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� Image translation was proposed for
spectral image processing.

� The generative adversarial network
was used for image translation.

� The image translation uses both
spatial and spectral information.

� The applications such as segmenta-
tion, regression and classification are
demonstrated.
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An artificial intelligence approach based on deep generative neural networks for spectral imaging pro-
cessing was proposed. The key idea was to treat different spectral image processing operations such as
segmentation, regression, and classification as image-to-image translation tasks. For the image-to-image
translation, the conditional generative adversarial networks were used. As a baseline comparison, the
traditional chemometric approach based on pixels wise modelling was demonstrated. The analysis was
presented with two real data sets related to fruit property prediction and kernel and shell classification
of walnuts. The presented artificial intelligence approach for spectral image processing can provide
benefits for any field of science where spectral imaging and processing is widely performed.

© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Spectral imaging is a bi-modality analytical technique where, on
one mode, the imaging captures the spatial information about the
samples and, on another mode, the spectroscopy captures spectral
characteristics of samples under study [1,2]. Both modes combined
capture the spatially resolved spectral properties of samples [3].
Spectral imaging is one of the most widely used analytical tech-
niques for non-invasive, non-contact analysis as well as it requires
minimal sample preparation and provides the analysis results in
B.V. This is an open access article
real-time once pre-calibrated [1,3e5]. Applications of spectral im-
aging can be found ranging from agriculture [6,7] and foods [1] to
high-end pharmaceuticals [8]. Based on the experimental needs,
spectral imaging can be explored for a range of the electromagnetic
spectrum such as ultraviolet [9], visible and near-infrared [10,11],
mid-infrared [12], terahertz [13] etc. In the literature, several ap-
plications of Raman spectral imaging [14] can also be identified.

Although the current state of the art presents diverse sensing
options to spectral imaging, spectral imaging alone is of no use
unless it is combined with advanced data processing andmodelling
approaches to extract meaning out of the rich spatial-spectral data
captured by the spectral camera [3,4]. The data modelling is
required to teach the cameras to be able to recognise key analytes,
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as these cameras have no inbuilt intelligence. In the domain of
chemometrics, spectral image processing is widely performed us-
ing unsupervised and supervised data modelling approaches [3,4].
The popular chemometric approach for spectral image processing
involves extracting key subset spectra from the spectral images
using a region of interest (ROI) selection [3]. Later, the traditional
spectral data modelling is performed in the subset of spectra using
approaches such as principal component analysis, clustering and
partial least-squares based regression and classification, depending
on the need for unsupervised data exploration or supervised pre-
dictive modelling [4]. As a third step, the developed models are
used to predict the modelled property for each pixel of the image to
achieve the commonly known prediction maps [3,4]. Further steps
can involve post-processing of the prediction maps for specific
tasks such as object location, bounding box operation, counting,
and many more. Applications of such pixel-wise modelling ap-
proaches can be found widely in the scientific literature [15e21].

Although the pixel-wise modelling approach involving chemo-
metric methods is widely used in the spectral image processing
domain, there are also drawbacks involved with such an approach.
The main drawback is that the pixel-wise modelling approach does
not treat the spectral images as images but treat them like a large
point spectroscopy database [22e24]. This is because themodelling
on a subset of pre-selected spectra leads to loss of the spatial in-
formation present in the image [6,7]. Usually, the spatial informa-
tion in the scene carries contextual information which in the
spectral image processing domain has been proven to be of high
value to improve the model performance [22]. This is also one of
the main reasons for the increasing interest of the chemometric
community in the usage of spatial information alongside spectral
information during spectral image processing [25e28]. Nonethe-
less, the current approaches used by the chemometric community
to incorporate spatial information into the models still involve a
low-level fusion of spatial and spectral information before pixel-
wise chemometric modelling [27,28]. In such a low-level fusion,
usually spatial filters are used to extract the textural features from
the images. These extracted texture features are then stacked
behind the spectral planes and the image is processed in the
traditional pixel-wise approach [27,28]. Several studies have shown
that combining textural features with spectral information
improved the model's performance [27e30]. Such an approach
allows incorporating the textural features from the imaged scene
into the models, however, it still does not consider the contextual
information present in the imaged scene. This is because, after a
low-level fusion of the spectral and textural features, the spectral
images are still processed in a pixel-wise approach, hence the
spatial contextual information is underutilized.

