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A B S T R A C T   

Background: The definition of realistic models for microbial risk assessment (MRA) requires the inclusion of 
variability as it is part of the microbial response to stress. Most studies are based on the hypothesis that the 
variation in the microbial response observed under laboratory conditions is due only to two sources: variability 
(e.g. differences between cells) and uncertainty (e.g. experimental error); disregarding the impact of chance. In 
this study, we perform a critical review of this hypothesis, evidencing it may be unrealistic because chance can be 
more relevant than variability and uncertainty in some scenarios. 
Scope and approach: The impact of variability, uncertainty and chance for microbial survival is revised. Chance is 
identified as a possible relevant factor, different to variability and uncertainty because it is an inherent part of the 
system that is not associated with any biological mechanism. We derive probability distributions describing the 
impact of chance on microbial survival based on mechanistic hypotheses. These models are used to simulate 
inactivation experiments using a Monte Carlo algorithm. 
Key findings and conclusions: Our analytical and numerical results demonstrate the relevance of chance for mi
crobial survival and, more generally, for MRA. When the probability of one cell surviving the treatment is low, 
chance becomes more relevant than variability or uncertainty. Chance can also introduce non-linearities in the 
survivor curves (fanning and tailing) that are usually associated with uncertainty and/or variability. Therefore, 
chance is a relevant factor that should be considered in MRA besides variability and uncertainty.   

1. Introduction 

Human beings inhabit a varying world. Individual humans vary in 
physical aspects such as sex, weight or blood sugar levels. Moreover, the 
environment they live in is stochastic; e.g. temperature and humidity of 
the air vary within days, between days and between seasons. Microor
ganisms also inhabit a world that is not constant. Individual microbial 
cells have differences in their genome that make them respond differ
ently to the same environmental condition (Den Besten et al., 2018; 
Koutsoumanis & Aspridou, 2017). Furthermore, the physicochemical 
properties of their environment also vary, affecting the microbial 
response. This effect is not just instantaneous but can have a lasting 
impact on the bacterial response. For instance, there is evidence that 
incubation conditions can affect thermal resistance of bacteria (Crespo 
Tapia et al., 2020). This makes estimating the risk associated with a 
foodborne disease using Quantitative Microbial Risk Assessment 

(QMRA) quite challenging, as risk models must consider the fluctuations 
at human and microbial scale. At the human scale, QMRA models should 
account for fluctuations in the logistic parameters of the food chain (e.g. 
storage temperatures or transport times), as well as differences between 
consumers (e.g. different sensitivities to a disease or different serving 
sizes). At the microbial scale, QMRA models should consider how dif
ferences in the genome of microbial cells and in their physiological state 
affect their response to the environmental condition they may encounter 
during the farm-to-fork chain of the product (e.g. ability to grow or 
survive stress). 

In the context of QMRA, these fluctuations due to differences be
tween members of the population (microbial cells, humans, retailers, 
refrigerators …) are categorized as “variability” (Schendel et al., 2018). 
On top of variability, QMRA studies are strongly affected by deviations 
associated with the use of partial or imperfect information (Schendel 
et al., 2018). These sources are usually categorized as “uncertainty”. An 
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example of uncertainty for QMRA is the use of predictive models with 
strongly empirical components. Due to the complexity of the system 
described, these models are built based on strong simplifications (e.g. 
log-linear kinetics) that may not describe the actual relationship be
tween the variables or may omit environmental parameters relevant to 
the microbial response. This introduces an uncertainty in the model, 
usually called “model uncertainty”. Furthermore, these models usually 
have parameters that must be estimated based on experimental data 
gathered under controlled laboratory conditions. Because every data 
point gathered under laboratory conditions is affected by experimental 
error (understood not just as “human error” but including other 
empirical limitations), models built based on empirical data are affected 
by an additional source of uncertainty (data uncertainty). Moreover, 
model parameters cannot be known with absolute precision, introducing 
an additional source of uncertainty: “parameter uncertainty”. There will 
always be certain factors or conditions not exactly known and in prin
ciple in using models there is always some smaller or bigger extrapo
lation to other situations, either in time, location, conditions, etc. Note 
that, unlike variability, uncertainty is not part of the system and can be 
reduced by gathering further and/or better information (Nauta, 2000). 
For instance, model uncertainty can, in some cases, be reduced by using 
higher order reaction kinetics (Peleg & Cole, 1998) or by introducing 
new explanatory variables to describe the impact of additional envi
ronmental factors (Martinez-Rios et al., 2020). Experimental data will 
thus be affected by both variability and uncertainty. In this article, we 
use the word “variation” to refer to the magnitude of the fluctuations in 
an experiment; i.e. including any relevant sources of variability and 
uncertainty. In order to derive more realistic models, the different 
sources of variation relevant for QMRA must be understood and 
described using the most adequate probability distributions. 

During the last decades, there has been a strong interest on how to 
include variability in QMRA studies, separating its contribution from the 
one of uncertainty (Thompson, 2002; Vose, 2008). Its practical interest 
is reflected in the efforts made by regulatory agencies to assess the 
relevance of variability and uncertainty in QMRA studies during the last 
years (EFSA Scientific Committee et al., 2018; Schendel et al., 2018). 
This is also relevant for food industries, as a description of variation is 
crucial for an effective control of microbial risks. This problem has been 
tackled from different angles. Several studies have extended classical 
models from predictive microbiology defining probability distributions 
for the model parameters to describe uncertainty and/or variability to 
simulate their impact on observations (Aspridou & Koutsoumanis, 2015; 
Garcés-Vega & Marks, 2014; Garre, Egea, et al., 2019; Koyama et al., 
2019). Other studies have applied statistical analysis to quantify the 
different sources of variation based on an experimental dataset (Aryani 
et al., 2015; Clemente-Carazo et al., 2020; Garre et al., 2020; Jaloustre 
et al., 2012; Nunes Silva et al., 2020). Following a more fundamental 
approach, other studies have isolated cells within a population with 
extreme phenotypes (e.g. high stress resistance) and used modern mo
lecular techniques to analyze the cause of their extreme behaviour 
(Maury et al., 2019; Metselaar et al., 2013). In spite of all these research 
efforts, the inclusion of variability in QMRA studies is currently an active 
research topic with many open questions. 

