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A B S T R A C T   

Several forest change detection algorithms are available for tracking and quantifying deforestation based on 
dense Landsat and Sentinel time series satellite data. Only few also capture regrowth after clearing in an accurate 
and continuous way across a diversity of forest types (including dry and seasonal forests) and are thus suitable to 
address the need for better information on secondary forest succession and for assessing forest restoration ac
tivities. We present a new change detection algorithm that makes use of the flexibility of kernel density esti
mations to create a forest reference phenology, taking into account all historical phenological variations of the 
forest rather than smoothing these out by curve fitting. The AVOCADO (Anomaly Vegetation Change Detection) 
algorithm allows detection of anomalies with a spatially explicit likelihood measure. We demonstrate the flex
ibility of the algorithm for three contrasting sites using all available Landsat time series data; ranging from 
tropical rainforest to dry miombo forest ecosystems, with different time series data densities, and characterized 
by different forest change types (e.g. selective logging, shifting cultivation). We found that the approach pro
duced in general high overall accuracies (> 90%) across these varying conditions, but had lower accuracies in the 
dry forest site with a slight overestimation of disturbances and regrowth. The latter was due to the similarity of 
crops in the time series NDMI signal, causing false regrowth detections. In the moist forest site the low producer 
accuracies in the intact forest and regrowth class was due to its very small area class (most forest disappeared by 
the nineties). We showed that the algorithm is capable of capturing small-scale (gradual) changes (e.g. selective 
logging, forest edge logging) and the multiple changes associated to shifting cultivation. The performance of the 
algorithm has been shown at regional scale, but if larger scale studies are required a representative selection of 
reference forest types need to be selected carefully. The outputs of the change maps allow the estimation of the 
spatio-temporal trends in the proportions of intact forest, secondary forest and non-forest - information that is 
useful for assessing the areas and potential of secondary forests to accumulate carbon and forest restoration 
targets. The algorithm can be used for disturbance and regrowth monitoring in different ecozones, is user 
friendly, and open source.   

1. Introduction 

Forests are home to many of the world’s species and play a vital role 
in providing key services to humanity. Currently most of the world’s 
remaining tropical forest is degraded or secondary forest located inside 
human-modified landscapes (FAO, 2010). To understand the role that 
forests play now and in the future we need to understand the dynamics 
of changes in forested areas, including both disturbance and deforesta
tion as well as processes of regrowth and secondary succession. The role 

of secondary succession in achieving restoration targets is increasingly 
recognized (Chazdon and Guariguata, 2016). Restoration based on 
natural regeneration is less costly and more effective than those based on 
tree planting (Chazdon and Uriarte, 2016; Crouzeilles et al., 2017). 
Naturally regenerated secondary forests are resilient, store large 
amounts of carbon (Chazdon et al., 2016; Cook-Patton et al., 2020; 
Poorter et al., 2016) and host many tree species (Rozendaal et al., 2019). 
However, the benefits for restoration depend on how long these forests 
persist, or the permanence of new forest growth. Previous studies on 
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secondary succession in Mexico have shown that age is the most 
important predictor of recovery of secondary forest diversity (Lohbeck 
et al., 2012), and of biomass and other essential functions (Lohbeck 
et al., 2015). Secondary forests are often part of a shifting cultivation 
land use system. Here secondary forests are the fallows that are used to 
recover soil conditions before it is cleared again for crop production. In 
such systems secondary forests persist for short periods only, limiting 
their contribution to conservation and restoration, as was demonstrated 
in the Brazilian Amazon where median persistence is about five years 
(Jakovac et al., 2017). Studies in Mexico showed a median persistence of 
seven years (Lohbeck et al., 2021), while in Costa Rica it has been shown 
to be 20 years (Reid et al., 2019), significantly increasing their role in 
conservation and restoration compared to studies with shorter fallow 
periods. In order to make use of natural regeneration for restoration 
there is a great need to understand how long secondary forests persist. 
However, long term historical field data from plots are scarce and data 
based on interviews can be unreliable and difficult to obtain. Remote 
sensing based on historical records, that are now increasingly available, 
plays an important role in quantifying and understanding past forest 
dynamics. 

Remote sensing is now widely recognized as an invaluable tool for 
monitoring forest change, for instance through Global Forest Watch 
(Hansen et al., 2013). Having almost 50 years of data, Landsat is prob
ably the most used satellite dataset for time series analysis. With the 
opening of the Landsat archive, forest change detection methods have 
rapidly developed over the last decade, allowing more comprehensive 
forest monitoring (Kennedy et al., 2014; Wulder et al., 2012). Before this 
time, forest change detection mapping was done using bi-temporal dif
ferences or supervised image classifications (Coppin et al., 2004). While 
these techniques were able to detect deforestation, they are less suitable 
for assessing small scale deforestation and regrowth as they do not 
capture the dynamic behavior of vegetation during the year and over 
longer time-periods. More recent change detection algorithms make use 
of cloud free images to create annual composites (Griffiths et al., 2014; 
Hansen et al., 2013; Huang et al., 2010; Kennedy et al., 2010, Kennedy 
et al., 2012). While these approaches have been shown to produce high 
accuracies for abrupt disturbances (e.g. slash and burn or clear-cut 
practices), studies that use all available data to create a dense time se
ries demonstrated its potential in also detecting small scale forest dis
turbances and gradual changes (DeVries et al., 2015b; Verbesselt et al., 
2010, 2012; Zhu et al., 2012; Zhu and Woodcock, 2014), and regrowth 
(DeVries et al., 2015a; Hamunyela et al., 2020). In addition, using all 
available data can be of large importance in areas with a strong sea
sonality where change detection methods using annual composites or 
(partially) smoothing out the seasonal variation yield low accuracies 
(Bos et al., 2019). In general, such new methods are promising in 
smallholder agricultural landscapes, that are characterized by complex 
forest dynamics caused by shifting cultivation, forest degradation and 
large variety of agroecosystems (Mananze et al., 2020). However, 
demonstrated methods on change monitoring are usually limited to one 
disturbance and one follow-up regrowth detection, while typically this is 
a continuous process, for example in areas where shifting cultivation is 
practiced. This has been tackled by methods using temporal segmenta
tion and trend analysis (Dutrieux et al., 2016). Nevertheless, these 
methods rely on parametric functions to capture the undisturbed forest 
condition, or the normal phenological annual cycle of vegetation, and 
thus heavily rely on the quality of the fit. Usually, this is a function with 
an explicit seasonal component, for example, sine or cosine functions 
(Anees et al., 2013; Anees and Aryal, 2014; Zhu and Woodcock, 2014), 
double logistic functions (Olsson et al., 2016) or harmonic functions 
(Pasquarella et al., 2017; Verbesselt et al., 2010). These functions as
sume that regular, annual waves are a good representation of the plant 
phenological cycle, which is not always the case, especially in semi-arid 
and arid ecosystems (Broich et al., 2015; Chávez et al., 2019b). Ap
proaches using parametric functions are the most used in current liter
ature (de Beurs and Henebry, 2010; Shimizu et al., 2019). An alternative 

