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Abstract
Freshwater ecosystems are strongly influenced by weather extremes such as heat-
waves (HWs), which are predicted to increase in frequency and magnitude in the 
future. In addition to these climate extremes, the freshwater realm is impacted by 
the exposure to various classes of chemicals emitted by anthropogenic activities. 
Currently, there is limited knowledge on how the combined exposure to HWs and 
chemicals affects the structure and functioning of freshwater ecosystems. Here, we 
review the available literature describing the single and combined effects of HWs and 
chemicals on different levels of biological organization, to obtain a holistic view of 
their potential interactive effects. We only found a few studies (13 out of the 61 stud-
ies included in this review) that investigated the biological effects of HWs in combina-
tion with chemical pollution. The reported interactive effects of HWs and chemicals 
varied largely not only within the different trophic levels but also depending on the 
studied endpoints for populations or individuals. Hence, owing also to the little num-
ber of studies available, no consistent interactive effects could be highlighted at 
any level of biological organization. Moreover, we found an imbalance towards sin-
gle species and population experiments, with only five studies using a multitrophic 
approach. This results in a knowledge gap for relevant community and ecosystem 
level endpoints, which prevents the exploration of important indirect effects that can 
compromise food web stability. Moreover, this knowledge gap impairs the validity of 
chemical risk assessments and our ability to protect ecosystems. Finally, we highlight 
the urgency of integrating extreme events into multiple stressors studies and provide 
specific recommendations to guide further experimental research in this regard.
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1  |  INTRODUC TION

Multiple anthropogenic disturbances drive the so-called global 
change (Schlesinger, 2006), which is leading to various, and still un-
predictable, changes in biodiversity, species interactions and ecosys-
tem functioning (Cardinale et al., 2012). Among the several drivers of 
global change, Climate change is one of the key and most concerning 
ones (Parry et al., 2001). Climate change is composed of different 
processes and phenomena (IPCC, 2013), including extreme weather 
events such as heavy precipitations or heatwaves (HWs; Jentsch 
et al., 2007). HWs are characterized by a short-term, rapid increase 
in temperature, which can impact all trophic levels, from microorgan-
isms (Szymczak et al., 2020) to large predators (de Mira-Mendes et al., 
2019), across all ecosystem types (Stillman, 2019). HWs are of partic-
ular concern because their magnitude and frequency are predicted to 
increase in the future (Meehl & Tebaldi, 2004; Woolway et al., 2021). 
A growing amount of literature has described the effects of HWs on 
freshwater ecosystems (Bartosiewicz et al., 2016; Huber et al., 2010; 
Ledger & Milner, 2015; Maazouzi et al., 2008; Weisse et al., 2016; 
Woodward et al., 2016) and show that they can lead to high mortal-
ity rates (Mouthon & Daufresne, 2006; Strydom et al., 2020). This 
is particularly relevant for ectotherm animals (Brown et al., 2004; 
Cereja, 2020), which represent the vast majority (>95%) of species in 
aquatic ecosystems (Willmer et al., 2000). Temperature directly con-
trols the metabolic rate of cells and their size (Gillooly et al., 2001). 
It also affects carbon allocation (García-Carreras et al., 2018), pop-
ulation growth (Savage et al., 2004), carrying capacity (Fussmann 
et al., 2014) and ecosystem respiration (Yvon-Durocher et al., 2010). 
Generally, ectotherm plants and animals show increased metabolism 
but reduced size at elevated temperature (Brown et al., 2004; Yvon-
Durocher et al., 2011; Zohary et al., 2021).

Extreme weather events are not the only disturbances affecting 
aquatic ecosystems. Among the large number of stressors affect-
ing the freshwater realm (Birk et al., 2020), a serious, yet somewhat 
overlooked, dimension of global change is chemical pollution (Mazor 
et al., 2018; Rockström et al., 2009; Steffen et al., 2015). A review by 
Bernhardt et al. (2017) showed that chemicals are only partially con-
sidered as drivers of global change. Yet, the global annual application 
of pesticides grows constantly (Food and Agriculture Organization of 
the United Nations—FAOSTAT, 2020), and pharmaceuticals and per-
sonal care products are increasingly traced in freshwater ecosystems 
worldwide (Danner et al., 2019; Ebele et al., 2017). Micropollutants 
reaching water bodies act as selective stressors targeting different or-
ganisms based on their physicochemical properties and toxicological 
mode of action, leading to non-random effects on communities (De 
Laender et al., 2016). Synthetic chemicals are known to reduce diver-
sity (Bray et al., 2019) cause trophic interaction shifts (Schrama et al., 
2017), affect ecosystem functioning (Spaak et al., 2017), and have 
been found to limit the overall ecological status of European rivers 
(Posthuma et al., 2020).

Heatwaves are predicted to increase more in their frequency, 
duration, and intensity particularly in spring and summer (Woolway 
et al., 2021). Spring and summer are the seasons when higher 

amounts of pesticides are generally applied (Phillips & Bode, 2004; 
Scheyer et al., 2007), whereas the emission of other micropollutants 
(e.g. pharmaceuticals and metals) is less time-bound (Danner et al., 
2019; Ebele et al., 2017). Surface water contamination by micropo-
llutants has already been reported worldwide (Hughes et al., 2013; 
Sharma et al., 2019). Additionally, pesticide application (Kattwinkel 
et al., 2011) and pharmaceutical consumption is predicted to rise 
(Hughes et al., 2013). Shallow aquatic systems, such as shallow 
lakes, ponds, ditches, intermittent rivers and streams are expected 
to be the most impacted from the combined exposure of HWs and 
chemicals. In larger freshwater ecosystems, the concentration of 
chemicals may be lower due to dilution, whereas they are expected 
to experience less intense HWs due to their large thermal inertia 
(Woolway et al., 2021).

Multiple stressors research has received increasing attention 
in recent years (Orr et al., 2020), following the need for a more 
realistic and comprehensive assessment of the multiple drivers 
of global change across the different levels of biological organi-
zation. However, most research on climate change in a multiple 
stressor context focuses on warming under constant elevated 
temperature regimes (Arenas-Sánchez et al., 2019; Piggott, Salis, 
et al., 2015; Piggott, Townsend, et al., 2015). The significance of 
increasing temperature on freshwater biota has been recognized 
long ago (Schindler, 1997), and the effects of elevated and con-
stant temperatures have been largely studied in isolation (Döll 
et al., 2018) but occasionally also in combination with chemical 
stressors (Heugens et al., 2001; Holmstrup et al., 2010). Similarly, 
the relevance of extreme weather events as drivers of detrimental 
effects on biological systems was recognized more than a decade 
ago (Jentsch et al., 2007). Since then, scientists have made calls 
to drive the attention on extreme weather events, rather than on 
trends (Thompson et al., 2013; Woodward et al., 2016), and ex-
treme temperature fluctuations have been shown to pose a greater 
risk to alter species performance than elevated mean temperature 
(Vasseur et al., 2014). Yet, we still lack a comprehensive under-
standing of the combined effects of extreme weather events and 
other stressors, such as chemical pollution, as well as of the mech-
anisms underpinning those effects in environmentally realistic 
species assemblages.