All these studies considered that variation could be associated with 
the combination of two factors: variability and uncertainty. Therefore, 
the impact of pure chance was not explicitly considered. In this article 
we define chance as variation that is not linked to any biological 
property nor can be reduced by gathering additional data. An alternative 
term to “chance” with a similar meaning in some contexts would be 
“stochastic noise”. However, because “stochastic” is commonly used as a 
synonym of random (e.g. “stochastic/random variables” or “stochastic/ 
random processes”), we believe it could be mistaken with the umbrella 
term “variation”. Moreover, we consider the term “chance” to be more 
familiar to scientists with a background in microbiology (e.g. this term is 
used by Keller and Taylor (2008) or Travisano et al. (1995)). Hence, we 
will use the term “chance” throughout this study to refer to variation 

that cannot be reduced by gathering additional/better information and 
cannot be associated with inherent factors of the system. As a final note 
regarding notation, “probability” will be used to refer to probability 
theory as a field, or to refer to the formal definition of a probability 
function (a map that assigns a value between 0 and 1 to each event in the 
event space). 

Several fundamental studies have pointed out the possible relevance 
of chance for microbial survival. Nevertheless, their conclusions have 
not been transferred to applied studies (e.g. shelf life estimation or 
QMRA). It has been shown that genetically identical cells can present 
different phenotypes in identical environments (Elowitz et al., 2002; 
Munsky et al., 2012; Xia et al., 2014), even arguing that noise in gene 
expression can be an evolutionary advantage (Viney & Reece, 2013). On 
a molecular level, it has been proposed that the distinct behaviour of 
genetically identical cells can be due to gene networks with bistable 
dynamics, being able to act as a toggle switch (Balázsi et al., 2011; 
Gardner et al., 2000). Therefore, chance is different to uncertainty, as it 
cannot be reduced by gathering more and/or better information. Chance 
does not adhere to the definition of variability either. Variability is the 
result of “real differences between the members of a population” 
(Schendel et al., 2018), but chance is not the result of any biological or 
physical mechanism that is different within the population. In this 
article we illustrate the potential relevance of chance for QMRA using 
microbial inactivation as a case study. In section 2, we propose a thought 
experiment (“a device with which one performs an intentional, struc
tured process of intellectual deliberation in order to speculate, within a 
specifiable problem domain, about potential consequences [or ante
cedents] for a designated antecedent [or consequent]” (Yeates, 2004)), 
that illustrates the importance of chance for the variation in the number 
of cells surviving a treatment. Then, in section 3, we propose stochastic 
models to describe the contribution of chance to the variation of the 
microbial count, combining it with other sources of variation (variation 
in the initial count and sampling error due to serial dilution). For this 
step we use probability distributions commonly used in various fields 
including QMRA (Poisson and binomial) because their simple hypoth
eses are the most suitable for the system we aim to simulate. These 
models are applied in sections 4 to 6 to illustrate the relevance of chance 
for the interpretation of thermal inactivation studies. 

2. A thought experiment about variability, uncertainty and 
chance 

Let us imagine a microbial cell whose genomic information is 
perfectly known; every gene has been sequenced and identified without 
error and is perfectly annotated. Moreover, every aspect related to its 
physiological state (e.g. mRNA) is perfectly described. For brevity, we 
will call this ideal microbial cell AGATA. Now, suppose that an inacti
vation treatment is applied with enough intensity to potentially inactive 
the microbial cell. For this thought experiment, we will assume that 
AGATA is exposed to heat stress, disregarding any medium effect that 
may be relevant for microbial inactivation (heat transfer, interaction 
cell-medium …). The question is: does AGATA survive the treatment? 
Considering the currently available scientific knowledge, we cannot 
answer this question unmistakably. Although there is some knowledge 
related to the genes involved in heat resistance (Hill et al., 2002; Richter 
et al., 2010; Smelt & Brul, 2014), the presence or absence of these genes 
does not ensure whether a microbial cell will survive a given stress. A 
similar statement can be made about the influence of the physiological 
state of the cell. Hence, at best, we can define a probability that AGATA 
will survive the treatment. 

Now, we extend this thought experiment by considering an inacti
vation treatment to be applied to twelve identical AGATA bacterial cells, 
divided in three groups of four cells. For this exercise, it can be assumed 
that each copy of AGATA has a 50% chance of surviving the stress (note 
that this is an arbitrary number that does not affect the conclusions). 
Therefore, it is expected that half of the microbial cells (two cells per 
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group) survive the treatment. However, because every cell is identical, 
there is no preference about which copy of AGATA should survive. 
Furthermore, not every group will result in a number of survivors equal 
to the expected one. Considering that the inactivation of each cell is 
independent, their survival can be considered as a Bernoulli trial (in
dependent random experiments with two possible outcomes), and the 
number of survivors follows a binomial distribution (Box et al., 2005). 
Hence, in this case, there is a probability of 0.0625 of 0 survivors, 0.25 of 
1 survivor, 0.375 of 2 survivors, 0.25 of 3 survivors and 0.0625 of 4 
survivors. Therefore, in spite of the population being homogeneous and 
the lack of knowledge gaps, this system shows variation in the number of 
survivors to the treatment purely based on chance. 

