidate activity of
the mycobiota by investigating fecal proteomes of infants with state-of-the-art techniques that
enable to identify more proteins.
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While our study identified prominent fungi in the intestine of preterm infants over time and
assessed which clinical variables influence the mycobiota composition, we acknowledge the
relatively small number of particularly full-term infants and the lack of longitudinal data for some
of the infants described in this study. This should be considered when interpreting the data and
the significant outcomes, particularly when studying the differences in mycobiota composition
per gestational age category. Additionally, the fungal load was not assessed by means of
quantitative PCR (qPCR) due to insufficient sample material, which is needed to put the results
into perspective of the intestinal ecosystem. Furthermore, sequencing the mycobiota has its
challenges. Such challenges include the lack of a standardized and reliable method of mycobiota
sequencing, as well as a more comprehensive fungal database coverage compared to bacterial

62404405 Therefore, some taxa may have been over- or under-represented in the results

databases
described herein. Future studies should focus on developing standardized and reliable methods
to allow scalability®. Subsequently, this may advance research of interkingdom interactions that
are currently limited. These interactions are expected to be of great importance in a key body
site where crosstalk and interactions with host immunity result in systemic manifestations of

either health or disease®.
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Conclusion

Our findings indicate that fungi and other eukaryotic kingdoms can be detected in the intestine
of preterm and full-term infants in the first six postnatal weeks. While intestinal fungi have
been characterized in preterm infants before, this is the first time it was assessed in relation to
clinical variables in preterm infants. The mycobiota shows great similarities with the microbiota
in how individuality, mode of delivery, and gestational and postnatal age drive its development
in preterm infants. As mycobiome research is gaining traction, future studies should focus on
bridging the gap between the bacterial and fungal kingdoms in the intestine. Such insights could
refine the healthcare of this vulnerable group of infants.
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Supplementary information
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Overview and workflow diagram of this study.

Relative abundance of all kingdoms identified in feces of preterm and full-term

infants in the first six postnatal weeks.

DNA and fake mock community composition plots of the ten most abundant genera.
Correlation matrix of DNA and fake mock communities.

Relative abundance of the ten most abundant genera in feces of preterm and full-

term in the first six postnatal weeks.

Number of reads of Candida spp. relative to the other genera identified in feces of
all preterm and full-term infants together in the first six postnatal weeks.

Relative abundance of the five most abundant species within the Candida genus

for all preterm and full-term infants in the first six postnatal weeks.

Hierarchical cluster dendrogram of feces of preterm and full-term infants in their

gestational age categories.

Characteristics of the infants used for data analysis.

Scheme of samples available per infant for characterization of the intestinal fungal

community.

PERMANOVA analysis.

Tables of RDA data.
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Preterm & full-term infants
EIBER cohort

Selection based on criteria

Preterm infants Full-term infants
(n=51) (n=6)

Y Y

Feces Feces
Postnatal week 1-6 Postnatal week 1-6
(n=102) (n=14)

ITS2 sequencing
Total samples: n = 129
Feces n= 116
Mocks total n = 9; DNA n = 8; theoretical n = 1

Negative controls n = 4

Y
Processing data
Omit samples based on low reads

Omitted feces n =7
Omitted infants n =1
Omitted negative control n =1

Y

Data analysis
Total samples n =121

Feces total n = 109; preterm n = 96; full-term feces n =13
Mocks total n = 9; DNA n = 8; theoretical n = 1
Negative control n =3

Figure S5.1 Overview and workflow diagram of this study. Preterm and full-term infants were part of the EIBER study,
in which feces were collected in the first six postnatal weeks with the exception of Week 5. Samples of the current study

were selected based on the sample selection criteria and were used for I'TS2 sequencing,
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Figure S5.4 Correlation matrix of DNA and fake mock communities. The correlation coefficients of Mocks 2—8 were
used for quality control, whereas correlation coefficients of Mock 1 were not considered due to deviant absolute reads

ook

(indicated in grey). Asterisks indicate significance levels with P < 0.001.
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60000+
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Genus

Candida
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Number of reads
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Figure 85.6 Number of reads of Candida spp. relative to the other genera identified in feces of all preterm and full-term

infants together in the first six postnatal weeks.
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1.00

0.754

0.50-

Relative abundance

0.254

0.004

0 1 2 3 4 6

Postnatal age (weeks)

Species

. Candida albicans
[ candida glabrata
Candida tropicalis
Candida inconspicua
Candida parapsilosis
Other

Figure S5.7 Relative abundance of the five most abundant species within the Candida genus for all preterm and full-term

infants in the first six postnatal weeks.
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Figure S5.8 Hierarchical cluster dendrogram of feces of preterm and full-term infants in their gestational age categories.
The distance is based on unweighted UniFrac, and clustering was performed with Ward. The bars indicate a sample

belongs to the gestational age category when colored.
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Table S5.2 Scheme of samples available per infant for characterization of the intestinal fungal community.

Infant  Gestational  Gestational Week Week Week Week Week Week Number
ID age (weeks)  age group 0 1 2 3 4 6  of samples
A001 27 EP 0 1 1 0 0 0 2
A003 25 EP 0 1 1 0 0 0 2
A007 28 VP 0 0 0 0 0 1 1
A008 28 VP 0 0 1 1 0 0 2
A012 27 EP 0 0 1 0 0 0 1
A015 31 VP 1 1 0 0 1 1 4
A019 26 EP 0 0 0 0 0 1 1
A020 28 VP 1 0 1 0 1 1 4
A021 28 VP 0 0 0 1 1 1 3
A022 27 EP 0 0 0 0 0 1 1
A028 30 VP 0 1 0 0 0 0 1
A030 26 EP 0 0 1 0 0 0 1
A031 26 EP 0 1 0 0 0 0 1
A032 24 EP 0 1 0 0 0 0 1
A037 29 VP 0 0 1 0 1 0 2
A038 30 VP 0 1 1 0 1 0 3
A041 26 EP 0 1 0 0 0 0 1
A043 27 EP 0 0 1 0 1 1 3
A044 28 VP 0 1 0 0 1 0 2
A047 27 EP 0 0 1 0 0 0 1
A050 30 VP 0 0 1 1 0 0 2
A051 30 VP 0 0 1 1 1 0 3
A056 30 VP 0 1 0 0 0 0 1
A063 25 EP 0 0 1 1 0 0 2
A068 27 EP 0 0 0 1 1 0 2
A074 26 EP 0 0 1 0 0 0 1
A076 27 EP 0 1 0 0 0 1 2
A082 25 EP 1 0 1 0 0 0 2
A095 27 EP 0 0 0 0 1 0 1
A097 27 EP 0 0 0 1 1 0 2
A102 29 VP 0 0 0 0 0 1 1
A103 29 VP 0 0 0 1 1 1 3
A108 28 VP 0 0 0 1 0 0 1
B202 33 LP 0 0 1 0 0 1 2
B211 32 LP 0 0 1 1 0 1 3
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Infant Gestational Gestational Week Week Week Week Week Week Number