approximation of the annual phenological baseline, and one that we 
build on in this paper, is to use the observed frequency values, and 
define the expected distribution directly from observed data without 
reference to a theoretical model (Chávez et al., 2019c). The advantage of 
this approach is its flexibility to adapt to the particular conditions of 
every site and also to account for natural variability in annual phenology 
over time (which is smoothed over by the parametric functions). This 
approach is based on probabilistic estimations of the annual phenology, 
from which disturbances measured as anomalies from the expected 
phenology can be assessed in terms of the frequency distribution of 
historical records, providing both a map showing the likelihood of the 
change detection and the change detection result itself. Current methods 
based on parametric functions lack such a likelihood measure. 

In this study we present and test a new algorithm which we coin, 
“AVOCADO” (Anomaly Vegetation Change Detection). It is based on the 
R package “npphen” (Chávez et al., 2017; Estay and Chávez, 2018), 
developed to monitor phenology changes, and adjusted to monitor forest 
disturbance and regrowth in a semi-automated and continuous way. The 
algorithm uses all available data and does not require certain pre- 
processing steps such as removing outliers. The reference vegetation 
(undisturbed forest in this case) is taken from nearby pixels that are 
known to be undisturbed during the whole time series, so there is no 
need to set aside part of the time series as an historical baseline, which is 
usually taken at the beginning of the time series when incomplete data 
can lead to commission or omission errors. By using the complete time 
series in AVOCADO, more accurate predictions of vegetation changes 
can be made while improving the ability to deal with temporal gaps in 
the satellite data. Forest monitoring using this method is continuous, so 
it has the ability to detect multiple forest to non-forest transitions and 
vice versa. Furthermore, the algorithm accounts for the natural vari
ability of the annual phenology, which makes it potentially more suit
able to monitor areas with strong seasonality and gradual/small changes 
(such as degradation and forest regrowth). 

To test the performance of AVOCADO with respect to the nature of 
the changes (e.g. selective logging, shifting agriculture) and different 
forest ecosystems, we selected three sites in three different ecological 
zones (i.e. a classification of the broad forest types based on climate 
criteria) (FAO, 2012) ranging from (1) tropical rainforest (Madre de Dios 
- Peru), to (2) tropical moist deciduous forest (Genteguela - Ivory Coast), 
and (3) tropical dry forest (Kilosa - Tanzania). The sites also differ in the 
types of changes that occur. In Madre de Dios the changes are often 
large-scale slash and burn and intermediate-scale shifting agriculture, 
while the changes in Genteguela and Kilosa are often small-scale selec
tive logging and gradual forest disturbances. The aim of this study is to 
map forest disturbance and regrowth in a continuous way and test 
AVOCADO’s robustness for detecting disturbance and regrowth at 
different spatial scales, characterized by abrupt and gradual changes and 
for systems experiencing different seasonality. 

2. Material and methods 

2.1. The AVOCADO algorithm 

The continuous forest disturbance and regrowth monitoring AVO
CADO algorithm is based on the “npphen” R package, which makes use 
of the flexibility of kernel density estimations to account for the annual 
phenological behavior of vegetation and its variability (Chávez et al., 
2017; Estay and Chávez, 2018). The kernel density estimation in the 
vegetation index time-space works by centering a bivariate kernel (e.g. a 
Gaussian kernel) around each observation, and by averaging the heights 
of all kernels until obtaining the final density estimation. For more de
tails about theoretical aspects of kernel density estimation see Wand and 
Jones (1994). By using the kernel density estimations the algorithm 
accounts for the phenological variations that occur in a satellite image 
pixel, rather than smoothing these out by fitting a parametric model 
over a subset of the time series. The kernel density estimations give the 
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position of each anomalous value within the frequency distribution of 
the observed values at a given date (e.g. a negative anomaly outside the 
95% of the reference frequency distribution, hereafter referred to as 
RDF). This means that a RDF ≥ 0.95, indicates that the detected anomaly 
belongs to the lowest values recorded in the time series. Notice that 
anomalous values belonging to the remaining 5% of the frequency dis
tribution can be located at the two extremes of the distribution, i.e. 
negative anomalies correspond to the 2.5% of the lowest values of the 
frequency distribution. Current methods lack such a likelihood measure. 
This kind of probabilistic approach has been successfully used to assess 
different types of vegetation disturbance, including wildfires (Bowman 
et al., 2019), insect outbreaks (Chávez et al., 2019c; Estay et al., 2019; 
Gutiérrez et al., 2020), climate extremes (Decuyper et al., 2020), peat
land dynamics (Chávez et al., 2019a) as well as positive anomalies or the 
“greening” of “blooming deserts” in the Atacama Desert (Chávez et al., 
2019b). Different from AVOCADO, all of these studies used a leave-one- 
out approach to determine the phenological baseline, without automatic 
detection of the disturbances, and without using an independent data set 
of an undisturbed forest to create the reference phenological curve. Any 
sensor or combination of sensors (e.g. Landsat and Sentinel) can be used, 
but in this study we test the AVOCADO algorithm using Landsat data. 

The algorithm can be found in the following github page: (http 
s://github.com/MDecuy/AVOCADO) and accompanying tutorial 
(http://www.pucv.cl/uuaa/labgrs/proyectos/AVOCADO). 

The AVOCADO method for continuous forest disturbance and 
regrowth detection considers the following three steps. 