Going outside the chemometric domain and to the computer
vision domain where massive development has taken place in
terms of deep learning (DL) approaches to image processing, it can
be noted that contextual information is largely used during image
processing and model development. More than the spectral di-
mensions, which are the red, green, and blue colour bands in a
colour image, the most useful information is the contextual infor-
mation present in the imaged scene (shapes, textures, etc.) [31]. In
the DL domain, to take advantage of the contextual information,
convolutional neural networks (CNNs) are usually used, wherein
the convolutional layers allow modelling and extracting of the rich
spatial contextual information, while the rest of the neural network
(usually dense layers) allows mapping the extracted features with
the target property [32]. The CNNs are also increasingly gaining
traction for spectral image processing, more generally for super-
vised classification purposes, where spectral images are assigned to
a particular class [33,34]. Recently, several recent works have also
shown the potential of fully convolutional neural networks such as
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U-net [6,7] and generative adversarial networks (GANs) [22] for
semantic segmentation of spectral images. However, until now
there is no work that has explored the CNNs for dealing with the
semantic image regression and classification of the spectral images.
Regression and classification are two main tasks performed in
spectral image processing, where for multiple objects present in
the imaged scene either the reference property needs to be esti-
mated (regression) or, the objects need to be assigned to the right
classes (classification) [3]. This study, for the first time, puts for-
ward the concept of image translation for semantic regression and
classification of the objects present in spectral images. In easy
terms, the image translation can be understood as tasks such as
colouring a black and white image and transforming satellite im-
ages to roadmaps [35]. A powerful approach to image translation in
the DL domain is the GAN, which involves an adversarial training of
a combination of generator and discriminator neural network
models [36]. The generator model task is to learn to perform image
translation (for example, developing prediction maps for spectral
images) and the discriminator model task is to detect if the
generator model can translate the images efficiently. At a certain
moment during the adversarial training, the generator and
discriminator model achieve equilibrium where the generator
model could translate images of plausible quality such that it be-
comes difficult for the discriminator model to detect if the images
generated are the ground truth or the synthesized by the generator.
Recent application of GAN models for semantic segmentation of
spectral images [22] has shown promising potential for its further
exploration toward semantic regression and classification of ob-
jects present in the spectral images.

The study aimed to present a new artificial intelligence
approach to spectral image processing. The key idea was to
demonstrate the image-to-image translation for different spectral
image processing operations such as segmentation, regression and
classification for objects present in the spectral images. For the
image-to-image translation, conditional GANs (cGANs) were used.
As a baseline comparison, the traditional chemometric approach
based on pixels-wise modelling using the partial least-squares
(PLS) analysis was demonstrated. All the data used in this study
come from real data sets measured with an Fx10 (Specim, Finland)
spectral camera. Furthermore, the effects of combining chemo-
metric approaches such as pre-processing and dimensionality
reduction with cGANs modelling were also explored.

2. Materials and methods

2.1. Samples and spectral imaging

In this study, to demonstrate the artificial intelligence way to
spectral image processing two real data sets were gathered. The
first data set, which was used to demonstrate the semantic seg-
mentation and regression task to predict soluble solids content
(SSC), was measured on 100 individual black grapes acquired from
a local supermarket (AlbertHeijn, Ede, The Netherlands). For the
classification case, walnut shells and kernels were used, where the
task was to classify the walnut shells and kernels into separate
classes. The walnuts (with shell) were also purchased from a local
supermarket (Jumbo, Wageningen, The Netherlands). Prior to the
experiment, the walnuts weremanually opened using a nutcracker.

All images were captured with the All-in-One spectral imaging
(ASI) setup as shown in Fig. 1. The ASI setup has an integrated
visible and near-infrared spectral camera (Fx10, Specim, Oulu,
Finland). The illumination is provided with two sets of halogen
lights (supplied by Specim, Oulu, Finland) mounted next to the
camera. The ASI setup is fully automated for image acquisition, and
the acquisition controls such as the speed of the translation stage,



Fig. 1. The all-in-one spectral imaging setup used for data acquisition. This all-in-one [37] setup provides a fully automated approach to spectral imaging and the final output of the
setup is the raw reflectance data.