ID age (weeks) age group 0 1 2 3 4 6  of samples
B212 32 LP 0 0 1 0 0 0 1
B214 40 FT 0 0 0 0 1 0 1
B216 37 FT 0 1 0 1 1 1 4
B217 34 Lp 1 0 0 0 0 0 1
B233 39 FT 1 0 0 0 1 0 2
B234 36 Lp 0 0 1 0 1 1 3
B237 33 Lp 0 0 0 1 1 0 2
B245 34 Lp 0 1 1 1 0 1 4
B246 34 Lp 0 0 1 0 0 0 1
B248 34 LP 0 0 0 1 1 1 3
B254 32 Lp 0 0 1 1 0 0 2
B266 35 LP 0 0 1 1 1 1 4
B270 39 FT 0 0 1 0 0 1 2
B280 37 FT 1 1 1 0 0 0 3
B285 34 LP 1 1 1 1 0 0 4
B300 34 LP 0 1 0 1 0 0 2
B308 33 Lp 0 0 1 0 0 0 1
B310 40 FT 0 0 1 0 0 0 1
B313 35 LP 0 1 0 0 0 0 1
B316 33 LP 0 0 0 1 0 0 1
B318 34 LpP 0 0 0 0 1 0 1
Total: 109

Available samples ate indicated with “1”, while unavailable/insufficient samples are indicated with “0”. EP: extremely

preterm, VP: very preterm, LP: late preterm, FT: full-term.
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Table S5.3 PERMANOVA analysis.

Table S5.3A
Df Sum of Mean F Model R2 Pt(>F)
Squares Squares
Gestational age category 3 3202 1067.4 2.05 0.06 0.005™
Residuals 91 47,502 522.0 0.94
Total 94 50,705 1.00
Table S5.3B
Df Sum Mean F value Pr(>F)
Squares  Squares
Groups 3 57 19.06 0.85 0.47
Residuals 91 2029 22.29

(A) The results of PERMANOVA analysis based on gestational age categories; and (B) the results of the associated
check for assumed homogeneity of variances. “P < 0.01.
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Table S5.4 Tables of RDA data.

Table S5.4A
Df AIC F Pr(>F) P.
Mode of Delivery 2 594.9 3.902 0.005" 0.238
Individuality 53 597.9 1.440 0.005" 0.238
Table S5.4B
RDA1 RDA2
Eigenvalue 134.6732 51.7781
Proportion explained 0.2497 0.0960
Cumulative proportion 0.2497 0.3457

(A) The ANOVA table and (B) accumulated constrained eigenvalues. Scaling 2 for species and site scores. Species are
scaled proportional to eigenvalues. Sites are unscaled: weighted dispersion equal on all dimensions. General scaling

constant of scores: 15.0059. “P < 0.01, P-values were adjusted with Benjamini-Hochberg.
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CHAPTER 6

The concordant maturation of the gastrointestinal tract and the microbiome is pivotal for growth
and health of the (preterm) infant. As a result of preterm birth, there is a discrepancy in early
life between the maturation status of the gastrointestinal tract and the process of microbial
colonization. Multiple factors interfere with the microbial maturation, among which gestational and
postnatal age, mode of delivery, antibiotic use and feeding regimens. Consequently, the disrupted
infant’s and microbiota’s maturation status affect their metabolic, protective and trophic functions.
This facilitates pro-inflammatory responses in preterm infants who already are predisposed to
inflammation and infections. In fact, preterm birth and its associated complications cause high
mortality rates in children under the age of five years'’. Hence, preterm birth still is a major societal
issue with an impact on the health of the infant and on associated healthcare costs™.

Neonatal support in early life of preterm infants offers the opportunity to orchestrate the
maturation of the immature gastrointestinal tract and the colonizing microbes. Orchestrating
these developmental processes creates intestinal homeostasis and forms the basis for long-term
health and well-being. It is thus key to understand how the gastrointestinal tract of preterm
infants, and the bacteria and fungi (microbes) therein, mature in order to support the infants
in their developmental processes. The work within this thesis therefore aimed to elucidate how
maturation of the host and its microbes is affected by nutrition. To this end, we have described
maturation of the gastrointestinal tract and of the intestinal microbes in preterm infants.
Additionally, we related these processes to nutrition, clinical variables and to infant growth,
development and health.

Integrating the intestinal bacteria and fungi in a clinical setting

Preterm infants experience a different start of life compared to full-term infants (chapter 2).
In the previous chapters, our findings have emphasized multiple clinical variables influencing the
microbiota’s proteome and mycobiota’s composition in eatly life (chapter 3 and chapter 5). These
findings are relevant to the clinical setting, in which the intestinal bacteria and fungi are expected to
be integrated in future neonatal care. Before they can be used as therapeutic target, it is important

to understand which clinical variables affect the microbiota and mycobiota development.