Step 1: Creating the reference phenology. 
The first adaptation from the original “npphen” anomaly detection 

method was to allow users to define the phenological baseline using a 
different area based on which anomaly detection is calculated. For 
example, undisturbed forest of the same forest type and seasonality in
side a protected area can be used as a reference to study disturbances in 
the surrounding forest. For this reference area, a reference annual 
phenology is created using the “Phen” function of the “npphen” R 
package (Fig. 1). We used in our study sites the NDMI (Normalized 
Difference Moisture Index) derived from Landsat data. Fig. 1 displays 
the annual reference phenology of the study site of Genteguela (Ivory 
Coast) as an example. The reference phenology is calculated by means of 
a kernel density estimation of the time –space considering all the his
torical NDMI annual cycles of all pixels within the reference area. The 
yellow, orange and red colored areas represent the percentiles of the 
frequency of observed NDMI values across the year and the dark red line 
(which represents the highest frequency of observed NDMI values) is the 
most likely phenological annual behavior, which is set to be our refer
ence. NDMI anomalies will be further calculated using this phenological 
baseline, together with the anomaly likelihood which considers the 
position of NDVI values in the percentiles of the NDMI frequency dis
tribution. In the case of Genteguela (Ivory Coast), we see a strong sea
sonal signal for the annual phenological cycle with a peak in NDMI 
around DOY 250 (in September). For example, the NDMI frequency 
distribution in Fig. 1B around DOY 250 shows that values of NDMI 
below 0.1 are very unlikely (NDMI values at RFD ≥ 95%), and therefore, 

Fig. 1. The AVOCADO method for multiple disturbance and regrowth detection. A - Example of an NDMI time series for a Landsat pixel of interest (POI) in 
Genteguela (Ivory Coast) to be assessed. The red box delineates the data points in 2011 where the algorithm detected a disturbance with a high likelihood (outside 
the 95% of the reference frequency distribution or RFD ≥ 0.95), shown in panel B, while the green box delineates the data points in 2015 where a regrowth was 
detected, shown in panel C). Please note that NDMI anomaly values at RFD ≥ 0.95, thus the remaining 0.05 of the RFD, are extremely high or low values. B - The 
reference curve of (undisturbed) forest in Genteguela representing the annual phenology and its frequency distribution (yellow colors showing which NDMI values 
have a high likelihood of being an anomaly) for each DOY (Day of Year) with the data points for the POI of 2011. The red circles show the consecutive data points (in 
this study a minimum of three points) outside the 95% of the NDMI frequency distribution (RDF ≥ 0.95), flagging a disturbance. C - The same reference curve as in 
panel B, with the data points for the POI of 2015. The green circle shows the consecutive data points (in this study a minimum of three points) which are on top or 
above the (dark red) reference line flagging a forest regrowth. See appendix A for the reference curves for the other sites. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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can be considered as a potential disturbance. On the other hand, if there 
was a disturbance at a given time, followed by forest regrowth, reaching 
NDMI values of about 0.3 at DOY 250 (approaching again the red line), it 
can be considered as potential regrowth (Fig. 1C). 

Step 2: Time series anomaly and probability calculation. 
After creating the reference phenology, for each pixel of interest 

(POI) (Fig. 1 B and C), the anomaly and its probability for each datapoint 
within the POI time series is calculated based on the reference. The 
NDMI anomalies in Fig. 1B and C are the differences between the 
observed NDMI (Fig. 1A) and the expected NDMI (red line in Fig. 1 B and 
C), and are calculated for the respective DOY. The position of the 
observed NDMI value within the NDMI RFD (Fig. 1 B and C - colored 
areas) represents the likelihood of the anomaly value, with values close 
to zero being frequently observed values and values ≥0.95 with having a 
very low frequency. This likelihood gives an indication of whether the 
anomaly is within the natural variability of the reference forest, both 
temporally and spatially, or indeed a “true anomaly” indicating forest 
disturbance. These two values per POI and date are used in further steps 
to evaluate and detect disturbances. For regrowth detection, only the 
anomalies and the reference phenology are used, not the RFD position. 
The R implementation of AVOCADO allows large data analyses of 
remote sensing time series data (raster-stacks) in parallel using multi- 
core computational capabilities. 

Step 3: Change detection and model adaptations. 
In this study we define disturbance as consecutive negative NDMI 

anomalies (in this study: three observations) at RFD ≥ 0.95. These 
changes can be induced by human activity or may be natural distur
bances (e.g. extreme drought events or fire). We define intact forest as 
forest with NDMI values falling within the boundaries of natural sea
sonal variation (e.g. observations at RFD < 0.95). Finally, regrowth is 
defined as the recovery of the canopy (reaching again the reference 
phenology) after a disturbance event. Since remote sensing data can be 
noisy, especially in the humid tropics due to high cloud cover, accurate 
disturbance and regrowth detection often cannot be achieved based on a 
single date. A pixel that indicates a potential change across multiple 
consecutive images is more likely to be land cover change. For this 
reason, we included several arguments in our algorithm that allow users 
to define thresholds to optimize detection consistency. These are: 

For disturbance detection: 
D-a. A candidate disturbance date is flagged when a negative NDMI 

value is found that is outside the reference phenology (e.g. RFD ≥ 95) 
and is called a “true anomaly” in this study (Fig. 1 B). The user can 
change the RFD threshold, but in this study we use RFD ≥ 95. 

D-b. The user can also define how many consecutive data points with 
the above-mentioned characteristics need to be found to be considered 
potential disturbance. We call this parameter “cdates”. For example, in 
Fig. 1B three consecutive dates (cdates = 3) were defined in all cases. 
When the condition is met, then the first of the three dates is considered 
as a “true anomaly”. In this study we used three consecutive dates as this 
has been shown to give good results in other studies (Zhu et al., 2012). 

D-c. When a potential date of disturbance is detected according to D- 
b, the user can define an additional parameter to make the detection of a 
real disturbance more accurate. This parameter will avoid disturbance 
detection in cases where regrowth is detected too soon after the flagged 
disturbance event, for example within a year. We call this parameter 
“dstrb_thr” and it can be set to any threshold period (for example 
dstrb_thr = 365 days), within which a candidate disturbance date is 
neglected if an early regrowth is detected. This potential early regrowth 
corresponds to three consecutive scenes with positive anomalies during 
365 days from the disturbance detection date to eliminate temporally 
short disturbances such as drought effects. In this study we wanted to 
take into account all disturbances and used dstrb_thr = 0. 