P. Mishra Analytica Chimica Acta 1191 (2022) 339308
exposure time, number of frames, etc. are synchronised with the
camera settings. The ASI setup has an inbuilt white reference
(Teflon) which is scanned prior to any image acquisition. All images
are automatically corrected for the white and dark reference and
the final output of the ASI setup is the reflectance spectral data
which can be directly used for any data modelling task.

A key point to note is that for the regression analysis there was a
need for a reference property to be regressed, hence, in this study
the soluble solids content (SSC) of the grape juice was used. SSC of
extracted fruit juice was determined using a handheld refractom-
eter (HI 96801, Hanna Instruments Inc, Woonsocket, RI, USA).
2.2. Data sets generated

The image acquisition resulted in a total of four spectral images
of size 900 � 1024 � 224 where the first two dimensions were the
spatial dimension, and the last dimension was the spectral sam-
pling in the wavelengths range of 398e1002 nm. Out of the four
images, two images belonged to the grapes data set where each
image consists of measurements on 50 grape samples. The other
two images were from the walnut shells and kernels, which were
randomly distributed on the imaging platform in the ASI setup
(Fig. 1).
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2.3. Data pre-processing

The spectra in the spectral range below 471 nm were noisy;
hence, the spectral range was reduced to 471e1002 nm, consisting
of 195 spectral bands. A point to note is that the edges in the images
containing no information about the samples were cropped to
reduce the spatial dimensions. Such a reduction was performed
because it reduces the size of the data set which can be handled
more easily during deep model training. Later, all spectral images
were smoothened in the spectral domain using the Savtizky-Golay
[38] filter (window width ¼ 13 and polynomial order ¼ 2). The
smoothing in the spectral domain was performed to reduce any
subtle variation in the spectra. In this study, the effect of spectral
normalization was also explored on the DL models, hence, the
spectra were also pre-processed with the standard normal variates
(SNV) [39]. Notice that the DL was performed separately on both
the normalised and data without any normalization. In this study,
the effect of data compression prior to deep learning was also
explored, and for that purpose, the partial least-squares (PLS) based
latent space modelling was used. The PLS based latent space
transformation was performed separately for raw and SNV nor-
malised data. For all the cases, the spectral data were transformed
to score maps by multiplying the spectral image with the loading
vectors extracted from the PLS analysis. In the case of the grape data



Fig. 2. A schematic of the generator (A) and discriminator model (B). The “U-net” based generator model has an encoder part: C64eC128eC256eC512eC512eC512eC512eC512
and a decoder part: CD512-CD512-CD512-C512-C256-C128-C64, where C represents a convolution, CD means transpose convolution and the number mean convolutional filters. The
discriminator model architecture was: C64eC128eC256eC512, where C stands for convolution and the number stands for convolutional filters.
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set, the optimal number of latent variables (LVs) was identified by
regressing the mean spectra of the grapes with the SSC values and
using 10-fold Venetian blind cross-validation. For the walnut shells
and kernels classification, the optimal number of LVs were identi-
fied by regressing a small set of spectra (~144 for walnut shells and
144 spectra for nuts) extracted from the images using a manual
selection which were later regressed with a one-hot-encoded
vector of [111 … 000], where 1 signifies the walnut shells and
0 signifies the kernels. The optimal LVs for the walnut data set were
also found using 10-fold Venetian blind cross-validation. The
optimal LVs were identified as the elbow point in the cross-
validation plots. Finally, the DL analysis was performed indepen-
dently on the four sets of data i.e., raw reflectance data, SNV nor-
malised data, PLS transformed raw reflectance data, and PLS
transformed SNV data. A key point to note is that the reflectance
data were on the scale of [0e1], while after the SNV transform and
after the PLS projection the data scale was transformed. The neural
networks models require data to be in [0e1] to work efficiently.
Hence, the SNV and PLS transformed data were rescaled between
[0e1] by first adding the lowest negative value for that spectral
plane and then dividing by the max values for each spectral plane
independently. The minimum and maximum values were stored as
during the application of the model on the new data set, these
values were used to scale the images.
2.4. Ground truth maps