Gestational and postnatal age, antibiotic treatment duration and diet are known to influence the
microbiota composition. In our work we showed that they also influence the microbial proteome,
that is the microbiota’s functional profile (chapter 3). Consequently, shifts in the microbiota-
associated functional responses may occur during eatly life of preterm infants®**"". A better
scientific understanding of these microbial functional responses after clinical interventions or
in disease outcomes are needed to incorporate microbiome markers in neonatal care. Such an
approach could help to identify commonalities and correlations between preterm infants that
remain healthy and those that develop disease. Moreover, the microbial functionality could
be accounted for in individual clinical approaches, that are needed regarding the observed
heterogeneity of preterm infants (chapter 3 and chapter 5). In light of prevention, it would
be interesting to identify specific microbial activity patterns in infants who develop necrotizing
enterocolitis (NEC).
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In addition to the bacteria described in this thesis, we have unraveled the development of the
fungal community in the preterm intestine in relation to clinical variables. In chapter 5, we
described developmental patterns of the fungal community in which Candida spp. typically
increased with gestational and postnatal age. While Candida spp. were commonly identified, no
cases of candidiasis were registered within the selection of studied infants. Such fungal and
bacterial infections are commonly tested and diagnosed with blood cultures. However, poor

sensitivity of blood cultures may lead to underdiagnosis in infants*®

47, Hence, comparing blood
culture outcomes and compositional data allows to assess the mycobiota as therapeutic application
to increase sensitivity in early detection of infant fungal infections. Besides age, the mode of
delivery was a significant driver of the variation in the intestinal fungal composition (chapter 5).
As hypothesized, the findings within chapter 5 confirm that vaginally delivered preterm infants
were characterized by the vaginal-like fungal genus Candida spp., while caesarean (C-)section
delivered preterm infants were characterized by the skin-like fungal genus Malasezzia spp.'>
Above all, preterm infants are more frequently born via C-section, suggesting the colonization
with Malasezzia spp. would be promoted. Our work underpins the importance of the mode of
delivery in bacterial and fungal colonization by examining the relationship between acquisition
of vaginal-like or skin-like microbiota depending on the mode of delivery (chapter 5)'*". In an
attempt to converge the C-section infants’ microbiota toward a vaginal-like microbiota, vaginal
microbial transfers have been performed®’. This procedure of “vaginal seeding” has solely been
investigated for the intestinal bacteria in full-term infants and not in preterm infants hitherto.
Therefore, the practice of vaginal seeding is highly questionable and even more so in preterm
infants. The risk for infectious exposures are high, especially in preterm infants™®. Before such
procedures can be applied in a clinical setting, the benefit to risk ratio and the effect of vaginal

seeding on the intestinal fungal community have to be thoroughly assessed 25454,

Confounding factors explain heterogeneity in preterm infants

Being born at varying gestational ages and being exposed to a myriad of clinical interventions
(chapter 2), preterm infants are a heterogenous group in which high inter-individual differences
were identified in the microbiota’s proteome and mycobiota’s composition (chapter 3 and
chapter 5). High inter-individual differences are frequently identified in the preterm infant
microbiota and mycobiota®*?" In fact, individuality significantly explained variation in the
intestinal fungal composition (chapter 5). I would therefore advocate to include individual-
based approaches in future microbiome studies, besides trends and associations between the
microbiome and clinical variables.

Gestational age is one of the major confounders for the results described in this thesis. As
acknowledged in chapter 3, gestational age significantly explained the variation in the infant’s
fecal metaproteome. Generally, the health and maturation status of the infant—and, thus, the
type of care and duration of it—strongly depend on gestational age. This may explain the
variable developmental patterns of bacteria and fungi in preterm infants compared to full-term
infants, which was most evident in the youngest gestational age group (chapter 3 and chapter 5).
Moreover, we showed that birth weight correlated significantly to higher proportions of
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bifidobacterial proteins in chapter 3. As a consequence of a higher gestational age, infants
are more likely to have a higher birth weight, a more mature gastrointestinal tract and a higher
bifidobacterial abundance. In a similar way, maturation status of preterm infants—for which
body weight was found to be a marker—was linked to the developmental patterns of the
microbiota, in which a shift occurred from a microbiota dominated by Staphylococcus spp. to one

dominated by Enterobacteriaceae as infants gained more weight*'".

The microbiome is an inconspicuous challenge in nutritional
management

Nutrition in early life—that is, human milk—has been a cornerstone within the work of this
thesis. The extent to which human milk can confer benefits depends on the maturation status of
the infant’s gastrointestinal tract and of the microbiota. In the previous chapters, we emphasized
the importance of gastrointestinal and microbial maturity for human milk digestion (chapter
2-4). Despite its relevance to infant health, the intestinal microbiota is often overlooked in
nutritional neonatal care (chapter 2). Therefore, it is crucial to understand how human milk is
digested by the preterm host and its microbes. To this end, we took a dichotomous approach
in studying the interaction between the gastrointestinal tract and the microbiota. On the one
hand, the maturation of the gastrointestinal tract was studied from a host perspective with
its implications for the microbiota’s functionality in early life of preterm infants (chapter 3).
On the other hand, we designed a clinical study in chapter 4 to investigate gastrointestinal

maturation from the microbiota’s perspective.

Our findings show that the gastrointestinal tract and the microbiota from the preterm infants
of our cohort were immature and could not digest human milk to the same extent as full-term
infants (chapter 3). We have shown low enzyme activities of pepsin and proteases, but these
were likely less active due to high gastric pH observed in the first two postnatal weeks. Indeed,
the pH was inversely correlated to the activity of the main gastric protease pepsin (chapter
3), indicating that pepsin is less active in preterm infants due to a higher gastric pH*'". Similar
findings have been desctibed for gastric digestion of human milk by preterm infants®72%412,
Interestingly, although shown to be active, we could not detect pepsin in the metaproteomes of
gastric aspirates. Noteworthy, the data described in chapter 3 do not resolve if the observed
and active proteases derive from the infant itself or from the mother. Human milk is a source
of enzymes, although the higher gastric pH of preterm infants may inactivate some, as
described before®*. Also, less proteins from human milk oligosaccharide (HMO)-degrading
Bifidobacterium spp. were detected in preterm infants compared to full-term infants (chapter 3).
One should, however, consider the relatively small number of full-term infants included in this
study when interpreting the data, particularly when studying the differences per gestational age
category. Nevertheless, the link between gastric aspirates and feces in human milk digestion is
useful in assessing the role of the microbiota herein.