As reviewed in the introduction, variation in QMRA is usually based 
on two concepts: variability and uncertainty. Variability is related to 
natural variation due to biological factors or other aspects of the system 
(Schendel et al., 2018). In this thought experiment an identical, homo
geneous stress has been applied directly to groups of 4 identical mi
crobial cells (i.e. with the same stress resistance). Therefore, there is no 
variability in this system. On the other hand, uncertainty refers (in the 
context of predictive microbiology) to the use of imperfect information, 
and can potentially be reduced by gathering additional and/or better 
data. However, we have hypothesized that the genetics and physiolog
ical state of AGATA are known perfectly and that the stress is applied 
directly to it. Hence, no further knowledge can be gathered to reduce 
uncertainty. It is certain that the probability of the survival of one cell is 
exactly 50%. It is true that, by the central limit theorem, the average of 
several repetitions of the experiments will have lower variation as the 
number of experiments is increased. Nevertheless, for each individual 
experiment, the probability of having 2 survivors when the treatment is 
applied to four copies of AGATA will always be 0.375. Therefore, this 
variation is not related to any inherent biological differences (vari
ability), nor can it be reduced by gathering additional data (uncer
tainty). It is associated with a different source of variation independent 
of biological factors and that cannot be reduced: chance. 

These results are in-line with the ones of various fundamental studies 
that identified chance as a relevant factor for the response of bacterial 
cells (Elowith et al., 2002; Munsky et al., 2012; Viney & Reece, 2013; Xia 
et al., 2014). It could be argued that chance is actually an uncertainty 
component because the variation in cell survival is due to some bio
logical mechanism that is not yet known, so further knowledge would 
reduce this variation. However, even if this information was available, 
the mechanisms that are ultimately responsible for microbial inactiva
tion are related to chemical processes that are inherently stochastic. On 
a molecular level, microbial inactivation can be due to, among others, 
damage of the cell membrane or the denaturation of key proteins (Smelt 
& Brul, 2014). Because these molecules (genes, mRNA, proteins) have 
low copy numbers within an individual cell (Paulsson, 2004; Yu et al., 
2006), and also other molecules in the cell (see annex), their bimolecular 
reactions should be described as stochastic processes (Bressloff, 2017). 
Therefore, even with novel measurement devices and additional 
fundamental understanding, microbial survival will depend on the result 
of stochastic processes. In other words, the survival of individual cells 
will always depend, to some extent at least, on chance. 

3. Definition of probabilistic models for the variation in the 
number of survivors and stochastic simulations 

3.1. A stochastic model for chance 

If the initial size of a microbial population under an inactivation 
treatment was to be represented by the discrete, positive quantity N0 (i. 
e. with no variability). Assuming that the stress resistance of the mem
bers of the population is homogeneous (i.e. there is no variability due to 
any biological effect) each individual cell has exactly the same proba
bility of surviving the stress, defined by the real number p ∈ [0,1]. Let the 
discrete random variable Nf describe the number of survivors at the end 

of the inactivation treatment. Under the assumption that the inactiva
tion of each cell is an independent Bernoulli experiment, Nf conditional 
on N0 follows a binomial distribution of size N0 and probability p 
(Equation (1)) (Nauta, 2001; Vose, 2008); a distribution that is 
commonly used to describe stochastic processes because it is based on 
very simple hypotheses. Consequently, the expected value of Nf is given 
by E[Nf ] = N0⋅p and its variance by Var[Nf ] = N0⋅p⋅(1 − p). 

Nf |N0 ∼ Binom(N0, p) (1) 

Equation (1) can be generalized to describe the number of survivors 
at different time points of the treatment by defining the magnitude p as a 
function of time p(t). Then, the number of survivors at time t (N(t)) 
conditional on N0 follows a binomial distribution of size N0 and prob
ability p(t), as shown in Equation (2). 

N(t)|N0 ∼ Binom(N0, p(t) ) (2) 

We can propose functions for p(t) based on models typically used in 
predictive microbiology (Perez-Rodriguez & Valero, 2012). It is com
mon to describe microbial inactivation under isothermal conditions as 
an exponential decay process according to Equation (3). In this equation, 
the microbial count has been written as Nd to emphasize that this vari
able is deterministic not stochastic. In this model, the treatment time 
required to reduce 90% of the microbial population is given by the 
D-value (D). 

Nd(t) =N010− t
D (3) 

We can equalize the expected value of N(t) (E[N(t)] = N0 ⋅p(t)) to the 
right hand side of Equation (3) to obtain a function for p(t) that is 
equivalent to the log-linear model (Equation (4)). 

p(t)= 10− t
D (4) 

Note that by combining Equations (4) and (2), we obtain a model for 
N(t) where the expected value of N(t) equals Nd(t). However, whereas Nd 

is a discrete constant, N(t) is a discrete stochastic variable whose 
probability distribution is defined by the binomial distribution accord
ing to Equation (2) (e.g. Var[N(t)] = N0⋅p(t)⋅(1 − p(t))). 

Although the log-linear model is commonly used to describe micro
bial inactivation under isothermal conditions, several studies have 
shown that survivor curves commonly deviate from log-linearity (Peleg 
& Cole, 1998; van Boekel, 2002). For that reason, it is common to 
introduce a deviation from log-linearity in the microbial response based 
on the Weibull distribution of the individual heat resistance as shown in 
Equation (5), where β is a curvature parameter and δ is the treatment 
time required to cause the first ten-fold reduction of the microbial count 
(Mafart et al., 2002). 