Understanding the combined effects of HWs and chemicals 
is pressing not only because they can interact resulting in effects 
larger then (synergism) or smaller than (antagonism) additive ef-
fects but also because their interactions are known to be depen-
dent on the application order (Dinh et al., 2016). The toxicity of 
many micropollutants may increase for organisms previously ex-
posed to warming, following the “climate change induced toxi-
cant sensitivity” (CITS) concept (Hooper et al., 2013; Moe et al., 
2013). Conversely, micropollutants can reduce the heat tolerance 
of organisms, according to the “toxicant induced climate change 
sensitivity” (TICS) concept (Hooper et al., 2013; Moe et al., 2013). 
Consequently, disentangling the processes causing these effects 
requires systematic testing of different exposure orders at differ-
ent levels of organization.



1250  |    POLAZZO et al.

The aim of this work was to critically evaluate the state of 
knowledge on the combined effects of HWs and chemicals with 
different physicochemical properties and toxicological modes of 
action, highlighting knowledge gaps. Here, we first develop pre-
dictions on how HWs and micropollutants may affect and interact 
on multiple endpoints spanning different organism groups and lev-
els of organization (Figure 1). Then, we review laboratory, semi-
field and field studies assessing the effects of HWs alone and in 
combination with micropollutants on different trophic levels of 
freshwater ecosystems and used a food web approach to iden-
tify possible indirect effects that may be propagated across the 
different trophic levels. Finally, we provide recommendations for 
a better integration of HWs into multiple stressor's research and 
chemical risk assessment.

2  |  MATERIAL S AND METHODS

We performed a scoping review (Munn et al., 2018) and discussed 
the available information regarding the impact of HWs alone and in 
combination with micropollutants on different trophic levels. This 
allowed us to focus on the combined effects of HWs and the class 

of micropollutants that is expected to have the largest direct impact 
on the trophic level under investigation. This included, antibiotics for 
bacteria, herbicides for primary producers (phytoplankton, cyano-
bacteria and macrophytes), and insecticides for arthropods (micro- 
and macro-crustacea and insects) and all of the above for vertebrate 
predators. We defined HW following The World Meteorological 
Association as “five or more consecutive days of prolonged heat 
in which the daily maximum temperature is higher than the aver-
age maximum temperature by 5°C (9°F) or more”. We also include 
a maximum based on Woolway et al. (2021), who projected maxi-
mum HWs of 27 days in the future (IPCC scenario RCP 2.6). These 
criteria were used to select studies, and we report HW’s charac-
teristics in parentheses in the main text (i.e. duration, C: tempera-
ture of controls [reported only for laboratory studies], H: treatment 
temperature). Many of the studies we included aimed to investi-
gate the effects of climate change but, because they used sudden 
increases of temperature larger than 5°C, they fit our criteria of a 
HW (rather than the more gradual temperature increases associated 
with Climate Change; IPCC, 2013). However, we excluded all experi-
ments that included long (>1 week) acclimatization periods at high 
temperatures before chemical exposure and not testing the CITS or 
TICS phenomena, as they may have allowed adaptation and species 

F I G U R E  1  Predicted single and combined effects of heatwaves (HWs) and micropollutants on the different trophic levels (a, primary 
producers; b, consumers; c, microbial communities and d vertebrate predators) based on available literature (61 articles). Within each trophic 
level, the rows represent different types of endpoints. Columns show the effect of HWs and the chemical stressor that is projected to have 
the largest negative effects on the organism groups under consideration. Note that because micropollutants are expected to have mainly 
a negative direct effect on the different endpoints, we classified the possible synergism only as negative. The individual positive effects of 
HWs are related to the individual temperature-stimulated increase in metabolism, which may result in increased population growth
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recombination prior to the temperature increase. The complete re-
port of the databases used for the literature search, the key words 
used for each trophic level as well as the complete list of the papers 
reviewed, are reported in Supporting Information (SI1, Table S1 and 
SI2, Table S1).

3  |  RESULTS

Our literature search resulted in 61 studies fitting our HW defini-
tion. Of these studies, 13 assessed the combined effects of HWs 
and chemicals. Only 21 studies explicitly tested the effects of HWs, 
whereas the others were conceived as conventional temperature 
raise studies, but their features suited our HW definition.

Studies assessing the combined effects of HW and chemical 
pollution included only one trophic level and were unequally spread 
between trophic levels: microbial communities (n  =  0), primary 
producers (n = 3), primary consumers (n = 6) and predators (n = 4; 
Figure 2). No study assessed the combined effects of HWs and mi-
cropollutants on multitrophic systems.

In the following subsections, we report the results of the liter-
ature review divided by trophic levels. Each subsection deals with 
one single trophic level. We first discuss the direct effects of HWs 
on each level and continue with the combined effects of HWs and 
micropollutants.

3.1  |  Microbes

3.1.1  |  Direct effects of HWs on microbial 
communities

Microbial communities comprise bacteria, fungi, protozoa, viruses 
and nematodes (Margulis et al., 1986). Aligning with the species-
sorting model (Leibold et al., 2004), microbial communities are 
shaped by the local environmental conditions (Logue & Lindström, 
2010), such as temperature (Ziegler et al., 2019), salinity (Herlemann 
et al., 2011), resource availability (Pradeep Ram et al., 2020) or en-
vironmental degradation processes (Mykrä et al., 2017). Although 
some soil microbial communities are relatively tolerant (e.g. no sig-
nificant changes in biomass or respiration) to HWs (de Oliveira et al., 
2020; Pérez-Guzmán et al., 2020), microbial communities in fresh-
water ecosystems have been found to have a higher sensitivity to-
wards warmer temperature or HWs. This is due to faster conduction 
of temperature through water than terrestrial media (Singh & Devid, 
2000; van Rooyen & Winterkorn, 1957). HWs may have an effect 
on the metabolism, biomass, composition and the stoichiometry of 
freshwater bacteria, as shown in experiments (10–30°C) where ele-
vated temperature increased nutrient cycling on suspended bacteria 
from oligotrophic lakes (Phillips et al., 2017; Figure 3). The changes 
in stoichiometry are more pronounced when access to nutrients, 
particularly phosphorus, is lacking, thus resulting in larger effects 

F I G U R E  2  Alluvial plot showing the studies available dealing with heatwaves (HWs) only and HWs in combination with other stressors 
and the level of biological organization and trophic levels evaluated. The band width is proportional to the number of studies evaluated (total 
number of studies included = 61)
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of HWs in oligotrophic ecosystems compared with more eutrophic 
ones (Phillips et al., 2017). Further studies demonstrated that ele-
vated temperatures in freshwater systems enhance both the growth 
rate and the leaf litter decomposition by aquatic fungi (Duarte et al., 
2013), which promotes the organic nitrogen concentration in leaf lit-
ter (Kaushik & Hynes, 1971), and, in turn, stimulates microbial respi-
ration rates (Stelzer et al., 2003; Figure 4). The biomass of freshwater 
microbial communities increases with temperature, which leads to 
an increased rate of leaf litter decomposition (Donnelly et al., 1990; 
Fernandes et al., 2012; Stelzer et al., 2003). This can enhance nutri-
ent cycling, at least during short-term periods.