158



General discussion and future perspectives

In continuation of the work in chapter 3, we have initiated an observational, single-center clinical
study to investigate gastrointestinal maturation from the microbiota’s perspective (chapter 4).
Previous studies have compared human milk and feces to study the effect of human milk on
the microbiota™ . The “From Mum to Bum” study adds gastric aspirates of preterm infants
to the sample collection, which has already proven useful to study gastrointestinal function and
maturation with regard to human milk digestion (chapter 3). The design of this new study will
give even more detailed insights into the digestion of human milk across the gastrointestinal
tract. Although human milk digestion has been studied along the gastrointestinal tract of
preterm and full-term infants, this has not been linked to the microbiota as described in chapter
4'5. The main objective will be to identify how the intestinal microbiota of preterm and full-
term infants differ in their ability to extract energy and nutrients from human milk. The “From
Mum to Bum” study relies heavily upon the (compliance of) parents to collect samples and
nutritional data, and could become a limitation of the study upon incorrect execution thereof.
Correct sampling methods and storage conditions namely have been shown to influence the
human milk peptidome and microbiota composition of human milk and feces’!*?7778414,
Besides that, sampling is bound by ethical considerations and, while likely more representative
for the microbiota than feces, retrieving a direct sample of the colon is invasive. The same
considerations hold for the full-term counterparts of whom the gastric aspirates are missing,

The results from our new clinical study will uncover a vast amount of information that enables us
to study gastrointestinal digestion from multiple perspectives. Moreover, it allows us to correlate
microbial activity to anthropometric outcomes, which in my opinion is the next step of the
work described in this thesis. The extent to which the microbiota influences metabolism, growth
and development is worth to be investigated considering its therapeutic application in preterm
infants. The incentive hereof, however, has already been shown in chapter 3, where we correlated
anthropometric outcomes to bifidobacterial abundance. Previously, distinct microbial taxa and
features have been associated to anthropometric outcomes in preterm infants, underpinning
the microbiota’s ability to induce growth restriction™?">*">. Also, few studies have indicated that
postnatal growth failure related to disrupted gut microbiota maturation in preterm infants* ",
Based on our work, my hypothesis is that differences in microbiota development changes the
metabolic profile of the microbiota. This in turn impacts nutrient efficiency and intestinal
homeostasis that both contribute to infant growth (chapter 2). Previous findings confirm this
hypothesis, where disruptions in the gut microbiota of preterm infants were associated to distinct
microbial metabolic functions?#>*"41647 "The outcomes of our new clinical study (chapter 4)
may provide therapeutic directions by pinpointing microbes that stimulate infant growth by
being involved in lipid metabolism, endocrine functions and production of compounds that
stimulate intestinal homeostasis®*. The commonalities and disctepancies in the microbial
functionality between preterm and full-term infants allow us to identify metabolic “gaps” that
could be complemented by means of pre- and probiotics.

Protein supplementation is standard practice in preterm infants since they require high protein
intake for adequate growth and development. As observed in chapter 3 and hypothesized
in chapter 4, human milk protein digestion is hampered in preterm infants. Although not
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investigated within this thesis, the combination of protein supplementation and gastrointestinal
immaturity results in a protein surplus in the colon where bacteria ferment specific amino acids
into branched-chain fatty acids (BCFA)*'®. Generally, this so-called “putrefaction” is presumed
detrimental to the host’s health by negatively affecting mucosal cells®**'®. Given the undesired
consequences, an interesting therapeutic target would be to divert bacterial putrefaction to
carbohydrate digestion. The therapeutic potential of diverting putrefaction requires assessment
which macronutrient—that is, proteins and carbohydrates—is used preferentially by intestinal
bacteria, and in which macronutrient ratio such diversion occurs. A promising strategy for
assessing preferential use of macronutrients by intestinal bacteria would be a controlled set-
up in bioreactors. In such a set-up, the protein of choice would first need to undergo a gastric
digestion step. Afterwards, multiple bioreactors would have varying (pre-digested) protein
concentrations, of which all would be inoculated with the same preterm infant feces. A prebiotic
mixture of non-digestible carbohydrates could then be “fed” to the bioreactor, before and after
which sampling allows to assess microbial community composition, activity and its metabolic
output including produced sugars, short-chain fatty acids (SCFAs) and BCFAs. Within this set-
up, the bacterial degradation of non-digestible carbohydrates in the intestine is expected to be

9 Once assessed

energetically more favorable over the degradation of (pre-digested) proteins
thoroughly, a specific ratio of protein and non-digestible carbohydrates could be applied in
nutritional strategies to prevent BCFA production and to support mucosal health optimally.
Another nutritional strategy could be the synbiotic combination of non-digestible carbohydrates

with bacteria specified toward their fermentation.

The immature intestinal barrier is compromised in preterm infants

527,28

The intestinal barrier of preterm infants is well known to be immature or “leaky”*"*. Despite

the fact that the intestinal barrier is compromised, metaproteomic studies in preterm infants
have identified proteins related to intestinal mucosal battier development and protection®>"".
We showed that those mucosa-associated proteins—involved in establishing a stable mucus
layer—were less abundant in preterm infants compared to full-term infants during the first six
postnatal weeks (chapter 3). These findings indicate that preterm infants have a less thick and

stable mucus layer, which subsequently might lead to an impaired intestinal barrier.

