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Abstract

Background: The genus Xanthomonas has long been considered to consist predominantly of plant pathogens, but over
the last decade there has been an increasing number of reports on non-pathogenic and endophytic members. As
Xanthomonas species are prevalent pathogens on a wide variety of important crops around the world, there is a need to
distinguish between these plant-associated phenotypes. To date a large number of Xanthomonas genomes have been
sequenced, which enables the application of machine learning (ML) approaches on the genome content to predict this
phenotype. Until now such approaches to the pathogenomics of Xanthomonas strains have been hampered by the
fragmentation of information regarding pathogenicity of individual strains over many studies. Unification of this information
into a single resource was therefore considered to be an essential step.

Results: Mining of 39 papers considering both plant-associated phenotypes, allowed for a phenotypic classification of 578
Xanthomonas strains. For 65 plant-pathogenic and 53 non-pathogenic strains the corresponding genomes were available
and de novo annotated for the presence of Pfam protein domains used as features to train and compare three ML
classification algorithms; CART, Lasso and Random Forest.

Conclusion: The literature resource in combination with recursive feature extraction used in the ML classification algorithms
provided further insights into the virulence enabling factors, but also highlighted domains linked to traits not present in
pathogenic strains.

Keywords: Pathogenicity, Protein domains, Machine learning, Xanthomonas

Background
The genus of Xanthomonas is mostly known trough its
pathogenic members, with significant economic and agricul-
tural impact [1]. Xanthomonas spp. infect a wide variety of
plant crops (see Table 1 for examples), however individual
Xanthomonas pathovars usually show a high degree of both
host and tissue specificity [2]. Whilst non-pathogenic xantho-
monads have been reported as early as 1985 [3], during the
last decade many new non-pathogenic strains have been dis-
covered [4–9] and it has become apparent that these non-

pathogenic strains form an integral part of the Xanthomonas
epidemic population structure [10]. Moreover, non-
pathogenic strains show, in comparison to their pathogenic
counterparts, a higher level of genetic diversity [1] suggesting
that non-pathogenic xanthomonads are generalists that can
epiphytically survive on a much wider host range and might
play important roles in the microbiome of asymptomatic
hosts [11, 12]. While the relative abundance of these non-
pathogenic strains is still not known, their undisputable exist-
ence has raised the concern that diagnostic misidentifications
might result in unnecessary control measures and/or high
economic losses [8]. The is-not-pathogenic label depends
heavily on the test conditions used. For example, a set of X.
arboricola pv. fragariae strains isolated from infected
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strawberries did not cause symptoms when sprayed onto
new plants [13], but a repetition of the same assay at an in-
creased humidity did reveal the pathogenicity of these strains
[14]. Examples like this underline the importance of testing
strains on a large range of hosts and conditions. However, as
current tests are all aimed at establishing pathogenicity and
given the large number of environmental parameters that
impact infection, it is important to integrate extensive
in vitro testing of strains with a pathogenomics framework,
providing insight in the relative importance of genome
encoded virulence factors.
A vast array of genomic factors have already been found

to impact virulence (reviewed in [15, 16]). Many are lo-
cated in so called pathogenicity clusters such as the hrp-
cluster expressing type III secretion systems (T3SS) and
associated effectors (T3E) [17], the xps-cluster coding for

a type II secretion system for secretion of host cell wall de-
grading enzymes [18], the gum-cluster responsible for pro-
duction of the xanthan-based biofilm unique for
Xanthomonas spp. [19] and the regulation of pathogen-
icity factors or rpf -cluster which positively regulates viru-
lence [20]. Elements of many of these genomic factors are
also present in the genomes of the nonpathogens and cur-
rently it is unclear what combinations of features drive the
switch in life-style [15]. Studies examining the genomic
differences between pathogenic and non-pathogenic
xanthomonads have focused on X. arboricola as a model
[21] and as a result the majority of known non-pathogenic
strains currently belong to this species. Using classical
comparative genomic approaches, attempts have been
made to understand what exactly separates pathogenic
and non-pathogenic X. arboricola strains. These analyses

Table 1 Overview of the Xanthomonas phenotype database

Species Strains + – Top 5 Most Tested Hosts Reference

X. arboricola 258 180 232 Juglans regia, Prunus persica, Phaseolus vulgaris, [6, 8, 14, 21, 28, 29, 36,
54–56]

Fragaria ananassa, Capsicum annuum [10, 13, 57–63]

X. oryzae 70 68 2 Oryza sativa [5, 9]

X. translucens 58 72 14 Lolium multiflorum, Asparagus virgatus, Hordeum vulgare,
Anthurium andreanum

[62, 64–66]

X. campestris 40 45 22 Brassica oleracea, Musa acuminata, Saccharum officinarum,
Zea mays, Prunus persica

[6, 9, 59, 60, 62, 67, 68]

X. albilineans 27 18 9 Saccharum officinarum, Zea mays [69–71]

X. axonopodis 20 12 14 Maniholt esculenta, Musa acuminata, Saccharum officinarum, Zea mays,
Lycopersicum esculentum

[29, 59, 62, 72]