In a typical supervised learning task such as segmentation,
regression and classification, there is a need to account for the
reference values against which the model can be trained, validated
4

and tested in its performance. For DL modelling, there is also a need
to account for ground truth reference values against which the DL
model can be trained and evaluated. For a typical multivariate
model such as PLS regression, the reference properties are just
column vectors, however, since deep learning modelling is based
on utilising both the spatial and spectral information and aims to
directly generate the prediction maps as output, the references for
model training need to be supplied as expected prediction maps. To
perform the DL, three separate ground-truth spatial maps of ex-
pected output were generated for segmentation, regression, and
classification tasks. For the segmentation task, a binary image with
background and manually segmented fruit image were used as the
ground truth. For the regression task, each fruit was assigned the
SSC values estimated using the refractometer. For the classification
task, the walnut shells and kernel samples were manually labelled
and used as the ground truth.
2.5. Data modelling

2.5.1. Image subsampling for deep learning
DL models require large data sets for training. A solution for

deep learning on a small number of high-resolution spectral images
was recently proposed as a sub-sampling of the spectral images to
smaller size images [6,7,22]. In this study as well, to prepare the
data set for the DL model, image subsampling was performed using
the “extract_patches_2d” function from SciKit learn in Python. The
images (PLS compressed) were sub-sampled into 500 sub-samples
images of spatial dimension 256 � 256. With raw and SNV trans-
formed data without any PLS compression, only 300 images were
sub-sampled due to computer memory limitation for handling the



Fig. 3. Cross-validation plot for selection optimal LVs for PLS compression of reflec-
tance and SNV normalised data.

Table 1
Jaccard score estimated for semantic segmentation performed using different
forms of data.

Data forms Jaccard score

Reflectance 0.98
SNV normalised reflectance 0.97
PLS compressed reflectance 0.99
PLS compressed SNV normalised 0.97
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huge size spectral images. The trained models were tested on the
independent test set of images whichwas never used for anymodel
training and validation.
2.5.2. Deep learning with generative adversarial networks
modelling

The aim of the generativemodel is to learn to transform an input
image to the desired output form of the images, for example,
transforming black and white images to color images, or trans-
forming low-light images to bright light images, etc. The task of
transforming images in different forms is termed image translation.
In this study, it has been hypothesized that the GAN can be used to
perform translation of the spectral images to output forms such as
segmentation masks, property maps and classification maps. To
perform image translation, a recently proposed cGANs approach
was used [35]. The cGANs aims to learning the mapping from
spectral images (or PLS transformed) x and random noise vector z to
prediction maps y, G: (x, z) / y, where G is the generator model
trained to produce prediction maps that are like “real” images that
will be screened by an adversarially trained discriminator, D. These
prediction maps can be segmentation masks, fruit property maps
and classification maps. Furthermore, unlike tradition pixel-wise
chemometric analysis, the cGANs based modelling requires input
and output as images. The Gmodel is supplied with spectral images
(or PLS transformed) to generate the prediction property maps. The
D model uses both the spectral image (or PLS transformed) and the
ground-truth prediction maps. The main aim of the D model is to
detect if the G model synthesized prediction maps are of high
quality or not. During the adversarial training process, the G model
learns to generate high-quality prediction maps and eventually
outperforms the Dmodels’ capability to detect differences between
5

the ground truth and G synthesized prediction maps. Once the G
model is trained it can be used to generate prediction maps
depending on the required task (e.g., segmentation, regression, and
classification). More details on the mathematical representation of
the cGANs model are as follow.

The objective function of the cGANs [35] is in Eq. (1):

L cGANðG;DÞ¼Ex;y½logDðx; yÞÞ� þ Ex;y½logð1�Dðx;Gðx; zÞÞÞ� (1)

where G tries to minimize this objective function against an
adversarial D that tries to maximize it [35] as Eq. (2).