As the algorithm considers the whole area to be forested at a certain 
point in the past (before the start of the time series), therefore the AV
OCADO output of the first years represent an accumulation of the 

disturbances before the time series and the actual changes in those 
initial years. If the first years of the time series have e.g. only one or two 
data points, detection of disturbances will be delayed, and therefore it is 
recommended to consider the first few years in the time series as an 
accumulated amount of disturbances rather than to report year-to-year 
disturbance rates. Alternatively, the accumulated disturbance areas 
can be used to create a benchmark non-forest area rather than classify 
one or a few satellite images to create a forest – non-forest benchmark. 

For regrowth detection: 
R-a. A candidate regrowth date is flagged when a zero or positive 

anomaly is found (Fig. 1C). A positive anomaly means that the expected 
value from the reference phenology has been reached again. 

R-b. Identical to the disturbance detection, the users can define how 
many consecutive dates with the above-mentioned characteristics need 
to be found to flag true regrowth. Similar to the disturbance detection, 
the regrowth detection is also controlled by the argument “cdates”. For 
example, in Fig. 1C and in our study three consecutive data points were 
defined for both disturbance and regrowth when cdates = 3. 

R-c. Similar to the disturbance case, when a potential regrowth date 
is defined (R-b), the user can define a parameter called “rgrow_thr” to 
avoid regrowth detection in case a forthcoming disturbance is occurring 
too fast (e.g. within a year). This early new disturbance corresponds to 
three consecutive scenes with negative anomalies at RFD ≥ 0.95 during 
e.g. 365 days from the regrowth detection date. In this study we used 
730 days since regrowth is often a long and gradual process and should 
thus not have a disturbance in those two following years. 

2.2. Study sites 

For this study three sites were selected that complement in (i) their 
ecological zone and thus seasonality, (ii) type of forest change, and (iii) 
data availability. 

Madre de Dios is located in southeastern Peru (Appendix B) and part 
of the Amazonian rainforest, receiving about 2200 mm rainfall with a 
unimodal distribution throughout the year (derived from WorldClim2 - 
Fick and Hijmans, 2017). Deforestation is mainly driven by government 
subsidized agricultural expansion initiated in the 1980s and 1990s 
(Chavez and Perz, 2012), the construction of a major road accelerated 
this deforestation (Scullion et al., 2014), and more recently due to legal 
and illegal gold mining (Asner et al., 2013). Generally, deforestation is 
more abrupt (e.g. clear-cut) and over larger patches compared to the 
other two sites. Data availability in this site is high and relatively uni
formly spread over the time series (see 2.3. Landsat, Appendix C). 

The Genteguela site is located in the Woroba District in the northwest 
of Ivory Coast (Appendix B) and is characterized by dry sub-tropical 
climate. This area has a unimodal rainfall distribution (about 1240 
mm) with distinct wet (rainy) and dry seasons (derived from World
Clim2 - Fick and Hijmans, 2017). The forest is classified as tropical moist 
deciduous forest (FAO, 2012). Deforestation in Ivory Coast is among the 
highest in the world, driven by agriculture, teak logging as well as cocoa 
and cashew encroachment, and left landscapes of fragmented forests at 
higher risk of further deforestation (Despretz, 2020). The deforestation 
is often small-scale and gradual. Data availability in this site is low, 
especially for the period before the year 2000 (see 2.3. Landsat, Ap
pendix C). 

The Kilosa site in Tanzania is located at the southern part of the 
Kilosa district around Mikumi (Appendix B) and consists of tropical dry 
forest and tropical shrubland ranging from lowland areas (270 m a.s.l.) 
predominantly used for crop production and mountainous areas (2200 
m a.s.l.), including the Udzungwa Mountains National Park containing 
dry miombo woodland. The average annual rainfall is about 1000 mm 
(derived from WorldClim2 - Fick and Hijmans, 2017), with slightly less 
rainfall in the mountainous areas. Seasonality is strong with a dry season 
from June to November and a rainy season from November to May. The 
rainy season can be divided into short rains from November to January 
and long rains from March to May (Näschen et al., 2019). The 
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deforestation rates in Tanzania are very high. This happens in an abrupt 
manner (clearance of forest for crops) as well as being preceded by forest 
degradation (causing more gradual disturbance patterns) (Doggart et al., 
2020). Major cash crops are grown in the lowlands and include cassava, 
rice, sorghum, maize and yams (Sills et al., 2014). Data availability in 
this site is low, especially before the year 2000 (see 2.3. Landsat, Ap
pendix C). 

2.3. Landsat data 

All level-1 terrain-corrected (L1T) Landsat scenes were pre-processed 
and downloaded via the Google Earth Engine (GEE) platform (Gorelick 
et al., 2017). The pre-processing entailed selecting only the Landsat 
scenes with a cloud cover of less than 70%, clipping by the regions of 
interest (ROI), merging (in case of multiple paths/rows), cloud masking 
with the FMASK, and calculating the surface reflectance index, NDMI 
(Masek et al., 2006; Vermote et al., 2016). We used NDMI because of its 
ability to capture gradual changes and regrowth, in contrast to e.g. NDVI 
(DeVries et al., 2015a). The time series stacks ranged from 1990 to 2019 
for the site in Peru (1063 scenes – WRS2 path/row 002/069) and the site 
in Ivory Coast (334 scenes - WRS2 path/row 198/054), and from 1984 to 
2016 for the site in Tanzania (288 scenes - WRS2 path/rows 167/ 
065–066). The number of scenes per year can be found in Appendix C. 

2.4. Accuracy assessment 

2.4.1. Sampling procedure 
We assessed disturbance and regrowth accuracies for each study site 

in two separate assessments, following the same procedure for each. A 
pixel based, stratified random sampling approach was applied. For the 
disturbance assessment, disturbance and intact forest strata were 
created based on the algorithm output for each site. Since we assume the 
whole area to have been forest at some point in time and to account for 
disturbances that occurred before the observation period, we divided the 
disturbance stratum into “disturbance before the year 2000” (which 
could also be considered non-forest) and disturbance from the year 2000 
onwards. In the “disturbance before the year 2000” stratum it is very 
difficult to separate disturbances that happened just before or at the 
beginning of the time series which could in some cases lead to an 
overestimation of the accuracy. Additionally, a buffer stratum inside the 
stable forest stratum was created by applying a 500 m buffer around 
roads or villages which can have a higher possibility of being disturbed. 
Because intact forest areas are generally rather large, a buffer stratum 
around possible disturbance areas inside the stable area can help in 
estimating omission errors of disturbance (Pfaff, 1999). It is referred to 
as “intact forest (inside buffer)” in Table 1. Because of the limited 
amount of very high resolution images (VHR) (which are especially 
needed to verify regrowth – see section “Pixel interpretation”), we 
selected a random sample based on the pixels with one disturbance only 
for the disturbance accuracy assessment. Since sample sites with mul
tiple changes include regrowth, it would not be possible to verify the 
earlier regrowth due to the lack of these VHR images. 

