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H I G H L I G H T S  

• Multifaceted nature of urbanization varies greatly across regions and times. 
• Increased population and built-up patch density are dominant in Asia and Africa. 
• The major urbanization types in urban, suburban, and rural areas are different. 
• Urbanization is less intense, more compact, and ‘greener’ over the recent decade.  
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A B S T R A C T   

Urbanization as a global phenomenon is a multifaceted process. Here we do the first global attempt to charac
terize the complexity of urbanization from 1975 to 2015 in terms of population, built-up structure, and greenness 
per 5 × 5 km2 grid covering global inhabited areas, using Earth Observation data sources. Our results emphasize 
the multifaceted nature of urbanization that varies greatly across regions and times, in addition to the steady 
expansion of built-up land. Increased population density and built-up patch density were the dominant char
acteristics in Asia and Africa, while urbanization in Europe and North America took a rather steady pace, 
combined with widespread greening. According to the urbanization types identified by a self-organizing map 
(SOM) algorithm, a large proportion of urban and suburban areas experienced two dynamic urbanization types – 
built-up extension/leapfrog and built-up infill with large population increase. During different historical periods 
(1975–1990, 1990–2000, and 2000–2015), annual rates of increase in population and built-up density were 
slowing coinciding with an increasing greenness – signaling that urbanization processes are becoming less 
intense, more compact, and ‘greener’ over the most recent period. Our findings facilitate the comprehensive 
understanding of global urbanization that is a complex process with many local variations and characteristics, 
and underscore the need for region-based strategies towards sustainable development instead of a ‘one-size-fits- 
all’ policy for cities.   

1. Introduction 

Urbanization as a global phenomenon is multifaceted, varies 
regionally, and poses a wide range of environmental and social chal
lenges. We define ‘multifaceted urbanization’ as demographic, physical 
(land cover/use), and environmental changes, based on previous 
research (Balk, Nghiem, Jones, Liu, & Dunn, 2019; Shaw, van Vliet, & 
Verburg, 2020). Over the past 40 years, global population has almost 

doubled and built-up areas expanded by over 150% in urban regions 
(Melchiorri et al., 2018; Oecd, 2020). The growth of population and 
built-up area has caused tremendous pressures on natural resources like 
residential water use, wood used for industrial purposes, and energy use 
(Grimm et al., 2008). One of the most significant effects is the loss and 
degradation of green areas (Kabisch et al., 2016; van Vliet, Eitelberg, & 
Verburg, 2017), which is known to provide ecosystem services, such as 
air purification, cooling, and recreation for humans (Chang et al., 2017; 
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Wang, Zhou, Pickett, Yu, & Li, 2019). >60% of the reported built-up 
expansion worldwide from 1970 to 2010 was formerly agricultural 
land (Güneralp, Reba, Hales, Wentz, & Seto, 2020). With rapid urbani
zation and its extensive impacts, it is increasingly important to under
stand urbanization processes in terms of population, built-up land, and 
greenness towards achieving Sustainable Development Goals in cities (e. 
g. SDG 11) worldwide (UN-Habitat, 2021). 

Satellite-based products provide opportunities for monitoring these 
urbanization processes across the world and over a long period, partic
ularly for the urban/built-up expansion (Esch et al., 2020; Liu et al., 
2019). Although the first generation of global satellite-based maps (e.g. 
MODIS500, CCI, GlobCover300) has been widely used for urbanization 
analysis (Grekousis, Mountrakis, & Kavouras, 2015; Potere, Schneider, 
Angel, & Civco, 2009), their shortfalls were also reported, such as the 
inability to map fine-scale built-up expansion from coarse resolution 
(300 m–10 km) and ambiguous definition of the urban or built-up area 
(Yang, Xiao, Feng, & Li, 2017). Most of these issues are tackled in recent 
global products with a higher spatial resolution (10 m–50 m), including 
the 30 m Global Land Cover product (GlobeLand30) (Chen et al., 2015), 
the Global Human Settlement Layer (GHSL) (Corbane et al., 2019) and 
the Global Urban Footprint (Esch et al., 2013). Particularly, the GHSL 
provides a high spatial resolution (38 m) of multi-temporal built-up land 
based on a clear definition – buildings, which makes it possible to 
characterize spatial patterns of built-up expansion at the grid level. 

Based on recent global satellite data (e.g. GHSL), urbanization has 
been analyzed in terms of population change (Melchiorri et al., 2018), 
built-up expansion (Güneralp et al., 2020; Liu et al., 2019) and green
ness change (Corbane et al., 2020) individually. However, there is little 
systematic and comprehensive analysis of these trends, particularly for 
all the global cities not only the large ones (Sun, Chen, Li, & Huang, 
2020). Importantly, dynamics of population – built-up – greenness 
cannot be simply conceptualized as driver – land change – impact, since 
their causality is not straightforward (Shaw et al., 2020). For instance, 
population growth usually leads to built-up expansion (van Vliet, Ver
burg, Grădinaru, & Hersperger, 2019), but the built-up expansion rate 
has exceeded the population growth rate globally (Liu et al., 2020). 
Thus, the ‘multifaceted urbanization’ concept can help us identify the 
dominant trend among multi-changes, understand social–land cover
–environment interactions deeply, and provide a comprehensive clas
sification for urbanization patterns. However, such multifaceted 
approach has not been applied at the global scale and long time series, 
while understanding local dominant trend and urbanization type from a 
global view is needed for national policies. 