G*¼ argmin
G

max
D

L cGANðG;DÞ (2)

To generate high-quality prediction maps, it is advised to
combine the GAN with L1 loss [35]. The L1 on the G model is
defined in Eq. (3):

L L1ðGÞ¼Ex;y;z½y�Gðx; zÞ 1� (3)

Combining (2) and (3) leads to final objective Eq. (4):

G*¼ argmin
G

max
D

L cGANðG;DÞ þ lL L1ðGÞ (4)

The G model in this study was a “U-net” architecture [40] as
explained in Fig. 2A, and the D model was a convolutional
“PatchGAN” classifier as explained in Fig. 2B. The “PatchGAN”
classifier was used to capture local style statistics [35]. At first, the G
and D models have random weight, but during the adversarial
training processed the G model weights are updated via L1 loss
(mean absolute error) measured between the generated segmen-
tation and the manually labelled segmentation maps. For D model,
the final layer was fed to a sigmoid activation function for binary
classification. The D model was compiled with the adaptive
moment (ADAM) optimizer [41], with a learning rate, LR ¼ 0.0002
and the loss function as ‘binary_crossentropy’ since the task was a
binary classification of real or fake prediction maps. The ‘bina-
ry_crossentropy’ loss was also used to update the D model. Total
epochs were 100, thus based on the training samples, the total
number of iterations was 100 � number of samples. The model
performance for segmentation and classification were judged
based on Jaccard score [42] as can be understood in Eq. (5). The
Jaccard score is defined as the size of the intersection divided by the
size of the union of two label sets and used to compare predicted
pixel labels to the corresponding set of ground truth labels. The
Jaccard score range from 0 to 1, where Jaccard score of 0 explains no
match, while Jaccard score of 1 mean perfect match between the
predicted pixels labels and the corresponding ground truth labels.
The performance for the regression task was judged based on the
root mean squared error (RMSE) as defined in Eq. (6). In all cases,
the performance of the model was also judged based on visual
comparison with ground truth maps.

Jaccard score¼ jy ∩ byj
jy ∪ byj (5)

RMSEðy; byÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
n¼1

ðyn � bynÞ2
vuut (6)

The Jaccard score is estimated between two images i.e., pre-
diction maps and ground truth maps, while the RMSE is used to
judge the performance of the regression task that is based on the
reference property and the mean predicted property value for each
sample. DL model implementation and optimizations were done
using the Python (3.6) language and the open-source deep learning
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framework TensorFlow/Keras (2.4.0), running on a desktop work-
station equipped with a NVidia GPU (GeForce RTX 2080 Ti), an Intel
Xeon® W-2133 CPU @3.6 GHz and 64 GB RAM, running Microsoft
Windows 10 OS. The manual data labelling, spectral pre-processing
and PLS data compression was performed in MATLAB 2018b,
Natick, MA, USA.

3. Results

The results for the segmentation, regression and classification
analysis are presented in three separate sub-sections as follow.

3.1. Semantic segmentation analysis

The semantic segmentation was demonstrated using the grape
data set where the aim was to segment the grape from the back-
ground. Furthermore, the semantic segmentation modelling was
performed on four different forms of data i.e., raw reflectance, SNV
normalised, PLS compressed reflectance data and PLS compressed
SNV normalised data. For PLS compression, the optimal LVs were
found using 10-fold cross-validation as presented in Fig. 3. For the
reflectance data, a total of 13 LVs were chosen, and for the SNV
normalised data, 11 LVs were chosen. The results of the semantic
segmentation on the independent test set are shown in Table 1 and
Fig. 4. It can be noted that for all the data forms, a very high Jaccard
score was achieved (Table 1). A high Jaccard score i.e., close to 1
indicates ground truth resembling segmentation masks. The per-
formance of semantic segmentation on PLS compressed reflectance
data was marginally better than other forms of data. The semantic
segmentation maps are shown in Fig. 4, furthermore, it can be
noted that the predicted segmentation masks (Fig. 4C, D, E, F) were
like the ground truth mask (Fig. 4B) demonstrating the potential of
cGANs for semantic segmentation task. The main benefit of the PLS
compression, in this case, was the reduction in the training time as
for the complete spectral range the training time was 3 times more
than the model training on PLS compressed data.

