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a b s t r a c t

Accurate forecasts of the power production of distributed photovoltaic (PV) systems are essential to
support grid operation and enable a high PV penetration rate in the electricity grid. In this study, we
analyse the performance of 12 different models that forecast the day-ahead power production in
agreement with market conditions. These models include regression, support vector regression,
ensemble learning, deep learning and physical based techniques. In addition, we examine the effect of
aggregating multiple PV systems with a varying inter-system distance on the forecast model perfor-
mance. The models are evaluated both on their technical and economic performance. From a technical
perspective, the results show a positive effect from both an increasing inter-system distance and a larger
sized PV fleet on the model performance, which was not the case for the economic assessment.
Furthermore, the ensemble and deep learning models perform better than the alternatives from a
technical point of view. For the economic assessment, the results indicate the superiority of the physical
based model, followed by the deep learning models. Lastly, our findings show the importance of
considering the user's objective when assessing solar power forecast models.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Vast decreasing costs associated to solar photovoltaic (PV) sys-
tems have increased the competitiveness of PV systems to other
power generation technologies. This has resulted in a surge of the
global installed capacity of PV systems in recent years. The global
installed capacity is estimated at 739 GWp in 2020 and is expected
to grow up to 1,800 GWp in 2025, making it the most rapidly
growing source for power generation [1]. Moreover, the installation
of distributed PV systems is expected to account for about half of
the projected capacity growth [2]. This strong growth of (distrib-
uted) PV capacity will affect the electricity supply and subsequently
the power dispatch.

The integration of variable renewable energy sources, i.e. solar
PV, in the electricity grid poses challenges to grid operators in
maintaining grid stability [3]. Moreover, the power output of PV
systems may drop or increase by almost 70% within 1 min and can
differ by more than 75% from 1 h to the following [4]. These
alskaif@wur.nl (T. AlSkaif), W.
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fluctuations in the power output cause imbalances in the grid,
which affect the operating frequency and (local) voltage if not
managed properly by balancing reserves [5]. Adequate scheduling
of supply and demand can limit the occurrence of imbalances and
lower the need for these often carbon intensive, inefficient and
costly reserves. As a result, accurate forecasts of the PV power
output are required for scheduling the dispatch of power produc-
tion by other technologies. This includes distributed PV systems, as
the power output of large amounts of distributed PV will affect the
dispatch. Reliable forecasts of PV power output therefore have the
potential to support stable grid operation when the PV penetration
rate increases, while limiting the need for balancing reserves.
Subsequently, these forecasts are in the first place valuable for grid
operators as it reduces the integration costs associated with PV
systems [6]. Besides, accurate forecasts of power production of
distributed PV can also support flexibility services of aggregated
systems in the grid if managed by, e.g., an aggregator [7]. Conse-
quently, accurate forecasts are identified as a requirement to
facilitate a high PV penetration level [8].

Fluctuations in PV power output are caused by variations in
irradiance that is received at the plane of the PV array [3]. This
observed irradiance can be described by a deterministic and a
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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stochastic component [9]. Here, the deterministic is described by
the movement of the earth with respect to the sun and can
therefore be estimated very accurately at every location and at any
time of interest. Moreover, this component can be expressed by the
Clear Sky Irradiance (CSI), while considering the panel orientation,
i.e. tilt and azimuth angle. On the other hand, the stochastic
component is rather difficult to predict as it is affected by the
chaotic nature of the atmosphere, where the formation, evolution
and motion of clouds affect the Global Horizontal Irradiance (GHI)
received at the surface. In addition, the power output of a PV system
is also directly affected by the ambient temperature and wind
speed [3].

In recent years, the development and application of solar fore-
casting methods have received an increasing attention from re-
searchers, grid operators and other users involved in electricity
markets [10]. In solar forecasting, the objective of the user who is
applying the results of the forecast defines the forecast re-
quirements. These requirements determine what forecast methods
generates the most accurate results [11]. In many electricity mar-
kets around the world, the majority of electricity is traded in the
day-ahead market (DAM) and consequently, the dispatch of gen-
erators is largely decided in this DAM. Hence, operators of solar PV
systems, in particular traders such as utilities and aggregators that
operate many and/or large-sized systems have a high interest in PV
power forecast models that can predict the day-ahead production
in order to optimize their market bids.