For the regrowth assessment, we created a regrowth stratum and a 
no-regrowth stratum based on the output of the algorithm. The no- 
regrowth stratum is further divided into an inside and outside buffer. 
No-regrowth inside buffer could indicate potential no-growth areas and 
can help in estimating the omission errors of regrowth. In the sites in 
Peru and Ivory Coast, no-growth inside areas are defined as a buffer 
stratum of 500 m around the (seasonal) rivers since the areas around the 
rivers are more dynamic and thus more likely to have forest regrowth. In 
the site in Tanzania, due to the similarity between dry forest and crops in 
NDMI signal and in some cases irrigation of crops, large areas of crops 
were wrongfully labelled as regrowth by the algorithm (see Discussion). 
Therefore we used a land cover map and masked out the crop areas 

(Buchhorn et al., 2020) after the initial disturbance. The regrowth 
stratum consisted of all pixels with exactly one disturbance and one 
regrowth detection. This is because high resolution satellite data are 
needed to verify regrowth and often only a few images are available. For 
that reason, sample pixels for the regrowth assessment were subset to 
dates close to which high-resolution imagery was available. Due to the 
scarcity of Landsat scenes in the 90’s, we took a 5-year window for a 
pixel to be confirmed as disturbed in the site in Ivory Coast and Tanzania 
(Appendix C). For disturbance detections after 2000, a 1-year window 
was used. Since the site in Peru had no issues with data limitation at the 
start of the time series, a 1-year window was used to assess all distur
bance dates. If a pixel was flagged outside this temporal window it was 
considered as an error. 

Optimal sample sizes were calculated using the formula by (Cochran, 
1977 - Eq. (5.25)) based on a target standard error of 0.02, for overall 
accuracy, and expected user’s accuracies of 0.7 and 0.9 for disturbance 
and intact forest, and 0.6 and 0.95 for regrowth and no-regrowth, 
respectively. A minimum sample size of 100 per stratum was used, 
resulting in a total of 2924 pixels, with a minimum sample size of 800 
pixels per site (Table 1). In Table 1, the mapped area proportion for each 
stratum can be found, summing up to one for both the disturbance and 
regrowth strata. 

2.4.2. Pixel interpretation 
The manual interpretation for the disturbance-non disturbance 

pixels was done by using the Landsat images. We used the TS chips R 
package based on the TimeSync method for change validation by Cohen 
et al. (2010), combined with VHR satellite images available on Google 
Earth (http://earth.google.com/). While disturbance pixels are rela
tively easy to detect, confident verification of regrowth relied on the 
visualization of VHR satellite images available on Google Earth. 

Table 1 
The sample size and mapped area proportion for each site and stratum.  

Site Stratum Sample 
size 

Mapped area 
proportion 

Peru Disturbance <2000 118 0.314 
Peru Disturbance ≥2000 105 0.229 
Peru Intact forest (inside buffer) 100 0.038 

Peru 
Intact forest (outside 
buffer) 191 0.418 

Peru Regrowth 100 0.244 
Peru No regrowth (inside buffer) 109 0.537 

Peru 
No regrowth (outside 
buffer) 100 0.220 

Ivory 
Coast Disturbance <2000 327 0.637 

Ivory 
Coast Disturbance ≥2000 287 0.330 

Ivory 
Coast Intact forest (inside buffer) 100 0.003 

Ivory 
Coast 

Intact forest (outside 
buffer) 100 0.030 

Ivory 
Coast Regrowth 100 0.003 

Ivory 
Coast No regrowth (inside buffer) 180 0.475 

Ivory 
Coast 

No regrowth (outside 
buffer) 198 0.522 

Tanzania Disturbance <2000 100 0.085 
Tanzania Disturbance ≥2000 100 0.058 
Tanzania Intact forest (inside buffer) 100 0.073 

Tanzania 
Intact forest (outside 
buffer) 207 0.784 

Tanzania Regrowth 100 0.198 
Tanzania No regrowth (inside buffer) 102 0.548 

Tanzania 
No regrowth (outside 
buffer) 100 0.254  
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2.4.3. Calculation of the accuracy 
For each sample site, inclusion probabilities and the sample esti

mation weights were calculated since the sample sites have unequal 
inclusion probabilities across strata. Based on these, overall user’s and 
producer’s accuracies (UA and PA) (Stehman et al., 2003), and their 
95% confidence intervals, as well as area estimates of each map class, 
were calculated following Stehman (2014). In addition, these area based 
metrics were supplemented by a simple sample count based confusion 
matrix. 

3. Results 

3.1. Accuracy of the AVOCADO algorithm 

The AVOCADO algorithm showed very good overall accuracies for 
all sites, having overall accuracies of >90% for both disturbance and 
regrowth detections (Table 2). In general UA and PA are high (~ 90%). 
The site in Peru had high UA and PA, with accuracies >90% but had a 
slightly higher omission error in the intact forest. Also the regrowth 
accuracies were > 90%, with a marginally higher omission error for 
regrowth class (<10% of the regrowth is omitted). 

Although slightly lower accuracies, the results for the site in Ivory 
Coast are similar, with the exception of the very low PA for the intact 
forest (33.8%). The low value indicates an overestimation of forest 
disturbance at the cost of the intact forest (see also the confusion matrix - 
Appendix D) The regrowth accuracies were above 90%, but the PA of the 
regrowth class was very low (6.1%) which indicates an overestimation 
of the no regrowth class. The UA and PA of the disturbance class in the 
site in Tanzania (respectively 82 and 79.4%) indicated an over
estimation of forest disturbance. The regrowth class had a UA of 76 and a 
PA of 88% indicating overestimation of regrowth at the cost of an un
derestimation of the no regrowth class (Appendix D). 