Moreover, existing global research has revealed the dramatic uneven 
urbanization at continental-, national- and city-scale (Güneralp et al., 
2020; Sun et al., 2020), leaving out the heterogeneity within cities such 
as urban-suburban-rural differences. Recently, the GHSL provides a 
global definition of urban, suburban, and rural areas according to pop
ulation size and density, which greatly increased the reliability of in
ternational comparisons (Oecd, 2020). For example, van Vliet et al. 
(2019) used this definition to compare the changes in population and 

built-up density of urban, suburban, and rural areas in Europe. But they 
are confined to the analysis of pixels that change from non-built-up to 
built-up land, regardless of changes at the landscape level reflected by 
the built-up structure (Xu, Zhou, Jiao, & Zhao, 2020). International 
urban-suburban-rural comparison in urbanization lacks the character
ization of built-up structures, which will add a landscape-level under
standing to urban-suburban-rural differences that could be useful for 
region-based land use planning towards sustainable urbanization. 

To fill the gaps in assessing and understanding urbanization changes 
globally, we integrated satellite-based data (the GHSL and NDVI prod
ucts) of population, built-up density, and structure, and greenness to 
characterize global multifaceted urbanization at 5 × 5 km2 grid-level 
from 1975 to 2015. We further identified the dominant characteristics 
as well as urbanization types for every inhabited grid. We address two 
questions: First, how do multifaceted urbanization processes co-occur 
within inhabited grids, and what are urbanization types across the 
world? Second, what are the differences in this multifaceted urbaniza
tion between inhabited classes (urban, suburban, and rural) and be
tween historical periods (1975–1990, 1990–2000, and 2000–2015)? 
Our study provides new insights on urbanization with unprecedented 
spatiotemporal detail, fine-scale, and multi-dimensions. We go beyond 
past studies of global urbanization that analyze major urbanization 
processes together for every inhabited grid and develop a comprehen
sive classification of urbanization patterns for comparing urbanization 
in urban, suburban, and rural areas, which could be useful for local 
planning of land use and population across the world. 

2. Data and methods 

2.1. Data source 

Data used in this study are shown in Table 1. The Global Human 
Settlement Layer (GHSL) released in 2016 (GHS P2016) was used to 
capture the details in population change and built-up expansion as well 
as to classify urban-suburban-rural grids. The GHSL contains both built- 
up and population information for a long-term period (1975–2015) and 
has been proven to be accurate and reliable for capturing global built-up 
changes, even in complex urban centers and low-density peri-urban 
areas (Klotz, Kemper, Geiß, Esch, & Taubenböck, 2016; Leyk, Uhl, Balk, 
& Jones, 2018). The multi-temporal built-up pixels (GHS-BUILT) 
describe the presence of built-up area in each epoch, which were 
extracted from Landsat image archives using a Symbolic Machine 
Learning approach. More details can be found in Pesaresi and Freire 
(2016). Freire, Macmanus, Pesaresi, and Doxsey-Whitfield (2016) also 
disaggregated population censuses from Gridded Population of the 
World (GPW) into 250 m grids according to built-up information in the 
GHS-BUILT grids and resulted in population counts per 250 m grid 
(GHS-POP) which disregards administrative boundaries. 

Time-series data of Normalized Difference Vegetation Index (NDVI) 
were chosen to assess greenness in this study, which is widely used to 
investigate the responses of greenness to urbanization (Jin, Wang, & Li, 

Table 1 
Data sets used in this study.  

Objective Dataset Spatial 
resolution 

Temporal coverage Definition Source data 

Population GHS population grid (GHS- 
POP) 

250 m 1975, 1990, 2000, 2015 Population counts per grid Census data, 
GHS-BUILT 

Built-up GHS multi-temporal built- 
up grid (GHS-BUILT) 

38 m 1975, 1990, 2000, 2015 Buildings/man-made objects Landsat/ 
Sentinel-1 

Greenness Third generation GIMMS 
NDVI 

5 arc minutes 1982 (1982-01-01 to 1982-12-30), 
1990 (1988-01-01 to 1991-12-30) 

Vegetation cover as well as its condition AVHRR sensors 

MODIS/Terra monthly 
NDVI 

0.05 degree 2000 (2000-01-01 to 2002-12-30), 
2015 (2012-01-01 to 2015-12-30) 

MODIS sensors 

Urban/suburban/rural 
classification 

GHS settlement grid (GHS- 
SMOD) 

1 km 1975 Urban (high-density clusters); Suburban 
(low-density clusters); Rural (rural grid cells) 

GHS-BUILT, 
GHS-POP  

Y. Tian et al.                                                                                                                                                                                                                                     



Landscape and Urban Planning 219 (2022) 104316

3

2018; Liu et al., 2015). Previous research have demonstrated the reli
ability of NDVI as a popular proxy to estimate vegetation cover as well as 
its condition including urban green space (Corbane et al., 2020; Lu, 
Coops, & Hermosilla, 2017). NDVI is also more sensitive to the changes 
of vegetation cover in urban context compared to other vegetation in
dicators such as the Enhanced Vegetation Index (EVI) (Huete, Didan, 

van Leeuwen, Miura, & Glenn, 2011; Zhang, Friedl, Schaaf, Strahler, & 
Liu, 2005). Long-term (1982–2015) NDVI series could have been ob
tained from Advanced Very High-Resolution Radiometer (AVHRR) data 
or Landsat images. However, MODIS–NDVI performs better than any 
AVHRR–NDVI data set globally (Beck et al., 2011), and Landsat-NDVI 
cannot meet the temporal consistency due to different sensors 

Fig. 1. The conceptual workflow of this study.  

