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Climate change necessitates increased stress resilience of

food crops. We describe four potential solutions, with

emphasis on a relatively novel approach aiming at true

tolerance of drought rather than improved water-holding

capacity of crops, which is a common approach in current

breeding and genome editing efforts. Some Angiosperms are

known to tolerate loss of 95% of their cellular water, without

dying, not dissimilar to seeds. The molecular mechanisms and

their regulation underlying this remarkable ability are potentially

useful to design tolerant crops. Since most crops produce

desiccation tolerant seeds, genomic information for this

attribute is present but inactive in vegetative parts of the plant.

Based on recent evidence from both seeds and desiccation

tolerant Angiosperms we address possible routes to ‘flipping

the switch’ to vegetative desiccation tolerance in major crops.
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Introduction
Severe drought is one of the climatic factors that is most

destructive to production of food crops worldwide. Cli-

mate models predict an increase in severity and duration

of drought in most regions of the world where agriculture

is mainly rain fed. Combined heat and drought, together

with deforestation and other anthropomorphic causes,

have caused increased aridification and desertification

and thus diminished the areas of arable land. Since this

process is not readily stopped or reversed, it is imperative

to develop a climate-smart agriculture to maintain food

security for the growing world population in the foresee-

able future. Here we will address difficulties and oppor-

tunities to design or recruit food crops that survive long-

term severe drought.
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Scenarios to acquiring drought-resilient crops
Of the several hundred thousand known plant species,

some 120 are cultivated for human food. Nine supply over

75% of global plant-derived energy intake and of these,

only three – wheat, rice and maize – account for more than

50% thereof. Breeding programs of most of these crops

have been selecting for high yields under near-optimal

conditions with an inevitable loss of abiotic stress resil-

ience. Further selection for shorter growing seasons,

greater root length, and/or improved resistance to water

loss under drought conditions have aimed at surviving

short dry spells. However, such crops, and indeed most

angiosperms, are intolerant of water deficit stress, dying

after loss of between 10% and 60% of total cellular water

depending on the species [1]. Thus, under extended

periods of drought crop loss is inevitable, especially in

developing countries where resources for modern agricul-

ture, such as irrigation, are virtually non-existent [2�].

There are various potential routes to acquiring drought-

resilient crops. We place more emphasis on the last

scenario as this is the most unexplored and presents a

case for the most extreme but successful strategy for

extending agriculture into extreme environments

(Figure 1).

Employing indigenous crops

Indigenous or ‘orphan crops’ are very often resilient to a

plethora of stresses [3]. These crops have long been used

as the major staple food crops in many developing coun-

tries because of their particular role in nutrition, food

security and income generation to resource-poor farmers.

Typical examples of orphan crops are Teff (Eragrostis tef ),
this being the main staple in Ethiopia and sweet potato

(Ipomea batatas), native to central and south America and

indigenised in many countries in Africa (Figure 1). Both

are considered drought tolerant, the former surviving up

to 60% water loss before dying [4�], the latter maintaining

hydration longer periods under drought conditions due to

its prolific root system [5]. Conforming to the trade-off

between yield and stress tolerance, these crops have

relatively low yields. However, because of their relative

resilience, they may be grown in more marginal areas and

thus make up for the loss in yield per hectare.

Genome editing of current crops

Promising technologies such as CRISPR-Cas9 allow very

precise modification of genes, and potentially of stress

tolerance. Since plants possess substantial phenotypic

plasticity, most plant traits are multigenic. Therefore,

single-gene modifications to enhance abiotic stress toler-

ance are unlikely to be effective. Thus, more molecular
Current Opinion in Biotechnology 2022, 74:1–8
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Figure 1

Current Opinion in Biotechnology

Overview of critical water contents limiting current and orphan crop survival and estimation of increase in the range of water deficit tolerance, and

thus areas in which crops could be grown, if modified in the ways proposed in this article. Examples of modern crops and orphan crops that

could be modified for improved water deficit tolerance, and resurrection plants that could be used as models for induction of vegetative

desiccation tolerance are given.
information underlying these traits is required for mean-

ingful modification of multiple genes. Moreover, the

inherent trade-off between plant growth and stress toler-

ance requires additional genome editing, for example, by

overexpressing growth-related genes that are suppressed

by abiotic stress [6]. An additional complication is that

genome editing of crops relies on genetic transformation

and plant regeneration which are still a bottleneck in the

process, particularly for the ‘smaller’ crops, such as the

orphan crops. Clearly, innovations are needed to enable

genome editing in crops at higher efficiency [7]. Because

of these caveats not many second generation high-yield-

ing stress-tolerant transgenic crops have been released to

the market yet [6].