Nd(t) =N010
−

(
t
δ

)β

(5) 

Following the same approach as for the linear model, we can use a 
function for p(t), so the expected value of N(t) equals the value of Nd 

defined in Equation (5). A similar approach was followed by Santos et al. 
(2020). As already mentioned before, unlike Nd(t), N(t) is a discrete, 
stochastic variable whose probability distribution is defined by the 
combination of Equations (6) and (2). 

p(t)= 10
−

(
t
δ

)β

(6)  

3.2. A stochastic model for chance and the variation in N0 

The stochastic model for N(t) in Equation (2) can be extended to 
include the variation in the initial microbial count. For that, instead of 
defining N0 as a positive, discrete constant, it can be defined as a discrete 
random variable (n0). It is common to disregard any overdispersion (e.g. 
due to cell clustering) and consider that the initial microbial count 
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follows a Poisson distribution with expected value N0; i.e. n0 ∼ Pois(N0)

(Koyama et al., 2016). It can be demonstrated that for any two discrete 
random variables X and Y, if X ∼ Pois(λ) and Y|(X = k) ∼ Binom(k, p) , 
then Y ∼ Pois(λ ⋅p). Substituting in Equation (2), a model that combines 
chance and the variation in the initial count can be constructed as shown 
in Equation (7). Note that, in this equation, p(t) is defined according to 
Equation (4) or (6) depending on whether inactivation is log-linear or 
follows a Weibullian model. 

N(t) ∼ Pois(N0 ⋅ p(t)) (7)  

3.3. A stochastic model for chance, the variation in N0 and the error of 
the serial dilutions 

An additional source of uncertainty that contributes to the variation 
of the observed microbial count is the sampling error associated with the 
methodologies used, e.g. the serial dilution method used to determine 
the microbial count (Duarte et al., 2015; Garre, Egea, et al., 2019). 
Because the microbial count can vary in several orders of magnitude 
during an inactivation treatment, its surviving cells are diluted before 
plating through serial dilutions. Then, the number of survivors at time t 
is estimated based on the number of cells C counted on a plate of dilution 
d (C(t,d)) according to Equation (8), where f is the dilution factor (0.1 
for decimal dilutions) and d is the number of decimal dilutions (e.g. 1 for 
the first decimal reduction). 

N(t)=C(t, d)⋅f − d (8) 

According to the analysis by Garre, Egea, et al. (2019), the number of 
microbial cells in a plate after d decimal dilutions conditional to the 
number of survivors N(t) follows a binomial distribution with parame
ters n = N(t) and pd

f . Using the same arguments as before and consid
ering that (when the variation in the initial microbial count is 
considered) N(t) follows a Poisson distribution, C(t, d) also follows a 
Poisson distribution (Equation (9)) with expected value λ = N0⋅ p(t)⋅ fd. 

C(t, d) ∼ Pois
(
N0 ⋅ p(t) ⋅ f d) (9)  

3.4. Computer implementation 

All the calculations required for the analysis have been implemented 
in R version 3.5.3 (R Core Team, 2016). The probability distributions 
have been calculated analytically, except for the model including 
chance, variation in N0 and the uncertainty of the dilutions (Equation 
(9)), which have been estimated using Monte Carlo simulations. 
Furthermore, to illustrate the impact of the different sources of variation 
on empirical observations, these have been simulated by uncertainty 
propagation using Monte Carlo simulations (Garre, Peñalver-Soto, et al., 
2019). The convergence of the numerical algorithm was checked 
repeating the calculations for different values of the internal seed, 
without observing any difference in the results. The R code is openly 
available in the GitHub page of the first author (https://github.com/al 
bgarre/chance-model). For simplicity, all the calculations have been 
done considering an experimental volume of 1 mL. Therefore from now 
on the number of cells is given as CFU, and this should be considered the 
number of cells in 1 ml. 

4. The relevance of chance on the number of survivors in an 
inactivation experiment 

Fig. 1 depicts the effect of chance (Equation (2)), and both chance 
and the variation in N0 (Equation (7)) on the variation of the microbial 
count for a log-linear inactivation treatment with an (expected) initial 
count of 6 log CFU and a D-value of 5 min at a given temperature. In both 
cases, for short treatment times (t < 20 min), the expected microbial 
count is relatively high and the probability mass function is similar to 
the probability density function of a normal distribution. However, as 
the expected microbial count becomes smaller, the probability mass 
function gets more skewed, deviating from normality. This is expected, 
as the normal distribution is only a good approximation of the Poisson 
distribution when the expected value (N0⋅p) is large (100 CFU can be 
defined as an approximate threshold). 

As illustrated in Fig. 1, the impact of the variation of the initial count 
in the distribution of the number of survivors is only marginal compared 
to the one of chance. In all the simulations, the probability mass func
tions calculated with or without the variation of the initial count are 
practically identical. The low relevance of the variation of the initial 

Fig. 1. Probability mass function of the microbial count (N(t)) for different time points of a treatment with an initial count of 6 log CFU and a D-value of 5 min. 
Probabilities have been calculated according to Equation (2) for the case with just chance, and Equation (7) for the case with chance and variation in the initial count. 
Red lines/points correspond to the calculations for the model with just chance, and blue ones to the ones of the model combining chance and the variation in N0. 
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count is evidenced further in Table 1, where the standard error of the 
microbial count for different heating time points is reported. For treat
ment times higher than 10 minutes, there is practically no difference in 
the standard error of N(t) calculated with or without the variation in N0. 
The reason for this similarity is that N(t) follows a binomial distribution 
when only chance is considered, and a Poisson distribution when the 
effect of the variation of N0 is added. When the expected value of N(t) is 
low (<1000 CFU), the probability mass function of both distributions is 
practically the same (provided they have the same expected value). 
Consequently, for long treatment times, there is practically no difference 
between the predictions of both models. 