As a result, the market requirements related to the DAM should
be considered when developing day-ahead PV power forecast
models. In many countries, including the Netherlands, single value
electricity volume and price bids are accepted until noon on day T,
thereafter the market is cleared and a day-ahead price is set for
each trading block on day T þ 1 [12]. Acknowledging this 12 h lead
time for the purpose of PV power forecasting, Numerical Weather
Prediction (NWP) is preferred over other methods including sat-
ellite and all-sky imaging. Moreover, statistical models are often
applied to improve the forecast performance by post-processing
NWPs [6].

Previous studies have already shown the success of statistical
models that post-process NWPs to forecast the day-ahead PV po-
wer output. Different studies test a selection of models that include
a variety of predictor variables [6,13]. In more recent years, the
attention of researchers appears to be shifting towards the devel-
opment and application of more advanced models. Most of these
approaches include machine learning and deep learning models
[14,15], ensemble models [16,17] and/or hybrid models [18,19].
However, these more advanced forecast models come at a cost of
the difficulty in interpretation, require extensive hyperparameter
tuning and are therefore more complex to adopt. In addition, they
are often not compared to one another. Besides, proposed novel
methods often gain a marginal performance improvement and are
commonly executed using a single case study so that it remains
uncertain if the found improvements are universal. This argument
is supported by the fact that the forecast accuracy is greatly affected
by the local climate conditions and therefore the location of interest
[3]. The lack of an extensive comparison raises the question if these
advanced models are worth developing and adopting for different
users.

Furthermore, due to the limited information that is disclosed,
the applicability of these models by interested parties remains in
many cases not clear. For example, users that are interested to
adopt a forecast model that can support bidding into the DAM are
bounded to gate closure time and trading blocks. This sets several
requirements to the operationalization of forecast models,
including the temporal resolution, lead time, time horizon and
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available information, which is essential to interested parties as
discussed in Ref. [20]. For example, in Ref. [21] day-ahead refers to a
0e24 h ahead forecast, which does not meet the operational con-
ditions of the actual DAM [12]. In other studies it is unclear if the
application of thesemodels meet themarket conditions [14,16] or it
is unknown to what extent the obtained results can be achieved
when adopted in real-time [15]. Exceptions to this are found in few
studies, where the evaluated models meet the operational condi-
tions of the DAM [22e24] or intraday market [25]. In addition,
these models are commonly examined by means of technical per-
formance metrics including the Mean Bias Error (MBE), Mean Ab-
solute Error (MAE), Root Mean Square Error and/or the Skill Score
[26]. Nevertheless, users willing to adopt the forecast models may
be more interested in the economic performance of the proposed
forecast models, as also outlined by Antonanzas et al. [27].
Although the selection of adequate error metrics to evaluate the
performance of models in the field of solar forecasting is already an
element of discussion [28], in literature there is limited attention to
the potential discrepancy between technical and economic metrics.
Moreover, an economic examination is only found in Ref. [24],
where three different day-ahead forecast models are compared on
several performance indicators including the potential profits in
the DAM for a case study in Spain.

Another limitation of the above-mentioned studies is related to
the testing conditions, which is in many cases either a single site
[14,15,18,19] or a single aggregation of a number of systems
[16,17,22]. In practise the performance of solar forecast models is
found to be correlated with the spatial distribution and/or the
number of systems included, since this smoothens out the PV po-
wer production profiles [29]. The effect of increasing the spatial
area on the performance of solar irradiance forecast models was
studied by Lorenz et al. [30], with a coarse spatial resolution within
an area of 200 � 120 km. This raises the question how an increased
spatial area relates to the performance of different PV power
forecast models and how this is effected by the number of the
systems, i.e. system density. To the best of the authors’ knowledge,
similar studies that consider the effect of a varying spatial resolu-
tion on the performance of PV power forecast models aremissing in
current literature. A summary of the literature is presented in
Table 1.

