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Abstract: Measuring the characteristics of raindrops is essential for different processes studies. There
have been many methods used throughout history to measure raindrops. In recent years, automatic
image recognition and processing systems have been used with high-speed cameras to characterize
rainfall by obtaining the spectrum of droplet sizes and their speeds and thus being able to use this
technology to calibrate rainfall simulators. In this work, two phases were carried out: in the first
one, individual drops with terminal speeds of different sizes were measured and processed both in
speed and in shape with a high-speed camera; and in the second phase, a calibration procedure was
designed but in multidrop images, determining the characteristics of the drops produced by a rain
simulator. According to results, the real shape of each drop depending on the size was determined,
from round to ovaloid shapes, and the terminal velocity of water drops with different sizes was
measured. Based on the rain images used to calibrate a rainfall simulator, it was observed that, with
a higher intensity of rain, the drops produced were smaller, which contrasts with real rain, in which
just the opposite happens. This calibration evaluates their resemblance to reality, calculates the real
kinetic energy of the rain they produce and see if they can be used to model events in nature.

Keywords: splash erosion; raindrop; terminal velocity; high-speed camera; rainfall simulator

1. Introduction

Measuring the characteristics of raindrops is essential for different processes and
recently has attracted increased attention of meteorological research worldwide [1]. It
is well known that the size of the raindrops is related to the capacity of the rainfall to
clean the atmosphere of aerosols [2,3], and it also has an influence in the attenuation of
radio waves [4–6], changing the propagating radio frequency. There are other important
applications for the determination of drop-size distributions (DSD), some more related with
human health, such as the influence in cancer of lung, allergies or other problems [7], and
other more related with planet health, such as the influences in herbicides application [8,9]
or the analysis of the splash erosion effects [10,11]. Indeed, this last topic is receiving a lot
of scientific attention due to the great importance of water as a main erosive agent for the
soil [12].

Splash erosion occurs at the initial stages of soil water erosion [13–16]. The first
stage of water erosion is the splash phenomenon, when raindrops falling on the soil
surface cause the loosening and ejection of soil particles, which are displaced over dif-
ferent distances [17,18]. Splash erosion is directly related to the breakdown of soil aggre-
gates [8,9,19–21], the enhancement of aggregates dispersion and transport [22–26], and
surface crusting [27], resulting in changes to soil infiltration parameters [28]. It should
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be noted that the effects of splash also contribute to the transportation of microorgan-
isms [29,30] and pollutants [31], along with the ejected particles.

The capacity of splash effects, including the displaced mass [32,33] and analysis of
distances over which particles are ejected [34–36], has been determined by the different
drop-size distributions, which control the kinetic energy of the impacts of raindrops on
soil [20,37]. The rainfall characteristics such as rainfall kinetic energy [38–40], intensity [41]
and raindrop diameter [21,42,43] have been assessed. In fact, the determination of the
size of the drops has been one of the parameters that has attracted the most attention of
many researchers due to the errors that can originate in the estimates of the rest of the
characteristics [20].

There have been many methods used throughout history to measure raindrops: from
the most precarious, such as using containers with flour exposed for a short and defined
time to rain [44] in which the drops fell and became small stones of dry flour with which
they could know the size of these drops, or the use of absorbent papers or covered fab-
rics [45] with soluble paints on which the drops fell, thus being able to measure their sizes
reflected in the spots on the paper. This last system can also be organized with dry invisible
ink that reacts on contact with water, leaving with each drop a circular spot related to its
size that can be measured later. To calculate the size of the drop the following formula is
used: D = a × S × b, with D the diameter of the drop, S the diameter of the stained spot, and
constants a and b that are established by calibrating the used paper in the laboratory [45].

More recently, more complex methodologies have been developed, such as using a
wind tunnel to be able to measure the terminal velocity of the drops and see their behavior
during their fall [46], or the use of disdrometers, which are specialized instruments for
measuring drops. Two types of disdrometers exist: the optical disdrometers [47,48], which
measure droplet sizes by measuring interruptions produced by water droplets in a wave
emission, or impact disdrometers [49,50], which consist of a sensor that transforms the
moment associated with the impact of the drop into an electrical pulse, whose amplitude is
a function of the diameter of the drop.

Today, the most widely used are optical disdrometers [47,51], consisting of a transmit-
ter and a laser receiver, which are exposed to the air. When it rains, the drops pass through
the laser beam, and the instrument registers with each drop a decrease in the power of
the transmitter, which is proportional to the size of these drops since they allow the use
of different wavelengths to evaluate the distribution of the size of the drops, as well as
their speed and shape. Besides that, they allow the kinetic energy of these drops to be
determined—one of the most relevant parameters in water erosion studies.