These calculations were done also for inactivation kinetics described 
by the Weibull model, obtaining similar results (see supplementary 
material). The reason for this is that the variation of the microbial count 
is described by a Poisson distribution, whose only parameter is the ex
pected count. As a result, for the same expected count, both the Weibull 
and log-linear model calculate the same variation. 

Regarding the variation associated with the error of the serial di
lutions, for high microbial counts, it is more relevant than the variation 
in N0 (Table 1). For t = 0 min, including this source of variation increases 
the standard error of the microbial count from 1000 to 99,938 CFU, one 
order of magnitude lower than the expected value (1,000,000 CFU). At 
the end of the treatment, however, the error of the serial dilution has a 
low impact on the total variation. The reason for this is that the 
magnitude associated with this source of variation is due to the sampling 
error. In these simulations, unlike in those by Garre, Egea, et al. (2019), 
we have considered that for the dilution zero the whole experimental 
volume (1 mL) is plated. Therefore, for this dilution there is no sampling 
error and, consequently, no contribution to variation. 

Another variable that is of high interest for QMRA is the probability 
of at least one cell surviving the treatment. Because of chance, the 
probability of at least one microbial cell surviving the treatment is sig
nificant even for long treatments (Table 1). For a treatment of 35 min 
(expected microbial count of 0.1 CFU), there is a 9.5% probability of 
having one or more survivors; while for a treatment of 40 min (expected 
count of 0.01 CFU), there is still a 1% probability of at least one survivor. 
Therefore, chance is of high relevance for the probability of a microbial 
cell surviving an inactivation treatment. 

In order to better illustrate this result, Fig. 2 depicts the variation in 
the probability of no cell surviving the treatment for a population with 
homogeneous stress resistance (thick, red line). The calculations were 
done considering log-linear inactivation (Fig. 2A), and weibullian 
inactivation with β = 2 (Fig. 2B) and β = 0.6 (Fig. 2C). Although the 
shape of the cumulative distribution function is affected by β, the same 
conclusions can be drawn in the three cases: chance is of high relevance. 

According to Table 1, the variation in the initial microbial count and 
the error of the serial dilutions have practically no impact on the 
probability of one cell surviving the inactivation treatment when ex
pected counts are low. This is due to the fact that these sources of 

variation mostly impact the distribution of the observations for high 
microbial counts (Fig. 1; Table 1). Hence, they are mostly irrelevant 
when describing the probability of few cells surviving the treatment. 
This is further depicted in Fig. 2, where the cumulative distribution 
function is plotted as a thin, blue line. This line practically overlaps with 
the function for the case where the variation in N0 is not considered, 
illustrating that this factor has practically no influence on the outcome 
when the expected number of survivors is low. 

These analytical results can be used to alleviate the computational 
burden of Monte Carlo simulations for QMRA. In most cases, the prob
ability of vegetative cells surviving a pasteurization treatment is very 

Table 1 
Probability of zero count and expected standard error of the observed microbial count for different time points of a heat treatment with an initial count of 6 log CFU and 
a D-value of 5 min. The values considering variation due to Chance and due to Chance + N0 have been calculated analytically (Equations 2 and 7), whereas those for 
Chance + N0 + dilution have been calculated using 5000 Monte Carlo simulations per condition (time point X dilution).    

Probability of zero survivors Probability of one or more survivor Standard error of N(t) (CFU) 

Treatment time 
(min) 

Expected count (N 
(t)) (CFU) 

Chance Chance +
N0 

Chance + N0 +

dilution 
Chance Chance +

N0 

Chance + N0 +

dilution 
Chance Chance +

N0 

Chance + N0 +

dilution 

0 1000000  0.000 0.000 0.000 1.00 1.00 1.00 0.000 1000 99938 
5 100000 0.000 0.000 0.000 1.00 1.00 1.00 300 316 10009 
10 10000 0.000 0.000 0.000 1.00 1.00 1.00 99.5 100 998 
15 1000 0.000 0.000 0.000 1.00 1.00 1.00 31.6 31.6 100 
20 100 0.000 0.000 0.000 1.00 1.00 1.00 10.0 10.0 10.0 
25 10 0.000 0.000 0.000 1.00 1.00 1.00 3.16 3.16 3.17 
30 1 0.368 0.368 0.367 0.632 0.632 0.633 1.00 1.00 1.00 
35 0.1 0.905 0.905 0.904 0.095 0.095 0.096 0.32 0.32 0.32 
40 0.01 0.990 0.990 0.990 0.010 0.010 0.010 0.10 0.10 0.10  

Fig. 2. Probability of no cells surviving inactivation treatments of different 
durations considering an initial count between 1 and 6 log CFU (linetype). The 
microbial kinetics are described by a log-linear model with a D-value of 5 min 
(A), the Weibull model with δ = 5 min and β = 2 (B), and the Weibull model 
with δ = 5 min and β = 0.6 (C). The colour of the lines represents the sources of 
variation considered in the simulations. 
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small (Zwietering et al., 2021). As a result, the microorganism would be 
absent in the majority of the Monte Carlo simulations. The probabilities 
of at least one cell surviving the treatment calculated analytically and 
reported in Table 1 can, therefore, be used to reduce the number of 
Monte Carlo simulations, limiting the number of calculations to just 
those with positive samples. 