3.2. Forest disturbance and regrowth dynamics per site 

3.2.1. Peru 
The results show that in Madre de Dios the forest changes are often 

larger patches (> 1 ha) of forest cleared at once (Fig. 2A). The main 

disturbance activities are located along the major Inter-Oceanic High
way and rivers. The first regrowth map (Fig. 2B) shows that forest 
regrowth is mainly occurring in the proximity of the rivers. This is due to 
shifting agriculture practices in the area around the rivers, with patches 
of forest disturbance, cropping for two to three years generally, which is 
then followed by regrowth (fallow), before the forest is cleared again for 
cropping. A large part of the changes in the last decade are related to 
mining. Fig. 3 shows an example of one pixel that had multiple changes 
due to shifting cultivation. The forest was cleared in 2000, while in 2004 
we see a forest recovery (cauliflower like tree canopies) on the VHR 
image, while in 2008 it was cleared again for cultivating crops in 2011. 
In 2013 it seems no crops are cultivated anymore and in 2015 early signs 
of forest recovery can be seen. At the end of 2016 the pixel was labelled 
by the algorithm as regrown, which is confirmed by the images in 2016 
and 2018. 

The average annual disturbance rate (2000–2019), derived from the 
forest change output, was about 0.47%, with the highest disturbance 
rate recorded in 2005. The regrowth rates were relatively high, with an 
average of 0.84% (2000–2019). Fig. 4A shows the derived proportions 
of intact forest, secondary forest and non-forest areas per year. In 2019, 
about 46% of the area is covered with intact forest, while 17% of the 
area consists of secondary forest, and 37% is non-forest. 

3.2.2. Ivory coast 
Most of the site in Ivory Coast was disturbed in the 1990s or before, 

especially in the western part of the site (Fig. 2C). Most of the recent 
disturbance that could be verified with high spatial resolution images 
(Google Earth) is due to small scale selective logging. Regrowth is often 
small scale and spatially scattered, due to the recovery or expansion of 
the canopies of surrounding trees. The larger areas of regrowth might 
not be natural forest regrowth, but rather plantations of cacao (Theo
broma cacao) or cashew (Anacardium occidentale) trees. These are grown 
below or alongside natural forest as they require shade. An example of a 
(verified) location with cacao plantation is shown in Appendix F. The 
time series indicates more subtle disturbance patterns compared to 
conversion to oil palm plantations (Appendix F) as for cacao only a se
lective number of trees are harvested, and the forest gaps are slowly 
filled by the maturing cacao trees. The disturbance rates are very high, 

Table 2 
Area weighted accuracies (OA = overall accuracy; UA = user accuracy or commission errors; PA = producer accuracy or omission errors) and their 95% confidence 
interval (CI) for all sites and the area weighted estimates (ha) and standard error (SE).  

Disturbance strata OA (±CI) UA (±CI) PA (±CI) Sample based area estimate (ha) (SE) Map area (ha) Δ Sample based area estimate and map area (ha) 

Peru 95.1 (2.3)      
Disturbance <2000  93.2 (4.6) 99.4 (1.1) 60,626 (1540) 48,575 12,051 
Disturbance ≥2000  92.4 (5.1) 98.5 (2.8) 33,211 (1042) 35,424 − 2213 
Intact forest  99.1 (1.7) 88.9 (5.0) 60,755 (1802) 70,592 − 9837 

Ivory Coast 93.2 (2.0)      
Disturbance <2000  92.7 (2.8) 99.4 (0.7) 6018 (95) 6453 − 435 
Disturbance ≥2000  93.7 (2.8) 99.8 (0.3) 3136 (48) 3339 − 203 
Intact forest  97.2 (3.0) 33.8 (7.0) 979 (103) 341 638 

Tanzania 94.0 (2.2)      
Disturbance <2000  82.0 (7.6) 79.4 (18.1) 22,710 (2154) 21,978 732 
Disturbance ≥2000  77.0 (8.3) 73.9 (13.6) 15,769 (2063) 15,126 643 
Intact forest  96.4 (2.4) 97.0 (0.9) 221,097 (2927) 222,473 − 1376 

Regrowth strata OA (±CI) UA (±CI) PA (±CI) Sample based area estimate (ha) (SE) Map area (ha) Δ Sample based area estimate and map area (ha) 

Peru 98.1 (1.8)      
No regrowth  98.1 (2.1) 99.4 (0.8) 39,287 (459) 48,575 12,051 
Regrowth  98.0 (2.8) 93.6 (6.7) 11,730 (459) 12,425 − 2213 

Ivory Coast 96.0 (2.0)      
No regrowth  92.7 (2.8) 99.4 (0.7) 6018 (95) 6453 − 435 
Regrowth  93.7 (2.8) 99.8 (0.3) 3136 (48) 3339 − 203 

Tanzania 91.2 (3.1)      
No regrowth  82.0 (7.6) 79.4 (18.1) 22,710 (2154) 21,978 732 
Regrowth  77.0 (8.3) 73.9 (13.6) 15,769 (2063) 15,126 643  
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and by the end of 2019 most of the intact forest had disappeared (only 
2.5% remained – Fig. 4B). The average annual disturbance rate 
(2000–2019) was about 1.46%, while the regrowth rate (0.20%) was 
low compared to the site in Peru. The majority of the intact forest can be 
found along the seasonal streams running through the area. The pro
portion of secondary forest at the end of 2019 was 4%, and the non- 
forest area was about 94% (Fig. 4B). 

3.2.3. Tanzania 
The site in Tanzania is characterized by a large area in the centre that 

was deforested for intensive crop production. Most of that area was 
already cleared before the start of our time series analysis in 1984 
(Fig. 2E). Other disturbances can be found in the east and in the north- 
west corner, while in the national park in the south-west almost no 
changes occurred. Most of the recent changes (last decade) that could be 
verified with high spatial resolution images (Google Earth) are small 
scale degradation, mostly along the forest edge. In Appendix F we can 
see an example of small-scale encroachment along the forest edge, 
captured by the AVOCADO algorithm. The average annual disturbance 
rate (2000–2015) was about 0.59%, similar to the site in Peru, and the 
regrowth rate was 0.27%, similar to the site in Ivory Coast. Since the 
area consists of a protected national park, the proportion of intact forest 
is relatively high compared to the other sites (about 58.85% by the end 
of 2015). Similar to the site in Ivory Coast, the proportion of secondary 
forest is low with 4.60%, and the non-forest area is about 36.54% by the 
end of 2015 (Fig. 4C). 