However, in addition to the instruments named so far, in the age of the image, we
cannot forget the possibilities of integrating photography and automatic image recognition
and processing systems, which are ways to improve the possibilities of determining sizes
of drops and their velocities. In fact, in recent years, some work has been carried out with
high-speed cameras to characterize rainfall by obtaining the spectrum of droplet sizes
and their speed and thus be able to use this technology to calibrate rainfall simulators.
This method has new and high potential, such as the evaluation of the influence of the
wind on the formation of the drops; the determination of animal pollen or other objects
in the sampling area; or the determination of the influence of the oscillations of any drop.
However, it also implies great difficulties when using this method for the determination of
speed and size, such as the need to carry out preliminary calibrations of the devices because
they are not specific for this purpose, the requirement of robust computer programs that
allow performing the treatments of the photos, the need for correct lighting to avoid drops
that are not detected, the shadows of the raindrops, and, of course, the need to control
the background by using different focus planes. If these errors are not taken into account,
there could be different depths in the image, leading to distant drops that are confused
with smaller drops or nearby drops that appear larger than they really are. Therefore, it is
necessary to calibrate, which means working with patterns that must be made from drops
of known sizes that are launched from known heights, in order to determine both the speed
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they reach and what shape and how they are detected by the camera. Speed calibration has
not been carried out up to now, due to its difficulty, and is usually solved by applying the
theoretical model of Gunn and Kinzer [52], which only serves to work with very controlled
situations and without the influence of wind currents. Therefore, the theoretical exponential
and gamma relations of the Marshall and Palmer droplet size distributions [53] and Gunn
and Kinzer terminal velocities models [52] cannot represent the situations of all the natural
precipitations that take place, much less of the existing rainfall simulators. This is why it is
necessary to establish a methodology that defines the complete calibration procedure for
the use of a high-speed camera to determine the sizes of the water droplets and velocity.
To be able to carry it out, in this work the tasks have been divided into two phases: in the
first phase, individual drops were produced to reach terminal speeds of different sizes
and were measured and processed both in speed and in shape with a high-speed camera.
In the second phase, the knowledge determined in the first part was applied to design a
calibration procedure for multidrop images, determining the characteristics of the drops
produced by a rainfall simulator (the spectra of the number of drops per minute according
to the different sizes, at different simulated rainfall intensities) through the systematic
taking of photographs and the use of software for their characterization.

2. Materials and Methods
2.1. Materials

For the initial experiments, two high-speed cameras were used: a Smart High-Speed
Camera ProcImage250 (Monochrome version) and a FASTCAM-APX RS model 250K that
allowed taking pictures under water.

The Smart High-Speed Camera has a resolution of 640 × 480 pixels, 252 frames per
second (fps) at full resolution and up to 54,000 fps, ROI configurable in size and position,
and I/O connector: trigger input, sync input/output, strobe output. The camera was
controlled by EyeMotion software.

The “FASTCAM-APX RS model 250K” camera which has the following specifica-
tions: Global electronic shutter up to 2 µs, camera control interface: High-Speed Gigabit
Ethernet, National Instruments DAQ support, Photron FASTCAM Viewer: simple and
easy-to-control software for Ultima camera, Photron FASTCAM Analysis (PFA): entry-level
analysis software for displacement, velocity, and acceleration measurements. This camera
configuration used was: definition 256 × 256, 563.4 fps, exposure 40.1 µs. After taking
the average of the thirty measurements taken, the following equivalence was achieved:
10 mm = 30.6102 pixels SD.

A metal tripod was used to hold the cameras, with which the appropriate height for the
camera was adjusted. In addition, a photography focus with a continuous light source was
used, widely used when performing studies of this type: 800 W tungsten lamp, 3200 K color
temperature with adjustable visors to direct the light (16 × 17 cm). A screen was added to
the spotlight to achieve a homogeneous light background to facilitate measurements.

For the treatment of the images with a few drops (individual or with a maximum of
5 drops), the free program ImageJ was used, which is a digital image processing program,
programmed in Java and developed at the National Institutes of Health [54]. It was
designed with an open architecture that provides extensibility via plugins and macros that
allow solving various image processing and analysis problems and developing a custom
image scan, among other things.

For the treatment of the multidrop images, the MATLAB program is used to process
and treat different files such as images; for this reason, it was decided upon to use this
program to carry out the analysis of the images collected by the camera. MATLAB program
is able to modify images pixel by pixel, which allows the process to be automated and thus
treat thousands of images in a short time.
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2.2. Experimental Design
2.2.1. First Phase: Calibration and Study of Individual Drops

Work began with the Smart High-Speed Camera. It is important to note that in the
videos, the shadows of the drops generated by the light source are the most reflected marks;
therefore, the optimal placement of the screen is important to capture these shadows,
since they are easier to analyze. The first thing therefore is the calibration of the systems,
producing drops of known sizes that fall along the sample area to evaluate if the size that is
reflected in the image is adequate. That is why the distance adjustment is very important,
and the installation of a ruler at the same distance where the drops are produced allowed
for the focusing directly on the drops of the same plane at the same time as it allowed for
the comparison of the sizes with a pattern in the form of rule.

To convert from pixels to mm, the ImageJ program was used, and the conversion
factor from pixels to mm was obtained to measure the different sizes of the drops. To
convert to mm, a known measurement was selected; a cm from the ruler, and that actual
size was adjusted to the number of pixels it covered in the photograph. To make this
value more accurate, this measurement was performed thirty times with each size, and the
average was made.

At first, drops were generated by using several pipettes manually. The camera began to
record and in a controlled way individual drops were released. Thus, the first drops could
be studied separately, something important when starting with their automatic detection.