5. The effect of chance on the survivor curve observed in an 
inactivation treatment 

Fig. 3 illustrates the potential effect of chance on the survivor curves 
observed under laboratory conditions. They show several effects that 
have been previously associated with variability and/or uncertainty. 
The simulated observations have a “fanning effect” (increased variation 
for low microbial counts) that has previously been associated with 
variability in the resistance of individual cells to the treatment (Abe 
et al., 2020; Aspridou & Koutsoumanis, 2015; Hiura et al., 2020; 
Koyama et al., 2019), or to experimental error (Garre, Egea, et al., 
2019). However, as demonstrated in this work, the fanning effect can 
also be a result of chance. Moreover, the observations show an upwards 
curvature with respect to the expected response. This spurious tailing 
effect had already been observed empirically and had been attributed to 
the sampling error of the serial dilution and plating method (Garcés-
Vega & Marks, 2014; Garre, Egea, et al., 2019). As shown in this 
investigation, this effect can also be due to the effect of chance. 

The fact that models based on different hypotheses (variability, un
certainty or chance) are able to describe the same response poses a 
challenge for model validation. In this kind of situation, it is generally 
advisable to apply the principle of parsimony for model selection 
(Zwietering, 2009). For the analysis of variation, this could be 
approached by building several models, each including the contribution 
of a unique source of variation (biological variability, uncertainty or 
chance), and selecting the one that best fits the data. In case none of the 
models is able to describe the data, one could propose a model that 
combines several sources of variation. However, this approach could 
lead to spurious conclusions for the case of microbial inactivation. As 
already argued, empirical limitations can be mitigated but are un
avoidable, chance is of high relevance when the probability of survival is 
low, and plenty of empirical evidence supports the hypothesis that 
(biological) variability affects the bacterial response to stress. Conse
quently, the variation observed empirically will be a combination of 
these three factors. In this case, if a model that only considers variability 
can describe the variance perfectly, it is very likely this model over
predicts the contribution of variability by assigning to this source the 
effect of chance and uncertainty. 

As an alternative approach, we suggest that this type of study should 
start with the hypothesis that the total variation is a combination of 
variability, uncertainty and chance. Then, the goal of the study could be 

the quantification of the fraction of variation attributable to each source. 
As shown in this article, for chance and some sources of uncertainty, it is 
possible to derive the expected variation in the microbial response based 
on entirely mechanistic hypotheses. This is not the case for variability, 
which is not yet well understood and thus cannot be implemented in 
stochastic models using mechanistic hypotheses. Indeed, previous 
studies following this approach proposed models based on empirical 
hypotheses (Abe et al., 2020; Aspridou & Koutsoumanis, 2015; Hiura 
et al., 2020; Koyama et al., 2019). For this reason, we suggest as a 
starting point a stochastic model that includes the effect of chance and 
the one of those sources of uncertainty that can be described mecha
nistically (e.g. dilution error). The variation predicted with the model 
can then be compared against the one observed empirically. In cases 
where the observed variation is higher than the theoretical one, it is 
reasonable to propose new hypotheses (related to uncertainty and/or 
variability) to explain the variation that cannot be described by the 
model. 

As an illustrative example, from Fig. 3 and Table 1, it is clear that the 
model including only chance and the variation in N0 would not be able 
to describe all the variation in a typical inactivation experiment, espe
cially at the beginning of the treatment. Therefore, this model could be 
extended including the dilution error, resulting in the simulations 
illustrated in Fig. 4. Although this model predicts a higher variance, the 
standard deviation of the log count is approximately 0.05 log CFU for 
microbial counts lower than 100 CFU (standard deviation of 1000 Monte 
Carlo simulations), still smaller than the one usually observed in inac
tivation experiments (~0.5 log CFU (Garre et al., 2020; Jarvis, 2008)). 
Therefore, an extension of this model considering other sources of 
variability or uncertainty could be reasonable. For instance, one could 
propose a stochastic model for the single cell time to inactivation 
describing population heterogeneities (recently reviewed by Aspridou 
and Koutsoumanis (2020)), or including the effect of the plated volume 
(Garre, Egea, et al., 2019). Nevertheless, this model should be added on 
top of the model based on chance. Otherwise, the model could over
predict the contribution of variability, assigning to this source of vari
ation the variation due to chance. 

6. The relevance of chance the interpretation of inactivation 
studies 

Previous scientific studies analysing the survival of microbial cells to 
inactivation treatments were based on the hypothesis that variation 
could be attributed to two sources: inherent (biological) variability and 
uncertainty (that can be reduced with better information) (Den Besten 
et al., 2018; Koutsoumanis & Aspridou, 2017). The results from the 
previous sections have shown that chance can also be at least as relevant 
as variability and uncertainty for microbial inactivation when the 
number of survivors is low. Using our analytical equations, we have 

Fig. 3. Simulated microbial count in inactivation treatments considering the variation solely due to chance. The microbial kinetics are described by a log-linear 
model with a D-value of 5 min (A), the Weibull model with δ = 5 min and β = 2 (B), and the Weibull model with δ = 5 min and β = 0.6 (C). In every case, the 
initial count was fixed to 6 log CFU. The solid line represents the expected microbial count according to the deterministic model. 
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demonstrated the potential importance of chance, especially when the 
expected microbial count is low (<100 CFU). This result is of high 
importance for microbial risk assessment, as microorganisms usually 
have a low probability of surviving inactivation treatments applied in 
the food industry (Zwietering et al., 2021). Therefore, it raises the need 
for specific statistical methods to analyze and model the data at low 
microbial counts (Duarte et al., 2015; Garcés-Vega et al., 2014). 
Although there are some methods based on hypotheses that deviate from 
normality (e.g. the Most Probable Number method assumes a Poisson 
distribution (Alexander, 1965)), these methods usually consider a single 
probability distribution. In order for these methods to be able to describe 
the contribution of each source of variation (variability, uncertainty and 
chance), they must consider more complex statistical methods that 
include a combination of distributions (Garre et al., 2020). As already 
discussed in this article, this requires first a realistic identification of the 
relevant sources of variation (variability, uncertainty and chance), and 
their implementation as probability distributions that correctly describe 
the model hypotheses. 