Intestinal homeostasis and barrier function depend on a balanced microbiome, in which
commensal and pathogenic bacteria and their metabolites interact with components of the
intestinal barrier. The type and abundance of bacterial ligands in the intestine are pivotal for
homeostasis, as each Toll-like receptor (TLR) binds specific bacterial ligands and depending
thereon, elicits immunological responses. A culmination of clinical interventions and
developments are needed for the microbial balance to be disturbed and, thus, for the infant to
become susceptible to infections. Speculatively, the disrupted microbiome in preterm infants
(as seen in chapter 3) causes shifts in Microbial Associated Molecular Patterns (MAMPs) and
the microbiota’s metabolic output. Subsequently, the type and amount of activated of Toll-like
receptors (TLRs) changes, which results in tight junction alterations. Generally, the ligands and
metabolites of Bifidobacterinm spp. and Lactobacillus spp. stimulate TLR2 that strengthens the
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intestinal bartier by inducing the expression and localization of tight junction proteins*"**. For

example, SCFAs and indole-3-lactic acid, produced by Bifidobacterium spp. and Lactobacillus spp.,

alter cytokine secretions that regulate tight junction protein expression**4%

. Contrastingly, the
bacterial endotoxin lipopolysaccharides (LPS) on the cell membrane of Gram-negative bacteria
are recognized by TLR4, upon which pro-inflammatory processes and tight junction permeability
J153427

are initiate . Interestingly, the activation of TLR4 is antagonized by apical activation of

TLRY, which recognizes the CpG motif that is frequently observed in Bifidobacterium spp.'

These mechanisms support the hypothesis that the deviating microbiome of preterm infants
causes a shift in MAMPs and TLR activation, which triggers downstream pro-inflammatory
processes and compromises the intestinal barrier’*". Such mechanisms increase the risk for
nosocomial infections. In point of fact, NEC has been associated to a microbiota composition
dominated by Enterobacteriaceae, which overstimulate TLR4 with LPS'>. Probiotic treatment of
the preterm microbiota may thus be designed to accommodate appropriate TLR signaling or
cytokine secretion to upregulate tight junction proteins**®. Probiotic strains of the Lactobacillus
and Bifidobacterium genera or constituents thereof may be particularly useful to strengthen the

334,423 ,424,429-431

intestinal barrier . Multiple meta-analyses suggest beneficial effects of probiotic

administration against NEC in preterm infants, despite others not observing such effects*>*”.

Respiratory support relates to microbial oxidative stress

Our previous work showed that respiratory support may introduce oxygen into the intestinal
lumen and may thereby sustain the abundance of facultative anaerobes and delay the colonization

with beneficial, obligate anaerobes'”’

. The facultative anaerobes have a competitive advantage as
they tolerate oxygen by employing oxidative stress proteins, as shown in the same cohort of
preterm infants in chapter 3. Other studies additionally report a shifted ratio of facultative
to obligate anaerobic bactetia in preterm infants, as well as in C-section infants"****. Our
hypothesis on the effect of respiratory support on the composition of the microbiota was
confirmed in our targeted follow-up study. In a cohort of the Amsterdam Academic Medical
Center (Amsterdam, The Netherlands), feces were collected of preterm infants receiving a
constant oxygen supply either at low percentages (“constant”, fiO, 21-25%) or at increasing
percentages (“high”, O, > 25%) or no respiratory support (control) in the first four weeks
after birth. Preliminary data of the microbiota suggest that respiratory support lowered the
abundance of obligate anaerobes. Moreover, the ratio between facultative to obligate anaerobic
bacteria increased with higher percentages of oxygen supply. The intestine may become further
oxygenated as a consequence of an impaired and permeable intestinal barrier. In line with our
hypothesis, the gut barrier proteins in chapter 3 were inversely associated to bacterial oxidative
stress proteins of facultative anaerobic bacteria. The relationship between respiratory support
and the microbiota should be further explored in our follow-up study by investigating the
functional responses of the intestinal bacteria to oxygen supply. As such, the percentage of
oxygen supply could be correlated to the previously described digestion and barrier defense
markers, as well as bacterial oxidative stress proteins (chapter 3). Furthermore, I would propose

to determine the associations between oxygen supply and: (1) the ratio of facultative to obligate
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anaerobes; (2) the HMO-degrading capacity of the microbiota; and (3) the clinical outcomes in
which an impaired intestinal barrier is implicated.

Like described before, it is in fact the obligate anaerobic bacteria that stimulate the intestinal
barrier function and retain intestinal homeostasis™ "2 In this way, the preterm intestinal
barrier is not strengthened and the risk for nosocomial infections increases*”. In case an infection
is suspected, antibiotics are prescribed prophylactically that further contribute to the impaired
intestinal barrier, as antibiotic type and duration have considerable impact on the microbiota. For
instance, it increases the abundance of Ewnferococcus spp. at the expense of Bifidobacterium spp.'*
Yet, current advantages of antibiotics are still greater than the disadvantages although it gives
tise to an antibiotic resistome, which could complicate neonatal care on the long term>*5#%47,
Hence, to understand which future directions should be taken in antibiotic stewardship, we need
to continuously assess the effect of antibiotic treatment type and duration in NEC and sepsis.
Instead of prophylactic antibiotic treatment, nutritional interventions with antioxidant provision
could hypothetically be established within neonatal care given the situation outlined above.
Modulation of the redox potential, and thereby the microbiota of preterm infants, may aid in
mitigating the risk of nosocomial infections by inducing microbial shifts affecting colonization

resistance and oxidative stress?>#4433,

Human milk offers protection to the preterm infant

While exposed to a plethora of clinical procedures affecting the microbiome, not all preterm
infants develop NEC, sepsis or other complications in practice. Most likely, the protective
benefits from human milk have a mitigating effect on the immaturity of the preterm infant. First,
immunoglobulins confer protective functions on the infant’s naive immune system. Our findings
confirmed the survival of (maternal) immunoglobulins as indicated by the persistent presence
of them in the metaproteomes of gastric aspirates and feces of (pre)term infants (chapter
3). Congruently, immunoglobulins—particularly the secretory component, IgM and IgG—
have previously been reported to remain intact throughout the gastrointestinal tract of preterm
infants”***. The work within this thesis described the identification of fragments of IgA, IgM
and IgG in gastric aspirates and feces, although their persistence was not assessed. Second, many
other bioactive proteins involved in innate immune responses are present in human milk and have