Different tests were carried out with the pipette, increasing the number of recorded
drops and modifying the drop generation speed, which was performed manually. Tests
were also made by increasing the number of frames per second since shape changes were
detected in the drops and vibrations in the largest drops (Figure 1).
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Subsequently, in order to be able to produce several drops of different sizes at the
same time, the drop formation system was modified. Brushes of 5 different sizes began
to be used as a means of generating drops with different diameters, to observe how the
shape of the drop changed during the fall (Figure 2). The brushes were immersed in water
to let them drip, and 10 of those drops per brush were collected on a plate to calculate
the average mass of each of the drops produced with the different brushes. Subsequently,
once the different sizes had been checked, the brushes were hung on a rope, the brushes
were placed in water, and the recording began, with the camera and the light set on both
sides to be able to record the drops (Figure 3). Despite the fact that the drops with this
method took a long time to precipitate, since they did not fall until there was enough water
accumulated on the tip of the brush, it was possible to measure drops of different sizes
falling simultaneously.
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Figure 3. Outline of the stages followed in the development and calibration of the methodology.
(A): Setup of camera and light to take images of the 5 different brushes (Figure 2). (B): Deriv-
ing the mean weight of a drop for a specific brush. (C): Setup of camera and light for terminal
velocity observations.

Once the production of drops of different sizes controlled in a chain had been achieved,
it was ensured that said drops could reach the terminal velocity. To perform this, these
drops had to be produced at a height of more than 10 m above the camera. For this reason,
the brush system was placed at a height of 12 m placing the camera in the lower part
(Figure 3). Thus, it was possible to measure the time (in number of frames) a drop took to
travel the space of the photo, from which the characteristic terminal velocity of each drop
size produced was calculated. Terminal velocity is reached when there is balance between
the forces: friction resistance of Stokes, the force of gravity and the forces of thrust.

As the measurements are made on the projected shadow of the generated drops, which
have rounded shapes, the figure detection option was selected in the EyeMotion program,
and the detection of color changes was used—in this specific case, we detected black
(Figure 4). When the program was ready, it proceeded to detect the drops automatically. It
was possible to detect during the entire video or by selecting the specific range of frames
that one wants to analyze.

The use of the automatic markers generated by the program can cause errors, since
the drop to which they are associated disappears from the screen, because it leaves the
frame of the photographs in its fall; for example, it automatically searches for another
drop, which would imply that the new drop to which it is associated is not recognized as a
new individual drop. Therefore, to avoid these problems, this process should always be
reviewed manually. In addition, there may be noise in the images, that is, backgrounds
that are not perfectly smooth or drops that also suffer horizontal displacement or even
insects; therefore, that it is necessary to perform a manual follow-up, adding the markers
individually to each drop in each of the frames in which it appears. Otherwise, the marker
jumps from the drop to the noisy area and vice versa, such that the resulting measurements
are wrong.

Each of the markers used to track was assigned a number, making them unique for
each drop, and in this way, it was possible to proceed to represent its acceleration and
velocity graph, the data of which are exported to an Excel file, in which we have the data
of time, position in the x and y axes, displacement speed and acceleration in these axes.
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Figure 4. Capture of the Eye Motion program with the markers assigned to the drops.

2.2.2. Second Phase: Calibration of Rain Events Formed by Sets of Drops

Once the parameters of the characteristic sizes and speeds of the drops were known,
we were ready to carry out an analysis of several drops at the same time. To carry out this
experiment, frames taken in a large rainfall simulator, called “The Wageningen Rainfall
Simulator” [55], located in the Netherlands, were used. In it, tests were carried out under
various rain intensities, 30, 60, 90 and 125 mm/h. These trials were conducted in 2017 and
have not been studied to date. In this case, it is important to distinguish events according
to different rainfall intensities, since they involve different numbers of drops. Therefore,
the photographs are analyzed by dividing them into 4 different intensities, analyzing the
different number of raindrops and their different sizes, and thus being able to make a
spectrum of the number of drops per minute for each size.

2.2.3. Rainfall Simulator

The rain simulator used is part of the Kraijenhoff van de Leur laboratory for water and
sediment dynamics at Wageningen University in the Netherlands. The simulator (Figure 5)
is 6 m long and 2.5 m wide, with a height of 2.8 m. The sides of the simulator are covered by
a plastic curtain to prevent the surroundings from getting wet. In addition, the simulator
plot can be tilted up to 15.5◦ with a hydraulic lift. There are four nozzles, as described in
detail by Lassu [55].
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Figure 5. Rainfall simulator of the Wageningen University (Kraijenhoff van de Leur laboratory).

2.2.4. Recording of the Drops

To carry out the experiments, the high-speed camera FASTCAM-APX RS model 250K
was used, with which different recordings were made at two points of the rain simulator,
below nozzle A and B. Therefore, for each of the rainfall intensities at which the experiment
was carried out, there are recordings of the drops at both points, so the results could also
be compared between different areas of the simulator.

For each rain intensity, one camera calibration was carried out using, similarly to the
first part of the work, a ruler; in this way, it was possible to know the different sizes of the
drops, and the definition of the camera could also be adjusted to better distinguish the
drops that were at the same distance as the ruler and could thus study them.

