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HIGHLIGHTS

e Multifaceted nature of urbanization varies greatly across regions and times.

e Increased population and built-up patch density are dominant in Asia and Africa.
e The major urbanization types in urban, suburban, and rural areas are different.

e Urbanization is less intense, more compact, and ‘greener’ over the recent decade.
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Urbanization as a global phenomenon is a multifaceted process. Here we do the first global attempt to charac-
terize the complexity of urbanization from 1975 to 2015 in terms of population, built-up structure, and greenness
per 5 x 5 km? grid covering global inhabited areas, using Earth Observation data sources. Our results emphasize
the multifaceted nature of urbanization that varies greatly across regions and times, in addition to the steady
expansion of built-up land. Increased population density and built-up patch density were the dominant char-
acteristics in Asia and Africa, while urbanization in Europe and North America took a rather steady pace,
combined with widespread greening. According to the urbanization types identified by a self-organizing map
(SOM) algorithm, a large proportion of urban and suburban areas experienced two dynamic urbanization types —
built-up extension/leapfrog and built-up infill with large population increase. During different historical periods
(1975-1990, 1990-2000, and 2000-2015), annual rates of increase in population and built-up density were
slowing coinciding with an increasing greenness — signaling that urbanization processes are becoming less
intense, more compact, and ‘greener’ over the most recent period. Our findings facilitate the comprehensive
understanding of global urbanization that is a complex process with many local variations and characteristics,
and underscore the need for region-based strategies towards sustainable development instead of a ‘one-size-fits-
all’ policy for cities.

1. Introduction doubled and built-up areas expanded by over 150% in urban regions

(Melchiorri et al., 2018; Oecd, 2020). The growth of population and

Urbanization as a global phenomenon is multifaceted, varies
regionally, and poses a wide range of environmental and social chal-
lenges. We define ‘multifaceted urbanization’ as demographic, physical
(land cover/use), and environmental changes, based on previous
research (Balk, Nghiem, Jones, Liu, & Dunn, 2019; Shaw, van Vliet, &
Verburg, 2020). Over the past 40 years, global population has almost
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built-up area has caused tremendous pressures on natural resources like
residential water use, wood used for industrial purposes, and energy use
(Grimm et al., 2008). One of the most significant effects is the loss and
degradation of green areas (Kabisch et al., 2016; van Vliet, Eitelberg, &
Verburg, 2017), which is known to provide ecosystem services, such as
air purification, cooling, and recreation for humans (Chang et al., 2017;
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Table 1
Data sets used in this study.
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Objective Dataset Spatial Temporal coverage Definition Source data
resolution
Population GHS population grid (GHS- 250 m 1975, 1990, 2000, 2015 Population counts per grid Census data,
POP) GHS-BUILT
Built-up GHS multi-temporal built- 38 m 1975, 1990, 2000, 2015 Buildings/man-made objects Landsat/
up grid (GHS-BUILT) Sentinel-1
Greenness Third generation GIMMS 5arc minutes 1982 (1982-01-01 to 1982-12-30), Vegetation cover as well as its condition AVHRR sensors
NDVI 1990 (1988-01-01 to 1991-12-30)
MODIS/Terra monthly 0.05 degree 2000 (2000-01-01 to 2002-12-30), MODIS sensors
NDVI 2015 (2012-01-01 to 2015-12-30)
Urban/suburban/rural GHS settlement grid (GHS- 1 km 1975 Urban (high-density clusters); Suburban GHS-BUILT,
classification SMOD) (low-density clusters); Rural (rural grid cells) GHS-POP

Wang, Zhou, Pickett, Yu, & Li, 2019). >60% of the reported built-up
expansion worldwide from 1970 to 2010 was formerly agricultural
land (Giineralp, Reba, Hales, Wentz, & Seto, 2020). With rapid urbani-
zation and its extensive impacts, it is increasingly important to under-
stand urbanization processes in terms of population, built-up land, and
greenness towards achieving Sustainable Development Goals in cities (e.
g. SDG 11) worldwide (UN-Habitat, 2021).

Satellite-based products provide opportunities for monitoring these
urbanization processes across the world and over a long period, partic-
ularly for the urban/built-up expansion (Esch et al., 2020; Liu et al.,
2019). Although the first generation of global satellite-based maps (e.g.
MODIS500, CCI, GlobCover300) has been widely used for urbanization
analysis (Grekousis, Mountrakis, & Kavouras, 2015; Potere, Schneider,
Angel, & Civco, 2009), their shortfalls were also reported, such as the
inability to map fine-scale built-up expansion from coarse resolution
(300 m-10 km) and ambiguous definition of the urban or built-up area
(Yang, Xiao, Feng, & Li, 2017). Most of these issues are tackled in recent
global products with a higher spatial resolution (10 m-50 m), including
the 30 m Global Land Cover product (GlobeLand30) (Chen et al., 2015),
the Global Human Settlement Layer (GHSL) (Corbane et al., 2019) and
the Global Urban Footprint (Esch et al., 2013). Particularly, the GHSL
provides a high spatial resolution (38 m) of multi-temporal built-up land
based on a clear definition — buildings, which makes it possible to
characterize spatial patterns of built-up expansion at the grid level.