been identified in preterm infantg?3¢-292207:322323,325,336

. One of those components is lactotransferrin,
a key player in the innate immunity. It remained undigested in the gastrointestinal tract of (pre)
term infants, thereby conferring functional benefits to the host and its microbiota (chapter 3).
The ascribed antimicrobial activity of lactotransferrin depends on sequestration of the essential
nutrient iron, and direct interaction with the microbe’s LPS or (lipo)teichoic acids causing cell
lysis*?**. The interaction of lactotransferrin with LPS also modulates TLR4 interactions, having
anti-inflammatory consequences*’. The described mechanisms of lactotransferrin thereby
could protect against neonatal infections, although evidence of meta-analyses was of low
gy 014

quali . Third, proteolytic enzymes were detected and active in preterm infant feces as
described before (chapter 3). The combination of metaproteomics and enzyme activity analyses

as applied in chapter 3, or other “—omic” methods such as transcriptomics or metabolomics,
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remains essential in future studies to fully assess the activity of detected proteins. Although it
remains unclear if the enzymes derive from mother or infant, it is likely that at least some derive
from human milk as the gastrointestinal tract and enzyme production of the preterm infant are

immature’?,

Notwithstanding the mitigating effect of human milk, morbidity rates are high in preterm infants.
With many proven benefits, human milk remains a cornerstone for neonatal care and infant
health*. Unfortunately, human milk feeding can be challenging after delivering prematurely. In
case maternal milk is not sufficiently available, donor milk is the recommended alternative for
enteral feeding. Compared to infant formula, donor milk protects against NEC, improves feeding

intolerance and reduces cardiovascular risk at later age*>*

. In spite of the indisputable benefits,
I find it questionable if donor milk feeding is optimal for the preterm infant’s safety and growth
due to few remaining concerns. First, the safety of donor milk is guaranteed by strict guidelines
for screening, storage and handling procedures, but there is no consensus in guidelines between

donor milk banks*?

. For (microbiological) safety, the donor mother and her milk are screened,
and the donor milk is pasteurized™**. However, one should be aware that donor milk may still
contain unknown or unscreened hazardous components for the preterm infant*”. Second, the
nutritional and biological value of donor milk are compromised upon storage and processing*”.
Pasteurization is most commonly used to process donor milk, for which alternative methods are
currently under investigation***. Third, donor milk does not meet the nutritional requirements of
preterm infants. As described in chapter 2, mother’s own milk adapts with premature delivery
and through lactation, thereby (partly) accommodating the needs of the preterm infant. The
nutrient, HMO and microbiota composition of human milk changes with preterm delivery and
over time*"*>*5 Donor milk often derives from mothers delivering at term and might be pooled

t38,442,443

and, thus, is not specified toward the needs of the preterm infan . For these reasons and

the fact that donor milk banks are not widely available yet, infant formula may be considered

safer and may allow for more consistent delivery and greater amounts of nutrients*>**.

Prematurity is a chronic condition

Early in life there is a window of opportunity in which the bacteria, fungi and antigens interact
with the immune system via the Gut-Associated Lymphoid Tissue (GALT)Y. In this chapter we
emphasized that a balanced interaction between the gastrointestinal tract, the immune system
and the intestinal microbes is pivotal for health in (preterm) infants. Balanced interactions within
this window of opportunity prevent inappropriate inflammatory responses toward antigens and

commensals on a short and long term>*¢'">

. The aberrant microbiota’s proteome and mycobiota’s
composition of preterm infants (chapter 3 and chapter 5) may alter the development of the
immune system although the effect of the mycobiota is not as clear hithertho™®. In fact,
the aberrant microbiome in infants has been associated to a chronic pro-inflammatory state,
although the preterm microbiome composition is not detectable at a later age per se. In those

cases, the risk for allergies, asthma, overweight, obesity, type 2 diabetes and inflammatory bowel
disease (IBD) increased'>%2,
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The microbiome may additionally influence cognitive and psychosocial outcomes via the

microbiota-gut-brain axis*’

. With crucial brain development occurring after birth, preterm
infants are prone to brain injury and white matter injury specifically. This type of injury causes
developmental issues of the white matter and increases the risk for cognitive and psychosocial
deficits in preterm infants****. The microbial and neural development occur in parallel, implying
a neurodevelopmental period in which disrupted microbiota development has consequences for
brain function and behaviour***". Given the interactions between bacteria and fungi, evidence
for the role of fungi in neurological disorders is growing®'. Mechanisms by which the gut
microbiota modulates brain function and behavior comprise metabolic, endocrine, immune and

neuronal pathways**>

. Growing evidence suggests that the gut microbiota modulates brain
function and behavior, which is often identified through associations between the disruptive
effect of antibiotics, psychiatric disorders and neurodevelopmental outcomes®**’. The
microbiota functional profiles, as described in chapter 3, were affected by antibiotic treatment

duration and could impact the microbiota-gut-brain axis of the preterm infants*®

. Long-term
follow up of preterm infants is needed to assess the effect of such a disrupted microbiota
development on neurodevelopmental outcomes. Conversely, efforts are being made to exploit
the neurodevelopmental period by modulating the microbiota with nutrition*”*". An example
of this is a study investigating the effect of a synbiotic intervention on white matter injury in

preterm infants*’.