2.2.5. Analysis of Images

An important procedure in this phase of the work was to adjust the contrast of the
images, since when compiling them, they were compressed so that they were apparently
black, and they required the application of a code that adjusted the contrast with MATLAB
(saturates the lower 1% and the top 1% of all pixel values), thereby increasing the contrast
of the output image (Figure 6).

The first aspect to take into account was that now they were no longer individual
drops, but rather that there were different drops falling at the same time in an area that
included different distances from the camera and therefore different depths of field. The
selection of the drops and the sample space was based on the sharpness and color of the
drops in the image. In this way, an algorithm could be defined that selected only the darkest
and most defined drops, which were those that occupy the sample space. The image was
scanned with MATLAB, and an Excel file was created with the following variables: the
position on the vertical and horizontal axes of the drop, its major and minor axis, and its
area. The sizes of the area of the drops in the images were compared with previously chosen
sizes, and finally, the number of drops of each size was counted. Although large drops were
deformed during their fall and only the smallest retained their spherical shape [20], the
measurements of the vertical and horizontal drops allowed for an approximate volume to
be assigned to each drop located in the photo. Droplet size ranges were decided upon after
considering that in natural rain it is very rare to see drops larger than 5 mm in diameter.
Using the studies of other researchers [11,17,56], very large droplets are those that exceed
5.1 mm in diameter. Large drops are those that are between 3.6 and 5.1 mm in diameter;
medians are those between 1.7 and 3.6 mm; small are those that are above 0.85 mm; and
finally very small are those that did not reach 0.85 mm (Table 1). Furthermore, it was
necessary to make a selection of frames to count the number of drops, since the same drop
appeared in different positions in different numbers of photos, depending on its terminal
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velocity. For this reason, a specific study was conducted on the number of frames that each
drop travels according to its size (Table 1).

Water 2021, 13, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 5. Rainfall simulator of the Wageningen University (Kraijenhoff van de Leur laboratory). 

2.2.4. Recording of the Drops 
To carry out the experiments, the high-speed camera FASTCAM-APX RS model 250K 

was used, with which different recordings were made at two points of the rain simulator, 
below nozzle A and B. Therefore, for each of the rainfall intensities at which the experi-
ment was carried out, there are recordings of the drops at both points, so the results could 
also be compared between different areas of the simulator. 

For each rain intensity, one camera calibration was carried out using, similarly to the 
first part of the work, a ruler; in this way, it was possible to know the different sizes of the 
drops, and the definition of the camera could also be adjusted to better distinguish the 
drops that were at the same distance as the ruler and could thus study them. 

2.2.5. Analysis of Images 
An important procedure in this phase of the work was to adjust the contrast of the 

images, since when compiling them, they were compressed so that they were apparently 
black, and they required the application of a code that adjusted the contrast with 
MATLAB (saturates the lower 1% and the top 1% of all pixel values), thereby increasing 
the contrast of the output image (Figure 6). 

  

6m

2m

2m

2m

2.5m

2.8m

Nozzle A

Nozzle B

(a) (b)

Figure 6. Image (a) before and (b) after changing the contrast with MATLAB.

Table 1. Distribution of sizes chosen for the analysis and frames necessary to traverse the sample space.

Drop-Size Classes Diameter, (x) Surface (A) Number of Frames in Frame Traversing

Units mm mm2 Frames

Very small x < 0.85 A < 0.57 16
Small 0.85 < x < 1.7 0.57 < A < 2.27 14

Medium 1.7 < x < 3.6 2.27 < A < 10.18 11
Big 3.6 < x < 5.1 10.18 < A < 20.43 9

Very big 5.1 < x 20.43< A 8

3. Results and Discussion
3.1. Measuring Accelerating Drops

With the markers correctly added to the drops, a table was obtained with the necessary
values to make an analysis of the position, velocity, acceleration and trajectory of the drops.
The most relevant for the study being carried out are time, position on the y-axis, velocity on
that axis and acceleration. In the first moments, the speed increases until it reaches a more
stable value, corresponding to its terminal velocity, while the acceleration remains stable.

Speed increases as time passes, and because the photographs were taken of drops
which did not have enough distance to reach their terminal speeds, these drops were still
in its acceleration phase. The last variable is acceleration, d2y/dt2, which is expressed in
pixels per millisecond squared. It is difficult to know the exact acceleration of the drops
using this method as there can be small margins of error due to precision errors when using
the markers.

Another relevant observation of this experiment was the study of the deformation of
the drops during their fall. During their acceleration phase, the drops present deformations
while they fall, which is due to the force exerted by the air on the drop and the force exerted
by the particles of the drop to stay together. If the drops were too large, it would end up
breaking (Figure 7) because of the air.
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As a general rule, drops larger than 5 mm in diameter are very difficult to see in
nature. This phenomenon can also be seen in the tests carried out with the brushes. The
deformation of the drops can be seen in the Figure 1: the drop during its fall does not
maintain the same shape but undergoes oscillations and breaks into several drops when it
exceeds 5 mm. If drops are released from a height greater than 10 m, they can be produced
in large sizes, and if the intention is to launch them from lower heights by gravity, it is
recommended that the drops are generated using very fine brushes (less than 1 mm) so
that drops are available of different sizes but similar in size to natural rain, since the drops
generated are always greater than the size of the tips of the brushes.