Some microbial communities prosper with temperature in-
creases, for example, functional groups such as ammonia-oxidizing 
(Zeng et al., 2014) or biocalcifying (Zamarreňo et al., 2009) bacte-
ria. Consequently, bacteria growing faster under HW conditions 
may outcompete slower-growing bacteria, leading to changes in 
community structure (Fetzer et al., 2015). The assembly of micro-
bial community changes due to changing environmental conditions 
(Langenheder & Lindström, 2019). This can alter biogeological fluxes 
and the availability of key elements for the ecosystem (Zhao et al., 
2017; Figure 4). For instance, increased bacterial growth promoted 
by higher temperatures may lead to a phosphorus depletion for 

F I G U R E  3  Graphical representation synthesizing the results found in the literature on the effects of heatwaves on aquatic food-webs. 
Arrows connecting different organism groups indicate trophic and/or indirect effects. Upward arrows indicate an increase/raise and 
downward arrows indicate a decrease of the evaluated ecological parameter. Numbers in brackets refer to references: (1) Duarte et al. 
(2013), (2) Donnelly et al. (1990), (3) Fernandes et al. (2012), (4) Stelzer et al. (2003), (5) Zeng et al. (2014), (6) Zamarreňo et al. (2009), (7) 
Höfle (1979), (8) Remy et al. (2017), (9) Egger et al. (2012), (10) Velthuis et al. (2017), (11) O’Connor et al. (2009), (12) Maazouzi et al. (2008), 
(13) Bergkemper and Weisse (2017), (14) Weisse et al. (2016), (15) Bertani et al. (2016), (16) Hansson et al. (2020), (17) Li et al. (2017), 
(18) Mameri et al. (2020), (19) Carreira et al. (2016), (20) Nguyen et al. (2020), (21) Johnsen et al. (2020), (22) Cremona et al. (2020), (23) 
DeWhatley and Alexander (2018), (24) Leicht and Seppälä (2019), (25) Carreira et al. (2020), (26) Zhang et al. (2020), (27) Vander Vorste et al. 
(2017), (28) Prato et al. (2008), (29) Fornaroli et al. (2020), (30) Hao et al. (2020), (31) Piggott et al. (2015), (32) Bondar-Kunze et al. (2021)
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phytoplankton (Currie, 1990) and to food scarcity for herbivores. 
Conversely, a substantial increase in the bacterial abundance can, 
depending on the microbial community, facilitate the remineral-
ization of nitrogen (Berthelot et al., 2019; Hayes et al., 2019) and 
phosphorus (Klausmeier et al., 2004), which precedes an increase 
in phytoplankton biomass that would, otherwise, function as a self-
limited nutrient sink (Pomeroy & Wiebe, 1988).

The ability of microbial communities to resist and recover from 
extreme climate events is still understudied but needed to help the 
characterization of ecosystem response to important ecological 
functions after extreme events (Bardgett & Caruso, 2020).

3.1.2  |  Combined effects of HWs and chemicals on 
microbial communities

Microbes living in freshwater habitats are exposed to micropollut-
ants that form complex mixtures (Escher et al., 2020). Yet, it remains 
unknown how microbial communities might take up, degrade or me-
tabolize micropollutants when simultaneously exposed to HWs and 
chronic chemical stress, as no studies were found investigating this 
(Figure 2).

Although lake microbial communities have been shown to be 
highly resilient to long-term warming (i.e. composition was recov-
ered within 1 week after the warming was interrupted; Shade et al., 
2012), we do not know whether a simultaneous exposure to micro-
pollutants may impair the recovery capacity. Similarly, it is unknown 

whether the shift in community composition resulting from HW (al-
beit short-term) may increase the sensitivity towards chemicals.

Freshwater microbial organisms are capable of degrading pesti-
cides and other synthetic chemicals (Mishra et al., 2020). Microbial 
degradation of micropollutants, thus, directly impact the exposure 
of other organism groups, which may benefit from an increased 
microbial degradation of toxic substances. Microbial communities 
repeatedly exposed to chemicals may enhance their biodegradative 
activity and reduce micropollutant persistence (Barra Caracciolo 
et al., 2015). However, this is only true when microbial populations 
able to degrade specific micropollutants are present in the environ-
ment (Barra Caracciolo et al., 2015; Coll et al., 2020). If such popula-
tions are removed by a disturbance (e.g. HWs), the biotransformation 
and degradation of chemicals may be impaired.

3.2  |  Primary producers

3.2.1  |  Direct effects of HWs on primary producers

Although metabolic theory (López-Urrutia et al., 2006; O’Connor 
et al., 2011) and empirical data (O’Connor et al., 2009) indicate 
that respiration-limited (heterotrophic) metabolism is more sen-
sitive to changing temperature than photosynthesis-limited (au-
totrophic) metabolism and production, negative effects of HWs 
have also been reported for primary producers (Eggers et al., 
2012; Weisse et al., 2016). HWs have been shown to promote a 