Based on recent global satellite data (e.g. GHSL), urbanization has
been analyzed in terms of population change (Melchiorri et al., 2018),
built-up expansion (Giineralp et al., 2020; Liu et al., 2019) and green-
ness change (Corbane et al., 2020) individually. However, there is little
systematic and comprehensive analysis of these trends, particularly for
all the global cities not only the large ones (Sun, Chen, Li, & Huang,
2020). Importantly, dynamics of population — built-up — greenness
cannot be simply conceptualized as driver — land change — impact, since
their causality is not straightforward (Shaw et al., 2020). For instance,
population growth usually leads to built-up expansion (van Vliet, Ver-
burg, Gradinaru, & Hersperger, 2019), but the built-up expansion rate
has exceeded the population growth rate globally (Liu et al., 2020).
Thus, the ‘multifaceted urbanization’ concept can help us identify the
dominant trend among multi-changes, understand social-land cover-
—environment interactions deeply, and provide a comprehensive clas-
sification for urbanization patterns. However, such multifaceted
approach has not been applied at the global scale and long time series,
while understanding local dominant trend and urbanization type from a
global view is needed for national policies.

Moreover, existing global research has revealed the dramatic uneven
urbanization at continental-, national- and city-scale (Giineralp et al.,
2020; Sun et al., 2020), leaving out the heterogeneity within cities such
as urban-suburban-rural differences. Recently, the GHSL provides a
global definition of urban, suburban, and rural areas according to pop-
ulation size and density, which greatly increased the reliability of in-
ternational comparisons (Oecd, 2020). For example, van Vliet et al.
(2019) used this definition to compare the changes in population and

built-up density of urban, suburban, and rural areas in Europe. But they
are confined to the analysis of pixels that change from non-built-up to
built-up land, regardless of changes at the landscape level reflected by
the built-up structure (Xu, Zhou, Jiao, & Zhao, 2020). International
urban-suburban-rural comparison in urbanization lacks the character-
ization of built-up structures, which will add a landscape-level under-
standing to urban-suburban-rural differences that could be useful for
region-based land use planning towards sustainable urbanization.

To fill the gaps in assessing and understanding urbanization changes
globally, we integrated satellite-based data (the GHSL and NDVI prod-
ucts) of population, built-up density, and structure, and greenness to
characterize global multifaceted urbanization at 5 x 5 km? grid-level
from 1975 to 2015. We further identified the dominant characteristics
as well as urbanization types for every inhabited grid. We address two
questions: First, how do multifaceted urbanization processes co-occur
within inhabited grids, and what are urbanization types across the
world? Second, what are the differences in this multifaceted urbaniza-
tion between inhabited classes (urban, suburban, and rural) and be-
tween historical periods (1975-1990, 1990-2000, and 2000-2015)?
Our study provides new insights on urbanization with unprecedented
spatiotemporal detail, fine-scale, and multi-dimensions. We go beyond
past studies of global urbanization that analyze major urbanization
processes together for every inhabited grid and develop a comprehen-
sive classification of urbanization patterns for comparing urbanization
in urban, suburban, and rural areas, which could be useful for local
planning of land use and population across the world.

2. Data and methods
2.1. Data source

Data used in this study are shown in Table 1. The Global Human
Settlement Layer (GHSL) released in 2016 (GHS P2016) was used to
capture the details in population change and built-up expansion as well
as to classify urban-suburban-rural grids. The GHSL contains both built-
up and population information for a long-term period (1975-2015) and
has been proven to be accurate and reliable for capturing global built-up
changes, even in complex urban centers and low-density peri-urban
areas (Klotz, Kemper, GeiB, Esch, & Taubenbock, 2016; Leyk, Uhl, Balk,
& Jones, 2018). The multi-temporal built-up pixels (GHS-BUILT)
describe the presence of built-up area in each epoch, which were
extracted from Landsat image archives using a Symbolic Machine
Learning approach. More details can be found in Pesaresi and Freire
(2016). Freire, Macmanus, Pesaresi, and Doxsey-Whitfield (2016) also
disaggregated population censuses from Gridded Population of the
World (GPW) into 250 m grids according to built-up information in the
GHS-BUILT grids and resulted in population counts per 250 m grid
(GHS-POP) which disregards administrative boundaries.

Time-series data of Normalized Difference Vegetation Index (NDVI)
were chosen to assess greenness in this study, which is widely used to
investigate the responses of greenness to urbanization (Jin, Wang, & Li,
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2018; Liu et al., 2015). Previous research have demonstrated the reli-
ability of NDVI as a popular proxy to estimate vegetation cover as well as
its condition including urban green space (Corbane et al., 2020; Lu,
Coops, & Hermosilla, 2017). NDVI is also more sensitive to the changes
of vegetation cover in urban context compared to other vegetation in-
dicators such as the Enhanced Vegetation Index (EVI) (Huete, Didan,

Fig. 1. The conceptual workflow of this study.