Another implication of our observations is that, in many situations, it 
is not possible to draw a clear line separating the contribution of the 
different sources of variation in risk assessment. For example, it is well 
known that we cannot know exactly the inactivation parameters of a 
specific outbreak strain, being uncertainty. Similarly, if we want to 
describe the general inactivation kinetics of Listeria monocytogenes and 
have to include strain variability, this variability is estimated from data, 
so it cannot be known exactly. In other words, it is affected by uncer
tainty. Therefore, drawing a clear line separating between variability 
and uncertainty may be unattainable in some cases. This observation is 
especially relevant when QMRA models are implemented using meth
odologies that require a strict separation between variability and un
certainty (e.g. second-order Monte Carlo) (Pouillot & Delignette-Muller, 
2010; Vásquez et al., 2014) 

The results of this investigation also impact the interpretation of 
studies with a more fundamental approach. Several studies have sought 
for biological markers of stress response, for instance by applying 
several cycles of inactivation treatments and studying the survivors 
(Metselaar et al., 2013). The conclusions of this investigation are very 
relevant for this kind of study. Through a thought experiment, we have 
demonstrated that identical cells can still show variation in their stress 
response. This does not imply that biological differences have no influ
ence on the variation of microbial inactivation; there is plenty of sci
entific evidence suggesting otherwise. However, there will always be a 
“residual variability” due to chance, independent of biological factors. 
Therefore, the relevance of chance should be considered in this type of 
study. Otherwise, scientists may end up searching for biological markers 
of stress resistance in a population whose variation in survival is only 

due to chance. 
Another point worthy of discussion is that the variation of the mi

crobial count due to uncertainty and chance is unavoidable in experi
mental observations. In this article we have quantified the influence of 
chance and uncertainty in the variation of the microbial count. Because 
this estimation is based on fundamental hypotheses (i.e. not on 
parameter estimation), the prediction holds as long as the hypotheses 
are true. These hypotheses would be too conservative for actual exper
imental conditions (e.g. the stress resistance of the population will never 
be homogeneous), so they serve as a lower bound for the variation in the 
experimental observations. The calculation of such a lower bound has 
interesting implications. It is common for scientists to show concerns 
when reviewing a dataset with too much variation, suspecting a mistake 
in the experimental protocol. The existence of a lower bound for the 
observed variation implies that scientists should also consider with care 
a dataset where the total variation is smaller than the one defined by the 
lower bound (Table 1), and this should be considered as an indication of 
a mistake in the experimental protocol. 

7. Conclusions 

This article has demonstrated that, besides variability and uncer
tainty, chance can be very relevant for microbial risk assessment. Using 
microbial inactivation as a case study, we have derived analytical 
equations to describe the probability distribution of the microbial count 
for a homogeneous microbial population (i.e. every cell with identical 
stress resistance). Moreover, we have expanded this model by including 
the variation in the initial microbial count and the sampling error 
associated with the serial dilution counting method. Our analytical and 
numerical results demonstrate that chance is more relevant than these 
two other sources of variation for low microbial counts, and that chance 
is a strong determinant of the probability of single cells to survive a 
treatment. Therefore, this source of variation should be considered, as 
well as variability and uncertainty, when analysing the variation in the 
microbial response in risk assessment studies. 
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Fig. 4. Simulated microbial count in inactivation treatments considering the variation due to chance, the variation in the initial count (expected value of 6 log CFU), 
and the sampling error of the serial dilutions. The microbial kinetics are described by a log-linear model with a D-value of 5 min (A), the Weibull model with δ = 5 
min and β = 2 (B), and the Weibull model with δ = 5 min and β = 0.6 (C). The solid line represents the expected microbial count according to the deterministic model. 
The dots are coloured according to the number of dilutions that were used for plating. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tifs.2021.10.033. 

Annex I: The number of Hþ ions in a bacterial cell 

The regulation of H+ intracellularly is essential for bacterial cells, as this molecule is involved in many biochemical reactions required for cell 
growth and survival and the free H+ concentration in a bacterial cell is rather constant at neutral internal pH. However, the abundance of free H+ in a 
typical bacterial cell is extremely small. As an example, Listeria monocytogenes is a small (0.5–2 μm x 0.5 μm) organism (Beaufourt et al., 2014). If we 
consider the organism to be a cylinder of 1 μm (length) x 0.5 μm (diameter), its volume will be 

V = π × (0.25)2
× 1 = 0.2μm3 = 2⋅10− 19m3 = 2⋅10− 16liter 

At pH 7, the number of H+ ions in a liter is (considering the contact of Avogadro NA = 6⋅1023 (number of particles/mol) and [H+] = 10-pH (ions/ 
mol) 

nH+ = 10− 7 ×
(
6⋅1023) = 6⋅1016 ions/liter 

Then, the typical number of H+ ions in a bacterial cells is 

NH+ = 6⋅1016 × 2⋅10− 16 = 12 ions/cell 

For smaller cells, the number of H+ ions will be even smaller. For instance, a cell of 0.4 μm length and 0.2 μm diameter has a volume of 1.3 × 10− 17 

liter. At a pH of 7 then the number of H+ molecules in a cell would be 1.3 × 10− 24 moles, and this would be 0.75 molecules only. This would mean that 
at every moment there is a probability of 0.75 at any moment that there would be a free H+ ions in the cell present. 