F I G U R E  4  Conceptual overview of the potential combined effects of heatwaves and chemicals on microbial communities. Black upward 
or downward arrows indicate an increase or decrease of the respective processes. Grey arrows indicate direct and indirect effects on other 
processes. The thermometer symbol indicates an effect related to temperature only, whereas the symbols of the thermometer and of the 
chemical together indicate a combined effect of both. (1) Bighiu & Goedkoop (2021), (2) Zeng et al. (2014), (3) Zamarreňo et al. (2009), (4) 
Höfle (1979), (5) White et al. (1991), (6) Berthelot et al. (2019), (7) Hayes et al. (2019), (8) Klausmeier et al. (2004), (9) Duarte et al. (2013), 
(10) Donnelly et al. (1990), (11) Stelzer et al. (2003), (12) Fernandes et al. (2012), (13) Phillips et al. (2017), (14) Kaushik and Hynes (1971), (15) 
Pomeroy and Wiebe (1988), (16) Delnat et al. (2021), (17) Wickham et al. (2020), and (18) Arias Font et al. (2021)
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shift in community composition, both in experimental systems and 
field studies (Bergkemper & Weisse, 2017; Blenckner et al., 2007; 
Maazouzi et al., 2008; Weisse et al., 2016). Generally, those com-
positional changes are linked to a reduction in phytoplankton di-
versity in microcosm experiments (Eggers et al., 2012; Remy et al., 
2017; Weisse et al., 2016) as well as in field studies (Bergkemper 
& Weisse, 2017; Maazouzi et al., 2008; Figure 3). The reduction in 
species number is commonly driven by a decline of thermal sensi-
tive species (Urrutia-Cordero et al., 2017), which in turn allows more 
tolerant species to thrive and to increase their abundance (Eggers 
et al., 2012). Although a decline in richness is often reported as a 
consequence of a HW, some studies do not highlight a net decrease 
in species number, but rather a species turnover driven by the dif-
ferent species’ thermal sensitivities (Hansson et al., 2020; Li et al., 
2017). Several studies show that compositional changes caused by 
HWs often promote cyanobacteria dominance, even in nutrient- and 
light-deficient aquatic environments (Calderó-Pascual et al., 2020). 
HWs can also promote cyanobacteria blooms by inducing a seasonal 
advancement and increasing their recruitment rates from sediments 
(Bergkemper & Weisse, 2017; Richardson et al., 2019; Urrutia-
Cordero et al., 2020). A common consequence of these blooms is the 
alteration of ecosystem functions, such as biomass production and 
chlorophyll-a concentration, as well as toxicity through the release 
of cyanotoxins (Eggers et al., 2012; Remy et al., 2017).

Macrophytes have been shown to be sensitive to HWs, too. As 
for phytoplankton, their response to heat stress is species-specific. 
Li et al. (2017) showed that Carya tomentosa exposed to extreme 
temperature fluctuations (+8°C, different durations) increased the 
mortality rate up to 60%. Oppositely, HWs tolerant species, such 
as Myriophyllum spicatum, exhibit opposite responses, by increasing 
their total abundance and biomass under HW (+8°C, different dura-
tions, Hansson et al., 2020). Nevertheless, when exposed to HWs, 
M. spicatum showed impaired sexual reproduction expressed as se-
vere reduction in the number of flowers produced during the vege-
tative season, suggesting that the balance between vegetative and 
generative reproduction under HWs is shifted towards more asexual 
reproduction (Li et al., 2017).

The majority of the experimental set-ups investigating the ef-
fects of HWs on primary producers have not included other trophic 
levels. The only experiment testing HW (+8°C, 7 days) effects on a 
freshwater food web (phytoplankton and zooplankton) reported re-
duced primary producer biomass as a result of an increased grazing 
activity from zooplankton (Velthuis et al., 2017). The same effects 
have been found by a similar study investigating a marine bi-trophic 
community (+6°C, 8 days, O’Connor et al., 2009). Other studies have 
shown that HWs can influence the competition between algae and 
macrophytes. For instance, Bertani et al. (2016) found that after a 
natural HW, a shallow lake shifted from a phytoplankton-dominating 
stage to a macrophyte-dominating one. Such bottom-up interac-
tions triggered cascading effects at higher trophic levels, resulting in 
a decline in planktonic herbivores (Bertani et al., 2016).

Temperature can directly affect plant palatability. Zhang et al. 
(2019) showed that some aquatic macrophytes were less palatable 

to consumers (e.g. the aquatic gastropod Lymnaea stagnalis) when 
grown under constant elevated temperature. A reduction in plant 
palatability directly leads to decreased biomass, abundance and 
lower fitness of consumers (Zhang et al., 2019). Potentially, this could 
lead to a general decreased top-down control also under HW stress, 
which may lead to unforeseen effects on ecosystem functioning.

3.2.2  |  Combined effects of HWs and 
micropollutants on primary producers

All the studies (n = 3) available on the combined effects of her-
bicides and HW on primary producers are single-species labora-
tory tests (Delorenzo et al., 2013; Tasmin et al., 2014; Wilkinson 
et al., 2017). These show consistent trends for some endpoints 
and opposite trends for others. When the freshwater algae 
Pseudokirchneriella subcapitata was simultaneously exposed 
to high temperature and the herbicide diuron for six consecu-
tive days, the acute toxicity of the herbicide decreased (6  days, 
C: 20°C, H: 30°C; Tasmin et al., 2014). The species’ growth was 
less reduced by diuron at high temperature compared to colder 
temperatures, and the photosynthetic activity was less impaired 
by the herbicide when undergoing the HW treatment (Figure 5; 
Tasmin et al., 2014). Delorenzo et al. (2013) studied the effects of 
increasing temperature and salinity on the toxicity of herbicides 
(irgarol, diuron, atrazine and ametryn, tested individually) to the 
phytoplankton species Dunaliella tertiolecta. The authors found 
that a HW exposure (5 days, C: 25°C, H: 35°C) generally decreased 
the negative effects of the herbicides on the chlorophyll-a con-
centration, lipid content and starch content (Figure 5). However, 
opposite to Tasmin et al. (2014), under simultaneous exposure to 
HW and herbicides, growth rate and cell density were generally 
decreased compared with the treatment containing only herbi-
cides (Figure 5; Delorenzo et al., 2013).

The lower sensitivity of primary producers to herbicides, when 
simultaneously exposed to rapid temperature increase, is a fre-
quently observed response across ecosystems (Gomes & Juneau, 
2017). Wilkinson et al. (2017) observed that the decrease in photo-
synthetic activity in the seagrass Halophila ovalis exposed to diuron 
was reduced when exposed to extreme temperatures (3  days, C: 
25°C, HW: 35°C).

The available studies highlight that herbicides and HWs have 
mostly an antagonistic (i.e. less than additive) effect on the photosyn-
thetic efficiency and algal growth of primary producers (Delorenzo 
et al., 2013; Gomes & Juneau, 2017; Tasmin et al., 2014). The same 
trend has also been found by a recent review summarizing the com-
bined effects of elevated temperature and herbicides on primary 
producers (Gomes & Juneau, 2017). Nevertheless, the sensitivity 
range of photosynthetic aquatic organisms to extreme temperature 
fluctuations and herbicides is wide, and further investigations are 
needed on the combined effects of HWs and herbicides on realistic 
species assemblages and on higher trophic levels. Potentially, the re-
duction in primary producers’ biomass caused by herbicides coupled 
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with the shift to cyanobacteria dominance driven by HWs could re-
duce the availability of food source for consumers. Cyanobacteria 
are relatively tolerant to some classes of herbicides, particularly to 
the globally most applied phosphonate herbicide glyphosate (Annett 
et al., 2014; Forlani et al., 2008). The combined effects of HWs and 
herbicides could promote cyanobacteria blooms and reduce the por-
tion of palatable phytoplankton and macrophytes for consumers. 
Such an effect could reduce consumers’ ability to carry out detox-
ification processes from cyanotoxins, leading to an overall biomass 
decline across the food web (Figure 3).