3.2. Terminal Velocity

For drops falling at terminal velocity, the velocities of the drops were analyzed ac-
cording to their size resulting in three different speeds for the three sizes of drops that
were generated: 2, 3 and 4 mm. The drops generated by the 2 mm tube all had similar
speeds of 15–16 px/ms (4.90 and 5.22 m/s); the 3 mm drops had a speed between 18 and
19 px/ms (between 5.88 and 6.20 m/s); and those of 4 mm, registered speeds between
21 and 22 px/ms (6.87 and 7.18 m/s). In this experiment, it was also possible to see the
behavior of the drops with respect to their shape, and it was observed that the largest drops
flattened, acquiring an “ovaloid” shape (the drop is not round but seems to be flattened at
its upper and lower ends).

3.3. Calibration of Simulator Based on the Analysis of Pictures

In the first place, an attempt was made to make a measurement of the intensity of rain
through the coefficient of uniformity of Christiansen [58], which has indicated that there is
a precipitation uniformity of 71–82%. However, this method only indicates the amount
of water collected per time, without specifying the sizes of raindrops or their velocities.
That is why we are going to complement the calibration by studying with a high-speed
camera, taking photos both under nozzle A and under nozzle B (Figure 5). Subsequently, an
integration of the data was carried out in both nozzles, in order to conclude the distribution
of droplet sizes throughout the entire area of the rain simulator. In addition, we repeated
this study with four intensities (30, 60, 90 and 125 mm/h).

From the analysis of the drop-size distributions taken with both nozzles with the
different intensities, it was observed that in all cases nozzle A presents a greater number of
drops. Furthermore, an increase in the intensity of rain supposes a direct increase in the
number of registered drops. Likewise, it can be observed that with an intensity of 30 mm/h,
in nozzle A, a higher number of medium and large drops was detected than in the rest of
the sizes, the majority concentrating around 4 mm in diameter (Figure 8). The integration
of the two nozzles shows that the mean drop-size value is lower when the intensity of the
rainfall simulator increases (Figure 9)

The number of drops registered by nozzle B is considerably less than in nozzle A,
which is due to the fact that nozzle B is located in a position closer to the pump; therefore,
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there is less probability of blockages in the network due to impurities and also a lower
pressure loss.
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With an intensity of 60 mm/h, we have a considerable increase in the number of small
drops in camera A, especially in drops with diameters of 1 mm, although there are still
more medium drops (Figure 5). In the case of nozzle B, a general decrease in the number of
drops is once again seen, especially the small ones. Once the data from nozzle A and B with
the intensity of 60 mm/h are added, it can be seen that in this case there are far more drops
than in the measurements with intensity of 30 mm/h, with a quite considerable increase in
the drops of 1 mm in diameter.

With an intensity of 90 mm/h, there are many more drops of 1 mm diameter in nozzle
A compared to the previous measurements, while in nozzle B, the number of medium
drops is still much higher. When added together, two peaks are clearly visible: one at 1 mm
and the other at 4 mm. In the recordings of nozzle A in the 125 mm/h experiment, a clear
increase in the number of drops of all sizes is seen, considerably noticeable in the medium
and small ones. The picture with nozzle B recorded a very different drop distribution
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compared to the rest of the intensities, with the number of small drops being very high
and the spectrum of the number of drops per size completely changing. In the sum of the
number of drops registered by each one of the nozzles in the rain intensity of 125 mm/h, it
is seen how the number of drops is much greater than in the rest of intensities, especially
the small drops of 1 mm, which undergo very large growth.

In the graphs, we can see how as the intensity of rain increases, there is a greater
number of drops per minute, especially drops with sizes close to 1 mm in diameter. This
may be because in the simulator, the drops are produced with a pump and increasing the
pressure to produce greater intensity produces smaller drops.

It is very striking to observe the great difference in the drop-size distribution (DSD)
of the simulated rainfall with the natural rain spectra obtained by Fernández-Raga [59]
(Figure 10), which would adopt an exponential or gamma form [47,56,60]. Sizes smaller
than 1 mm in diameter show a higher number of drops in the natural rainfall, but with
drops bigger than 2 mm in diameter, the number of drops is much more comparable. This
means that the simulator can be used to evaluate the erodibility of soils, despite the fact
that in erosion processes, not all droplet sizes are equally important, since droplet sizes less
than 1 mm hardly have an impact [11,17], as they are able to pull up very few aggregates
from the natural terrain due to the fact that their terminal velocity is also related to their
size, resulting in a very small kinetic energy [61]. This kinetic energy is truly responsible
for the splashed particles (which is the total energy transferred to the particles in order to
eject and displace them). In any case, the form of the DSD is very different under natural
or simulated rainfall, and consequently, the kinetic energy associated to the natural or
simulated events is also different. According to the available literature, the energy values
of the ejected particles in relation to the falling drops are between 0.2% and 45%, which was
demonstrated by diverse authors using various techniques and experimental conditions.
However, it should be noted that previous research in this field has been based primarily
on experiments in which the splashed material was treated only as water droplets when
the impacting drop hit the surface of a liquid of different thicknesses [62–64] or solid-phase
particles, mostly grains of sand [34].
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4. Conclusions

A study was conducted on how the drops of water deform during their fall, in which
it was seen that the drops do not have the same shape during the entire fall path and that
only the smaller drops, when they have sufficient speed, present a round shape, while
the larger ones are flattened and have an “ovaloid” shape. It was possible to successfully
carry out an experiment in which the terminal velocity of water drops with different sizes,
previously established, falling from more than 6 m in height was measured, finding that
the drops in free fall of 2 mm in diameter have a speed of 5 m/s, drops of 3 mm have a
speed of 6 m/s, and drops of 4 mm have a speed of 7 m/s.