X. dyei 13 12 27 Dysoxylum spectabile, Laurelia novae-zelandiae, Metrosideros excelsa [63]

X. vasicola 6 12 6 Musa acuminata, Saccharum officinarum, Zea mays [59]

X. cannabis 5 5 2 Phaseolus vulgaris, Capsicum annuum, Hordeum vulgare [23, 68, 73]

X. sontii 5 2 3 Oryza sativa [5, 74]

X. floridensis 4 0 8 Brassica oleracea, Nasturtium officinale [75]

X. maliensis 4 0 4 Oryza sativa [9, 22]

X. fragariae 3 3 0 Fragaria ananassa [13]

X. euvesicatoria 2 2 0 Lycopersicum esculentum, Capsicum annuum [6]

X. hortorum 2 0 2 Daucus carota [62]

X. nasturtii 2 2 2 Brassica oleracea, Nasturtium officinale [75]

X.
pseudoalbilineans

2 1 1 Saccharum officinarum [70, 76]

X. sacchari 2 0 2 Citrus sinensis, Oryza sativa [7, 62]

X. hyacinthi 1 2 0 Hyacinthus orientalis, Scilla tubergeniana [77]

X. melonis 1 0 1 Citrus sinensis [62]

X. theicola 1 1 0 Camellia sinensis [78]

X. spp. 52 66 41 Asparagus virgatus, Hordeum vulgare, Oryza sativa,
Nicotiana tabacum, Phaseolus vulgaris

[9, 13, 59, 62, 66]

Total 578 503 392 77 Distinct host species 39 Unique references

Strains: number of unique strains assayed; +: Number of positive tests; −: number of negative tests
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revealed genome encoded differences in environmental
sensing, flagellin protein sequences, and components of
the type IV pilus, but the most remarkable differences
were found in the T3SS and T3E gene content. Most non-
pathogenic strains lacked parts of the T3SS and showed a
more limited repertoire of T3Es and in extreme cases,
non-pathogenic strains even lacked the entire T3SS [1, 8,
11]. However, these findings do not fully explain the dif-
ferences as strains CFBP3122 and CFBP3123 were found
to be pathogenic although they lacked T3SS and T3E
genes [11]. These findings also provide an incomplete
framework for other species. For example, whilst for X.
maliensis absence of the T3SS related genes appears to be
strongly correlated with the non-pathogenic phenotype
[22], several members of the X. cannabis species have
been shown to be pathogenic to multiple different hosts
even though they lack the entire T3SS [23].
Overall the results suggest that a more complete set

of genome-encoded features is required to differenti-
ate between phytopathogenic and non-pathogenic
strains. In the last ten years, the number of available
Xanthomonas genomes has increased nearly 100-fold
[2, 24]. This large number of genomes makes it feas-
ible to use machine learning (ML) approaches on the
genome content to predict the pathogenicity of indi-
vidual strains [25]. Teper et al. successfully used ma-
chine learning to identify novel X euvesicatoria type
III effector proteins [26]. Here we explored the ap-
plicability of three ML approaches to predict the
plant-associated phenotype of Xanthomonas strains.
For Xanthomonas species such approaches have

been hampered by the fragmentation of information
on the plant-associated phenotype of individual
Xanthomonas strains over many studies. There are
databases that track the pathogenicity of individual
strains such as CIRM-CFBP [27], but they suffer from
poor interoperability and a lack of provenance. Unifi-
cation of plant-associated phenotype data into a single
high quality resource was therefore considered an es-
sential first step.
In this study, pathogenicity assays retrieved from 39

studies, that each took into account both pathogenic and
non-pathogenic xanthomonads, were unified into a single
database. This database was then leveraged to retrieve
available genome sequence which were de novo annotated
for the presence of Pfam protein domains. These domains
were subsequently used as input to train three different
classifiers. The resulting models were examined for their
ability to predict the pathogenicity of individual strains
(Fig. 1). Important features were extracted from these
models providing new insights into the genome encoded
factors contributing to the plantassociated phenotype. At
the same time, these classifiers provide a way to crossvali-
date pathogenicity test results and conditions.

Results
Development of the Xanthomonas phenotype database
To manage literature derived information related to
the strain specific plantassociated phenotype, an SQL
database was created (Supplementary Fig. 5). This
database, which will be referred to as the phenotype
database, was used to track the outcome of individual
pathogenicity assays. An assay was defined as the
unique combination of a strain and host species as
tested by a single source. This approach was favoured
over tracking the pathogenicity of individual strains,
as it enabled us to track the criteria used to deter-
mine the plant-associated phenotype of a strain. Many
studies considered only pathogenic strains and to cor-
rect for this imbalance in our database, the data col-
lection effort was limited to studies that took both
plant-associated phenotypes into account. This yielded
a total of 895 distinct pathogenicity assays, extracted
from 39 studies, describing 578 unique strains that
were tested on 77 different plant host species (Table
1). From the 578 unique strains, 522 were assayed on
their host of isolation (Supplementary File S1). Out of
the collected 895 individual assays, 503 did and 392
did not observe symptoms indicative of pathogenicity.