van Leeuwen, Miura, & Glenn, 2011; Zhang, Friedl, Schaaf, Strahler, &
Liu, 2005). Long-term (1982-2015) NDVI series could have been ob-
tained from Advanced Very High-Resolution Radiometer (AVHRR) data
or Landsat images. However, MODIS-NDVI performs better than any
AVHRR-NDVI data set globally (Beck et al., 2011), and Landsat-NDVI
cannot meet the temporal consistency due to different sensors
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Fig. 2. Multi-characteristics of global inhabited grids in 2015, including population count per km? a, the proportion of built-up area within the size of the grid cell b,
the number of built-up patches per km? c, the proportion of the largest built-up patch area d, and the annual mean NDVI e, as well as urban-suburban-rural clas-
sification (https://ghsl.jrc.ec.europa.eu/data.php#GHSLBasics) in 1975f. Some zoom-in snapshots are listed in Fig. A1 and the interactive maps can be accessed at

https://qgiscloud.com/tianyunyu/2015/.
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(Corbane et al., 2020). Since the MODIS sensor was not launched into
earth orbit by NASA until 1999, we combined MODIS/Terra Monthly
NDVI products (MOD13C2) for 2000 and 2015 with GIMMS NDVI from
AVHRR sensors (NDVI3g) for 1982 and 1990 to attain the long time
series (Table 1).

__Area of the largest built - up patch per grid (kmz)

Largest patch index (LPI) = Avea of grid (25 kmz)

2.2. Characterizing multifaceted urbanization

In this study, we characterized multifaceted urbanization from 1975
to 2015 within 5 km inhabited grids worldwide. Although most of data
were available on a higher spatial resolution, we chose a 5 km resolution
because it is a suitable scale for global analysis and minimizes the un-
certainty in data sources (e.g. GHS-POP) and inevitable propagation in
spatial processing (Liu et al., 2020). In addition, compromised 5 km
resolution could reflect the dynamics in landscape patterns based on 38
m built-up pixels and human-environment interactions (Li, van Vliet, Ke,
& Verburg, 2019; Malek & Verburg, 2017). The whole workflow (Fig. 1)
was operated through the joint use of the Google Earth Engine (GEE)
platform and R. More details will be explained in the following sections.

2.2.1. Population density and built-up density

The global 5 km-gridded maps of population density and built-up
density were computed for the epoch 1975, 1990, 2000, and 2015.
Population count at 250 m resolution (GHS-POP) was spatially aggre-
gated to 5 km resolution by sum. The 5 km-gridded map of population
density was created after dividing the population count by the size of the
cell (25 km?). Similarly, we aggregated 38 m built-up pixels into 5 km
resolution by computing the proportion of built-up area within the size
of the 5 km cell, which is referred to as built-up density in this study. As
we focus on urbanization that occurs in inhabited areas, uninhabited
grid cells where population equals zero in 2015 were masked out. This
extent was applied to the whole study. Finally, we obtained population
density and built-up density in global 5 km inhabited grids for the epoch
1975, 1990, 2000, and 2015 (Fig. 2a-b). Changes in population density
and built-up density were computed from the difference between layers
of epochs.

2.2.2. Metrics for built-up structure

In addition to built-up density, many landscape metrics have been
used to quantify built-up structure, including patch numbers, patch
density, mean patch size, largest patch index, aggregation index, and so
on (Haas, Furberg, & Ban, 2015; Herold, Goldstein, & Clarke, 2003;
Zhong, Lin, & Zhou, 2019). Generally, they can be divided into frag-
mentation and agglomeration indices, and high collinearity exists
among similar metrics (Xu et al., 2020; Yu & Ng, 2007). Hence, we chose
patch density and the largest patch index to represent fragmentation and
compactness of built-up structure, respectively.

First, we identified built-up patches within each 5 km grid for each
epoch based on 38 m built-up pixels (GHS-BUILT). The approach used
here is the object-based method in GEE. Built-up pixels were assigned by
a grid ID representing the grid where 38 m pixels are located, and then
connected pixels with the same grid ID were labeled by a unique patch
ID. As a result, built-up patches in each grid are sets of unique objects
with four-neighbor connectivity of built-up pixels. All pixels belonging
to a built-up patch are assigned the same patch ID value. Second, we
computed the area of every built-up patch by counting the number of
pixels composing the patch and counted the number of built-up patches
in each grid using the distinction of patch IDs. Third, we used these
statistics of built-up patches to calculate patch density and the largest
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patch index per grid (e.g. Fig. 2c and d) as follows:

Number of built - up patches per grid

Patch density (PD) = Area of grid (25 kn)

@

x 100% (2)

Higher PD means a more fragmented built-up pattern, while higher
LPI (i.e. 1) means a more agglomerated built-up pattern with a high
built-up density. If the built-up land grows spatially more aggregated
around an existing urban core, the LPI increases (Herold et al., 2003).
Therefore, built-up expansion can be classified into three modes based
on changes in these two metrics: infill, extension, and leapfrog (Xu et al.,
2020). Infill expansion is a compact and intensive pattern that normally
does not increase the extent, while expansion away from the core built-
up area is an extension pattern, and leapfrog is a more discontinuous
mode of expansion (Sun, Wu, Lv, Yao, & Wei, 2012; Yu & Zhou, 2017).