3.2. Semantic regression analysis

Like the semantic segmentation analysis, the cGANs was used
for semantic regression where the SSC content in each grape was
estimated. The semantic regression prediction maps are shown in
Fig. 5, where most of the samples achieved similar SSC distribution
maps (Fig. 5B, C, D, E) like the ground truth SSC maps (Fig. 5A). The
performance of the prediction was further evaluated by extracting
the mean predicted value for the grape and plotted against the
reference SSC content as shown in Fig. 6. Note that the mean value
for each fruit were obtained by averaging all the pixel predictions
related to the fruit. It can be noted that the lowest RMSE was
achieved with the PLS compressed reflectance data, followed by
PLS compressed SNV normalised data. Like the semantic segmen-
tation modelling, the semantic regression modelling benefitted
with PLS compression both in lower RMSE and faster model
training compared to using the full spectral range. In contrast, there
was no added benefit of SNV normalization. As a comparison, pixel-
wise analysis with PLS modelling was also performed and the
example prediction maps are shown in Fig. 7C. Unlike the smooth
prediction maps attained with cGANs modelling, the PLS based
prediction maps were highly in-homogeneous. Such an in-
homogeneity in prediction maps from pixel-based modelling is an
Fig. 4. A summary of performance of cGANs models for semantic segmentation. (A) False co
reflectance data, (D) segmentation mask with SNV normalised data, (E) segmentation mask w
SNV normalised data. (For interpretation of the references to colour in this figure legend, t
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inherent challenge of the pixel-wise analysis as it cannot handle the
rich contextual information and is affected byminute pixel-to-pixel
variations. Furthermore, in Fig. 7C it can be noted that the pixel-to-
pixel variation is not random, but the prediction map has a distinct
vertical patternwhich could indicate that some spatial pixels in the
cameramight be having different sensitivity. On the other hand, the
cGANs was able to avoid it and generated maps highly coherent like
the ground truth mask.
3.3. Semantic classification

The cGANs was demonstrated for the classification of walnut
shells and kernels. The case of kernels and shells classification was
considered because spectral cameras are widely used in nuts pro-
cessing lines for separating kernels from shells. At first, the spectral
images were compressed using PLS loadings (Fig. 8), where the
optimal loadings were identified with 10-fold cross-validation on
walnut shells and kernels spectra on a dummy matrix. For reflec-
tance, 5 LVs were selected and for SNV normalised data 3 LVs were
selected for the compression. Later, four separate models were
trained using the four different data forms and tested on the in-
dependent image test set. The Jaccard score for the prediction maps
is shown in Table 2. It can be noted that the PLS compression did
not contribute to achieving higher Jaccard scores as the scores were
like the cGANs modelling performed on complete spectral range.
However, the main benefit of the PLS compression was the faster
model training (up to 3 times faster) compared to cGANs modelling
on complete spectral range. The modelling performed on the SNV
normalised spectral images were similar in performance on
reflectance data. The Jaccard score is a measure of spatial similarity
between the images, and it can be easily affected by differences in
the detection of edges by the model. The Jaccard score is not related
to the classification accuracy. This is noticeable that even with a
Jaccard score of 0.60, the cGANs model was able to segment all the
walnut shells and kernels and classify them correctly (Fig. 9) i.e.,
100% correct classification at object level.
4. Discussion

The segmentation analysis presented in this study was based on
the segmentation of the objects from the background and was
particularly related to the segmentation of grapes from the back-
ground. Such a segmentation analysis in the traditional way of
spectral image processing is the first step of the analysis which
allows automatic detection of key objects of interest to extract the
pixels for further modelling. However, a key point to note is that
with cGANs modelling, the segmentation task can be directly in-
tegrated into the regression and classification tasks thus skipping
the step of segmentation modelling. The integration of segmenta-
tion can be performed by providing the ground truth prediction
maps for model training as pre-segmented maps like it was pro-
vided for the regression and classification case presented in this
study (Figs. 5 and 9).

In the regression analysis presented in this study, the cGANs
model was trained considering each pixel of the object to have the
same average reference property (in the present study the average
SSC of fruit juice). However, such a cGANs modelling is not feasible
when the samples are highly heterogeneous, meaning, carrying
spatial heterogeneity in the reference property. This is quite com-
mon, for example, in bigger fruit samples such as apple, pear and
lour spectral image, (B) ground truth segmentation mask, (C) segmentation mask with
ith PLS compressed reflectance data, and (F) segmentation mask with PLS compressed