Fig. 2. Multi-characteristics of global inhabited grids in 2015, including population count per km2 a, the proportion of built-up area within the size of the grid cell b, 
the number of built-up patches per km2 c, the proportion of the largest built-up patch area d, and the annual mean NDVI e, as well as urban-suburban-rural clas
sification (https://ghsl.jrc.ec.europa.eu/data.php#GHSLBasics) in 1975f. Some zoom-in snapshots are listed in Fig. A1 and the interactive maps can be accessed at 
https://qgiscloud.com/tianyunyu/2015/. 
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(Corbane et al., 2020). Since the MODIS sensor was not launched into 
earth orbit by NASA until 1999, we combined MODIS/Terra Monthly 
NDVI products (MOD13C2) for 2000 and 2015 with GIMMS NDVI from 
AVHRR sensors (NDVI3g) for 1982 and 1990 to attain the long time 
series (Table 1). 

2.2. Characterizing multifaceted urbanization 

In this study, we characterized multifaceted urbanization from 1975 
to 2015 within 5 km inhabited grids worldwide. Although most of data 
were available on a higher spatial resolution, we chose a 5 km resolution 
because it is a suitable scale for global analysis and minimizes the un
certainty in data sources (e.g. GHS-POP) and inevitable propagation in 
spatial processing (Liu et al., 2020). In addition, compromised 5 km 
resolution could reflect the dynamics in landscape patterns based on 38 
m built-up pixels and human-environment interactions (Li, van Vliet, Ke, 
& Verburg, 2019; Malek & Verburg, 2017). The whole workflow (Fig. 1) 
was operated through the joint use of the Google Earth Engine (GEE) 
platform and R. More details will be explained in the following sections. 

2.2.1. Population density and built-up density 
The global 5 km-gridded maps of population density and built-up 

density were computed for the epoch 1975, 1990, 2000, and 2015. 
Population count at 250 m resolution (GHS-POP) was spatially aggre
gated to 5 km resolution by sum. The 5 km-gridded map of population 
density was created after dividing the population count by the size of the 
cell (25 km2). Similarly, we aggregated 38 m built-up pixels into 5 km 
resolution by computing the proportion of built-up area within the size 
of the 5 km cell, which is referred to as built-up density in this study. As 
we focus on urbanization that occurs in inhabited areas, uninhabited 
grid cells where population equals zero in 2015 were masked out. This 
extent was applied to the whole study. Finally, we obtained population 
density and built-up density in global 5 km inhabited grids for the epoch 
1975, 1990, 2000, and 2015 (Fig. 2a–b). Changes in population density 
and built-up density were computed from the difference between layers 
of epochs. 

2.2.2. Metrics for built-up structure 
In addition to built-up density, many landscape metrics have been 

used to quantify built-up structure, including patch numbers, patch 
density, mean patch size, largest patch index, aggregation index, and so 
on (Haas, Furberg, & Ban, 2015; Herold, Goldstein, & Clarke, 2003; 
Zhong, Lin, & Zhou, 2019). Generally, they can be divided into frag
mentation and agglomeration indices, and high collinearity exists 
among similar metrics (Xu et al., 2020; Yu & Ng, 2007). Hence, we chose 
patch density and the largest patch index to represent fragmentation and 
compactness of built-up structure, respectively. 

First, we identified built-up patches within each 5 km grid for each 
epoch based on 38 m built-up pixels (GHS-BUILT). The approach used 
here is the object-based method in GEE. Built-up pixels were assigned by 
a grid ID representing the grid where 38 m pixels are located, and then 
connected pixels with the same grid ID were labeled by a unique patch 
ID. As a result, built-up patches in each grid are sets of unique objects 
with four-neighbor connectivity of built-up pixels. All pixels belonging 
to a built-up patch are assigned the same patch ID value. Second, we 
computed the area of every built-up patch by counting the number of 
pixels composing the patch and counted the number of built-up patches 
in each grid using the distinction of patch IDs. Third, we used these 
statistics of built-up patches to calculate patch density and the largest 

patch index per grid (e.g. Fig. 2c and d) as follows: 

Patch density (PD) =
Number of built - up patches per grid

Area of grid
(
25 km2) (1)   

Higher PD means a more fragmented built-up pattern, while higher 
LPI (i.e. 1) means a more agglomerated built-up pattern with a high 
built-up density. If the built-up land grows spatially more aggregated 
around an existing urban core, the LPI increases (Herold et al., 2003). 
Therefore, built-up expansion can be classified into three modes based 
on changes in these two metrics: infill, extension, and leapfrog (Xu et al., 
2020). Infill expansion is a compact and intensive pattern that normally 
does not increase the extent, while expansion away from the core built- 
up area is an extension pattern, and leapfrog is a more discontinuous 
mode of expansion (Sun, Wu, Lv, Yao, & Wei, 2012; Yu & Zhou, 2017). 