2.2.3. Assessment of greenness from satellite data

Global 5 km-gridded maps of annual mean NDVI were calculated for
1982, 1990, 2000, and 2015 (Fig. 2e). First, we collected monthly
MODIS-NDVI products during time intervals centered on 2000 and
2015, as well as GIMMS-NDVI centered on 1982 and 1990. The time
intervals (as shown in Table 1) were selected to match the epochs of the
data collections used to derive the multi-temporal built-up pixels (GHS-
BUILT) and to mitigate inter-annual variability and seasonal anomalies
that may have affected the greenness change analysis (Corbane et al.,
2020). Annual mean NDVI was calculated by the average of monthly
NDVI maps within the time interval. Second, to match the GIMMS-NDVI
with the MODIS-NDVI record for 1982 and 1990, we applied global
gridded maps of regression coefficients (slope and intercept) to the
annual mean GIMMS-NDVI map. The regression coefficients were
generated by Fensholt and Proud (2012) from the linear regression trend
analysis of monthly observations of GIMMS- and MODIS-NDVI over-
lapping the period from 2000 to 2010. After spatial resampling, we
obtained the modified GIMMS-NDVI in 1982 and 1990 as well as the
MODIS-NDVI in 2000 and 2015 with temporal consistency at 5 km
resolution. Grids that were largely water bodies or bare land (NDVI< 0.1
in 2015) were excluded from this study because perennial water or non-
vegetation grids are not interesting for urbanization.

To isolate the urbanization effect on greenness change, we corrected
for the background (natural) NDVI change when calculating the NDVI
change (Liu et al., 2015). To detect the background NDVI change for
every grid (focal grid), we selected grids where built-up density change
is lower than 0.01 surrounding a focal grid (5 x 5 neighborhood) as grids
of no urbanization. The background NDVI change of each focal grid was
computed by the average of NDVI changes between epochs within its
surrounding grids of no urbanization. Finally, the adjusted NDVI change
in each focal grid was calculated as its original NDVI change subtracted
by its background NDVI change.

2.3. Detection of the dominant change in urbanization

We used RGB synthesized images to display the dominant charac-
teristics (changes) of multifaceted urbanization between 1975 and 2015
per grid cell. Given extreme values in the global map of multi-changes,
we first assigned statistical outliers as maximum (Q3)/minimum (Q1)
for better visualization. Subsequently, the change values of each
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multifaceted urbanization in terms of population change, built-up growth, and greenness change. NDVI denotes greenness in global grids. Examples in the figure
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in three indicators.

indicator were standardized into O to 1 using min-max normalization for population density (blue band), largest built-up patch index (red band)
global inhabited grids. Two RGB synthesized images were produced by and built-up patch density (green band). The displayed color of a cell
combining standardized changes (i) in population density (blue band), represents the relatively large increase among three indicators from a

built-up density (red band) and NDVI (green band), and (ii) in global perspective, which illustrates the dominant characteristics
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(change) of urbanization. Since the three bands of each RGB image are
independent, their values can be equally high (close to 1) or low (close to
0) reflected by colors — white or black (Fig. 4a and Fig. 4b).

2.4. Identification of urbanization types

To identify different urbanization types from multifaceted urbani-
zation processes, we adopted a self-organizing map (SOM) algorithm
that could automatically cluster grids with similar characteristics of
urbanization. In comparison to traditional cluster methods such as k-
means or hierarchical clustering, SOM as an unsupervised neural
network allows (i) visualizing high-dimensional data by reducing their
complexity to fewer (often two) dimensions, (ii) grouping observations
(grids in a map) into exclusive sets based on their similarity and (iii)
seeing data structure within groups (Levers et al., 2018; Véclavik, Lau-
tenbach, Kuemmerle, & Seppelt, 2013). Thus, SOM-based algorithms
have been widely applied in geographic and land-system science
(Vaclavik et al., 2013).

The SOM cluster analysis (Fig. 3) was conducted in R version 3.6.1
using the package kohonen (Wehrens & Kruisselbrink, 2018). The input
data consist of changes in population density, built-up density, patch
density, largest patch index, and NDVI between 1975 and 2015,
describing the overall increase or decrease of the indicators. First, we z-
transformed the five changes to zero mean and unit standard deviation
to make indicators comparable. Before the z-transformation, changes in
population density were dispersed by a logarithm function separated by
different directions (negative and positive numbers) due to the skewed
distribution. Z-score normalization allows the results to be interpreted in
terms of how much and in which direction the indicator deviates from
the global average. Second, we selected a 3 by 4 hexagonal plane and 5
clusters for the SOM model using 50,000 random samples. Typically, a
hexagonal plane is preferred since each node has 6 immediate neigh-
bors. We based our dimensionality on a sensitivity analysis that
compared varying sizes ranging from 2 by 2 to 6 by 5. The optimal
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number of clusters was determined by the elbow method which is a key
step to generate a meaningful cluster map. Third, an iterative self-
organizing process was run to cluster samples and a cluster value was
assigned for each record of its closest sample point. Lastly, we mapped
the cluster values to the geographical space for all the grids to get the
global 5 km-gridded map of urbanization types. The non-normalized
values of urbanization indicators within each type are displayed in
Fig. A2 (Appendix).