3.3  |  Primary consumers

3.3.1  |  Direct effects of HWs

Temperature plays a key role in ectotherms’ physiology, as their 
body temperature changes with the temperature of the envi-
ronment. Thus, for ectotherms, changes in temperature result 
in alterations of the rate of all physiological and metabolic reac-
tions (Brown et al., 2004). As a consequence, temperature drives 
the selection of specific individual traits as well as behavioural 
alterations. A recent mesocosm study on zooplankton com-
munity dynamics showed that under warming (sampling over 
3  years, C: 11.7°C, HW: 19.7°C) smaller body size and asexual 

(parthenogenetic) reproduction dominated (Johnsen et al., 2020). 
Responses of tropical zooplankton to a HW (12  days, C: 26°C, 
HW: 34°C) revealed a faster development but a reduced body 
size, clutch size, hatching success and nauplii production for co-
pepods (Nguyen et al., 2020). Similar warming-driven selections 
were predicted under future climate models for shallow, eutrophic 
lakes in which copepod's biomass and abundance are projected 
to increase (Cremona et al., 2020). Under the same projections; 
however, cladoceras are expected to reduce their biomass, but not 
their abundance (Cremona et al., 2020).

The features of a HW, including duration and the speed of tem-
perature increase over time, determines the magnitude of the ad-
verse impact as investigated on the filtration capacity of Daphnia 
magna (Müller et al., 2018). Individuals showed an immediate neg-
ative response with rapid temperature changes (up to 20  days,  
T-range: 11–29°C). More severe responses were noticed at higher 
temperatures and faster temperature changes, although quasi-
acclimatization with higher filtration capacities was reported (ca. 
7 days, T-range: 11–25°C; Müller et al., 2018).

Freshwater gastropods exposed to a HW showed thermal sen-
sitivity through significantly higher mortality rates at high tempera-
tures (10 days, C: 20°C, HW: 35 and 30°C; DeWhatley & Alexander, 
2018). Similar observations were reported after a HW in 2003, 
when the snail populations of two European rivers strongly declined 
(Mouthon & Daufresne, 2008). HW effects were noticed also in the 

F I G U R E  5  Conceptual overview of the single and combined effects of heatwaves and herbicide(s) on primary producers. Black upward 
or downward arrows indicate an increase or decrease of the respective processes. Grey arrows indicate direct and indirect effects on other 
processes. The thermometer symbol indicates an effect related to temperature only, whereas the symbols of the thermometer and of the 
chemical together indicate a combined effect. (1) Delorenzo et al. (2013), (2) Tasmin et al. (2014), and (3) Wilkinson et al. (2017)



1256  |    POLAZZO et al.

following years (2004, 2005), with the snail populations showing 
smaller cohorts (Mouthon & Daufresne, 2008).

Heatwaves effects can differ depending on the life-history trait 
under investigation. For instance, hatching success of laid eggs not 
only increased with high temperature (7 days, C: 15°C, HW: 25°C), 
but also caused reduction in the size of eggs, egg survival rate and 
the number of hatched juveniles. However, the surviving offspring 
showed an increased developmental rate and growth (Leicht & 
Seppälä, 2019). The duration and speed of temperature increase of 
these extreme events appear to be crucial for the response direction 
of the organism's trait. Supporting this, two experimental HWs (1 
and 7 weeks, C: 20°C, HW: 25°C) with identical magnitude but dif-
ferent duration have been found to increase snails’ food assimilation 
and growth rate, with only minor negative effects on reproduction 
(Carreira et al., 2020). Yet, responses on these endpoints were de-
pendent on the HW duration, as the short HW caused a relatively 
stronger response (Carreira et al., 2020). Similar time-dependent 
effects were reported for prolonged HWs (7, 9 or 11 days, C: 15°C, 
HW: 25°C) compared with short ones (1, 3, 5 days) with increased 
growth and reproduction only in the first week of observation and 
reduced levels of immune function only under prolonged HWs 
(Leicht et al., 2013).

To maintain higher metabolic rates at elevated temperatures, 
omnivorous ectotherms seem to change their diet by increasing her-
bivory instead of carnivory, which is also observed in other aquatic 
taxa, for example, zooplankton and fish. These temperature-induced 
diet shifts may cascade through the aquatic food web, increasing 
top-down pressures on primary producers (Zhang et al., 2020; 
Figure 3).

HW effects on benthic organisms and insects are poorly doc-
umented in freshwater research, and only a few publications stud-
ied their sensitivity towards such extreme events. Under laboratory 
conditions (15 days, C: 15°C, HW: 25°C), the amphipod Gammarus 
pulex showed behavioural alterations, consisting in vertical immi-
gration to potential refuge areas (i.e. hyporheic zone; Vander Vorste 
et al., 2017). These tries of avoiding heat stress, came along with 
decreases in survival, leaf consumption and energy recourses. HWs 
may also favour the dominance of more resistant invasive species. In 
an experimental study, the allochthonous gammarid Dikerogammarus 
villosus was found to be less sensitive to HWs compared to the na-
tive G. pulex (Truhlar et al., 2014). This lower thermal sensitivity of 
the invasive species led to a rapid shift in macroinvertebrates’ com-
munity structure, which was linked to changes in nutrients dynamics 
(Maazouzi et al., 2011; Truhlar et al., 2014). Such changes in com-
munity structure after HWs have also been reported consistently in 
field studies (Daufresne et al., 2007), including the loss of the more 
sensitive Ephemeroptera, Plecoptera and Trichoptera taxa (Fornaroli 
et al., 2020).

Such individual- and community-level changes seem to be linked 
to the temperature effects on the overall energy budget of the or-
ganisms, including energetic investments in homeostatic mainte-
nance, growth, development and reproduction (Verberk et al., 2020). 
In accordance with these general findings, low energy reserves of 

the caddisfly larvae Stenopsyche marmorata were associated with 
high temperature (9 days, C: 10°C, HW: 25°C; Suzuki et al., 2018). 
Dinh et al. (2016) described that heat stress effects (6 days, C: 22°C, 
HW: 30°C) caused a reduction in the immune function (activity of 
phenoloxidase) and metabolic rate (activity of the electron trans-
port system). Additionally, the authors pointed out the importance 
of delayed HW effects in shaping the overall stressor impact on 
the organism when other stressors are subsequently applied (TICS 
concept). Although Odonata are intermediary consumers/predators 
in aquatic food webs, we report here the effects of HWs on this 
organism group, as the following subsection only deals with verte-
brate predators. Experimental warming studies on dragonfly larvae 
(Odonata) present strong thermal effects at environmentally rele-
vant temperatures (ca. 35 days, C: ambient, HW: const. +5°C to am-
bient) with lower survival rates and premature emergence (Mccauley 
et al., 2015). Although no effects of increased temperature on the 
overall body size of adults were found, there was a significant inter-
action effect of temperature and sex with the trend for larger size 
with higher temperature being stronger in females than males.