2.2.3. Assessment of greenness from satellite data 
Global 5 km-gridded maps of annual mean NDVI were calculated for 

1982, 1990, 2000, and 2015 (Fig. 2e). First, we collected monthly 
MODIS-NDVI products during time intervals centered on 2000 and 
2015, as well as GIMMS-NDVI centered on 1982 and 1990. The time 
intervals (as shown in Table 1) were selected to match the epochs of the 
data collections used to derive the multi-temporal built-up pixels (GHS- 
BUILT) and to mitigate inter-annual variability and seasonal anomalies 
that may have affected the greenness change analysis (Corbane et al., 
2020). Annual mean NDVI was calculated by the average of monthly 
NDVI maps within the time interval. Second, to match the GIMMS-NDVI 
with the MODIS-NDVI record for 1982 and 1990, we applied global 
gridded maps of regression coefficients (slope and intercept) to the 
annual mean GIMMS-NDVI map. The regression coefficients were 
generated by Fensholt and Proud (2012) from the linear regression trend 
analysis of monthly observations of GIMMS- and MODIS-NDVI over
lapping the period from 2000 to 2010. After spatial resampling, we 
obtained the modified GIMMS-NDVI in 1982 and 1990 as well as the 
MODIS-NDVI in 2000 and 2015 with temporal consistency at 5 km 
resolution. Grids that were largely water bodies or bare land (NDVI< 0.1 
in 2015) were excluded from this study because perennial water or non- 
vegetation grids are not interesting for urbanization. 

To isolate the urbanization effect on greenness change, we corrected 
for the background (natural) NDVI change when calculating the NDVI 
change (Liu et al., 2015). To detect the background NDVI change for 
every grid (focal grid), we selected grids where built-up density change 
is lower than 0.01 surrounding a focal grid (5 × 5 neighborhood) as grids 
of no urbanization. The background NDVI change of each focal grid was 
computed by the average of NDVI changes between epochs within its 
surrounding grids of no urbanization. Finally, the adjusted NDVI change 
in each focal grid was calculated as its original NDVI change subtracted 
by its background NDVI change. 

2.3. Detection of the dominant change in urbanization 

We used RGB synthesized images to display the dominant charac
teristics (changes) of multifaceted urbanization between 1975 and 2015 
per grid cell. Given extreme values in the global map of multi-changes, 
we first assigned statistical outliers as maximum (Q3)/minimum (Q1) 
for better visualization. Subsequently, the change values of each 

Largest patch index (LPI) =
Area of the largest built - up patch per grid

(
km2)

Area of grid
(
25 km2) × 100% (2)   
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indicator were standardized into 0 to 1 using min–max normalization for 
global inhabited grids. Two RGB synthesized images were produced by 
combining standardized changes (i) in population density (blue band), 
built-up density (red band) and NDVI (green band), and (ii) in 

population density (blue band), largest built-up patch index (red band) 
and built-up patch density (green band). The displayed color of a cell 
represents the relatively large increase among three indicators from a 
global perspective, which illustrates the dominant characteristics 

Fig. 4a. Relative dynamics of population density, built-up density, and NDVI from 1975 to 2015. The colors in this figure reveal the dominant increase during the 
multifaceted urbanization in terms of population change, built-up growth, and greenness change. NDVI denotes greenness in global grids. Examples in the figure 
reflect the dominant increase in representative global cities as well as the difference between urban and surrounding inhabited grids. 

Fig. 4b. Relative dynamics of population density, largest built-up patch index, and built-up patch density from 1975 to 2015. The colors in this figure reveal the 
dominant increase during the multifaceted urbanization in terms of population change and built-up expansion structure. White color indicates equally high increases 
in three indicators. 

Y. Tian et al.                                                                                                                                                                                                                                     



Landscape and Urban Planning 219 (2022) 104316

6

(change) of urbanization. Since the three bands of each RGB image are 
independent, their values can be equally high (close to 1) or low (close to 
0) reflected by colors – white or black (Fig. 4a and Fig. 4b). 

2.4. Identification of urbanization types 

To identify different urbanization types from multifaceted urbani
zation processes, we adopted a self-organizing map (SOM) algorithm 
that could automatically cluster grids with similar characteristics of 
urbanization. In comparison to traditional cluster methods such as k- 
means or hierarchical clustering, SOM as an unsupervised neural 
network allows (i) visualizing high-dimensional data by reducing their 
complexity to fewer (often two) dimensions, (ii) grouping observations 
(grids in a map) into exclusive sets based on their similarity and (iii) 
seeing data structure within groups (Levers et al., 2018; Václavík, Lau
tenbach, Kuemmerle, & Seppelt, 2013). Thus, SOM-based algorithms 
have been widely applied in geographic and land-system science 
(Václavík et al., 2013). 

The SOM cluster analysis (Fig. 3) was conducted in R version 3.6.1 
using the package kohonen (Wehrens & Kruisselbrink, 2018). The input 
data consist of changes in population density, built-up density, patch 
density, largest patch index, and NDVI between 1975 and 2015, 
describing the overall increase or decrease of the indicators. First, we z- 
transformed the five changes to zero mean and unit standard deviation 
to make indicators comparable. Before the z-transformation, changes in 
population density were dispersed by a logarithm function separated by 
different directions (negative and positive numbers) due to the skewed 
distribution. Z-score normalization allows the results to be interpreted in 
terms of how much and in which direction the indicator deviates from 
the global average. Second, we selected a 3 by 4 hexagonal plane and 5 
clusters for the SOM model using 50,000 random samples. Typically, a 
hexagonal plane is preferred since each node has 6 immediate neigh
bors. We based our dimensionality on a sensitivity analysis that 
compared varying sizes ranging from 2 by 2 to 6 by 5. The optimal 

number of clusters was determined by the elbow method which is a key 
step to generate a meaningful cluster map. Third, an iterative self- 
organizing process was run to cluster samples and a cluster value was 
assigned for each record of its closest sample point. Lastly, we mapped 
the cluster values to the geographical space for all the grids to get the 
global 5 km-gridded map of urbanization types. The non-normalized 
values of urbanization indicators within each type are displayed in 
Fig. A2 (Appendix). 