De-domestication of current crops

De-domestication is an evolutionary process by which

domesticated crops reacquire wild-type traits and may

form independent reproducing populations [8]. De-

domesticated populations may contain important genetic

resources for modern crop breeding. Extensive phenotyp-

ing of such populations may yield desirable traits includ-

ing drought and heat tolerance. Detailed genetic analysis

of de-domestication pathways has become possible since
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the introduction of next generation sequencing. De-

domestication is a result of natural variation by natural

mutations. Mutagenesis of crops and extensive screening

for desirable traits is not dissimilar to this and is widely

employed. However, both these paths of action will at

best produce a phenotype similar to that of an orphan

crop.

Using resurrection plants as models to bioengineer

desiccation tolerance in crops

Resurrection plants display vegetative desiccation toler-

ance, being able to tolerate loss of 95% of their cellular

water, for prolonged periods, without dying [9�]. Together

with seeds, they present the most extreme plant response

to drought, and thus are exceptional models for improve-

ment of water deficit tolerance in crops [10]. As desicca-

tion tolerance is a result of coordinated action of multiple

signalling cascades, it is unlikely that use of single or small

cassettes of genes from a resurrection plant will bring

about an extremely drought tolerant phenotype. Indeed

attempts at doing so in model organisms such as Arabi-
dopsis or tobacco [11–13] or even in African subsistence

crops such as sweet potato [14�] and maize [10; unpub-

lished observations] have shown some improvement in
www.sciencedirect.com
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tolerance of short term drought imposed under laboratory

conditions, due to improved water retention under those

conditions, rather than ability to tolerate more extreme

water loss. Field testing of transgenic crops may or may

not bring out the desired phenotype obtained in the lab,

and field trials attempted (e.g. in the Water Efficient

Maize for Africa project) rather show improved water use

efficiency than water deficit tolerance. Relative water

contents of the crops are hardly ever measured. Thus,

the most promising way forward in obtaining a resurrec-

tion phenotype is in the use of technologies such as

CRISPR-Cas9 to manipulate suites of genes that are

likely to be required for desiccation tolerance.

Molecular mechanisms underlying
desiccation tolerance
Genome wide studies of resurrection Angiosperms have

revealed a striking similarity with seeds in the nature of

molecular mechanisms that are recruited to mitigate

desiccation damage [15,16�]. The protective components

of these mechanisms are found across all lineages of the

Plant Kingdom and include late embryogenesis abundant

proteins (LEAs), heat shock proteins (HSPs), antioxi-

dants and specific sugars [9�]. Arguably, vegetative desic-

cation tolerance is an evolutionary rewiring of seed des-

iccation tolerance that has occurred in several

independent events across Angiosperm taxa. Modern

and orphan crops produce desiccation tolerant seeds,

which implies that the genomic information for desicca-

tion tolerance is contained within vegetative tissues but is

suppressed. This opens possibilities for designing crops

with extreme tolerance of water deficit by utilizing this

‘inherent’ desiccation tolerance. Indeed, this could

involve activating/deactivating abscisic acid-(ABA) con-

trolled key genetic switches which we postulate variously

below. Likely first candidates are ABI3 and its orthologs

[15] and ABF or other master regulators [16�].

The activation of such switches in vegetative tissues may

be mediated by epigenetic regulation. In seed matura-

tion, the ABA-controlled LAFL (LEAFY COTYLE-

DON 1 and 2, ABSCISIC INSENSITIVE 3, and FUSCA

3) suite of transcription factors maintain the seeds in a

developmental (desiccation tolerant) state [17]. The

LAFL genes are subject to extensive chromatin modifi-

cation [reviewed in Ref. 17]. For example, active ABI3

and LEC2 genes are associated with H3K4me3, whereas

their repression is associated with H3K27me3. Thus,

elimination of histone acetylation is required to maintain

repression. Polycomb Repressive Complexes PRC1 and

2 are pivotal in this process [17]. As the LAFL network is

under epigenetic control and, hence, prone to epigenetic

priming by the environment [18]. There is ample evi-

dence for priming-induced DT in vegetative tissues. For

example, DT can be re-induced by abiotic stress or ABA

in protruded radicles of seedlings [19]. Seedlings of

Xerophyta schlecteri become desiccation tolerant only after
www.sciencedirect.com 
a similar treatments [15]. Finally, mild drought acclima-

tion induces rapid desiccation tolerance in the dicot

resurrection plant Boea hygrometrica [20]. Although in

all of these cases the molecular mechanisms remain to

be elucidated, an epigenetic activation/deactivation of a

LAFL-like network is a plausible model since a perma-

nent loss of function of one or more of these master

regulators would also make seeds desiccation sensitive.