3.3.2  |  Combined effects of HWs and chemicals on 
primary consumers

Interaction effect studies on HWs and chemical stressors towards 
aquatic primary and intermediate consumers are generally scarce 
(n  =  6), and all of them were published within the last 10  years 
(Figure 6). In a microcosm experiment, negative synergistic effects 
were observed initially (4 and 14 days, C: 20°C, HW: 28°C) in several 
zooplankton taxa (Daphnia sp., Cyclopoida, and Copepoda nauplii) 
exposed to increased temperature and the insecticide lufenuron 
(Arenas-Sánchez et al., 2019). Observed positive effects of increased 
temperature alone (16  days, C: 20°C, HW: 30°C) may be nullified 
through interactions with chemicals. This was noted for a cladoceran 
species (Moina micrura), which exposed to a HW only (16 days, C: 
20°C, HW: 30°C) showed increased population size, but when ex-
posed to a HW and the fungicide carbendazim simultaneously 
showed reduction in population size and net decrease of reproduc-
tive rate (Miracle et al., 2011). Another multiple stressor study with 
the freshwater gastropod Bellamya bengalensis reported detrimental 
effects on molecular endpoints caused by HWs in combination with 
the pesticide chlorpyrifos (60 days, C: 25°C, HW: 30°C, 35°C; Baag 
et al., 2021). In a multiple stressor experiment, Macaulay et al. (2021) 
exposed mayfly nymphs (Deleatidium spp.) to two subsequent HWs 
(both 6 days, C: 12°C, HW: 20°C). The first HW was combined with a 
non-chemical stressor (e.g. starvation) and the second with the insec-
ticide imidacloprid. The mayfly nymphs revealed a delayed negative 
synergistic interaction between a HW and imidacloprid (0.4  μg/L; 
Macaulay et al., 2021). In the same study, the second HW resulted in 
time-dependent stressor interactions and time-cumulative toxicity 
of imidacloprid affecting mayfly mobility. Lethal effects of imidaclo-
prid were only observed when applied as single stressor, suggesting 
that previous exposure to the first HW might have increased the 
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tolerance of the organisms to the combined effects of a HW and 
insecticide (Macaulay et al., 2021). Furthermore, there are reported 
synergistic HW–imidacloprid interactions in Deleatidium spp. and 
Coloburiscus humeralis on their moulting, immobility and mortality, 
suggesting temperature-enhanced toxicity of the neonicotinoid 
insecticide (Macaulay et al., 2020). In another study with imidaclo-
prid, Camp and Buchwalter (2016) showed that insecticide uptake 
in Isonychia bicolor as well as oxygen consumption rates increased 
significantly with increasing temperature (5 days, T-range: 15, 18, 21, 
and 24°C). Additional uptake tests with several aquatic invertebrates 
(I. bicolor, Neocloeon triangulifer, Macaffertium modestum, Pteronarcys 
proteus, Acroneuria carolinensis, and Pleuroceridae sp.) indicated that 
all the species tested had significantly increased imidacloprid uptake 
with increasing temperatures (Camp & Buchwalter, 2016).

3.4  |  Vertebrate predators

3.4.1  |  Direct effects of HWs on 
vertebrate predators

The focus in this section lays on larger vertebrate predators such as 
fish and amphibians, excluding macroinvertebrates and zooplankton. 
Increased water temperatures can affect the reproduction of fish by 
altering their spawning activity and impacting embryo development 

(Ashton et al., 2019; Warriner et al., 2020). Fish are known to respond 
to seasonal water temperatures by changes in movement behaviour, 
that is, the timing of migration or changes in microhabitat, seeking 
temperature refugia (Coutant, 2001). Consequently, HWs are likely 
to influence similar behavioural responses. In a mesocosm experi-
ment, the swimming behaviour of the Iberian barbel (Luciobarbus 
bocagei), a Mediterranean freshwater fish, was impacted under HW 
conditions (6 days, C: 24.5°C, H: 29.7°C) resulting in decreased activ-
ity and boldness (Mameri et al., 2020). Next to direct consequences 
on individual performance, these temperature-dependent behav-
ioural changes also influence predator–prey interactions (Öhlund 
et al., 2014). Altered predator–prey interactions may have indirect 
effects on other trophic levels resulting from a decreased preda-
tion pressure on preys, that is, benthic invertebrates and other fish 
(Figure 3).

A similar indirect effect across trophic levels has been observed 
for tadpoles under HW conditions. Diet shifts of tadpoles occurred 
in HW treatments (various HW scenarios tested, see Carreira et al., 
2016; Figure 3) with a general trend to increased herbivory in re-
sponse to a higher temperature (Carreira et al., 2016). Consequently, 
the direct effect of the HW on the predator (i.e. its diet shift) has 
limited consequences on other predators but rather affects other 
trophic levels indirectly (i.e. increased consumption of macrophytes 
and decreased predation on insect larvae). Conversely, HWs can also 
have indirect effects on predators via a direct effect on their prey 

F I G U R E  6  Conceptual overview of the combined effects of heatwaves and chemicals on primary consumers. Black upward or downward 
arrows indicate an increase or decrease of the respective ecological parameter. Grey arrows indicate direct and indirect effects on other 
processes. (1) Arenas-Sánchez et al. (2019), (2) Van de Perre et al. (2018), (3) Miracle et al. (2011), (4) Kimberly and Salice (2013), (5) Baag 
et al. (2021), (6) Macaulay et al. (2021), (7) Macaulay et al. (2020), and (8) Camp and Buchwalter (2016)
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or lower trophic levels through bottom-up mechanisms (Figure 3). 
Additionally, indirect effects within the same trophic level, for exam-
ple, intensified interaction of predators through competition of food 
resources or microhabitats, may occur at least temporally.

3.4.2  |  Combined effects of HWs and 
micropollutants on vertebrate predators

The studies investigating the combined effects of HWs and micro-
pollutants on predators (n = 7) include exposure experiments with 
metals, herbicides and antidepressants (Figure 7). The response 
categories of these studies comprise (i) effects only present in the 
combined exposure to HWs and micropollutants, (ii) effects domi-
nated by the HW or (iii) effects in all treatments. It is worth notic-
ing that this section reports mainly results of molecular endpoints. 
Extrapolation of effects in terms of fitness and reproduction are not 
easy because those are not typically measured.