2.5. Urban-suburban-rural classification 

We relied on the GHS-SMOD raster dataset for the classification of 
urban, suburban, and rural grids (Table 1). Given the availability of 
built-up areas (GHS-BUILT) and population grids (GHS-POP), GHS- 
SMOD classifies settlements into three main typologies (’high density 
clusters’, ’low density clusters’, and ’rural grid cells’) at a spatial reso
lution of 1 km, by porting the rules in the Degree of Urbanization clas
sification (Dijkstra & Poelman, 2014). In the GHS-SMOD representation, 
the ’high density clusters’ are the spatial generalization of contiguous 
population grids (4-connectivity, gap-filling) with a density of at least 
1500 inhabitants per km2 or a density of built-up surface over 50%, and 
a minimum total resident population of 50000. The ’low density clus
ters’ are continuous grids with a density of at least 300 inhabitants per 
km2 and a minimum total population of 5000. The ’rural grid cells’ are 
grids outside ’high density clusters’ and ’low density clusters’ with 
population density of less than 300. This classification can be used to 
define urban, suburban, and rural grids since it integrates population 
distribution and built-up density which makes it rational to be applied 
universally. More details can be found at https://ghsl.jrc.ec.europa. 
eu/data.php#GHSLBasics, and examples are presented in Fig. A1. 
Therefore, we translated SMOD classes to urban, suburban, and rural 
classes. 

The GHS-SMOD raster dataset in 1975 was used to classify the 
inhabited grids because we are interested in the urbanization dynamics 
from 1975 to 2015. Given some inhabited grids in 2015 were unin
habited (no population) in 1975, we classified these grids as the rural 
class for this study. To match the 5 km grids, we aggregated the GHS- 
SMOD at 1 km resolution to 5 km resolution by the majority rule 
(Fig. 2f). The final urban-suburban-rural classification was adopted to 
explore urban-suburban-rural differences in urbanization types (Fig. 6). 
In addition to the absolute changes per grid we analyzed in this study, 
relative changes compared to the initial values in 1975 and total changes 
of population and built-up land were computed for urban, suburban, and 
rural areas across periods (Fig. 8). 

3. Results 

3.1. Multifaceted urbanization between 1975 and 2015 

From the global average change of 5 km inhabited grids, it can be 
observed that the population density is increased by 169 persons per 
km2 and built-up density by 4% but NDVI value decreased by 0.01 from 
1975 to 2015. When looking at multifaceted urbanization, we found that 
the dominant change varied greatly across regions (Fig. 4a and Fig. 4b). 
America and Europe are mostly greenish (Fig. 4a), indicating that 
increased or negligibly decreased greenness dominated most inhabited 
grids, except for some urban cores. In contrast, blue areas are mainly 
visible in Asia and Africa, which indicates increased population density 
as the dominant change (Fig. 4a). Furthermore, when investigating 
changes of built-up structure and population (Fig. 4b), we found in
creases in both patch density and population density to be prevalent in 
Asia and Africa (sky blue areas in Fig. 4b). 

Different spatial patterns also evolved in global large cities (example 
maps in Fig. 4a and Fig. 4b). In urban areas of large cities, urbanization 
was mostly dominated by both built-up expansion and population 
growth (pink areas in Fig. 4a), and the built-up expansion typically 

Fig. 3. Workflow of SOM clustering for urbanization types.  
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manifested as the increase of the largest patch index (pink areas in 
Fig. 4b). Nevertheless, there were some exceptions of the dominant 
change in Europe’s urban areas (Fig. 4a), such as population growth 
(blue areas) in London, increase or negligible decrease in greenness 
(green areas) in Napoli, and small increases in all indicators (dark areas) 

in Berlin. At the heart of some megacities such as Tokyo, Beijing and 
Moscow, population growth played the only dominant role (blue areas 
in Fig. 4a). In contrast to the relatively parallel pattern in urban areas, 
larger regional differences existed in surrounding non-urban areas, 
displayed as more varying colors in Fig. 4a and Fig. 4b. For instance, 

Table 2 
Characteristics of urbanization types from SOM cluster analysis, and statistics for types. The numbers refer to the median values of non-normalized indicators in each 
urbanization type. The + and − signs represent whether the change is above or below global average change (+is up to 0.25–0.5 s.d., ++ is 0.5–1 s.d., +++ is > 1 s.d.).  

SOM urbanization types and Description Δ Population 
density (PopD) 

Δ Built-up 
density (BuiD) 

Δ Patch density 
(PatD) 

Δ Largest patch 
index (LPI) 

Δ NDVI Area 
[%] 

(1) Greenness loss: largely decreased NDVI and close to global 
average for other indicators 

32.03, + 2%, − 0.12  0.20% − 0.29, 
– 

2 

(2) Steady urbanization: close to global average for all indicators 13.05 1%, − 0.08, -  0.08% 0 69 
(3) Population decrease: largely decreased PopD and close to 

global average for other indicators 
− 40.77, — 2%  0.12  0.48%, + − 0.01 12 

(4) Built-up extension/leapfrog: largely increased PopD, BuiD, 
PatD, and LPI 

220.09, ++ 10%, ++ 0.56, +++ 3.28%, +++ − 0.02 17 

(5) Built-up infill with large population increase: largely 
increased PopD, BuiD and LPI but largely decreased PatD 

899.07, +++ 37%, +++ − 0.88, —  44.20%, +++ − 0.05, - 1  

Fig. 5. Global map of urbanization types a, as well as spatial patterns in Eastern America b, Western Europe c, Central Europe d, Eastern China e, and South Africa f. 
This figure presents the spatial distribution of five urbanization types we identified based on changes in population, built-up, and NDVI. Dashed boxes within example 
maps (b-f) mark out the urban area of some large cities. 