Thus, a reversible control of a LAFL-like network would

be the most versatile way to render desiccation tolerance

to leaves, independent of the seeds.

Model RPs for monocots and dicot crops
There is considerable evidence however, that there are

inherent differences among resurrection plants with

respect to the fine detail of molecular mechanisms

employed in desiccation tolerance. Thus for practical

purposes it is important to match specific resurrection

plants as models for specific crop types. At the broadest

level the well-studied monocot X. schlecteri (ex Xerophyta
viscosa) [10,15,21,22,23�,24] can be (and is, see above)

utilized as a model for cereal crops such as maize whereas

the similarly well studied eudicots like Craterostigma
plantagineum [25,26,27��] and B. hygrometrica
[20,28,29�,30] may serve as models for dicots such as

legumes.

Using evidence from research conducted on such species

we present schematic representations of changes likely to

be required in a monocot crop such as maize (Figure 2)

and a dicot crop such as soybean (Figure 3) to survive

extreme water loss. While there are common features,

significant differences are evident as a consequence of

leaf and cell morphology, mechanisms of photoprotection

employed and choice of carbon and nitrogen stores

required for subcellular stabilization in the drying and

desiccated states, and for immediate energy on rehydra-

tion. A general observation of changes occurring on dehy-

dration of RPs is that leaf tissues appear to go through an

early (ERD), mid (MRD) and late (LRD) response to

drying in which shifts in metabolism and nature of tran-

scription and translation change. Changes occurring in the

ERD, while more typical of those also occurring in crops,

are crucial to successful continuance into the MRD and in

turn those occurring in this stage are crucial to successful

completion of the LRD.

During the ERD, in which ca 40% of cellular water is lost,

turgor is maintained by presence of and upregulation in

specific sugars, amino acids and dehydrins (DHN), the

exact nature of which varies among species [9�,10,30,31]
(Figures 2bII cf 3bII). Photosynthesis continues, but in

crops this metabolism is compromised on reaching a

relative water content (RWC) of 60% when drought-

induced senescence is initiated. ABA content increases

during this stage in both models [24,32] and there is

evidence of both ABA activated signalling processes
Current Opinion in Biotechnology 2022, 74:1–8
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Figure 2
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Schematic representation of changes in (a) leaf phenology and (b) subcellular organization (upper panel) and changes in key components (lower

panel: LEAs, sugars, organic acids, amino acids and ABA) of a desiccation tolerant maize leaf during dehydration from full turgor (i) during the

ERD, 100-60% RWC (ii), the MRD, 60-40 RWC (iii) and LRD, 40-5% RWC (i). Details were taken from Refs. [7,12,18–21,32,35]. LEA transcripts are

shown in blue and the number of genes in each LEA family is noted within bars in heat maps in the lower panel. LEA proteins, present in the LRD

only, are also shown in blue. ELIP transcripts, present in the LRD only, are shown in yellow in the lower panel. Sugars are shown in light pink,

organic acids are shown in orange, amino acids are shown in green, ABA in red and anthocyanins in purple. The degrees of shading in the heat

maps in the lower panel indicates changes in levels of each of the above compounds, with darker colours depicting significant increases and

lighter colours significant decreases. The proposed ABI3 and ABI5 and sucrose switches are shown in the ERD and entry into the LRD

respectively. The overall pink colour of the cytoplasm in the LRD is to depict considerable sucrose presence.
and a tempering thereof by activation of several members

of the PP2C family of protein phosphatases [24,27��].
PP2Cs participate in regulation of seed dormancy in

Arabidopsis [33] and we propose that genetic switches,

such as the LAFL network referred to above, come into

play in the ERD. Together with the priming nature of

metabolite accumulation, this could serve as one of the

master switches required for the induction of DT in crops

(Figures 2b-II, 3b-II).