Fig. 1 Workflow. Xanthomonas pathogenicity assay data for different
strains was obtained from literature and stored in a SQL (phenotype)
database. Available genomes were retrieved and de novo annotated
with protein domains. Annotation results were stored in a Graph
database. Strain specific domain content was used as input to train
the classifiers. Resulting models were examined for their ability to
predict pathogenicity and feature importance
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SQL queries were used to combine results from the
various pathogenicity assays. From these combined re-
sults the plant-associated phenotype of each individual
strain was inferred. Strains unable to induce symptoms
on the isolation host and all other hosts after artificial
inoculation under optimal conditions were labelled as
non-pathogenic [10]. Conversely, strains were consid-
ered pathogenic if they were able to induce symptoms
on any of the tested hosts. Pathogenicity assays based on
the” trunk incision” method [28] and pathogenicity as-
says on Fragaria ananassa were both considered to pro-
vide insufficient prove for non-pathogenicity, as the
former is known to misclassify pathogenic strains that
can only cause vertical oozing canker [6, 29] and for the
latter the concern was raised that the host might be an
unsuitable host to determine pathogenicity of X. arbori-
cola strains [13].
Using these criteria, 158 strains were classified as non-

pathogenic and 391 strains as pathogenic. For 29 strains
the status was considered to be ambiguous and these
were excluded from this study. Strain names and known
aliases of these strains were cross-referenced with the
GenBank sequence database [24], to obtain available
matching genomes. This resulted in a set 65 pathogenic
and 53 non-pathogenic Xanthomonas strains with a
known genome sequence encompassing a large majority

of the observed genetic variation within this genus, with
the exception of the of the X. hortorum, X. gardneri, X.
citri, X. perforans and X. vesicatoria species (Table 2).

De novo genome annotation
Collected genomes were de novo annotated for Pfam do-
mains using the SAPP platform [30], which implements
Prodigal for gene calling [31] and InterProScan for do-
main annotation [32]. This was done to rule out tech-
nical differences due to the use of different annotation
software or different versions of the same software. Gen-
ome annotations and provenance were stored in a separ-
ate database. The statistics are summarised in Table 3.
More than 80% of the protein encoding genes code for
at least one Pfam domain. The maximum number of
genes is inflated by two outlier genomes of low assembly
quality, resulting in the prediction of small incomplete
genes. However these small genes did not code for pro-
tein domains (for annotation details see Fig. 6 and
Supplementary File S2).

Domain matrix
For each strain the set of unique protein domains was
extracted from the annotation database and combined
into a binary strain/domain presence matrix used for
further analysis and model building. The resulting

Table 2 Sequenced Xanthomonads with a known phenotype

Species Non-Pathogenic Pathogenic Total

X. arboricola 28 26 54

X. campestris 2 6 8

X. oryzae 0 7 7

X. translucens 0 7 7

X. cannabis 2 3 5

X. vasicola 0 5 5

X. sontii 3 1 4

X. albilineans 2 2 4

X. axonopodis 2 2 4

X. sacchari 2 0 2

X. pseudoalbilineans 1 1 2

X. fragariae 0 2 2

X. dyei 1 0 1

X. floridensis 1 0 1

X. maliensis 1 0 1

X. melonis 1 0 1

X. hyacinthi 0 1 1

X. nasturtii 0 1 1

X. theicola 0 1 1

X. spp. 7 0 7

Total 53 65 118
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matrix contained 3609 unique Pfam protein domains
distributed over the 118 Xanthomonas strains.
As the ML models will be developed from this present

Xanthomonas matrix, a” closed” domain representation
of genus is a prerequisite. When a genus is closed, it is
assumed that the large majority of the observed genetic
variation within is captured by the current data. The
Heaps law estimate was used to estimate the increase in
the number of unique domains as a function of the in-
crease in collection size. The decay parameter, alpha,
was estimated to be 1.22 indicating that the pandomai-
nome captured in the matrix was closed (Fig. 2). The
captured phylogenetic diversity was additionally visua-
lised using a binary domain distance tree (Fig. 7 and
Supplementary File S2).

Matrix optimisation
To reduce the complexity of the data set, the domain
matrix was filtered for domains with a low level of vari-
ability (present/absent in > 97.5% of samples). These do-
mains either are part of the functional core and thus are
present in all strains or represent rare domains contain-
ing little information about the general tendencies that
discriminate pathogens from non-pathogens. Removal of
these domains reduced the total number of domains to
1692. Next, highly correlated domains were treated as
one by removal of the domain with the highest absolute
correlation from sets of domains with a pair-wise

Pearson correlation > 0.8. This further reduced the com-
plexity of the matrix, yielding a final matrix of 871
unique domains which was used for model building and
further analysis.

Machine Learning Approaches:
A Partial Least Squares Discriminant Analysis (PLS-DA)
was applied to the data set to visualise covariance be-
tween the domain content and phenotype. The PLS-DA
suggested that overall, the strain specific domain content
provided a good way to discriminate between both clas-
ses, but also that some strains might be mislabelled.
(Fig. 3a & 3b).
To learn more about the relationship between the do-

main content and the plantassociated phenotype, three
ML approaches, selected for their high level of interpret-
ability and their performance on data sets with a modest
number of observations, were applied: CART, Lasso, and
RF.