Fig. 6. Continental summaries for the five urbanization types in urban, suburban, and rural grids. Grids of urbanization types were counted for North America (N. 
Amer.), South America (S. Amer.), Europe, Africa, Asia, and Oceania (which contains Australia). 
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Fig. 7. Average annual changes per urban, suburban, and rural grid cell during different periods (1975–1990, 1990–2000, 2000–2015). Patch density and the largest 
patch index refer to built-up patches within inhabited grids. 

Fig. 8. Annual relative changes a-b and absolute changes c-d in all urban, suburban, and rural grid cells during different periods.  

Y. Tian et al.                                                                                                                                                                                                                                     



Landscape and Urban Planning 219 (2022) 104316

9

increased or negligibly decreased greenness was evident in New York, 
London and Berlin (green areas in Fig. 4a), while the growth of popu
lation and built-up areas was dominant in Shanghai and Beijing (pink 
areas in Fig. 4a), and built-up expansion played a vital role in the 
Netherlands and Chicago (red areas in Fig. 4a). 

3.2. Urbanization types 

In the next step, we further classified the multifaceted urbanization 
into five urbanization types using the SOM algorithm (Table 2; Fig. A2). 
Globally, steady urbanization was the major type covering almost 70% of 
global inhabited grids, representing a continuing urbanization trend in 
mainly non-urban regions. The urbanization types showed some distinct 
patterns across regions (Fig. 5). Steady urbanization mostly occurred in 
America, Europe, and India (Fig. 5a), and was primarily found in rural 
areas of America and India but both in urban and rural areas of Europe 
such as London and Paris (Fig. 5c). Built-up extension/leapfrog was not 
only found in surrounding areas of city centers globally (Fig. 5a) but was 
also particularly widespread in Eastern China, Java, and in almost the 
whole of the Netherlands (e.g. Fig. 5a, c). Population decrease primarily 
occurred in Europe such as Portugal, Germany and Poland (e.g. Fig. 5d), 
covering 24% of inhabited grids in Europe. This type was also found in 
urban areas of North America even in some large cities like Chicago and 
Detroit (Fig. 5b). Greenness loss mostly occurred in coastal areas, espe
cially in Oceania such as New Zealand (Fig. 5g). Built-up infill with large 
population increase covers only about 1% of global inhabited grids, but it 
represents the most substantial urbanization with the highest increases 
of population and built-up density among the five types. It was typically 
found in megacities such as Chicago, Shanghai and Johannesburg 
(Fig. 5b, e, f). 

3.3. Urban-suburban-rural differences 

According to the proportions of urbanization types (Fig. 6), the main 
urban-suburban-rural difference was that steady urbanization is the 
major type in rural areas across all continents (>60%), while the two 
dynamic urbanization types – built-up extension/leapfrog and built-up 
infill with large population increase occur in a large portion of urban and 
suburban areas. Particularly, built-up infill with large population increase 
almost only occurred in urban and suburban grids. Moreover, the major 
type in urban and suburban areas varies by continent. For urban grids, 
built-up extension/leapfrog was the major type (>30%) in most conti
nents, while population decrease dominated in Europe and steady ur
banization dominated in Oceania. For suburban grids, steady urbanization 
was the major type in South America (53%), Africa (43%), and Asia 
(40%), while built-up extension/leapfrog was leading in North America 
(53%) and Oceania (40%), and population decrease (39%) in Europe. It is 
interesting to note that in addition to the case of population decrease in 
Europe, this type was noticeable in Asia’s suburban grids (21%). 

3.4. Difference between historical periods 

Three periods were divided based on the available epochs of the data 
source (GHSL), and we used annual changes to make them comparable. 
Globally, the absolute increases (Fig. 7a–b) and relative increases 
(Fig. 8a–b) in population and built-up density have been generally 
declining in urban, suburban, and rural areas over the three periods. 
First, the annual growth of population density was slightly declining 
during three periods globally (Fig. 7a), yet in Africa, the annual growth 
of population density was rising in urban, suburban and rural areas over 
three periods (Fig. A3). Second, built-up expansion was slowing (Fig. 7b; 
Fig. 8b,d) and becoming more compact recently (Fig. 7c–d). During the 
first period (1975–1990), the annual growth rate of built-up density was 
nearly twice as fast as the recent two periods, and it mainly occurred in 
urban areas as infilling with largely decreased patch density (-0.007 
patches per km2 yr− 1). In the recent two periods, while the annual 

growth rates of built-up density were similar, the annual increase in the 
largest patch index was increasing suggesting a more compact expansion 
form (Fig. 7b,d). 

As for the greenness loss, we found a discontinuous trend during 
three periods globally (Fig. 7e). First, the annual rate of decrease in 
greenness during the second period (1990–2000) was much greater than 
that in the other two periods, accompanied by the smallest annual in
crease in the largest patch index during 1990–2000. Second, the annual 
rate of decrease in greenness from 2000 to 2015 was less than that in 
previous periods. Moreover, a dramatic continental difference exists in 
greenness loss (Fig. A3). In urban areas, larger greenness loss occurred in 
Oceania and North America from 1975 to 2000, but greenness loss in 
Asia and Africa began to exceed them since 2000. Greenness loss in 
Europe was always the smallest among continents for urban and sub
urban areas since 1990. 