For the following examples, the sensitivity of the organisms was 
only evident when exposed to the combination of both stressors, 
whereas each single-stressor application did not reveal significant 
effects. Tadpole metamorphosis was accelerated under HW condi-
tions (7 days, C: 28°C, H: 34°C, diuron and its metabolite 3,4-DCA) 
only when combined with an herbicide (Freitas et al., 2016). In 

another study exposing tadpoles to an herbicide under HW condi-
tions (8 days, C: 28°C, H: 36°C, clomazone), the activity of the bio-
transformation enzyme glutathione-S-transferase (GST), increased 
with increasing dose. A GST rise indicates an increased oxidative 
stress, which may lead to a reduced fitness of amphibians (Gripp 
et al., 2017). Such an increase was not observed at the same herbi-
cide concentrations at lower temperature (Freitas et al., 2017). The 
HW treatment alone indicated no significant difference in the activ-
ity of this phase II detoxification enzyme.

Similarly, the survival rate of zebrafish embryos after a HW treat-
ment (7 days, C: 26°C, H: 34°C, cadmium) was not affected in the 
HW only treatment but showed a dose-dependent reduction under 
joint cadmium exposure (Park et al., 2020). Furthermore, lower heart 
rates, increased cell death, upregulated genes for antioxidants and 
genes involved in apoptotic responses as well as DNA methylation 
were observed for the combined exposure. Another study with 
zebrafish revealed that glucose levels and routine metabolic rates, 
indicating stress and potentially reduced fitness, were increased in 
the combined exposure of a HW and an antidepressant (21  days,  
C: 27°C, H: 32°C, venlafaxine), again with no significant effects for 
the respective single stressor treatments (Mehdi et al., 2019).

The two following studies showed single stressor effects of the 
HW treatment and the combined exposure, but no effect on the mi-
cropollutant single stressor application. The pyruvate kinase activity 

F I G U R E  7  Conceptual overview of the single and combined effects of heatwaves and chemicals on predators. Black upward or 
downward arrows indicate an increase or decrease of the respective ecological parameter. Grey arrows indicate direct and indirect effects 
on other processes. The thermometer symbol indicates an effect related to temperature only, whereas the symbols of the thermometer 
and of the chemical together indicate a combined effect. (1) Freitas et al. (2016), (2) Park et al. (2020), (3) Mehdi et al. (2019), (4) Freitas et al. 
(2017), (5) Prophete et al. (2006), (6) Gripp et al. (2017), (7) Birnie-Gauvin et al. (2017), and (8) Hani et al. (2019)
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in Danio rerio increased (21  days, C: 27°C, H: 32°C, venlafaxine), 
indicating an increase in metabolic costs for the organism (Mehdi 
et al., 2019). For the Japanese medaka, the production of intracel-
lular reactive oxygen species (ROS) increased under HW condition 
(7 and 14 days, C: 25°C, H: 30°C, nickel chloride), and increased even 
more when combined with the exposure to a metal, which itself did 
not induce this effect (Prophete et al., 2006). An increase of ROS is 
associated to oxidative stress in fish, which can influence responses 
to environmental change and life history strategies (Birnie-Gauvin 
et al., 2017).

The remaining two studies investigating the effect of HWs and 
micropollutants in predators did not show a combined effect mecha-
nism of the tested stressors. No significant effect of combined expo-
sures (15 days, C: 16°C, H: 21°C, cadmium) were detected and only the 
HW treatment decreased the hepatosomatic index in males and in-
creased plasmatic vitellogenin content in female zebrafish (Hani et al., 
2019). This result highlights the importance of considering different 
endpoints in multiple stressor research, as cadmium did show an in-
teractive effect with HWs in zebrafish in the study mentioned earlier, 
investigating a different endpoint (Park et al., 2020). Conversely, the 
exposure to venlafaxine and a HW caused micro-RNA to decrease 
in their single exposures in the same amount as for their combined 
exposure (21 days, C: 27°C, H: 32°C, venlafaxine), indicating no sig-
nificant interaction effect in zebrafish (Ikert & Craig, 2020).

Although limited in their representation for the variety of top 
predators in freshwater ecosystems, these seven studies reveal a 
variety of combined effects of HWs and micropollutants on preda-
tors. Additionally, these studies highlight the importance of multiple 
stressor research, as only the combination of HWs and micropol-
lutant revealed the adverse effects to predators. Chemical risk as-
sessments based on exposure studies with standard temperature 
conditions are, thus, limited to detect the described effect occurring 
in combination with HWs.

Although the results of almost all mentioned studies indicate 
stronger effects of micropollutants on predators when simultane-
ously exposed to HWs, they also indicate that there are different re-
sponse categories with different stressor interactions. To unravel the 
underlying mechanisms, more research is needed investigating how 
HWs and micropollutants interact in affecting predators’ responses.

4  |  CONCLUDING REMARKS AND 
RECOMMENDATIONS

This literature review has revealed that only 5 out of the 61 included 
studies investigated the effects of HWs using a multitrophic ap-
proach. Those studies only focus on the effects of HWs in isolation. 
HWs have been assessed mainly through single species and/or pop-
ulation experiments containing one trophic level. Although these 
approaches are essential to reveal physiological responses, they 
are limited in ecological realism, excluding the investigation of the 
effects of trophic and non-trophic species interactions (Kéfi et al., 
2015; Seibold et al., 2018). The lack of testing in complex species 

assemblages appears particularly problematic since ecological real-
ism, and more community/ecosystem-oriented studies have recently 
been recognized as essential for the advancement of multiple stress-
ors research (Orr et al., 2020).

Generally, HWs are reported to cause compositional changes 
in all trophic levels analysed individually, although the mechanisms 
driving those changes may be different. Changes in community com-
position resulting from HW exposure could result in altered sensitiv-
ity towards chemical stressors. Yet, the scarcity of available studies 
does not allow to draw general conclusions on how HW-driven 
compositional changes may affect community sensitivity towards 
different chemical classes. Furthermore, although a framework to 
mechanistically decompose the effects of multiple stressors on the 
different trophic levels has been recently propose (Bracewell et al., 
2019; Van den Brink et al., 2019), at present, a mechanistic under-
standing of the processes underpinning the effects of HWs across 
organization levels in a multiple stressor context is missing. Mainly, 
this is linked to the insufficient availability of theoretical and em-
pirical work trying to unravel the processes behind the observed 
effects. Nevertheless, this review has provided some insights on 
the mechanisms driving the combined effects of HWs and micropo-
llutants. In the next sub-sections we provide recommendations for 
further research.