Model performances
To evaluate the performance of the respective models a
20 × 5-4 × 10 nested repeated Cross Validation (CV) was
used, based on recommendations of Krstajic et al. [33]
and Kuhn et al. [34]. To allow for a better comparison
all ML approaches were trained and tested on the identi-
cal data partitions. For all approaches, the test-set accur-
acy was highly variable with a difference in accuracy
larger than 0.3 depending on the specific training- and
test-set partition (Fig. 3c). This underlines the need to
estimate the variation in the model performance using
nested CV, if these estimates are to be used as an indica-
tion of real world performance. The CART model
showed the lowest performance with a median accuracy
of 0.750. The Lasso and RF models showed a similar im-
provement in performance, with a median accuracy of
0.826 and 0.833 respectively. The RF model performed
better on the prediction of non-pathogenic strains, with
an sensitivity of 0.769 and specificity of 0.909 (consider-
ing pathogens as the positive class), whereas the Lasso’s
performance was more balanced, but slightly in favour
of the pathogens with a sensitivity of 0.846 and specifi-
city of 0.818. The median selected tuning parameters in-
dicated that all classifiers favoured models of relatively
low complexity; cp = 0.068 for CART (yielding 2–3 do-
mains per tree), λ = 7.85 ∗ 10− 3 for Lasso (yielding ∼ 29
domains with a non-zero coefficient), and mtry = 89 for
RF (Supplementary File S3). The median precision-recall
(PR) curve (Fig. 3d) provided a more detailed representa-
tion of model performance. The PR-curves confirmed
that the CART model underperforms in comparison to
the other models. The drop in precision at low recall
values is caused by the model attributing the highest
probability of pathogenicity to two X. axonopodis strains

Table 3 Annotation statistics of the collected genomes

Min Max Average

Genome Size (bp) 3,534,477 5,333,718 4,773,005

Genes 2955 6207 4155

Domains 4013 5835 5233

Unique Domains 1964 2478 2355

Fig. 2 The Xanthomonas Pan-domainome is closed. The decay
parameter, alpha, was estimated to be 1.22 (see methods for details)
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that according to literature are non-pathogenic. The PR-
curve also shows that there is no discernible difference
in performance between the Lasso and RF.

Species specific prediction performance
To gain a better understanding of model behaviour, the
in silico predicted class probabilities were compared

Fig. 3 Properties of the training data set and model prediction performances. Upper panel: Partial Least Squares Discriminant Analysis showing the
discrimination between variables and phenotypic classes (a) Xanthomonas strains labelled by phenotype. (b) Xanthomonas strains labelled according
to species classification. A standard PCA representation is available in supplementary file 8 Lower panel: Performance of the ML classifiers. (c) Classifier
accuracy using a nested cross-validation scheme for each classification method. (d) Precision-Recall curves of each classification method calculated
from the predicted median test-set probabilities
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with the in vivo labels obtained from literature. To this
end the median class-probabilities over the 20 repeats of
the nested CV and the pathogenicity labels extracted
from the database, were mapped onto the first two com-
ponents of the previously created PLS (Fig. 4).
High confidence pathogen predictions labelled in red,

that scored consistently high across all approaches,
belonged to the X. oryzae, X. vasicola and X. fragariae
species. For these species the data set only contained ge-
nomes from strains that, according to literature, were
pathogenic. The same was true for the X. translucens
species, however only the Lasso and RF model predicted
this species with high confidence, whereas the CART
model showed mixed predictions for this species. A high
confidence was also obtained for the juglandis, corylina
and pruni pathovars of X. arboricola. Lower confidence
scores were obtained for pathogenic strains belonging to
species with a single sequenced genome (X. hyacinthi, X.
nasturtii and X. theicola). The X. nasturtii strain was
correctly predicted as pathogenic by all ML approaches,
whereas the X. hyacinthi and X. theicola were incorrectly
predicted by the median CART and Lasso models.
High confidence non-pathogen predictions are labelled

in a blue/green and formed two distinct clusters: one
cluster in the lower-right containing the non-pathogenic
X. arboricola strains and one cluster in the upper-right,
containing strains from the non-pathogenic X. sontii, X.
sacchari and X. melonis species and non-pathogenic
strains with an undefined species taxonomy. Overall
lower confidence scores were obtained in comparison to
the pathogens. This likely stems from four strains that
are pathogenic according to literature, but are located
close to the clusters of nonpathogens.
Strains located near the origin and top-middle of the

PLS mainly consisted of pathogenic strains from the
remaining X. arboricola pathovars and of the species with

a small number of genomes with a mixed phenotype (X.
cannabis, X. axonopodis and X. (pseudo)albilineans). All
ML approaches were uncertain about the X. albilineans
species located at the top of the PLS, as indicated by the
neutral scores. The species near the origin of the PLS
showed a large difference between approaches. The CART
model failed to correctly predict strains from both the X.
cannabis and X. axonopodis species, the Lasso performed
better on the X. cannabis species whilst still failing to reli-
ably predict the X. axonopodis species and the RF gave
neutral predictions for both species. The CART model
also performed poorly on the less successful pathovars of
the X. arboricola species.