During the MRD (60–40% RWC) there are shifts in the

nature of metabolism which differ among the models. In
Current Opinion in Biotechnology 2022, 74:1–8 
X. schlechteri, gas exchange ceases at 60% RWC and during

this stage there is progressive degradation of chlorophyll

and dismantling of thylakoids such that by the end of this

stage chloroplasts resemble those present in dry seeds

[21,23�] (Figure 2b-III). There is convincing evidence

that even as such dismantling occurs, transcripts required

for reconstitution of photosynthetic metabolism are tran-

scribed and stably stored for translation on rehydration

[15], similar to seeds. During this stage leaf blades fold,

resulting in shading of the adaxial and exposure of the

abaxial surfaces to light, these becoming anthocyanin

rich, affording protection against potential ongoing
www.sciencedirect.com
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Figure 3
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Schematic representation of changes in (a) leaf phenology and (b) subcellular organization (upper panel) and changes in key components (lower

panel; LEAs, sugars, organic acids, amino acids and ABA (b) of a desiccation tolerant soybean leaf during dehydration from full turgor (i) during

the ERD, 100-60% RWC (ii), the MRD, 60-40 RWC (iii) and LRD, 40-5% RWC (iv). Details were taken from Refs. [19,22,24,25,27��,29�,32,33,35].
LEA transcripts are shown in blue and the number of genes in each LEA family is noted in the bars in heat maps in the lower panel. LEA proteins,

present in the LRD only, are also shown in blue in the upper panel. ELIP proteins, present in all stages of dehydration, are shown in yellow in the

upper panel. Sugars are shown in light pink, organic acids are shown in orange, amino acids are shown in green, ABA in red and anthocyanins in

purple in the lower panel. The degrees of shading in the heat map indicates significant changes in levels of each of the above compounds, with

darker colours depicting significant increases and lighter colours significant decreases. The proposed ABI3 and ABI5 and sucrose switches are

shown in the ERD and entry into the LRD respectively. The overall pink colour of the cytoplasm in the LRD is to depict considerable sucrose

presence.
photosynthetic ROS production [23�] (Figure 2a-III).

Anatomically, such folding is facilitated by presence of

relatively thick cell walls which undergo some modifica-

tion during the MRD [24,34] releasing sugars to the

cytoplasm, which together with (increased presence of)

amino and organic acids and anthocyanins, get partitioned

into numerous small vacuoles enabling subcellular

mechano-stabilisation [23�,24–26,27��,28,29�,30–35]
(Figure 2b-III). There is increased transcription, but

minimal translation, of 37 LEA genes from all LEA

families and decreased transcription of many LEA_2s
www.sciencedirect.com 
and DHNs [15,24] (Figure 2b-III). Respiration is ongoing

and ROS damage prevented by sustained ongoing activi-

ties of ubiquitous antioxidant enzymes and increased

levels of specific polyphenols [21,23�,35]. Importantly,

during this stage drought induced senescence-associated

processes are actively suppressed [24] although there is

activation of the ubiquitin proteasomal system (UPS),

proposed to be a less severe response than autophagy and

allows for release of nutrients for protective purposes [9�].
Current Opinion in Biotechnology 2022, 74:1–8
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3 Determined from Refs. [22,24] and LEA classes depicted in

Figure 3bIII were identified using National Center for Biotechnology

Information (nih.gov).
In dicots, photosynthesis is maintained during the MRD

with gas exchange and linear electron transfer ceasing

only at 40% RWC [36] (Figure 3a-III,b-III). Photoprotec-

tion is afforded by non-photochemical quenching via the

xanthophyll cycle carotenoids, particularly zeaxanthin,

which together with a-tocopherol and early light-induc-

ible proteins combine to protect the photosystems during

this stage of dehydration [9�]. Considerable cellular

shrinkage occurs during the MRD such that apical sur-

faces curl inwards (Figure 3a-III). Subcellular mechanical

stabilization is achieved by increased wall folding

(Figure 3b-III), this flexibility being enabled by pectin

rich cell walls and expansin production [33,37]. The

Calvin cycle continues to operate, but energy is differ-

ently partitioned so as to enable further accumulation of

sugars and certain (different) amino acids [27��]
(Figure 3b-III) which in turn ‘buffer’ the subcellular

environment against the damaging effect of extreme

water loss, preventing plasmolysis. At least 8* LEA genes

are transcribed [25,27��] many seemingly different from

those in X. schlechteri (Figures 3b-III, cf 2b-III). Respira-

tion is ongoing with high levels of malate being accumu-

lated, and as in the monocot model, the UPS is activated

during this stage further contributing to the generation of

metabolites required for desiccation tolerance [27��,30].