4.1  |  Focus shift towards higher levels of 
biological organization

We suggest that the assessment of the effects of extreme events 
combined with other stressors should involve investigations at the 
community and ecosystem level, which are primary focus of water 
managers, risk assessors and policymakers interested in multiple 
stressor effects (Orr et al., 2020). Investigations at high levels of 
organization have the potential to unravel the combined effects of 
extreme events and other stressors on functional processes, species 
interactions and how impacts can cascade through the food web. 
This is particularly important since temperature effects mediated 
by species interactions may be larger than direct effects caused 
by extreme events (Higashi & Patten, 1989; Montoya et al., 2009). 
Ecosystem response projections from single-species tests are chal-
lenging, as species performances differ depending on whether they 
are in monoculture or interacting in a community (Tabi et al., 2020). 
Moreover, it has been shown that food-web length and the num-
ber of species at each trophic level can modify the overall effects 
of perturbations, including chemicals, on species assemblages (Zhao 
et al., 2019), highlighting the need to test multiple stressors on mul-
titrophic and species rich communities (Seibold et al., 2018). An im-
proved understanding of how high levels of organization processes 
respond under combined disturbances, based on empirical data, is 
needed, and represents the major knowledge-gap identified in this 
review. In this context, micro- and mesocosm experiments represent 
one of the best ways to test the combined effects of micropollut-
ants and extreme events at high levels of biological organization. 
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Alongside with the experimental effort, the development of models 
able to predict combined effects of HWs and pollutants is needed to 
help ecosystems protection. Because testing all the possible stress-
ors combination for all aquatic ecosystem types is unrealistic, we 
need modelling tools enabling us to project combined stressors’ ef-
fects on different organization levels.

4.2  |  Gradient testing

Experimental designs aiming to study effects of extreme events 
need to consider nonlinear responses. Non-linear responses seem 
to be the norm in biological systems exposed to climatic variability, 
as a consequence of Jensen's inequality (Kreyling et al., 2018; Ruel & 
Ayres, 1999). Especially when effects of temperature are accounted 
for in freshwater systems, non-linear responses have been reported 
across all levels of biological organization, from individuals (Bernhardt 
et al., 2018), to communities (Baranov et al., 2020) and ecosystem 
processes (Lv et al., 2020). Testing non-linear responses requires the 
exploration of a wide gradient of the environmental driver(s) under 
investigation. Most experimental designs use only two levels of the 
tested drivers (i.e. applied/not applied; Kreyling et al., 2018), which 
can limit our ability to derive hypotheses on the mechanisms be-
hind the observed effects. Adopting gradient designs, therefore, 
may allow researchers to perform multiple stressor experiments in-
vestigating more combinations of stressors and a larger gradient of 
those stressors. Furthermore, gradient approaches would consent 
to different realistic disturbance intensities (i.e. multiple tempera-
ture regimes or chemical concentrations) and HW durations to be 
tested. Experimental exploration along a large gradient of drivers’ 
intensities and durations may also help in determining stress levels 
that have long-lasting legacies on communities’ biomass and com-
position (Jacquet & Altermatt, 2020). Moreover, more complex ex-
perimental designs allow studying different patterns of occurrence 
(i.e. reoccurring HWs, different timing of stressor application) and 
under different environmental scenarios. Finally, it has been pointed 
out that gradient designs allow more null models to be tested, which 
could improve our understanding of stressors’ interactions (Schäfer 
& Piggott, 2018).

4.3  |  Temporal dependency of stressor 
interactions and temporal dynamics of 
multiple stressors

The effects of multiple stressors (and their interactions) are temporal-
scale dependent (Garnier et al., 2017). That is, interactions between 
stressors can appear right after disturbance's application, as well as 
in the recovery phase. Yet, in multiple stressors studies, performing 
only a single sampling point after the stressors’ application is the rule 
(Beermann et al., 2018; Halstead et al., 2014; Piggott, Salis, et al., 
2015; Piggott, Townsend, et al., 2015). Accordingly, we did not find 
any study assessing the combined effects of HWs and chemicals 

over time, which is required to describe potential adaptation and/
or recovery. This is particularly relevant for the combination of HWs 
and micropollutant, as HWs, by definition, are temporary phenom-
ena. Conversely, some micropollutants can persist in the aquatic en-
vironment for months or years (Arp et al., 2017), and many chemicals 
have a continuous discharge to the aquatic environment, maintain-
ing exposure levels also for less persistent substances. Therefore, 
following the response of the study system(s) is important to detect 
interactions between stressors happening at different time points. 
Particularly, late stressors’ interactions may prevent the recovery 
of both compositional and functional endpoints. Furthermore, HWs 
are predicted to become more frequent (Meehl & Tebaldi, 2004) and 
may appear multiple times in a season (Woolway et al., 2021). The 
re-occurrence of HWs in ecosystems stressed by persistent micro-
pollutants (or receiving short-lived micropollutants multiple times) 
makes it necessary to follow the system's response over time in 
order to identify late-stage interactions and to take adequate pro-
tection measures.

Since perfect synchrony between stressors is rarely found in 
nature, designing experiments involving different order of stressor 
applications and measuring the organisms and ecosystem's re-
sponses over multiple time points is crucial (Jackson et al., 2021). 
Stressors’ sequence has consequences for the so-called ecological 
memory, which is the ability of previous stressors to influence fu-
ture responses (Hughes et al., 2019; Jackson et al., 2021). Among 
the literature we reviewed, only a single study explicitly inves-
tigated whether different orders of stressors application may re-
sult in different effects (Dinh et al., 2016). All the other studies 
reviewed here only tested simultaneous exposure to combined 
stressors. Testing different stressors’ sequence may be challeng-
ing as it requires large experimental designs. Yet, it appears to be 
a central research aspect, as the abovementioned CITS and TICS 
phenomena might produce unexpected effects across all levels of 
biological organization.

Some studies have explicitly assessed the effects of CITS and 
TICS, but this has been done prevalently at the individual and pop-
ulation level (Delnat et al., 2019; Verheyen & Stoks, 2019, 2020; 
Verheyen et al., 2019). Thus, consequences of these phenomena 
for higher levels of biological organization are still unexplored. 
Restricting the investigations of temporal dynamics of multiple 
stressors to the individual or population level will preclude the un-
derstanding of the role played by ecological memory in driving the 
responses at higher levels of biological organization.

Finally, the sampling of multiple time points can be translated 
in the measurement of different ecological metrics, such as resis-
tance, recovery, resilience and invariability (Donohue et al., 2013, 
2016; Hillebrand et al., 2018). Those ecological metrics have been 
shown to compose the different “dimensions” of ecological stability 
(Donohue et al., 2013; Pimm, 1984), which can be altered by differ-
ent stressor combinations (Polazzo & Rico, 2021). Maintaining sta-
ble ecosystems is fundamental, as only stable systems can deliver 
functions and services consistently. Therefore, studying how HWs 
and micropollutants affect different stability indices, and how the 
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order of stressors application plays in this context, may help to solve 
current managing conflicts, protect biodiversity in the long term, and 
guarantee the delivery of ecosystem functions and services.
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