The goal of this paper is to investigate the performance of awide
variety of solar power forecast models. As motivated above, grid
operators require reliable forecasts to guarantee adequate grid
management. On the other side, electricity traders, such as utilities
and aggregators, have a high interest in these models to maximize
the economic revenue of the PV systems they operate. Besides,
utilities and aggregators may also deploy the models to offer flex-
ibility services to grid operators. In this study the model perfor-
mance is evaluated with both technical and economic metrics to
provide insights into the effect that the user's objective has on the
best performing models, and subsequently to uncover potential
contradictory interests between different users. Lastly, the effect of
aggregating PV systems with varying inter-system distances is
assessed on the model performance for both metrics. As a result,
with this study we aim to lower potential barriers for grid inte-
gration of PV systems by empowering PV system operators, elec-
tricity traders, aggregators, utilities, grid operators and other users
in the development and implementation of operational PV power
forecast models.

The contributions of the paper can be summarized as follows:

1. First of all, this study provides an extensive comparison of 12
models that forecast the day-ahead PV power production while
considering the DAM requirements. These models include



Table 1
Overview of relevant literature.

Reference Forecast target (Power/
GHI)

Forecast site Evaluation metrics (Technical/
economic)

Meet market
requirements

Considers impact of spatial
area

[14] Power Single site Technical No No
[15] Power Single site Technical No No
[16] Power Single aggregation Technical No No
[17] Power Single aggregation Technical DAM No
[18] Power Single site Technical No No
[19] Power Single site Technical No No
[21] Power Single site Technical No No
[22] Power Single aggregation Technical DAM No
[23] Power Single site and multiple aggregation

levels
Technical DAM No

[24] Power Single site Both DAM No
[25] GHI Single site Technical Intraday No
[30] GHI Single site and multiple aggregation

levels
Technical No Yes
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indirect and direct approaches, including a PV model and
several regression and machine learning based models that rely
on a varying degree of complexity.

2. Subsequently, we evaluate the performance of these models on
both technical and economic metrics. As a result, this study
shows the effect of the user's objective on the best performing
model as well as the trade-off between the objectives of
different users, i.e. minimizing the forecast error from a tech-
nical perspective or maximizing the economic value.

3. Furthermore, this study evaluates the impact of aggregating PV
systems on the technical and economic performance of solar
power forecast models and hence bridges the current gap in
literature.

4. Lastly, we decouple the value of aggregation in the context of the
model performance into a spatial and density effect by consid-
ering different numbers of PV systems within varying spatial
areas.

The paper is further organized as follows. In the next section the
methods including the performance metrics are discussed (Section
2). In Section 3 the data input is described and assessed. The results
of this study are discussed in Section 4. Finally, the conclusions are
presented in Section 5.

2. Methods

This section explains the methods adopted in this study, starting
with a description of the 12 forecast models. Next, additional steps
in the methods including pre- and post-processing steps are dis-
cussed. Finally, the metrics adopted to examine the performance of
the forecast models are presented. An overview of the methods is
provided in Fig. 1. The data used in this study is discussed in more
detail in Section 3 (see Table 2).

2.1. Forecast models

Most forecast models considered in this study are supervised
learningmodels. Thismeans that themodel is trained on a subset of
the dataset holding observations of predictor and target variables.
An overview of the predictor variables is presented in Table 2,
whereas the target variable presents the PV power output. Based on
the observed relationship, the model identifies the parameter set-
tings [13]. In addition to the supervised learning models, a PV
model is considered that simulates the power output of a PV system
using its characteristics and few weather variables. Finally, two
benchmarkmodels are included, where forecasted values are based
on historic observations [31]. Furthermore, all simulations in this
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study are conducted in Python 3.6.5 [32]. The experiments are
supported by the PVlib [33], Scikit-learn [34] and Tenserflow [35]
libraries.
2.1.1. Linear regression
The first model that is considered in this study is a Multivariate

Linear Regression (MLR) model. This is a simple and widely applied
model in solar forecasting. The MLR model forecasts the PV power
output by considering a linear relationship between a matrix (X) of

(n) predictor and (m) timestamps and the power output (ŷmlr),
which is described by a vector of regression coefficients b:

ŷmlr ¼ bXþ ε; (1)

where ε presents the uncertainty. The coefficients are found by

minimizing differences between the actual (y) and predicted (ŷmlr)
power output:

min ðy� ŷmlrÞ: (2)