The LRD in both models is characterised by continued

accumulation of stabilizing sugars (particularly sucrose)

and amino acids, maintained antioxidant potential, trans-

lation of LEAs and HSPs, suppression of senescence and

de novo transcription, and in some instances storage of

transcripts required for recovery upon rehydration

[15,23�,24,27��]. As before, they achieve the end result

by employing players unique to each phenotype

(Figures 2b-IV cf 3b-IV).

The most striking differences between the models is the

maintenance of photosynthesis in dicots. During this

stage dicots stop gas exchange, cease linear electron

transfer, engage in cyclic electron transfer [28,36] and

possibly CAM [27��]. Considerable leaf folding occurs

exposing anthocyanin rich abaxial surfaces, these pig-

ments being synthesised in the LRD (Figure 3a-IV,

[35]). Another notable difference is the maintenance of

respiration in Craterostigma to 20% RWC before a mea-

sured decline and a potential switch to the alternative

respiratory pathway (AOX) occurs [27��,38]. In Xerophyta

respiration declines from 40% RWC ceasing at 10%, but

AOX is not engaged [21,24,38].

The most remarkable feature of the LRD is evidence of

ongoing selective metabolisms at such extremely low

water contents. It has been argued that this is made

possible due to the existence of suborganellar and sub-

cellular pockets of non-aqueous molecular mobility,

enabled in part by the accumulation of metabolites that

form natural deep eutectic solvents (NaDES) [39]. This
Current Opinion in Biotechnology 2022, 74:1–8 
hypothesis supports the notion of different types of

metabolic activity occurring among species, enabled by

and dependent on the biochemical nature of the subcel-

lular milieu. This stage is terminated by tissues entering a

biophysically vitrified state, brought about by massive

accumulation of sucrose in combination with LEAs and

HSPs [9�]. It is highly likely that sucrose signalling plays a

role in the LRD [40] which, together with further ABA-

mediated responses, enable metabolic quiescence, again

synonymous with dormancy in seeds. We propose a

second switch for ultimate commitment to DT at the

start of the LRD (Figures 2b-IV, 3b-IV). In seeds longev-

ity is acquired during the late stages of maturation, in

terms of RWC comparable with the LRD3, with ABA and

the transcription factor ABI5 playing key regulatory roles

[41]. This may explain why poikilochlorophyllous RPs

like Xerophyta have greater longevity in the dry state

than homoiochlorophyllous Craterostigma [39] as ABA

contents at LRD are substantial in the former and low in

the latter (Figures 2b-IV, 3b-IV).

The question arises whether poikilochlorophyllous resur-

rection species would also produce seed with greater

longevity than homoiochlorophyllous species, and how

this would reflect in ABA signalling in the seeds. Since the

latter are mostly found in tropical areas there is no

apparent need for long-term survival in dry conditions

whereas the former must bridge longer dry periods, it

seems plausible that the same goes for their seeds (in the

soil). Would this imply that species with long-lived seeds

have a greater potential to be transformed to become

desiccation tolerant than short-lived? There is a huge

variation in seed longevity across species and it is not clear

yet how this is caused. Various factors seem to be

involved, inter alia chemical composition, seed size and

protection against oxidative damage.

Rehydration is rapid but recovery of full metabolic com-

petence occurs within 48 hours in Craterostigma and 5–7

days in Xerophyta spp. [27��,42]. This is a consequence of

their respective strategies to manage photosynthetic

stress during dehydration. Interestingly, neither model

requires de novo transcription or translation for initial

recovery [27��,43,44,45]. A final but striking phenotype

shown by resurrection plants is their ability to ensure

flowering after drought, guaranteeing seed yield. Dicot

flowers are desiccation tolerant and resurrect along with

the plant. Monocots suppress flowering during drought,

doing so immediately after rehydration (see Supplemen-

tary video).
www.sciencedirect.com
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Conclusion
The scenarios painted above, while seemingly complex

and involving several levels of finely tuned regulation at

the transcriptional, post-transcriptional, biochemical and

even biophysical levels, may be as simple as ‘flipping’

seed-associated regulatory switches at the ERD and

LRD; a feat that can be achieved by appropriate gene

editing. This strategy, albeit extreme, guarantees survival

of the harshest drought. Yield is unlikely to be perturbed

in years with reasonable rainfall and some yield guaran-

teed in the face of an extreme drought. Thus of all

4 scenarios described above, creation of a resurrection

phenotype will allow greatest expansion of agriculture

into extreme environments (Figure 1).
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