2.5. Urban-suburban-rural classification

We relied on the GHS-SMOD raster dataset for the classification of
urban, suburban, and rural grids (Table 1). Given the availability of
built-up areas (GHS-BUILT) and population grids (GHS-POP), GHS-
SMOD classifies settlements into three main typologies ("high density
clusters’, ’low density clusters’, and 'rural grid cells’) at a spatial reso-
lution of 1 km, by porting the rules in the Degree of Urbanization clas-
sification (Dijkstra & Poelman, 2014). In the GHS-SMOD representation,
the "high density clusters’ are the spatial generalization of contiguous
population grids (4-connectivity, gap-filling) with a density of at least
1500 inhabitants per km2 or a density of built-up surface over 50%, and
a minimum total resident population of 50000. The ’low density clus-
ters’ are continuous grids with a density of at least 300 inhabitants per
km2 and a minimum total population of 5000. The ’rural grid cells’ are
grids outside ’high density clusters’ and ’low density clusters’ with
population density of less than 300. This classification can be used to
define urban, suburban, and rural grids since it integrates population
distribution and built-up density which makes it rational to be applied
universally. More details can be found at https://ghsl.jrc.ec.europa.
eu/data.php#GHSLBasics, and examples are presented in Fig. Al.
Therefore, we translated SMOD classes to urban, suburban, and rural
classes.

The GHS-SMOD raster dataset in 1975 was used to classify the
inhabited grids because we are interested in the urbanization dynamics
from 1975 to 2015. Given some inhabited grids in 2015 were unin-
habited (no population) in 1975, we classified these grids as the rural
class for this study. To match the 5 km grids, we aggregated the GHS-
SMOD at 1 km resolution to 5 km resolution by the majority rule
(Fig. 2f). The final urban-suburban-rural classification was adopted to
explore urban-suburban-rural differences in urbanization types (Fig. 6).
In addition to the absolute changes per grid we analyzed in this study,
relative changes compared to the initial values in 1975 and total changes
of population and built-up land were computed for urban, suburban, and
rural areas across periods (Fig. 8).

3. Results
3.1. Multifaceted urbanization between 1975 and 2015

From the global average change of 5 km inhabited grids, it can be
observed that the population density is increased by 169 persons per
km? and built-up density by 4% but NDVI value decreased by 0.01 from
1975 to 2015. When looking at multifaceted urbanization, we found that
the dominant change varied greatly across regions (Fig. 4a and Fig. 4b).
America and Europe are mostly greenish (Fig. 4a), indicating that
increased or negligibly decreased greenness dominated most inhabited
grids, except for some urban cores. In contrast, blue areas are mainly
visible in Asia and Africa, which indicates increased population density
as the dominant change (Fig. 4a). Furthermore, when investigating
changes of built-up structure and population (Fig. 4b), we found in-
creases in both patch density and population density to be prevalent in
Asia and Africa (sky blue areas in Fig. 4b).

Different spatial patterns also evolved in global large cities (example
maps in Fig. 4a and Fig. 4b). In urban areas of large cities, urbanization
was mostly dominated by both built-up expansion and population
growth (pink areas in Fig. 4a), and the built-up expansion typically
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Table 2
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Characteristics of urbanization types from SOM cluster analysis, and statistics for types. The numbers refer to the median values of non-normalized indicators in each
urbanization type. The + and — signs represent whether the change is above or below global average change (+is up to 0.25-0.5s.d., ++ is 0.5-1 s.d., +++ is > 1 s.d.).

A Largest patch ANDVI  Area

SOM urbanization types and Description A Population A Built-up A Patch density
density (PopD) density (BuiD) (PatD) index (LPI) [%]
(1) Greenness loss: largely decreased NDVI and close to global 32.03, + 2%, — 0.12 0.20% —0.29, 2
average for other indicators -
(2) Steady urbanization: close to global average for all indicators ~ 13.05 1%, — 0.08, - 0.08% 0 69
(3) Population decrease: largely decreased PopD and close to —40.77, — 2% 0.12 0.48%, + —0.01 12
global average for other indicators
(4) Built-up extension/leapfrog: largely increased PopD, BuiD, 220.09, ++ 10%, ++ 0.56, +++ 3.28%, +++ —0.02 17
PatD, and LPI
899.07, +++ 37%, +++ —-0.88, — 44.20%, +++ -0.05,- 1

(5) Built-up infill with large population increase: largely
increased PopD, BuiD and LPI but largely decreased PatD

M (1) Greenness loss: +PopD, -BuiD, ---NDVI
[ (2) Steady urbanization: -BuiD, -PatD

I (3) Population decrease: ---PopD, +LPI |
I (4) Built-up extension/leapfrog: ++PopD/BuiD, +++PatD, +++LP| :

[ (5) Built-up infill with large population increase: +++PopD/BuiD/LPI, ---PatD, -NDVI

Fig. 5. Global map of urbanization types a, as well as spatial patterns in Eastern America b, Western Europe ¢, Central Europe d, Eastern China e, and South Africa f.
This figure presents the spatial distribution of five urbanization types we identified based on changes in population, built-up, and NDVI. Dashed boxes within example

maps (b-f) mark out the urban area of some large cities.

manifested as the increase of the largest patch index (pink areas in
Fig. 4b). Nevertheless, there were some exceptions of the dominant
change in Europe’s urban areas (Fig. 4a), such as population growth
(blue areas) in London, increase or negligible decrease in greenness
(green areas) in Napoli, and small increases in all indicators (dark areas)
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] ] ]
Africa Asia Europe

m Greenness loss Steady urbanization  m Population decrease

in Berlin. At the heart of some megacities such as Tokyo, Beijing and
Moscow, population growth played the only dominant role (blue areas
in Fig. 4a). In contrast to the relatively parallel pattern in urban areas,
larger regional differences existed in surrounding non-urban areas,
displayed as more varying colors in Fig. 4a and Fig. 4b. For instance,
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m Built-up extension/leapfrog Built-up infill with large population increase

Fig. 6. Continental summaries for the five urbanization types in urban, suburban, and rural grids. Grids of urbanization types were counted for North America (N.