Feature importance
All three ML approaches apply a form of feature selec-
tion, by generating variable importance scores for the
protein domains. For each ML approach these scores
were obtained in a different way. For CART, variable im-
portance scores was obtained by tabulating reduction in
loss function for all candidate variables considered at
each split; for Lasso, variable importance scores were
computed from the coefficients using t-statistic; for RF
the mean decrease in accuracy when a given variable
was left out of bag was used as a measure of variable im-
portance. Scores were summed over all folds of the re-
peated CV outer-loop and were scaled to have the most
important domain at 100. For comparison purposes, do-
main enrichment was calculated between the classes
using a two-side Fisher exacted test with Benjamini-
Hochberg correction. The top 10 most important do-
mains for each of the ML approaches were combined
and sorted by enrichment score (Table 4). To provide
additional context, the table also includes enrichment
scores of highly correlated domains removed in matrix
filtering. The top 10 domains of CART and RF show a

Fig. 4 Predicted median class probabilities mapped onto the PLS-DA. Colour scale (0–1) represents the probability of a strain being pathogenic.
Labels represent the phenotype according to literature. A standard PCA representation is available in supplementary file 9
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strong correlation with enrichment, whereas Lasso relied
more on less enriched domains.

Discussion
The Xanthomonas genus encompasses a diverse set of
species able to infect a large variety of important crops.
As non-pathogenic strains seems to constitute a signifi-
cant part of the Xanthomonas population, from a pest-
control point of view the need arises to develop means
to reliably distinguish this phenotype, while studying the

genomic diversity may shed light to the Xanthomonas
plant-associated lifestyles and contributing traits. Cur-
rently more than 1700 Xanthomonas genomes are avail-
able in public repositories, enabling pathogenomics
approaches. However, such approaches are hampered by
the current publication bias towards pathogenic strains
and fragmentation of information regarding the plant as-
sociated phenotypes of individual strains. In order to ob-
tain a reliable balanced training set representing both
plant-associated phenotypes, we collected pathogenicity

Table 4 Top features used in theAQ5 classifiers

Top features enriched in pathogens

Domain Description RF Lasso CART P NP Enrichment

PF13855 Leucine-rich repeat 100.0 74.9 100.0 0.62 0.04 2.14e-08

PF09613 Type III secretion system, HrpB1/HrpK 52.1 14.3 75.6 0.83 0.30 3.83e-06

* PF05932 Tir chaperone protein (CesT) family 0.82 0.28 3.96e-06

* PF09483 Type III secretion protein HpaP 0.83 0.30 3.83e-06

* PF09486 Type III secretion protein HrpB7 0.83 0.30 3.83e-06

* PF09487 Type III secretion protein HrpB2 0.83 0.30 3.83e-06

* PF09502 Type III secretion protein HrpB4 0.83 0.30 3.83e-06

* PF05819 NolX 0.69 0.30 3.34e-03

PF09994 Domain of unknown function DUF2235 19.0 13.0 33.3 0.54 0.09 8.84e-05

PF13276 HTH-like domain 23.0 8.3 26.8 0.91 0.49 1.82e-04

PF13333 Integrase, catalytic core 13.4 3.6 12.2 0.51 0.09 2.39e-04

PF13579 Glycosyltransferase subfamily 4-like 16.0 100.0 4.4 0.88 0.53 2.89e-03

PF14341 Type 4 fimbrial biogenesis protein PilX 15.2 18.3 4.5 0.85 0.49 4.25e-03

PF01382 Avidin/streptavidin 6.3 33.6 0.0 0.26 0.04 2.74e-02

PF10117 5-methylcytosine restriction system component 17.0 77.6 3.8 0.32 0.08 3.30e-02

PF12161 N6 adenine-specific DNA methyltransferase 5.5 27.7 0.1 0.88 0.62 4.15e-02

* PF01420 Restriction endonuclease, type I, HsdS 0.85 0.60 5.74e-02

Top features enriched in non-pathogens

Domain Description RF Lasso CART P NP Enrichment

PF12840 Helix-turn-helix domain 46.7 67.3 70.1 0.25 0.75 1.87e-05

PF13570 Pyrrolo-quinoline quinone-like domain 12.7 4.3 18.2 0.60 0.98 1.01e-04

PF03552 Cellulose synthase 15.5 0.0 25.5 0.35 0.81 1.80e-04

* PF03170 Cellulose synthase BcsB, bacterial 0.37 0.83 1.01e-04

* PF05420 Cellulose synthase operon C, C-terminal 0.38 0.81 4.28e-04

* PF01270 Glycoside hydrolase, family 8 0.37 0.79 7.33e-04

PF13424 Tetratricopeptide repeat 16.9 26.0 26.1 0.51 0.91 4.28e-04

* PF12823 Domain of unknown function DUF3817 0.52 0.92 2.85e-04

PF06629 MltA-interacting MipA 14.5 47.7 4.6 0.54 0.85 1.57e-02

PF00656 Caspase domain 6.1 0.5 19.6 0.58 0.85 4.45e-02

PF13391 HNH nuclease 8.5 55.6 1.4 0.08 0.30 5.35e-02

PF10013 Uncharacterised conserved protein UCP037205 4.0 27.1 0.3 0.31 0.57 8.03e-02