4. Discussion 

4.1. Multifaceted urbanization 

To our knowledge, this study reports the most comprehensive un
derstanding of global long-term urbanization so far by adopting a 
multifaceted approach. Our results show that the population density, 
built-up density, built-up patch density, and the largest built-up patch 
index were increasing from 1975 to 2015 globally, which are in line with 
previous global studies of single facet (Güneralp et al., 2020; Liu et al., 
2019; Melchiorri et al., 2018). Previous research also found that NDVI 
was increasing in most global cities between 1990 and 2014 (Corbane 
et al., 2020), mainly due to global warming and carbon emissions (Zhao, 
Dai, & Dong, 2018). However, our study reveals that urbanization- 
related greenness has been decreasing globally (Table 2; Fig. 7e). This 
discrepancy can be explained by the fact that we aimed to investigate 
only urbanization-related greenness change by removing background 
(natural) NDVI trends that could be related to climate change in general 
(Zhang et al., 2021). 

In addition to the global trends, our results emphasize the large 
regional variation in multifaceted urbanization. Asia and Africa were 
mostly influenced by high-density urbanization (dominated by 
increased population and built-up density), while urbanization in 
Europe and America took a steadier pace, widespread inhabited areas 
and showed greening (dominated by increased or negligibly decreased 
NDVI) (Fig. 4a and Fig. 4b). Our urbanization types also reveal an 
interesting regional variation of urbanization types that deviate from the 
global average trend. One such type is population decrease which repre
sents slow urbanization or counter-urbanization, mostly distributed in 
Europe (Fig. 5a). Such population decrease in Europe has been 
confirmed from previous studies (Shaw et al., 2020), which might be due 
to aging populations and lower fertility rates (Franklin & van Leeuwen, 
2018). Surprisingly, it also occurred in many grids of Asia, which might 
be explained by the large-scale migration from rural to urban areas and 
from small cities to megacities (Li et al., 2019). 

By integrating multifaceted changes, previous global studies reveal 
that the built-up expansion rate has exceeded the population growth rate 
globally (e.g. Liu et al., 2020). We integrated more facets than past 
studies and found that despite the global declining trend, urbanization- 
related greenness increased in some inhabited grids where the built-up 
area and population grew (Fig. 4a). This finding adds a new sight into 
the effects of urbanization on greenness, since many studies showed 
largely decreased greenness caused by the built-up expansion on crop
land or forest areas (Liu et al., 2015; van Vliet et al., 2017). Increased 
greenness we found could be related to the urban heat island which may 
prolong the growing season in some regions (Du et al., 2019) and new 
green spaces such as parks and urban gardens that urbanization often 
bring along especially in dry and arid regions (Corbane et al., 2020). 
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4.2. Differences between urban-suburban-rural areas and historical 
periods 

Despite the existing knowledge that denser built-up and population 
growth in urban grids than in rural grids (Li et al., 2019; Melchiorri 
et al., 2018), our study elaborates that urban-suburban-rural differences 
largely vary by continent. First, urbanization in urban areas appeared to 
be greater than that in suburban areas of South America, Africa and Asia, 
but urbanization in suburban areas was similar or even greater than that 
in urban areas of North America, Europe and Oceania, according to the 
proportion of dynamic urbanization types (Fig. 6). Second, for rural 
areas, in addition to the steady urbanization, built-up extension/leapfrog 
was found in a remarkable portion of Asia and Africa (Fig. 6). This can be 
explained by built-up fragmentations caused by increasing road net
works which might be a driver of urbanization in the countryside. 

Furthermore, we found that the relative increases and total increases 
in villages far exceeded those in urban centers (Fig. 8). In particular, the 
total built-up area and population grew more greatly in rural areas than 
urban areas due to the considerably higher number of rural grid cells 
compared to urban centers. This finding differs from the normal 
knowledge that the population mainly grows in urban areas (United 
Nations. (2018), 2018) and can be explained by the large transformation 
from rural settlements to urban settlements during 1975–2015 (Fig. A4). 
Thus, while urban areas have usually been the focus of previous ur
banization research, the interaction with suburban and rural areas 
makes an interesting addition to exploring the diverse multifaceted ur
banization worldwide. 

Many existing studies imply a rapidly increasing urbanization 
(Güneralp et al., 2020; United Nations. (2018), 2018), but our study 
provides powerful evidence that urbanization processes are becoming 
less intense, more compact and more ‘green’ over the most recent period 
(2000–2015). We found that the built-up expansion became more 
compact accompanying the decreasing loss of greenness, according to 
the comparison of the recent two periods (Fig. 7). Considering our 
adjusted NDVI change as the urbanization-related change, this result 
could suggest that the adverse effects of urbanization on vegetation 
might gradually diminish as the urbanization turns to a built-up ag
gregation (compacting) stage (Du et al., 2019; Liu et al., 2015). There
fore, global inhabited areas might become ‘greener’ with stabilizing and 
sustainable (e.g. compacting built-up expansion) urbanization in the 
future. 

4.3. Uncertainties and limitations 

Although the GHSL dataset is the best option for monitoring long- 
term built-up expansion globally, the identification of built-up land in 
rural areas is less accurate than in urban areas (Klotz et al., 2016; Leyk 
et al., 2018). Built-up land in rural areas is scattered and rare, making 
the previous global land cover products (e.g. CCI-LC and MOD500) 
almost entirely neglected small settlements within cropland. Until 2016, 
the GHSL captured built-up land (manmade roofs) in rural areas at 38 m 
resolution with temporal consistency (1975–1990-2000–2015), but 
there still exist potential risks of overestimating settlement area in rural 
regions (Klotz et al., 2016; Sabo et al., 2018). Multi-temporal and refined 
global maps for the built-up land are needed for improving the accuracy 
of monitoring built-up expansion in rural areas. 