Amer.), South America (S. Amer.), Europe, Africa, Asia, and Oceania (which contains Australia).
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increased or negligibly decreased greenness was evident in New York,
London and Berlin (green areas in Fig. 4a), while the growth of popu-
lation and built-up areas was dominant in Shanghai and Beijing (pink
areas in Fig. 4a), and built-up expansion played a vital role in the
Netherlands and Chicago (red areas in Fig. 4a).

3.2. Urbanization types

In the next step, we further classified the multifaceted urbanization
into five urbanization types using the SOM algorithm (Table 2; Fig. A2).
Globally, steady urbanization was the major type covering almost 70% of
global inhabited grids, representing a continuing urbanization trend in
mainly non-urban regions. The urbanization types showed some distinct
patterns across regions (Fig. 5). Steady urbanization mostly occurred in
America, Europe, and India (Fig. 5a), and was primarily found in rural
areas of America and India but both in urban and rural areas of Europe
such as London and Paris (Fig. 5¢). Built-up extension/leapfrog was not
only found in surrounding areas of city centers globally (Fig. 5a) but was
also particularly widespread in Eastern China, Java, and in almost the
whole of the Netherlands (e.g. Fig. 5a, c). Population decrease primarily
occurred in Europe such as Portugal, Germany and Poland (e.g. Fig. 5d),
covering 24% of inhabited grids in Europe. This type was also found in
urban areas of North America even in some large cities like Chicago and
Detroit (Fig. 5b). Greenness loss mostly occurred in coastal areas, espe-
cially in Oceania such as New Zealand (Fig. 5g). Built-up infill with large
population increase covers only about 1% of global inhabited grids, but it
represents the most substantial urbanization with the highest increases
of population and built-up density among the five types. It was typically
found in megacities such as Chicago, Shanghai and Johannesburg
(Fig. 5b, e, f).

3.3. Urban-suburban-rural differences

According to the proportions of urbanization types (Fig. 6), the main
urban-suburban-rural difference was that steady urbanization is the
major type in rural areas across all continents (>60%), while the two
dynamic urbanization types — built-up extension/leapfrog and built-up
infill with large population increase occur in a large portion of urban and
suburban areas. Particularly, built-up infill with large population increase
almost only occurred in urban and suburban grids. Moreover, the major
type in urban and suburban areas varies by continent. For urban grids,
built-up extension/leapfrog was the major type (>30%) in most conti-
nents, while population decrease dominated in Europe and steady ur-
banization dominated in Oceania. For suburban grids, steady urbanization
was the major type in South America (53%), Africa (43%), and Asia
(40%), while built-up extension/leapfrog was leading in North America
(53%) and Oceania (40%), and population decrease (39%) in Europe. It is
interesting to note that in addition to the case of population decrease in
Europe, this type was noticeable in Asia’s suburban grids (21%).

3.4. Difference between historical periods

Three periods were divided based on the available epochs of the data
source (GHSL), and we used annual changes to make them comparable.
Globally, the absolute increases (Fig. 7a-b) and relative increases
(Fig. 8a-b) in population and built-up density have been generally
declining in urban, suburban, and rural areas over the three periods.
First, the annual growth of population density was slightly declining
during three periods globally (Fig. 7a), yet in Africa, the annual growth
of population density was rising in urban, suburban and rural areas over
three periods (Fig. A3). Second, built-up expansion was slowing (Fig. 7b;
Fig. 8b,d) and becoming more compact recently (Fig. 7c—d). During the
first period (1975-1990), the annual growth rate of built-up density was
nearly twice as fast as the recent two periods, and it mainly occurred in
urban areas as infilling with largely decreased patch density (-0.007
patches per km? yr™1). In the recent two periods, while the annual
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growth rates of built-up density were similar, the annual increase in the
largest patch index was increasing suggesting a more compact expansion
form (Fig. 7b,d).

As for the greenness loss, we found a discontinuous trend during
three periods globally (Fig. 7e). First, the annual rate of decrease in
greenness during the second period (1990-2000) was much greater than
that in the other two periods, accompanied by the smallest annual in-
crease in the largest patch index during 1990-2000. Second, the annual
rate of decrease in greenness from 2000 to 2015 was less than that in
previous periods. Moreover, a dramatic continental difference exists in
greenness loss (Fig. A3). In urban areas, larger greenness loss occurred in
Oceania and North America from 1975 to 2000, but greenness loss in
Asia and Africa began to exceed them since 2000. Greenness loss in
Europe was always the smallest among continents for urban and sub-
urban areas since 1990.