Domain: Pfam accession number; RF: Random Forest scaled variable importance aggregated over all nested CV outer-loop models; Lasso: Lasso aggregated scaled
variable importance; CART: CART aggregated scaled variable importance; P: domain persistence in pathogens; NP: domain persistence in non-pathogens;
Enrichment: p-value domain enrichment based on a two-sided Fisher exact test with Benjamini-Hochberg multiple testing correction; * left square bracket: Highly
correlated domains removed in matrix optimisation
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assays from studies that included both plant-associated
phenotypes in their study. Strains unable to induce
symptoms on all tested hosts, including the isolation
host, were considered to be non-pathogenic. Still, we ex-
pected that some mislabelling of the training data was
inevitable: First, because the relative abundance of the
non-pathogens in nature is unknown and second, due to
a high dependency of host susceptibility on the abiotic
conditions used.
Available linked genome sequences were de novo an-

notated for Pfam domains. A heap analysis of the result-
ing domain matrix indicated that the pan-domainome
was closed, and despite some evidence for mislabelling, a
partial least squares discriminant analysis indicated that
a good discrimination between both phenotypes is pos-
sible based on domain content. To enable the inclusion
of multiple domains into the decision making process,
three different machine learning approaches were ex-
plored. CART and Lasso favour lower-complexity
models with the median models using 3 and 29 protein
domains respectively. By design, RF used nearly all do-
mains, √ but the median tuning parameter mtry = 89 was
higher than default (p = 30), indicating that there are
only a limited number of important features.
Overall, non-pathogens were classified with a lower

level of certainty by all ML approaches. A large part of
this uncertainty seemed to stem from four pathogenic
strains that showed a strong similarity to many of the
non-pathogens according to the PLS-DA. Upon closer
examination, the identification of these four strains as
pathogens seemed doubtful: X. sontii strain ASD011,
was the only pathogenic member of a species that has
previously been defined by it’s non-pathogenicity [5]. X.
campestris NCPPB4393, actually belonged to the X. sac-
chari species, a species of which the pathogenicity is still
ill defined [35] and this strain in particular was special,
as it is the only Xanthomonas strain known to be iso-
lated from an insect host. X. arboricola LMG19145
belonged to the X. arboricola pv. fragariae subspecies, a
subspecies with many conflicting pathogenicity reports,
that have not been resolved to date [13, 14]. X. arbori-
cola 3004 was an aberrant strain that didn’t cluster with
any of the pathovars in the X. arboricola species and this
strain was only known to be weakly pathogenic to barley
and a closely related strain, X. arboricola CITA 44, was
not able to cause any symptoms on this same host or
any other tested host [36]. This indicates that these
strains are either misclassified, or belong to a class of
very weak opportunistic pathogens. On the other hand,
there also remains the possibility that strains identified
as non-pathogens by the literature symbiotically rely on
co-infection with pathogenic species [15]. Given that in-
fection assays typically use pure cultures, such behaviour
would go unnoticed.

Almost half of the tested strains belong to the X.
arboricola species (Table 2). The predicted class prob-
abilities correlated strongly with varying levels of patho-
genicity reported in literature [10]. Within this species
non-pathogenic strains and strains belonging to the
highly pathogenic pathovars (juglandis, corylina and
pruni pathovars) were correctly predicted with high con-
fidence. X. arboricola strains belonging to weakly patho-
genic pathovars obtained more neutral probabilities (Fig.
4) which might suggest that, at least for X. arboricola,
these models can not only combine multiple features to
discern phenotypes but are also able to score different
levels of pathogenicity.
Important features enriched in the pathogenic

strains:
Extraction and examination of important features,

showed that the CART and RF considered mostly the
same domains, with both favouring domains that were
highly enriched in one of the two classes. The Lasso be-
haved distinctly different with its variable importance
scores showing a weaker correlation with the enrich-
ment analysis.
Many of the highly important domains that were

enriched in pathogens have already been related to
pathogenicity in literature, indicating that the here used
approach is capable of detecting biologically relevant fea-
tures. The role of other features that are predicted to be
important for the plant-associated phenotype require ex-
perimental validation. Overall, the most important fea-
ture in the RF and CART models was a leucine-rich
repeat (LRR) domain present in two Xanthomonas type
III effector proteins (XopL and XopAE/HpaF). The do-
main was present in nearly two-thirds of the pathogens
and absent in the non-pathogenic strains, with exception
of two potentially mislabelled X. axonopodis strains.
Similarly, a large group of correlated domains represent-
ing the Type III Secretion System (T3SS) was also found
to be highly important, although these domains had a
much broader representation amongst both phenotypes.
The T3SS and its effectors are is the most important
and extensively studied aspect of Xanthomonas patho-
genicity [16]. The entire T3SS is encoded by the hrp
cluster and consists of more than 20 proteins that form
a needle-like syringe used to inject proteins into the host
cytoplasm [37]. Type III effector proteins are translo-
cated into host cells where they target many host com-
ponents, serving to suppress the host immune system,
increase nutrient availability and facilitate the infection
process [17]. Specifically, mutations in HpaF were found
to impact virulence in X. axonopodis [38].
Amongst the important predictors enriched in patho-