he reader is referred to the Web version of this article.)
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Fig. 6. Prediction plots for semantic regression to predict SSC in grapes. (A) Reflectance, (B) SNV normalised, (C) PLS compressed reflectance, and (D) PLS compressed SNV nor-
malised data. The mean value for each fruit were obtained by averaging all the pixel predictions related to the fruit.
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grape, where the SSC content varies based on the spatial location of
fruit. A solution to that could be to perform multiple reference
measurements on the same samples to also generate ground truth
reference property maps capturing the spatial variability. However,
this may be a challenging task to achieve in practice as it can take a
lot of effort and time to perform sampling for reference analysis.
Based on the analysis carried out in this study, cGANs based
regression seems much straightforward for samples with homo-
geneous reference property compared to samples with spatial
variation in reference property. But this limitation of cGANs is
based on the challenge in obtaining ground truth reference prop-
erty maps for heterogeneous samples and not on the modelling
approach of cGANs. In the presence of heterogeneous reference
propertymaps, the cGANs should perform equallywell but needs to
Fig. 5. Semantic regressionwith cGANs for SSC prediction in grapes. (A) Ground truth SSC pr
(E) PLS compressed SNV normalised data.
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be verified in future works. Currently, for highly heterogenous
samples the pixel-basedmodelling approaches should be sufficient.
For classification modelling, the heterogeneity of the samples is not
a problem as the cGANs model is trained using discrete class labels
rather than continuous reference properties.

In this study for the regression modelling the cGANs model
performed two tasks i.e., segmentation and reference property
prediction, while for the classification case the cGANs model per-
formed three tasks i.e., segmentation, classification of samples and
separation of classification maps based on shells and kernels. The
cGANs models can further be extended to performed operations
such as bounding box generation and object counting tasks based
on the need. However, the key message to note is that cGANs
models are especially useful tools to performmulti-task operations.
ediction maps, (B) Reflectance, (C) SNV normalised, (D) PLS compressed reflectance, and



Fig. 7. A comparison of prediction maps attained with semantic regression and pixel-wise PLS regression-based analysis. (A) Ground truth SSC prediction maps, (B) Semantic
regression on PLS compressed reflectance data, and (C) pixel-wise PLS regression analysis on reflectance data.
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In the study, while comparing the prediction maps from the
cGANs modelling with the pixel-based predictive modelling it was
mentioned that the prediction maps were highly inhomogeneous
in the spatial domain and carried some line patterns which can be
related to the sensitivity of the sensor pixels. The spatial homoge-
neity in the grape can also be due to the spatial heterogeneity in
reflectance property and the local curvature of the fruit surface.
However, with the cGANs modelling, it was noted that the pre-
diction maps were smoother and represented the average SSC
content in the grape thus, bypassing both the line patterns and the
effect of fruit surface curvature observed with pixel-based model-
ling. Such a better performance of the cGANs for generating ho-
mogenous predictionmaps could be due to its capability to perform
non-linear modelling as well as the contextual information present
in the imaged scene. Nonetheless, further studies are needed to
explore the potential of cGANs models to reduce and remove the
heterogeneities due to sensor sensitivity and curvature of objects.
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For deep learning modelling, it is important to have large data
sets covering a wide range of sample variations, however, in the
chemometric domain obtaining such data sets is a task a bit chal-
lenging due to the wet chemistry reference property analysis re-
quirements. However, this limitation is related to regression
modelling, as for classification modelling many images can be ob-
tained. On other hands when the images are of sufficiently high
resolution and contain several objects in the scene, the image
augmentation approach based on image sub-sampling can be used
for model training. In this study, the image sub-sampling approach
presented in earlier studies [6,7,22] allowed sufficient sub-samples
for training deep learning models from only one high-resolution
spectral image. However, a key point to note is that real data
cannot replace the augmented data and whenever possible it is
always better to acquire larger data sets. Image augmentation can
also be performed in other ways such as image rotation, horizontal
and vertical shifts, shear, and flips. Nonetheless, in this study, it was



Fig. 8. Cross-validation plot for selection optimal LVs for PLS compression of reflec-
tance and SNV normalised data.

Table 2
Quality of semantic classification maps attained with modelling performed on
difference forms of data.

Data forms Jaccard score

Reflectance 0.59 ± 0.09
SNV normalised reflectance 0.60 ± 0.09
PLS compressed reflectance 0.59 ± 0.10
PLS compressed SNV normalised 0.54 ± 0.07
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not in the scope as the model achieved sufficient capabilities to
perform the segmentation, regression, and classification. In future
work, the effect of different augmentation approaches could be a
direction to explore to achieve robust and generalized models.