4. Discussion 

4.1. Robustness of the algorithm to deal with seasonality and climate 
extremes 

In this study we introduced the AVOCADO algorithm and its 

performance with three complementary sites with differences in sea
sonality, data availability, and type of disturbance. Overall the accu
racies were good, with some variation between the sites. 

The high accuracies in the site in Peru (OA, PA and UA > 90%) are 
most likely due to the low seasonal variability and the high data density 
in that site. The peak in disturbance in 2005 is partially caused by an 
extreme drought (El Niño event) in that year (Frappart et al., 2012; 
Marengo et al., 2008). Although a true disturbance, this might be 
considered as noise when it comes to deforestation monitoring (e.g. 
REDD+ monitoring). In such cases that year could be excluded in the 
postprocessing process with the risk of eliminating actual deforestation 
events, or by setting the “dstrb_thr” parameter of the AVOCADO algo
rithm to e.g. one year. However, when applying this parameter, care has 
to be taken to avoid omission errors in areas with rapid forest regrowth 
which is the case in this site. 

The site in Ivory Coast has a stronger seasonality and is more het
erogeneous in terms of land cover than the site in Peru, which affected 
the producer accuracy (PA) of the disturbance detection in the Ivory 
Coast site. The low producer accuracy of respectively 33.8% and 6.1% in 
the stable forest and regrowth class indicates that the algorithm over
estimated disturbance and non-forest. Since these classes are small, 
relative to the disturbance classes (Table 2), the errors of the omission 
estimation can be aggravated, leading to low PA’s (Olofsson et al., 
2020). The accuracy estimation of these classes could be improved by a 
better stratification of the large disturbance classes (Olofsson et al., 
2020). In the Ivory Coast site, most commission errors in the disturbance 
detection were due to small patches with a different forest type growing 
along seasonal streams and rivers. Although it considers a very small 
proportion of the area, separating the two forest types and using sepa
rate reference phenologies could improve the results. 

The site in Tanzania had lower disturbance and regrowth accuracies 
compared to the other two sites due to its strong seasonality (Hamunyela 
et al., 2020). Since we used dry miombo forest for the forest reference 

Fig. 2. Top row (panels A, C, E) shows the first year of the disturbance detection for each site (see legend on the right). The bottom row (panels B, D, F) shows the 
first year of regrowth for each site. The 2nd to 4th disturbance and regrowth cycles can be found in appendix E. The annual forest disturbance and regrowth maps can 
be interactively viewed by clicking on the following link: https://dashboards.icraf.org/app/avocado_fcm. 
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curve, the disturbance accuracies are still relatively high considering the 
challenges with the strong seasonal influence on the forest phenology. 
Most of the disturbance commission errors were due to a late detection 
of the change as a consequence of the lower data availability and wrong 
detections as a consequence of years with a very strong or early dry 
season. This was also the case for other change detection methods, 
which showed low PA’s for a site similar to the one used in this study in 
Tanzania (Bos et al., 2019). The dry and often scarce forest cover is 
probably the reason of the relatively low accuracies for the regrowth 
detection compared to the other sites. As all the commission errors in the 
regrowth detection were in areas where the follow-up land use was 

pasture and crops, it seems that the NDMI reflectance of that type of 
vegetation, especially when irrigated, looks similar to the NDMI 
reflectance of forest (especially miombo forest). Here, the use of other 
vegetation indices should be explored. For example, NDVI should 
perform well in arid and semi-arid ecosystems since the NDVI reflec
tance is unlikely to saturate in these ecosystems (Cui et al., 2013). 
Another option is to use post-disturbance classifications where regrowth 
is classified in e.g. natural regrowth, plantations and other land-use 
types (Hermosilla et al., 2018). Since the reference phenology has 
been based on ~30 years of data, the algorithm is potentially more 
robust in sites with strong seasonal variety then other change detection 

Fig. 3. Example of shifting agriculture in Madre de Dios (Peru) - (12◦40′16” S; 69◦13′14” W). Top: Pixel time series of the NDMI anomalies with disturbances 
indicated by red vertical lines and regrowth by green vertical lines. Below: Images from Google Earth with the pixel of interest (yellow rectangle). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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methods as it takes small shifts in year-to-year seasonality into account. 

4.2. Robustness of the algorithm to deal with different types of changes 

In the site in Peru, a common practice of (smallholder) farmers is to 
convert primary forests into shifting cultivation mosaics, leaving the 
forest to recover after a few years of crop cultivation, and before cutting 
the forest again for another rotation cycle (Ravikumar et al., 2017). The 
change detection results (Fig. 4) confirm this by the relatively large 
proportion of secondary forest, and the specific examples (Fig. 3 and 
Appendix F) indicate that the algorithm is capable of detecting the 
relatively fast changing forest, non-forest dynamics. The figure in Ap
pendix F also shows one of the other major drivers of deforestation in the 
Madre de Dios region, which is illegal gold mining (Asner et al., 2013; 
Scullion et al., 2014). 

In many sub-Saharan African countries, deforestation is driven by 
smallholder subsistence agriculture (Fisher, 2010), with forest changes 
at small spatial scale and often very gradual over time (DeVries et al., 
2015b). This is also the case for the sites in Ivory Coast and Tanzania, but 
in both areas large parts were already deforested before the start of our 
time series analysis and a large area was an accumulation of past dis
turbances (basically non-forest) in the first years of our monitoring 
period. Similar to previous studies, we found that a large area was 
disturbed in Ivory Coast, with selective logging for Cacao plantations 
being an important driver (Despretz, 2020; Wessel and Quist-Wessel, 
2015). More recent changes show single pixel or small clusters of 
pixels indicating disturbance (Fig. 2, Appendix E). These probably result 
from selective logging for cacao plantations and forest edge degradation 
(see time series examples in Appendix F) which are quite commonly 
found in the areas. Our algorithm is able to detect such changes which is 
important to accurately account for deforestation and derived carbon 
stock change estimations in smallholder agricultural dominated land
scapes (Tyukavina et al., 2013). 