4. Discussion
4.1. Multifaceted urbanization

To our knowledge, this study reports the most comprehensive un-
derstanding of global long-term urbanization so far by adopting a
multifaceted approach. Our results show that the population density,
built-up density, built-up patch density, and the largest built-up patch
index were increasing from 1975 to 2015 globally, which are in line with
previous global studies of single facet (Giineralp et al., 2020; Liu et al.,
2019; Melchiorri et al., 2018). Previous research also found that NDVI
was increasing in most global cities between 1990 and 2014 (Corbane
etal., 2020), mainly due to global warming and carbon emissions (Zhao,
Dai, & Dong, 2018). However, our study reveals that urbanization-
related greenness has been decreasing globally (Table 2; Fig. 7e). This
discrepancy can be explained by the fact that we aimed to investigate
only urbanization-related greenness change by removing background
(natural) NDVI trends that could be related to climate change in general
(Zhang et al., 2021).

In addition to the global trends, our results emphasize the large
regional variation in multifaceted urbanization. Asia and Africa were
mostly influenced by high-density urbanization (dominated by
increased population and built-up density), while urbanization in
Europe and America took a steadier pace, widespread inhabited areas
and showed greening (dominated by increased or negligibly decreased
NDVI) (Fig. 4a and Fig. 4b). Our urbanization types also reveal an
interesting regional variation of urbanization types that deviate from the
global average trend. One such type is population decrease which repre-
sents slow urbanization or counter-urbanization, mostly distributed in
Europe (Fig. 5a). Such population decrease in Europe has been
confirmed from previous studies (Shaw et al., 2020), which might be due
to aging populations and lower fertility rates (Franklin & van Leeuwen,
2018). Surprisingly, it also occurred in many grids of Asia, which might
be explained by the large-scale migration from rural to urban areas and
from small cities to megacities (Li et al., 2019).

By integrating multifaceted changes, previous global studies reveal
that the built-up expansion rate has exceeded the population growth rate
globally (e.g. Liu et al., 2020). We integrated more facets than past
studies and found that despite the global declining trend, urbanization-
related greenness increased in some inhabited grids where the built-up
area and population grew (Fig. 4a). This finding adds a new sight into
the effects of urbanization on greenness, since many studies showed
largely decreased greenness caused by the built-up expansion on crop-
land or forest areas (Liu et al., 2015; van Vliet et al., 2017). Increased
greenness we found could be related to the urban heat island which may
prolong the growing season in some regions (Du et al., 2019) and new
green spaces such as parks and urban gardens that urbanization often
bring along especially in dry and arid regions (Corbane et al., 2020).
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4.2. Differences between urban-suburban-rural areas and historical
periods

Despite the existing knowledge that denser built-up and population
growth in urban grids than in rural grids (Li et al., 2019; Melchiorri
et al., 2018), our study elaborates that urban-suburban-rural differences
largely vary by continent. First, urbanization in urban areas appeared to
be greater than that in suburban areas of South America, Africa and Asia,
but urbanization in suburban areas was similar or even greater than that
in urban areas of North America, Europe and Oceania, according to the
proportion of dynamic urbanization types (Fig. 6). Second, for rural
areas, in addition to the steady urbanization, built-up extension/leapfrog
was found in a remarkable portion of Asia and Africa (Fig. 6). This can be
explained by built-up fragmentations caused by increasing road net-
works which might be a driver of urbanization in the countryside.

Furthermore, we found that the relative increases and total increases
in villages far exceeded those in urban centers (Fig. 8). In particular, the
total built-up area and population grew more greatly in rural areas than
urban areas due to the considerably higher number of rural grid cells
compared to urban centers. This finding differs from the normal
knowledge that the population mainly grows in urban areas (United
Nations. (2018), 2018) and can be explained by the large transformation
from rural settlements to urban settlements during 1975-2015 (Fig. A4).
Thus, while urban areas have usually been the focus of previous ur-
banization research, the interaction with suburban and rural areas
makes an interesting addition to exploring the diverse multifaceted ur-
banization worldwide.

Many existing studies imply a rapidly increasing urbanization
(Giineralp et al., 2020; United Nations. (2018), 2018), but our study
provides powerful evidence that urbanization processes are becoming
less intense, more compact and more ‘green’ over the most recent period
(2000-2015). We found that the built-up expansion became more
compact accompanying the decreasing loss of greenness, according to
the comparison of the recent two periods (Fig. 7). Considering our
adjusted NDVI change as the urbanization-related change, this result
could suggest that the adverse effects of urbanization on vegetation
might gradually diminish as the urbanization turns to a built-up ag-
gregation (compacting) stage (Du et al., 2019; Liu et al., 2015). There-
fore, global inhabited areas might become ‘greener’ with stabilizing and
sustainable (e.g. compacting built-up expansion) urbanization in the
future.

4.3. Uncertainties and limitations

Although the GHSL dataset is the best option for monitoring long-
term built-up expansion globally, the identification of built-up land in
rural areas is less accurate than in urban areas (Klotz et al., 2016; Leyk
et al., 2018). Built-up land in rural areas is scattered and rare, making
the previous global land cover products (e.g. CCI-LC and MOD500)
almost entirely neglected small settlements within cropland. Until 2016,
the GHSL captured built-up land (manmade roofs) in rural areas at 38 m
resolution with temporal consistency (1975-1990-2000-2015), but
there still exist potential risks of overestimating settlement area in rural
regions (Klotz et al., 2016; Sabo et al., 2018). Multi-temporal and refined
global maps for the built-up land are needed for improving the accuracy
of monitoring built-up expansion in rural areas.