gens were two domains related to mobile genetic ele-
ments. The first, PF13276, was a helix-turn-helix-like
domain that was found in several IS3 transposases and
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the second, PF13333, was an integrase domain that
belonged to a putative OrfB transposase. Whilst both
domains were enriched in pathogens, the helix-turn-
helix-like domain was also well represented in the non-
pathogens, whereas the integrase domain was only found
in a few non-pathogens and was more scattered across
the pathogens. Transposases are known to flank patho-
genicity islands in genomes of Xanthomonas [39]. How-
ever, these domains are more commonly found within
pathogenic islands, where, in some cases, they are as-
sumed to have played a role in the initial mobilisation or
subsequent rearrangement of the element [40].
Next to domains that were already known to be involved

in pathogenicity, a domain of unknown function (DUF2235),
enriched in pathogens, was also found to be an important
predictor. The domain, which represents a further uncharac-
terized alpha/beta hydrolase, was present in up to 16 proteins
per genome (7 on average). Further analysis revealed that in
one cluster this domain was fused with domain PF16014
(histone deacetylase complex subunit SAP130 C-terminus
domain). This domain is usually found to be part of tran-
scriptional repressor Sin3 and the region containing this do-
main was also flagged as a superantigen-like protein SSL3
motif. The SSL3 protein is important for pathogenicity in the
human pathogen S. aureus, where it is known to bind to the
hosts Toll-Like Receptor 2 (TLR2), inhibiting stimulation by
its ligands [41] suggesting an important role for suppressing
the plant hosts immune system.
Finally, the most important domain for the Lasso

model was PF13579, a nterminal glycosyl transferase 4-
like domain of the RfaB family. This domain is most
likely involved in LPS production, which is important
for pathogenicity by providing a barrier against anti-
microbial compounds, facilitating adhesion and prevent-
ing host recognition [15]. Although the domain was
enriched in pathogens, it was found pathogens and non-
pathogens of all major species, with the exception of X.
albilineans.
Important features enriched in non-pathogenic

strains:
Domain enriched in non-pathogens, or notably absent

from pathogens, were also highly important for model
predictions. Many of these domains have an implied role
in increasing resistance against environmental factors,
which is in line with the idea that non-pathogenic strains
are generalists that can survive in a much broader range
of conditions than their pathogenic counterparts [11,
12]. All methods agree that the Helix-Turn-Helix do-
main (PF12840) is an important discriminant enriched
in non-pathogens. This domain was found in all non-
pathogens with exception for a subgroup of the X. arbor-
icola species and in some pathogens of the X. oryzae and
X. campestris species. The domain is found in DNA
binding transcriptional regulators of the ArsR/SmtB,

Arsenical Resistance Operon Repressor, family. In X.
campestris 8004 it was found that the HTH ArsR con-
taining gene is upstream of arsenite efflux pump AcR3
and a putative high-affinity Fe2+/Pb2+ permease. In the
same strain it was shown, via a knockout, that the arsR
gene confers an increased resistance against arsenate
[42].
Amongst the important predictors enriched in non-

pathogens, was a group of correlated domains involved in
cellulose synthesis. The model organism for studying bac-
terial cellulose synthase is Acetobacter xylinum. For this
organism it is known that the complex produces and
transports beta-1,4-glucan chains, creating rigid crystalline
structures on the outer membrane. Bacterial cellulose can
fulfil diverse roles from mechanical/environmental protec-
tion to cell adhesion during symbiotic or pathogenic
nteractions [43]. Cellulose synthesis is promoted by cyclic-
di-GMP trough the PilZ domain present in glycosyltrans-
ferase CeSA, which is part of the membrane-bound cellu-
lose synthase complex [44]. Cyclic di-GMP is also known
to down-regulate biofilm formation, EPS production,
extracellular enzyme production and hrp gene expression
in Xanthomonas [15]. Thus given that cellulose synthesis
and production of pathogenicity factors is inversely re-
lated, we hypothesise that these domains might be in-
volved in providing environmental protection when the
bacterium is not shielded by the host homeostasis.
The last domain that could be linked to environmental

resistance was the MltAinteracting MipA domain
(PF06629) which was found in all Xanthomonas species,
but had a lower presence in the highly pathogenic X.
arboricola pathovars. MipA is a protein that mediates
assembly of MltA into the PBP1B murin transglycosy-
lase/transpeptidase complex. Mutations in other genes
of the mlt family are related with morphological abnor-
malities in X. campestris [45]. Given that the domain is
widely present in both pathogenic and non-pathogenic
strains, it seems unlikely that the domain is central to
non-pathogenicity. However, the morphological changes
induced by loss of genes containing this domain, could
impair the bacterium’s ability to resist mechanical stress.

Conclusion
The plant-associated phenotype of a Xanthomonas strain
is the result of an accumulation of non-persistent traits.
Consequently a single genome encoded feature will have
limited power to correctly predict the plant-associated
phenotype. By training machine learning methods that
take into account an ensemble of domains, a better pre-
diction can be obtained. However, databases that track
the pathogenicity of individual species or strains are not
harmonized leading to poor interoperability. Unification
of phenotype data into a single interoperable resource
was therefore considered an essential part of this study.
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We explored the applicability of three ML approaches
(CART, Lasso, and RF) to predict the plant-associated
phenotype. Overall Lasso regression analysis and tree-
based RF analysis performed best. Through recursive
feature elimination, key domains related to the plant-
associated phenotype could be identified, suggesting the
involvement of novel traits.