Similar to other global gridded population products, the GHS-POP 
we used was mainly disaggregated from census data and distributed 
proportionally over built-up density. Yet, functional use of buildings and 
their height were not considered in the disaggregation process (Freire 
et al., 2016), which could cause uncertainties in gridded population of a 
single epoch. Since those features of existing buildings normally don’t 
change over time, population changes of grid cells with small built-up 
expansion (urbanization type 1–3) would not be affected by the un
certainties in GHS-POP. Population increase might be underestimated 
for those expanded land with new high-rise buildings, but population 

increases in urban areas and type 4–5 are already higher than others 
(Table 2; Fig. 7). Thus, our conclusions of urbanization types and 
urban–rural differences in population changes are still valid. By 
including more building information of the world, more feasible gridded 
population change can be produced. As for the greenness, we used 
GIMMS-NDVI in 1982 to represent the greenness in 1975, which is the 
best option for long-term consistency. We also mitigated the limitation 
of this temporal deviation by using annual change rates for the com
parison between different historical periods. 

Future research could explore global multifaceted urbanization by 
using diverse indicators and methods to provide more comprehensive 
information for policymakers. For example, the spatial structure of built- 
up land can be further assessed from monocentric to polycentric 
(Agyemang, Silva, & Poku-Boansi, 2019). Since our study aims to 
quantify major urbanization characteristics, we only recognized the 
dominant increase among multi-changes. The dominant process may be 
a declining factor such as greenness loss. Moreover, this study mainly 
analyzed absolute changes per grid due to that many inhabited areas in 
2015 were uninhabited in 1975, yet the relative changes might lead to a 
different urbanization type and spatial pattern. As for the spatial reso
lution, we compromised it to 5 km due to the original resolution and 
uncertainties of data sources. Since more data are available at higher 
resolution in the recent period, urbanization at a higher resolution (e.g. 
1–2 km) could be done to better reflect spatial details of changes in built- 
up structure, population, and greenness at a neighborhood scale. 

4.4. Implications for urban development 

Investigating grid-level urbanization as a multifaceted process can 
provide global insights for policymakers towards tailored local strate
gies. First, our findings of the dominant change detect the major land or 
social pressures from urbanization of which decision-makers should be 
aware. For example, many regions in Asia and Africa are particularly 
sensitive to increases in built-up patch density and population density, 
since these increases were already prevalent there. Second, our grid- 
level results highlight the heterogeneity within cities, which can be 
used in the grid management of cities. For instance, in the urban core of 
Chicago, some grids are dominated by built-up expansion or population 
growth while some by increased greenness. Third, our urbanization 
types based on long-term observation can help governments and inter
national researchers identify the continuing unhealthy regions. 

Our exploration of multifaceted urbanization casts an in-depth 
consideration of healthy and sustainable development for urban plan
ners and researchers. From the demographic perspective, we observed a 
relatively unsustainable type that is population decrease, indicating the 
‘right-hand’ challenges for developed regions and seriously unbalanced 
urbanization in developing regions. Urban researchers should rethink 
what can drive urbanization except for the population growth since we 
revealed that population decrease and built-up expansion co-occurred in 
many regions of Europe. From the land-use perspective, our findings in 
urbanization-related greenness could further indicate the location of 
healthy or unhealthy built-up expansion. The healthy development that 
built-up expansion and greenness co-increasing in some grids can be 
studied as a model of urban expansion. In particular, our results on 
landscape indicators suggest that a compacting form would mitigate 
greenness loss during built-up expansion, and thus, land-use planning 
could further focus on the regions with built-up extension/leapfrog. 

5. Conclusions 

To enhance the comprehensive understanding of global multifaceted 
urbanization from 1975 to 2015, this study analyzed changes in popu
lation, built-up structure, and greenness per 5 × 5 km2 grid covering 
global inhabited areas. Results show that Asia and Africa mainly expe
rienced high-density urbanization, while urbanization in Europe and 
America appeared rather steady, widespread, and showed greening 
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except for some urban cores. The urbanization types further reveal 
diverse patterns across continents (e.g. population decrease occurred in a 
large portion of Europe and built-up extension/leapfrog in Asia). Urban
ization in urban and suburban areas shows a large proportion of two 
dynamic types – built-up extension/leapfrog and built-up infill with large 
population increase while most rural areas experienced a steady, rather 
low intensity urbanizing. Urbanization processes are becoming less 
intense, more compact, and ‘greener’ over the most recent decade, 
suggesting that the adverse effects of urbanization on vegetation might 
gradually diminish over time due to more sustainable built-up expan
sion. Results from this study offer a comprehensive understanding of 
global multifaceted urbanization particularly in suburban and rural 
areas and provide valuable insights for region-based policies to mitigate 
urbanization effects on the environment towards future sustainable 
development. 
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Appendix  

Fig. A2. Violin plots of the data distribution in each urbanization type. The Y-axis is the non-normalized value of urbanization indicators. The dark spot denotes the 
median value of each type. 

Fig. A1. Zoom-in snapshots of urbanization indicators and settlement types in 2015. Corresponding legends can be found in Fig. 2.  
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