Challenges and opportunities

All results described within this thesis derive from observational studies. Inherent to those
studies are a few challenges. One of those is the representativeness of preterm infants in the
EIBER study (chapter 3 and chapter 5) and the “From Mum to Bum” study (chapter 4). Both
are single-center studies and, thus, subjects from other hospitals may not be well represented
by these cohorts. In fact, the hospital environment and the neonatal intensive care unit (NICU)
have been shown to influence microbiota and mycobiota composition, of which its effects
sustained throughout the first year of life""!#119122224 Moreover, our findings indicated that
preterm infants are a heterogenous group regarding the composition of the microbiota and
mycobiota (chapter 3 and chapter 5). This is explained by many confounding factors known
to influence microbiota and mycobiota composition and diversity. Careful selection of inclusion
and exclusion criteria helps to specify a sub-population of infants, but inevitably avoids
investigation of these confounding factors. One of those examples is the exclusion of infants
delivered via C-section (chapter 4), while mode of delivery has been identified to strongly
influence microbiota and mycobiota composition in (preterm) infants (chapter 5)'*'%%. As such,
challenges remain to obtain a homogeneous and representative group of subjects. Besides that,
power calculations to determine the minimum number of participants remain challenging in
clinical microbiome studies, which is especially the case in observational studies*? In chapter 4,
sample size is based on a non-probabilistic, convenience sampling method. It remains unknown
whether this sample size is large enough to capture heterogeneity in microbiota composition

amongst preterm infants.
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Additional challenges lie in specific methods described in this thesis. The methods described in
this thesis allowed us to study the functionality of the microbiota (chapter 3 and chapter 4) as
well as to characterize the mycobiota of preterm infants (chapter 5). The functionality of the
microbiota was investigated by metaproteomics, which currently encounters challenges regarding
depth and coverage of metaproteomic databases”. Yet, also the sample preparation highly
depends on the type of sample, in which feces of breastfed infants may require additional steps
to precipitate fats. Besides that, bioinformatic data processing require additional efforts>%.
The biggest challenges, however, remain for mycobiota characterization (chapter 5), which still
is in its infancy. There is no consensus yet on standard and reliable methods for mycobiota
sequencing, such as the choice of a target region. Furthermore, taxonomic assignment of fungi
is challenging as the fungal database coverage is more comprehensive compared to bacterial

databases®?40440>

. Therefore, some taxa may have been over- or underrepresented in the results
described in chapter 5. Standardized and reliable methods are needed to allow scalability, which
is necessary for comparing results of studies and, thus, establishing a benchmark for a “healthy”
mycobiota®. In this process, the fungal load should be assessed by means of quantitative PCR
(qPCR) to put results into perspective of the intestinal ecosystem. The lack of investigation of
the bacterial and fungal load, that is absolute quantitation, and the comparison thereof remains
a gap in our knowledge as of yet. Such information would be essential in assessing the biological
implications of the intestinal bacterial and fungal community. Importantly, an absolute-
abundance-based approach has been proven useful for interkingdom ecological inferences'.
For that matter, quantitative and relative methods both have limitations and complementary
approaches should be used to obtain full insight in composition, dynamics and functionality of

the intestinal microbial community.

Aside from the methods’ challenges, they offer opportunities to gain insight into the functioning
of the hostand their microbiota as described in chapter 3 and chapter 4. Measuring and reporting
both human and microbial proteins in gastric aspirates and feces, as described for the first six
postnatal weeks in chapter 3, is novel and allowed us to gain insight into the gastrointestinal
maturation and its implications for the microbiota. Additionally, metaproteomic results were
related to enzyme activity analyses. In chapter 4 we described a study design in which we will
continue to use the integration of these perspectives to gain even more insight into human milk
digestion. Moreover, metaproteomics or metagenomics should be employed to hypothesize if
the observed intestinal fungi in chapter 5 are residents with relevant bioactivities for the host
or solely transients. The integration of techniques and perspectives is becoming increasingly
important to understand interactions between the host, microbes and nutrition in the intestine.

Although described separately in this thesis, future studies should focus on bridging the gap
between the bacterial and fungal kingdoms in the intestine. The work in this thesis should be
considered an incentive to further explore the potential of intestinal fungi and their interactions
with the intestinal bacteria and the immune system of (preterm) infants. Most convincingly, a
causal role of fungi has already been established in mice with regard to microbiota composition
and host immune development'””. Furthermore, in preterm infants the fungal and bacterial load
were inversely associated, suggesting that interkingdom interactions are pivotal in microbiome
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development and community dynamics''. Most notably, Enferococcus spp. were reported to
inhibit Klebsiella spp., and both bacterial genera were inhibited by the fungal genus Candida spp.”".
Our findings suggest concordant patterns, as proteins from Enterococcus spp. and Klebsiella spp.
decreased, while Candida spp. abundance increased with higher gestational and postnatal age
in infants of the same cohort (chapter 3 and chapter 5). The interkingdom interactions are
expected to be of great importance in the intestine as key body site where crosstalk with host
immunity results in systemic manifestations of either health or disease®. Archaea and viruses
additionally need to be accounted for to obtain a holistic ecological perspective of the human
intestine. Researching such interkingdom interactions in the (infant) intestine would be especially
relevant in a clinical setting, as bacteria and fungi may interact synergistically in mixed biofilms
to increase antimicrobial recalcitrance and protection against host immune responses'”>'”.
Subsequent formation of mixed biofilms on indwelling medical devices—such as nasogastric
enteral feeding tubes—could become a reservoir of microbes and antibiotic resistance genes
that are introduced into the preterm gastrointestinal tract upon feeding, thereby forming a risk

of microbial dysbiosis and infections*®%,

Conclusion and future perspectives

The research described in this thesis contributes to current knowledge of the preterm
gastrointestinal maturation and its intestinal microbes during early life of preterm infants, as
well as the clinical influences on their development. Our findings confirmed previous knowledge
on the immature status of the gastrointestinal barrier and the microbiota, in which we showed
that human milk-degrading bacteria were less active, and host intestinal barrier proteins were
less abundant in the preterm intestine. We also revealed the effect of mode of delivery on
the intestinal fungi for the first time, with vaginal-like fungi predominant in vaginally born
infants and skin-like fungi in C-section born infants. Furthermore, we obtained insights into the
bacterial and fungal differences across all degrees of prematurity, as well as between preterm

and full-term infants.