References 

Abe, H., Koyama, K., Takeoka, K., Doto, S., & Koseki, S. (2020). Describing the individual 
spore variability and the parameter uncertainty in bacterial survival kinetics model 
by using second-order Monte Carlo simulation. Frontiers in Microbiology, 11, 985. 
https://doi.org/10.3389/fmicb.2020.00985 

Alexander, M. (1965). Most-Probable-Number method for microbial populations. In 
Methods of soil analysis (pp. 1467–1472). John Wiley & Sons, Ltd. https://doi.org/ 
10.2134/agronmonogr9.2.c49.  

Aryani, D. C., den Besten, H. M. W., Hazeleger, W. C., & Zwietering, M. H. (2015). 
Quantifying variability on thermal resistance of Listeria monocytogenes. International 
Journal of Food Microbiology, 193, 130–138. https://doi.org/10.1016/j. 
ijfoodmicro.2014.10.021 

Aspridou, Z., & Koutsoumanis, K. P. (2015). Individual cell heterogeneity as variability 
source in population dynamics of microbial inactivation. Food Microbiology, Special 
Issue on Predictive modelling in food, 45(B), 216–221. https://doi.org/10.1016/j. 
fm.2014.04.008 

Aspridou, Z., & Koutsoumanis, K. (2020). Variability in microbial inactivation: From 
deterministic Bigelow model to probability distribution of single cell inactivation 
times. Food Research International, 137, 109579. https://doi.org/10.1016/j. 
foodres.2020.109579 

Balázsi, G., van Oudenaarden, A., & Collins, J. J. (2011). Cellular decision making and 
biological noise: From microbes to mammals. Cell, 144, 910–925. https://doi.org/ 
10.1016/j.cell.2011.01.030 

Beaufort, A., Bergis, H., Lardeux, A. L., & Lombard, B. (2014). EURL Lm TECHNICAL 
GUIDANCE DOCUMENT for conducting shelf-life studies on Listeria monocytogenes in 
ready-to-eat foods Version 3 of 6 June 2014 – Amendment 1 of 21 February 2019. 

van Boekel, M. (2002). On the use of the Weibull model to describe thermal inactivation 
of microbial vegetative cells. International Journal of Food Microbiology, 74, 139–159. 
https://doi.org/10.1016/S0168-1605(01)00742-5 

Box, G. E. P., Hunter, J. S., & Hunter, W. G. (2005). Statistics for experimenters: Design, 
innovation, and discovery. Hoboken, N.J: Wiley-Blackwell.  

Bressloff, P. C. (2017). Stochastic switching in biology: From genotype to phenotype. 
Journal of Physics A: Mathematical and Theoretical, 50, 133001. https://doi.org/ 
10.1088/1751-8121/aa5db4 

Clemente-Carazo, M., Cebrián, G., Garre, A., & Palop, A. (2020). Variability in the heat 
resistance of Listeria monocytogenes under dynamic conditions can be more relevant 
than that evidenced by isothermal treatments. Food Research International, 137, 
109538. https://doi.org/10.1016/j.foodres.2020.109538 

Crespo Tapia, N., Dorey, A. L., Gahan, C. G. M., den Besten, H. M. W., O’Byrne, C. P., & 
Abee, T. (2020). Different carbon sources result in differential activation of sigma B 
and stress resistance in Listeria monocytogenes. International Journal of Food 
Microbiology, 320, 108504. https://doi.org/10.1016/j.ijfoodmicro.2019.108504 

Den Besten, H. M. W., Wells-Bennik, M. H. J., & Zwietering, M. H. (2018). Natural 
diversity in heat resistance of bacteria and bacterial spores: Impact on food safety 
and quality. Annual Review of Food Science and Technology, 9, 383–410. https://doi. 
org/10.1146/annurev-food-030117-012808 

Duarte, A. S. R., Stockmarr, A., & Nauta, M. J. (2015). Fitting a distribution to microbial 
counts: Making sense of zeroes. International Journal of Food Microbiology, 196, 
40–50. https://doi.org/10.1016/j.ijfoodmicro.2014.11.023 

Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic gene 
expression in a single cell. Science, 297, 1183–1186. https://doi.org/10.1126/ 
science.1070919 

EFSA (European Food Safety Authority) Scientific Committee, Benford, D., 
Halldorsson, T., Jeger, M. J., Knutsen, H. K., More, S., Naegeli, H., Noteborn, H., 
Ockleford, C., Ricci, A., Rychen, G., Schlatter, J. R., Silano, V., Solecki, R., Turck, D., 
Younes, M., Craig, P., Hart, A., Von Goetz, N., Koutsoumanis, K., Mortensen, A., 
Ossendorp, B., Martino, L., Merten, C., Mosbach-Schulz, O., & Hardy, A. (2018). 
Guidance on Uncertainty Analysis in Scientific Assessments. EFSA Journal, 16(1), 39. 
https://doi.org/10.2903/j.efsa.2018.5123, 5123. 

Garcés-Vega, F., & Marks, B. P. (2014). Use of simulation tools to illustrate the effect of 
data management practices for low and negative plate counts on the estimated 
parameters of microbial reduction models. Journal of Food Protection, 77, 
1372–1379. https://doi.org/10.4315/0362-028X.JFP-13-462 

Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of a genetic toggle 
switch in Escherichia coli. Nature, 403, 339–342. https://doi.org/10.1038/35002131 

Garre, A., Egea, J. A., Esnoz, A., Palop, A., & Fernandez, P. S. (2019a). Tail or artefact? 
Illustration of the impact that uncertainty of the serial dilution and cell enumeration 
methods has on microbial inactivation. Food Research International, 119, 76–83. 
https://doi.org/10.1016/j.foodres.2019.01.059 
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