Methods
Data processing
Data processing, analysis and model building was done
in R (v4.0.5). SQL was used to communicate with the
phenotype database. SPARQL was used to communicate
with the Graph annotation database. All R scripts were
executed on a Windows 10 machine.

Phenotype database
Pathogenicity assays of individual Xanthomonas strains
were mined from literature that also considered non-
pathogenicity. Relevant parameters and outcomes were
stored in a SQL database (MariaDB v10.5.9). To create
the database, the database model was forward-
engineered into the create database.sql script using
MySQL Workbench (v8.0.24). A manually curated Excel
form (Supplementary File S1) was used to populate the
database using the input data. R script. Connection to
the database was established using the base R DBI li-
brary and the RMariaDB (v1.1.0) driver. The script was
also used to enforce additional constraints on the values
of specific fields.
Data Retrieval and genome annotation:
The genbank. R script was used to interface with the

phenotype database. For the strains with a known patho-
genicity, genomes were retrieved directly from the NCBI
Genbank genome repository (accessed May 6th, 2020)
using RCurl (v1.98–1.2). If multiple genomes were avail-
able for a single strain, the genome with the highest
quality of assembly was taken.
Genomes were de novo annotated using the SAPP

framework [30], running on a Linux machine (open-
SUSE leap 15.1) with OpenJDK v11.0.5. The retrieved ge-
nomes were converted to a HDT format using the
Conversion module from SAPP [46]. Protein encoding
genes were identified using Prodigal [31] and annotated
for Pfam protein domains [47] using InterproScan
(v5.44–79.0) [32]. To speed up computation, SAPP mod-
ules were run in parallel using the GNU Parallel CLI
[48]. Annotated genomes and their provenance, were
uploaded to a linked data repository using GraphDB
(v9.7.0) for further analysis.

Genome data analysis and visualization
Annotation results were retrieved from the linked data
repository using SPARQL queries and the SPARQL R

package (v1.16). The binary Pfam domain presence/ab-
sence matrix was generated with (sparql. R). Dendro-
gram: Distances were calculated using the base R dist
function with a Manhattan distance measure and hier-
archical clustering was performed using the base R
hclust function with average linkage. The ape (v5.4–1) R
package was used to root the tree. The resulting dendro-
gram was visualised using the dendextend package
(v1.14.0). The enrichment of single domains between
and the two phenotypes was tested using a two-sided
Fisher exact test with Benjamini-Hochberg multiple test-
ing correction, using the R base fisher.test and p.adjust.

Heap analysis
The micropan (v2.1) package [49] was used. The effect
of sample size on the estimated/observed pan and core
domainome sizes was explored by repeatedly (n = 100)
sampling a fixed number of genomes using 20 different
sample sizes equally distributed over the range spanning
from 5 to 118, with 118 being the total number of ge-
nomes in this study. For each sample, the observed pan
and core sizes were inferred directly from the data and
the estimated pan and core sizes were obtained by fitting
a binomial mixture model (with k ranging from k = 3 to
k = 17) to the selected subset and taking the estimate
with the lowest BIC.

Matrix optimisation
Domains with near-zero variance were removed using a
threshold of present or absent in > 97.5 genomes. For
highly correlated domains a representing domain was
chosen by removing the domain with the highest abso-
lute mean correlation from sets of domains with a Pear-
son correlation of ρ > 0.8.

Partial least squares discriminant analysis
A Partial Least Squares (PLS) Discriminant Analysis was
performed by training a two-component PLS regression
model on domain matrix using the pls (v2.7–3) R pack-
age. From the resulting model the first two-components
were extracted and visualised.

Model development
Model tuning and testing (model building. R) was per-
formed using the ResampleModel function, contained in
custom a R library created for this analysis. This library
provided an interface between the rsample package
(v0.0.9), used for data partitioning, and the Caret pack-
age (v6.0–86), used for model building and tuning [50].
The filtered pathogenicity dataset was partitioned using
a nested CrossValidation (CV) scheme consisting of a
20-times repeated 5-fold outer-loop and a 4-times re-
peated 10-fold inner-loop. Accuracy was used as the per-
formance metric in both loops and additional statistics
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were generated using Caret’s twoClassSummary func-
tion. When calculating calculating binary classification
metrics pathogenicity was regarded as a ‘positive’ result
and non-pathogenicity as a ‘negative’ result.
Using identical partitions, different types of models

were built and tested: CART models from the rpart
package [51], Lasso models from the glmnet package (by
setting α = 1) [52], and Random Forest models from the
RandomForest package [53]. For the CART models, the
complexity parameter cp was varied across Caret’s de-
fault grid, with a size of 9. For the lasso model the par-
ameter λ was optimised using a grid ranging from 1 ∗
10− 4 to 1 with a size of 20 and an exponentially increas-
ing step size. For the random forest model, the number
of trees was fixed at 1000 and mtry was varied over
Caret’s default grid of size 9.

Model performance and variable importance
The performance of the respective approaches on the
different genomes was examined by superimposing the
median probability for a strain to be pathogenic over the
previously created PLS-DA visualisation. For each ap-
proach, the variable importance scores per domain were
calculated using Caret’s build-in varImp function with
scaling turned off. Results from multiple folds were com-
bined by summing the unscaled variable importances for
each domain, after which the final results were scaled to
have the most important variable at 100.
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