All findings described in this thesis emphasize the importance of the intestinal barrier interface
as key body site where gastrointestinal epithelium, microbes and immune system interact.
These complex interactions drive growth, development and health of the preterm infant.
As such, not only is the work described herein relevant from a microbiological perspective,
but even more so from a clinical perspective. First, the gained insights from this thesis could
complement current nutritional neonatal care by considering the microbiome. By those means,
the infant’s need for human milk, its intestinal maturation status and its microbiome provide
directions to adapt feeding strategies. The outcomes of our new clinical study will pinpoint
bacteria and beneficial metabolites worthwhile to be stimulated in order to complement the
microbial activity. Once thoroughly assessed, also the ratio of protein and carbohydrates could
be finetuned. In a similar way, preterm infant formula composition may be adapted based on
the maturation status. Second, the results in this thesis imply potential therapeutic targets for
microbial modulation. By supporting microbiome development, the preterm infant could be
supported in optimal barrier functioning, growth and development. For example, antioxidant
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supplementation would reduce oxidative stress in infants receiving high amounts of oxygen
through respiratory support. Additionally, probiotic treatment of the preterm microbiota may
be designed to strengthen the intestinal barrier and prevent inflammation. While promising,
probiotic administration remains tricky business to pick the right strain or combination thereof,

432,466

as well as the dosage and duration****. Therefore, the therapeutic potential of prebiotics or

postbiotics needs further investigation in preterm infants, as they are generally considered a

7. Probiotics should then only be administered upon consent of the parents

safer alternative
and in combination with routine culture methods to monitor their safety. Although it is not
realistic to prevent nosocomial infections completely by modulating the microbiome, it may
complement the preterm microbiota. By those means, alterations in microbial composition and
metabolism allow to break the cycle of the deviating microbiota, impaired intestinal barrier and

inflammatory processes.

Based on the research described in this thesis, I conclude that the microbiome and nutrition
hold promising applications for preterm infant care that help to orchestrate maturation of the
preterm gastrointestinal tract. Microbiota modulation offers hope for future improvements
in preterm infant care that pave the way for systemic and lifelong effects. Before nutritional
therapies targeting the microbiome can be implemented in preterm infant care, the mechanisms
by which microbes are involved in preterm infant health need to be thoroughly assessed. As
such, the preterm infant gut microbiome remains a research priority.
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If we knew what it was we are doing,
it would not be called research, would it?
Albert Einstein
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geluisterd en het vermogen gehad om mij de situatie ook eens van buiten de bubbel te laten

bekijken. Dat was zeer waardevol; dankjewel!

Familie Droogh — ik ben dankbaar dat ik in zo’n warm nest met open armen ben ontvangen.
Madelon en Johan; lieverds! Heel erg bedankt voor alle weekenden die we samen door hebben
gebracht, waar ik écht even niet aan werk dacht. De klaverjas-sessies, de wijntjes, de biertjes
en het samen genieten van het bourgondische leven zijn dingen waarvan ik hoop dat we deze
nog lang met jullie mogen delen. Ik ben dankbaar voor jullie oprechte steun en interesse.
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Maud en Nikki: bij jullie langskomen voelt als thuiskomen. Ik waardeer de spontane
bezoekjes, de koffie, lunches en andere dingen die we samen ondernemen. Maud, bedankt voor
je luisterend oor op momenten dat het nodig was. Je vermogen om je te verplaatsen in mijn
situatie is bewonderingswaardig, Petra en Jos, jullie gezelligheid en interesse hebben veel voor
mij betekend! Adri en Rina, bedankt voor jullie interesse en steun gedurende de laatste loodjes.
Jullie bemoedigende woorden hebben mij enorm geholpen.

Ruud — liefde van mijn leven. Dankjewel dat je samen met mij dit avontuur aan bent gegaan.
Ik ben dankbaar voor elk moment dat we hebben beleefd, en ik kan niet wachten op wat de
toekomst ons gaat brengen. We hebben allebei onze goals die we zijn aangegaan, en het is goud
waard om te weten dat we er altijd voor elkaar zullen zijn bij elke uitdaging. Je onvoorwaardelijke
steun op de highs en de Jows de afgelopen jaren zijn dan ook essentieel geweest. De /Jows met
artikels die afgewezen werden, de zelftwijfel, het herpakken en het doorgaan; maar ook de highs
met papers die zijn geaccepteerd, nieuwe mijlpalen en goede resultaten. Jij helpt mij om dingen

in een perspectief plaatsen en te relativeren. Ik hou van jou!
With that, I hope to have mentioned as many people as my memory allows me. Please forgive

me if I have not mentioned you and remember that you have been incredibly important in my
rollercoaster ride.

With love,

Jannie
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Discipline specific activities Organizing institute Country Year
International congress

World of microbiome: pregnancy, birth and GEMS Italy 2019
infancy (poster)

National congress

Fall meeting microbial ecology KNVM NL 2017
MIB Centennial Symposium Microbiology NL 2017
Gut day (poster) WUR NL 2018
Gut day (oral) AMC NL 2019
Scientific spring meeting (poster) KNVM NL 2019
Expert Meeting Infant & Pregnancy Base Clear NL 2020
Microbiome

Courses

Advanced Proteomics VLAG NL 2019
Intestinal microbiome of humans and animals VLAG NL 2019
Multivariate analysis PE-RC NL 2020
Project meetings

Early life team meeting Microbiology NL  2017-2021
WUR Microbiology meeting Microbiology NL  2020-2021
WUR/Nutticia Research GBM quarterly Nutricia NL  2020-2021

meeting

General courses

Organizing institute Country  Year

Applied statistics
Chemometrics
Competence assessment
Introduction to R
PhD Week
Research Data Management

Part 1

Part 2

Part 3
Start to supervise BSc and MSc students
WGS PhD Workshop Carousel

VLAG
VLAG
WGS
VLAG
VLAG
WGS

WGS
VLAG

NL
NL
NL
NL
NL
NL

NL
NL

2018
2018
2018
2018
2018
2018

2018
2018
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Other activities Organizing institute Country  Year
Development MOOC Microbiology NL 2017
“Nutrition and Health: Human Microbiome”

Preparation of research proposal Microbiology NL 2017
Journal Club Microbiology NL  2017-2019
MIB seminars Microbiology NL  2017-2021
Molecular Ecology group meetings Microbiology NL  2017-2021
PhD/postdoc meeting Microbiology NL  2017-2021
PhD Trip Microbiology USA 2019
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