In earlier studies related to deep learning modelling in the
chemometric literature, the effect of spectral pre-processing and
data compressionwith latent variable approaches such as principal
component analysis (PCA) have shown to achieve improved
models, particularly related to the improvement of model training
with spectral normalization and reduction in time requirements
with data compression [6,7]. Hence, in this study, the effect of pre-
processing data with SNV normalization and the PLS based data
compression was explored. The SNV normalization was used as it
can suppress the illumination heterogeneities due to the local
curvature on objects [10]. Like earlier studies, in this study it was
found that the data compression directly reduced the model
training time (up to 3 times less) compared tomodelling performed
on the full spectral range, however, the SNV normalization did not
show any improvement in model accuracies. On the other hand, the
PLS compression before the cGANs modelling led to lower RMSE
models indicating that apart from a reduction in training time, the
PLS compression complemented the regression modelling.

The cGANs based approach presented in this work requires an
image as input to translate it to output. This scenario is perfectly
suited for the new snapshot spectral cameras as they directly
generate the complete spectral image in one capture. On other
hand, the most popular spectral cameras currently used in practice
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are line scan cameras which acquires data line by line. To use the
cGANs based approach in real-time for line scan cameras the user
need to either wait for the complete image to be acquired (in case
the experiment involves discrete samples) or for in-line application
wait for the initial k� 1 lines to have been acquired for a cGANs
model of k� k spatial resolution and later using the cGANs model
on the image generated during every new line acquisition similar to
as proposed in Ref. [43].

One of the key benefits of the traditional chemometric ap-
proaches is that they are highly parsimonious and particularly key
information such as scores, loading and regression vectors can
provide detailed insights to the underlying physicochemical infor-
mation being modelling. The DL based models are less parsimo-
nious in terms of gaining detailed insights to the background
physicochemical information. However, in recent years, progress is
being made towards explainable deep learning and different con-
cepts such as Grad-CAM, integrated gradients, are emerging. In the
chemometrics domain, recently the implementation of Grad-CAM
[44] for spectral data modelling has shown insights into the key
spectral variables contributing to themodel. Although, the research
towards an explanation of the DL model is still in the very early
stage, and in coming years, better approaches to understanding DL
models should become available. Implementing an explainable DL
method for hyperspectral imaging will be a direction for future
work.
5. Conclusions

This study presented an innovative approach to model spectral
imaging data using an artificial intelligence approach based on
conditional generative adversarial networks. This novel approach
treated the spectral images as images and used both the spatial and
spectral information with convolutional operations to perform
three main tasks for spectral image processing i.e., segmentation,
regression, and classification. The result showed that this novel
approach achieved much smoother prediction maps compared to
achievable with pixel-based modelling. Furthermore, the cGANs
models were able to perform multiple tasks, for example, for
regression analysis, the cGANs model directly performed the seg-
mentation and prediction of reference property. Similarly, for the
classification case, multiple tasks such as segmentation, classifica-
tion of samples and separation of classification maps for individual
objects, were performed in a single model. The ability to cGANs
model to directly take the spectral image as input and provide
output as prediction maps allows it to bypass several steps such as
spectra image unfolding and refolding, region of interest selection
for selecting spectra for chemometric modelling and pixel-wise
modelling and application. Furthermore, it was found that the
PLS based data compression can benefit the cGANs models by
reducing the model training time and achieving models with lower
prediction error. A key point to note is that in the chemometric
domain, one of the main interests is to know the background
chemistry of samples with the use of traditional loading and
regression vectors, however, such enhanced insights cannot be
achievedwith cGANsmodelling. Therefore, the cGANs can be useful
for practical implementation or to be integrated into easy-to-use
automated black box software's for spectral image processing, as
currently the capability for inferring information based on cGANs
about the background chemistry is limited. To understand the
background chemistry of samples in detail, readers should



Fig. 9. An example of the cGANs model for classification of walnut shells and nuts. In top row the ground truth classification masks are shown while in bottom row the cGANs
synthesized classification maps are shown. It can be noted that although the Jaccard score was 0.60, however, all the nuts and shells were classified into correct classes.
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implement the traditional chemometric approaches to spectral
image processing. Although, some recent deep learning approaches
such as GradCAM can provide insight into key spectral bands and
spatial features related to the model predictive power.
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