Similar to other global gridded population products, the GHS-POP
we used was mainly disaggregated from census data and distributed
proportionally over built-up density. Yet, functional use of buildings and
their height were not considered in the disaggregation process (Freire
et al., 2016), which could cause uncertainties in gridded population of a
single epoch. Since those features of existing buildings normally don’t
change over time, population changes of grid cells with small built-up
expansion (urbanization type 1-3) would not be affected by the un-
certainties in GHS-POP. Population increase might be underestimated
for those expanded land with new high-rise buildings, but population
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increases in urban areas and type 4-5 are already higher than others
(Table 2; Fig. 7). Thus, our conclusions of urbanization types and
urban-rural differences in population changes are still valid. By
including more building information of the world, more feasible gridded
population change can be produced. As for the greenness, we used
GIMMS-NDVI in 1982 to represent the greenness in 1975, which is the
best option for long-term consistency. We also mitigated the limitation
of this temporal deviation by using annual change rates for the com-
parison between different historical periods.

Future research could explore global multifaceted urbanization by
using diverse indicators and methods to provide more comprehensive
information for policymakers. For example, the spatial structure of built-
up land can be further assessed from monocentric to polycentric
(Agyemang, Silva, & Poku-Boansi, 2019). Since our study aims to
quantify major urbanization characteristics, we only recognized the
dominant increase among multi-changes. The dominant process may be
a declining factor such as greenness loss. Moreover, this study mainly
analyzed absolute changes per grid due to that many inhabited areas in
2015 were uninhabited in 1975, yet the relative changes might lead to a
different urbanization type and spatial pattern. As for the spatial reso-
lution, we compromised it to 5 km due to the original resolution and
uncertainties of data sources. Since more data are available at higher
resolution in the recent period, urbanization at a higher resolution (e.g.
1-2 km) could be done to better reflect spatial details of changes in built-
up structure, population, and greenness at a neighborhood scale.

4.4. Implications for urban development

Investigating grid-level urbanization as a multifaceted process can
provide global insights for policymakers towards tailored local strate-
gies. First, our findings of the dominant change detect the major land or
social pressures from urbanization of which decision-makers should be
aware. For example, many regions in Asia and Africa are particularly
sensitive to increases in built-up patch density and population density,
since these increases were already prevalent there. Second, our grid-
level results highlight the heterogeneity within cities, which can be
used in the grid management of cities. For instance, in the urban core of
Chicago, some grids are dominated by built-up expansion or population
growth while some by increased greenness. Third, our urbanization
types based on long-term observation can help governments and inter-
national researchers identify the continuing unhealthy regions.

Our exploration of multifaceted urbanization casts an in-depth
consideration of healthy and sustainable development for urban plan-
ners and researchers. From the demographic perspective, we observed a
relatively unsustainable type that is population decrease, indicating the
‘right-hand’ challenges for developed regions and seriously unbalanced
urbanization in developing regions. Urban researchers should rethink
what can drive urbanization except for the population growth since we
revealed that population decrease and built-up expansion co-occurred in
many regions of Europe. From the land-use perspective, our findings in
urbanization-related greenness could further indicate the location of
healthy or unhealthy built-up expansion. The healthy development that
built-up expansion and greenness co-increasing in some grids can be
studied as a model of urban expansion. In particular, our results on
landscape indicators suggest that a compacting form would mitigate
greenness loss during built-up expansion, and thus, land-use planning
could further focus on the regions with built-up extension/leapfrog.

5. Conclusions

To enhance the comprehensive understanding of global multifaceted
urbanization from 1975 to 2015, this study analyzed changes in popu-
lation, built-up structure, and greenness per 5 x 5 km? grid covering
global inhabited areas. Results show that Asia and Africa mainly expe-
rienced high-density urbanization, while urbanization in Europe and
America appeared rather steady, widespread, and showed greening
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except for some urban cores. The urbanization types further reveal
diverse patterns across continents (e.g. population decrease occurred in a
large portion of Europe and built-up extension/leapfrog in Asia). Urban-
ization in urban and suburban areas shows a large proportion of two
dynamic types — built-up extension/leapfrog and built-up infill with large
population increase while most rural areas experienced a steady, rather
low intensity urbanizing. Urbanization processes are becoming less
intense, more compact, and ‘greener’ over the most recent decade,
suggesting that the adverse effects of urbanization on vegetation might
gradually diminish over time due to more sustainable built-up expan-
sion. Results from this study offer a comprehensive understanding of
global multifaceted urbanization particularly in suburban and rural
areas and provide valuable insights for region-based policies to mitigate
urbanization effects on the environment towards future sustainable
development.

a. Population density

b. Built-up density

c. Patch density

d.

Landscape and Urban Planning 219 (2022) 104316
Declaration of Competing Interest
The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

This project is funded by the China Scholarship Council (NO.
201904910503).

Appendix

f. Settlement type

Largest patchindex e. NDVI

Fig. Al. Zoom-in snapshots of urbanization indicators and settlement types in 2015. Corresponding legends can be found in Fig. 2.
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