4.3. General strengths and limitations to the method 

Our study shows that the probabilistic based AVOCADO algorithm 
creates a robust forest reference, taking all data, and thus the natural 
variability between years into account. For the algorithm to perform 
accurately, it is crucial that the user selects the reference forest area 
carefully. The forest reference is not necessarily taken inside the area of 
interest, which has the advantage that it does not require a part of the 

time series to be used as training data, and it speeds up the processing 
time. But the reference forest should be representative for the forest in 
the area of interest (i.e. forest within the area of interested should have 
very similar phenological curves) and be undisturbed. Also, the algo
rithm does not require a benchmark non-forest mask. The downside is 
that this poses limitations in applying the algorithm to large areas. High 
accuracies are conditional on homogenous phenological patterns. When 
applying to larger spatial scales, a benchmark classification of pheno
logically different forest types is required and the method needs to be 
applied separately to the different forest classes that have different 
phenological patterns, making the AVOCADO algorithm increasingly 
laborious with increasing spatial scales that are likely to include a va
riety of forest types. In principle the algorithm can be used with a variety 
of data coming from different sensors (e.g. Sentinel combined with 
Landsat), but the robustness of the reference phenology will decline with 
shorter time series. 

The algorithm has potential to be used for monitoring other vege
tation changes associated to land cover transitions, such as grassland to 
cropland transitions, but more research to assess the algorithm’s per
formance across different contexts is needed. 

4.4. Application for forest monitoring for conservation and restoration 

Forest disturbance is not always abrupt, it is often preceded by se
lective logging and degradation (Vancutsem et al., 2020). Such gradual 
disturbances have a large impact on conservation and threaten the 
success of efforts to reduce emissions such as REDD+ (Reducing Emis
sions from Deforestation and forest Degradation) (Angelsen et al., 2018; 
Matricardi et al., 2020). To date it has been difficult to monitor gradual 
changes using time series analyses with remote sensing methods 
(Mitchell et al., 2017). The current algorithm demonstrates an ability to 
detect forest degradation which is an important advance to monitoring 
effectiveness of conservation efforts. 

Forest regrowth is key to achieving restoration targets (e.g. Chazdon 
and Guariguata, 2016). However, due to its gradual nature forest 
regrowth is harder to detect than deforestation, and to date regrowth is 
rarely assessed in a continuous way in remote sensing studies. This is 
particularly relevant in systems with strong human-induced changes in 
land cover, including agroforestry and shifting cultivation systems, 
which require continuous forest change detection. One study assessing 
regrowth reported that only 27% of the forest loss is a permanent land 
use change (Curtis et al., 2018). The results of the algorithm provide 

Fig. 4. The percentage of intact forest, secondary forest, and non-forest for the three sites: A - Madre de Dios (Peru), B - Genteguela (Ivory Coast), C - Kilosa 
(Tanzania). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

M. Decuyper et al.                                                                                                                                                                                                                              



Remote Sensing of Environment 269 (2022) 112829

10

information on where forest is recovering, and how long a secondary 
forest is able to persist. The resulting forest regrowth maps are important 
to assess the potential of regrowth forests for restoration (e.g. Cook- 
Patton et al., 2020). 

5. Conclusion 

Here we present a new algorithm, coined AVOCADO, that enables 
the assessment of forest disturbance and regrowth in a continuous and 
robust way. We demonstrate its accuracy in sites that are complemen
tary in climate and disturbance regimes. Main improvements compared 
to previously published algorithms are that: a) AVOCADO is sensitive to 
gradual changes and thereby able to accurately detect forest degradation 
and forest regrowth; b) it allows for multiple disturbance and regrowth 
detection; c) it allows forest monitoring from the beginning of the sat
ellite time series; d) it provides several arguments to help users fine-tune 
detection results (RDF value accounting for anomaly detection likeli
hood, ‘cdates’ accounting for consecutive dates to ensure detection, 
‘dstrb_thr’ and ‘rgrow_thr’ accounting for minimum period before we 
can expect disturbance or regrowth). A critical step of the AVOCADO 
approach is the definition of a valid reference area, from which the 
phenological baseline is defined. Finding a representative reference area 
for large areas can be a limitation on the use of this method. The above 
mentioned improvements are of great importance for monitoring forest 
conservation (e.g. under REDD) and for supporting forest restoration 
efforts (e.g. under the Bonn Challenge). The algorithm is open access and 
user friendly to a wide range of end-users. 
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Chávez, R.O., Estay, S.A., Riquelme, G., 2017. Npphen. Vegetation Phenological Cycle 
and Anomaly Detection Using Remote Sensing Data. 
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Decuyper, M., Chávez, R.O., Čufar, K., Estay, S.A., Clevers, J.G.P.W., Prislan, P., 
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Kennedy, R.E., Andréfouët, S., Cohen, W.B., Gómez, C., Griffiths, P., Hais, M., Healey, S. 
P., Helmer, E.H., Hostert, P., Lyons, M.B., Meigs, G.W., Pflugmacher, D., Phinn, S.R., 
Powell, S.L., Scarth, P., Sen, S., Schroeder, T.A., Schneider, A., Sonnenschein, R., 
Vogelmann, J.E., Wulder, M.A., Zhu, Z., 2014. Bringing an ecological view of change 
to Landsat-based remote sensing. Front. Ecol. Environ. 12, 339–346. https://doi.org/ 
10.1890/130066. 

Lohbeck, M., Poorter, L., Paz, H., Pla, L., van Breugel, M., Martínez-Ramos, M., 
Bongers, F., 2012. Functional diversity changes during tropical forest succession. 
Perspect. Plant Ecol. Evol. Syst. 14, 89–96. https://doi.org/10.1016/j. 
ppees.2011.10.002. 

Lohbeck, M., Poorter, L., Martinez-Ramos, M., Bongers, F., 2015. Biomass is the main 
driver of changes in ecosystem process rates during tropical forest succession. 
Ecology 96, 1242–1252. https://doi.org/10.1890/14-0472.1. 

Lohbeck, M., DeVries, B., Bongers, F., Martinez-Ramos, M., Navarrete-Segueda, A., 
Nicasio-Arzeta, S., Siebe, C., Pingarroni, A., Wies, G., Decuyper, M., 2021. Mexican 
agricultural frontier communities differ in forest dynamics with consequences for 
conservation and restoration (in review). Environ. Res. Lett. https://doi.org/ 
10.32942/osf.io/qxje8. 
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