Regarding the second phase, rain images were used made in a rain simulator in the
Netherlands, and it was observed that, with a greater intensity of rain, there were more
drops, and the peak of the graph moved toward the area where the drops were minor. This
is due to the fact that because it is simulated rain, increasing the intensity leads to a higher
nozzle pressure; therefore, the drops that are produced are smaller, which contrasts with
real rain, in which just the opposite happens. This is why it is necessary to calibrate the
rain simulators, to be able to evaluate their resemblance to reality, calculate the real kinetic
energy of the rain they produce, and see if they can be used to model events in nature.

In addition, several aspects must be taken into account when selecting the drops at
the indicated distance to be able to study them, with a controlled space to be able to give
the values per unit area in the images since the camera records drops that pass too close
or too far from the camera’s calibration point, making these droplets appear larger and
smaller than they actually are. This was solved by eliminating those droplets that appear
out of focus on the camera. On the other hand, the use of the camera is more comfortable
and cheaper when performing this type of study, and results that are in line with reality
are achieved.
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28. Zumr, D.; Mützenberg, D.V.; Neumann, M.; Jeřábek, J.; Laburda, T.; Kavka, P.; Johannsen, L.L.; Zambon, N.; Klik, A.; Strauss, P.;

et al. Experimental Setup for Splash Erosion Monitoring—Study of Silty Loam Splash Characteristics. Sustainability 2020, 12, 157.
[CrossRef]

29. Almeida, Á.M.R.; Sibaldelli, R.N.R.; de Oliveira Negrão Lopes, I.; de Oliveira, M.C.N.; Farias, J.R.B. Horizontal and Vertical
Droplet Dispersion Mimicking Soybean—Septoria Glycines Pathosystem. Eur. J. Plant Pathol. 2019, 154, 437–443. [CrossRef]

30. Lee, D.; Tertuliano, M.; Harris, C.; Vellidis, G.; Levy, K.; Coolong, T. Salmonella Survival in Soil and Transfer Onto Produce via
Splash Events. J. Food Prot. 2019, 82, 2023–2037. [CrossRef]

31. Ao, C.; Yang, P.; Zeng, W.; Jiang, Y.; Chen, H.; Xing, W.; Zha, Y.; Wu, J.; Huang, J. Development of an Ammonia Nitrogen Transport
Model from Surface Soil to Runoff via Raindrop Splashing. CATENA 2020, 189, 104473. [CrossRef]

http://doi.org/10.3906/elk-1204-12
http://doi.org/10.1016/j.scitotenv.2021.145426
http://www.ncbi.nlm.nih.gov/pubmed/33550056
http://doi.org/10.1080/03601234.2013.780551
http://doi.org/10.1007/s13762-013-0445-3
http://doi.org/10.1016/j.geoderma.2021.115087
http://doi.org/10.1016/j.jaridenv.2020.104419
http://doi.org/10.1177/1178622120988722
http://doi.org/10.1016/j.earscirev.2017.06.009
http://doi.org/10.1002/hyp.5788
http://doi.org/10.1002/esp.3290030308
http://doi.org/10.1016/S0022-1694(02)00020-3
http://doi.org/10.3390/w11061228
http://doi.org/10.1002/crso.20030
http://doi.org/10.1016/j.still.2017.08.010
http://doi.org/10.1016/j.atmosres.2009.07.013
http://doi.org/10.1016/j.catena.2019.104342
http://doi.org/10.1097/SS.0000000000000068
http://doi.org/10.1002/esp.1179
http://doi.org/10.1016/S0341-8162(97)00052-0
http://doi.org/10.1002/esp.3290060308
http://doi.org/10.1002/2014RG000474
http://doi.org/10.3390/su12010157
http://doi.org/10.1007/s10658-019-01667-5
http://doi.org/10.4315/0362-028X.JFP-19-066
http://doi.org/10.1016/j.catena.2020.104473


Water 2021, 13, 2851 15 of 16

32. Hu, F.; Liu, J.; Xu, C.; Wang, Z.; Liu, G.; Li, H.; Zhao, S. Soil Internal Forces Initiate Aggregate Breakdown and Splash Erosion.
Geoderma 2018, 320, 43–51. [CrossRef]

33. Beczek, M.; Ryzak, M.; Sochan, A.; Mazur, R.; Bieganowski, A. The Mass Ratio of Splashed Particles during Raindrop Splash
Phenomenon on Soil Surface. Geoderma 2019, 347, 40–48. [CrossRef]

34. Long, E.J.; Hargrave, G.K.; Cooper, J.R.; Kitchener, B.G.B.; Parsons, A.J.; Hewett, C.J.M.; Wainwright, J. Experimental Investigation
into the Impact of a Liquid Droplet onto a Granular Bed Using Three-Dimensional, Time-Resolved, Particle Tracking. Phys. Rev. E
2014, 89, 0322010. [CrossRef]

35. Marzen, M.; Iserloh, T.; de Lima, J.L.M.P.; Ries, J.B. The Effect of Rain, Wind-Driven Rain and Wind on Particle Transport under
Controlled Laboratory Conditions. Catena 2016, 145, 47–55. [CrossRef]

36. Sochan, A.; Łagodowski, Z.A.; Nieznaj, E.; Beczek, M.; Ryzak, M.; Mazur, R.; Bobrowski, A.; Bieganowski, A. Splash of Solid
Particles as a Stochastic Point Process. J. Geophys. Res. Earth Surf. 2019, 124, 2475–2490. [CrossRef]

37. Kathiravelu, G.; Lucke, T.; Nichols, P. Rain Drop Measurement Techniques: A Review. Water 2016, 8, 29. [CrossRef]
38. Xiao, H.; Liu, G.; Abd-Elbasit, M.A.M.; Zhang, X.C.; Liu, P.L.; Zheng, F.L.; Zhang, J.Q.; Hu, F.N. Effects of Slaking and Mechanical

Breakdown on Disaggregation and Splash Erosion. Eur. J. Soil Sci. 2017, 68, 797–805. [CrossRef]
39. Vaezi, A.R.; Ahmadi, M.; Cerdà, A. Contribution of Raindrop Impact to the Change of Soil Physical Properties and Water Erosion

under Semi-Arid Rainfalls. Sci. Total Environ. 2017, 583, 382–392. [CrossRef]
40. Xiao, H.; Liu, G.; Zhang, Q.; Fenli, Z.; Zhang, X.; Liu, P.; Zhang, J.; Hu, F.; Elbasit, M.A.M.A. Quantifying Contributions of Slaking

and Mechanical Breakdown of Soil Aggregates to Splash Erosion for Different Soils from the Loess Plateau of China. Soil Tillage
Res. 2018, 178, 150–158. [CrossRef]

41. Kinnell, P.I.A. The Influence of Time and Other Factors on Soil Loss Produced by Rain-Impacted Flow under Artificial Rainfall. J.
Hydrol. 2020, 587, 125004. [CrossRef]

42. Fu, Y.; Li, G.; Zheng, T.; Li, B.; Zhang, T. Splash Detachment and Transport of Loess Aggregate Fragments by Raindrop Action.
CATENA 2017, 150, 154–160. [CrossRef]

43. Li, G.; Fu, Y.; Li, B.; Zheng, T.; Wu, F.; Peng, G.; Xiao, T. Micro-Characteristics of Soil Aggregate Breakdown under Raindrop
Action. CATENA 2018, 162, 354–359. [CrossRef]

44. Hudson, N. Raindrop Characteristics in South Central United States. Rhod. J. Agric. Res. 1963, 1, 6–11.
45. Hall, M.J. Use of Stain Method in Determining the Drop-Size Distributions of Coarse Liquid Sprays. Trans. ASAE 1970, 13, 33–41.

[CrossRef]
46. Pruppacher, H.R.; Beard, K.V. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal

velocity in air. Q. J. R. Meteorol. Soc. 1970, 96, 247–256. [CrossRef]
47. Angulo-Martínez, M.; Beguería, S.; Latorre, B.; Fernández-Raga, M. Comparison of Precipitation Measurements by OTT Parsivel2

and Thies LPM Optical Disdrometers. Hydrol. Earth Syst. Sci. 2018, 22, 2811–2837. [CrossRef]
48. Johannsen, L.L.; Zambon, N.; Strauss, P.; Dostal, T.; Neumann, M.; Zumr, D.; Cochrane, T.A.; Blöschl, G.; Klik, A. Comparison of

Three Types of Laser Optical Disdrometers under Natural Rainfall Conditions. Hydrol. Sci. J. 2020, 65, 524–535. [CrossRef]
49. Bartholomew, M.J. Impact Disdrometers Instrument Handbook; DOE/SC-ARM-TR—111; Department of Energy, Office of Science,

Office of Biological and Environmental Research: Brookhaven, NY, USA, 2016; p. 1251384.
50. Tokay, A.; Kruger, A.; Krajewski, W. Comparison of Drop Size Distribution Measurements by Impact and Optical Disdrometers. J.

Appl. Meteorol. 2001, 40, 2083–2097. [CrossRef]
51. Testik, F.Y.; Rahman, M.K. High-Speed Optical Disdrometer for Rainfall Microphysical Observations. J. Atmos. Ocean. Technol.

2016, 33, 231–243. [CrossRef]
52. Gunn, R.; Kinzer, G.R. Terminal Velocity of Water Droplets in Stagnant Air. J. Meteorol. 1949, 6, 243–248. [CrossRef]
53. Marshall, J.S.; Palmer, W.M. Relation of Drop Size to Intensity. J. Meteorol. 1948, 5, 165–166. [CrossRef]
54. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat Methods 2012, 9, 671–675.

[CrossRef]
55. Lassu, T.; Seeger, M.; Peters, P.; Keesstra, S.D. The Wageningen Rainfall Simulator: Set-up and Calibration of an Indoor

Nozzle-Type Rainfall Simulator for Soil Erosion Studies. Land Degrad. Dev. 2015, 26, 604–612. [CrossRef]
56. Seela, B.K.; Janapati, J.; Lin, P.-L.; Wang, P.K.; Lee, M.-T. Raindrop Size Distribution Characteristics of Summer and Winter Season

Rainfall Over North Taiwan. J. Geophys. Res. Atmos. 2018, 123, 11,602–611,624. [CrossRef]
57. De la Goutte D’eau à la Pluie—Sciences et Avenir. Available online: https://www.sciencesetavenir.fr/fondamental/de-la-goutte-

d-eau-a-la-pluie_22425 (accessed on 14 September 2021).
58. Christiansen, J.E. Irrigation by Sprinkling; Agricultural Experiment Station, University of California: Berkeley, CA, USA; p. 1942.
59. Fernández-Raga, M.; Fraile, R.; Palencia, C.; Marcos, E.; Castañón, A.M.; Castro, A. The Role of Weather Types in Assessing the

Rainfall Key Factors for Erosion in Two Different Climatic Regions. Atmosphere 2020, 11, 443. [CrossRef]
60. Fernández-Raga, M.; Castro, A.; Palencia, C.; Calvo, A.; Fraile, R. Rain Events on 22 October 2006 in León (Spain): Drop Size

Spectra. Atmos. Res. Atmos. Res. 2009, 93, 619–635. [CrossRef]
61. Roldán Soriano, M.; Fernandez Yuste, J.A. Sociedad Española de Ciencias Forestales. 2011, pp. 89–95. Available online: https:

//dialnet.unirioja.es/servlet/articulo?codigo=4244319 (accessed on 16 September 2021).

http://doi.org/10.1016/j.geoderma.2018.01.019
http://doi.org/10.1016/j.geoderma.2019.03.028
http://doi.org/10.1103/PhysRevE.89.032201
http://doi.org/10.1016/j.catena.2016.05.018
http://doi.org/10.1029/2018JF004993
http://doi.org/10.3390/w8010029
http://doi.org/10.1111/ejss.12482
http://doi.org/10.1016/j.scitotenv.2017.01.078
http://doi.org/10.1016/j.still.2017.12.026
http://doi.org/10.1016/j.jhydrol.2020.125004
http://doi.org/10.1016/j.catena.2016.11.021
http://doi.org/10.1016/j.catena.2017.10.027
http://doi.org/10.13031/2013.38528
http://doi.org/10.1002/qj.49709640807
http://doi.org/10.5194/hess-22-2811-2018
http://doi.org/10.1080/02626667.2019.1709641
http://doi.org/10.1175/1520-0450(2001)040&lt;2083:CODSDM&gt;2.0.CO;2
http://doi.org/10.1175/JTECH-D-15-0098.1
http://doi.org/10.1175/1520-0469(1949)006&lt;0243:TTVOFF&gt;2.0.CO;2
http://doi.org/10.1175/1520-0469(1948)005&lt;0165:TDORWS&gt;2.0.CO;2
http://doi.org/10.1038/nmeth.2089
http://doi.org/10.1002/ldr.2360
http://doi.org/10.1029/2018JD028307
https://www.sciencesetavenir.fr/fondamental/de-la-goutte-d-eau-a-la-pluie_22425
https://www.sciencesetavenir.fr/fondamental/de-la-goutte-d-eau-a-la-pluie_22425
http://doi.org/10.3390/atmos11050443
http://doi.org/10.1016/j.atmosres.2008.09.035
https://dialnet.unirioja.es/servlet/articulo?codigo=4244319
https://dialnet.unirioja.es/servlet/articulo?codigo=4244319


Water 2021, 13, 2851 16 of 16

62. Mutchler, C.K.; Larson, C.L. Splash Amounts from Waterdrop Impact on a Smooth Surface. Water Resour. Res. 1971, 7, 195–200.
[CrossRef]

63. Ferreira, A.G.; Singer, M.J. Energy Dissipation for Water Drop Impact into Shallow Pools1. Soil Sci. Soc. Am. J. 1985, 49, 1537.
[CrossRef]

64. Planchon, O.; Mouche, E. A Physical Model for the Action of Raindrop Erosion on Soil Microtopography. Soil Sci. Soc. Am. J.
2010, 74, 1092. [CrossRef]

http://doi.org/10.1029/WR007i001p00195
http://doi.org/10.2136/sssaj1985.03615995004900060041x
http://doi.org/10.2136/sssaj2009.0063

	Introduction 
	Materials and Methods 
	Materials 
	Experimental Design 
	First Phase: Calibration and Study of Individual Drops 
	Second Phase: Calibration of Rain Events Formed by Sets of Drops 
	Rainfall Simulator 
	Recording of the Drops 
	Analysis of Images 


	Results and Discussion 
	Measuring Accelerating Drops 
	Terminal Velocity 
	Calibration of Simulator Based on the Analysis of Pictures 

	Conclusions 
	References