The Least Absolute Shrinkage and Selection Operator (LASSO)
model is a variation of the linear regression model in Eq. (1), where
the number of included input variables is reduced. This is done by
penalizing the regression coefficients using a L1 norm function,
which is the sum of the absolute coefficients. The penalty forces
some of the coefficients that have a minor contribution to the
model to reduce to zero (see Eq. (3)).

min ðy� ŷlassoÞ; s:t:kbk1 � t; (3)

where t is a hyperparameter to be defined by the user and sets the
upper bound for the sum of the coefficients kbk1. To boost the
model performance, the value of this and other hyperparameters is
optimized by means of a grid search (see Section 2.2).

Another popular regression model for forecasting is Seasonal
Auto-Regressive Integrated Moving Average with exogenous input
variables (SARIMAX). Different from the models discussed above,
SARIMAX is a time-series model that requires a temporal ordering
in the data. The SARIMAX model is based on an Auto-Regressive
Integrated Moving Average (ARIMA) model that integrates an
auto-regressive (AR) and moving average (MA) model to forecast
time-series. In the SARIMAX model, external variables are consid-
ered and a periodicity factor is added to the ARIMA model. This
periodicity factor enables the model to observe a natural seasonal
cycle, e.g. the solar diurnal cycle. The SARIMAX model is mathe-
matically expressed as [36]:



Fig. 1. Overview of the methods. Details can be found in the text. Note that the six types of models lead to 12 forecast models used in total.

Table 2
Overview of the predictor variables.

Variable Unit

1. Air Pressure Pa
2. Mean Sea Level Pressure Pa
3. Ambient Temperature �C
4. Dewpoint Temperature �C
5. Total Precipitation M
6. Surface Solar Radiation Downwards W/m2

7. Zonal Wind Speed at 10m height m/s
8. Meridional Wind Speed at 10m height m/s
9. Total Cloud Cover e

10. Low Cloud Cover e

11. Medium Cloud Cover e

12. High Cloud Cover e

13. Sine of Hour of Day e

14. Cosine of Hour of Day e

15. Clear Sky Irradiance W/m2

16. Solar Zenith Angle �

17. Solar Azimuth Angle �
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4pðBÞ FPðBsÞ Vd VD
s ŷsarimax ¼ qqðBÞ QQ ðBsÞ bX ε; (4)

where ŷsarimax is the target variable (i.e. PV power output). The
ARIMA operators are characterized by 4p(B), Vd and qq(B) and
respectively present the AR polynomial, difference operator and
MA polynomial. The seasonal AR polynomial, difference operator
and MA polynomial are defined by FP(Bs), VD

s and QQ(Bs).

2.1.2. Support vector regression
Support Vector Regression (SVR) is a kernel based forecast

technique that evolved from the Support Vector Machine (SVM),
which is typically used for classification problems. Similar to SVM,
SVR constructs a set of hyperplanes in a multidimensional space in
order to describe the relationship between predictor and target
variables [37]. In this study we first consider an SVR model with a
linear kernel (LSVR), which is described by Eq. (5).

ŷsvr ¼
Xm

i¼1
ðai �a*i ÞKðxi; xjÞ þ b; (5)

where the target variable (i.e. PV power output) is ŷsvr , ai � a*i is the
270
difference between the Lagrange multipliers and b the bias. The
kernel function is denoted with K(x, xi), in case of a linear SVR:
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Kðxi; xjÞ ¼ xTi xj þ c; (6)

where c is a constant.
In addition to the linear SVR model, we consider a nonlinear

kernel variant of SVR denoted as KSVR. By replacing the linear
kernel function in Eq. (5) with a nonlinear kernel, a more complex
relation between the predictor and target variables can be
considered as the problem can now be described in a higher
dimensional space. In this study we consider a Gaussian Radial
Basis Function, which is mathematically expressed as [13]:

Kðxi; xjÞ ¼ exp

 
�
��xi � xjk2

2s2

!
; (7)

where s is a hyperparameter set by the user.

2.1.3. Ensemble learning
In this study we include two different ensemble learning based

forecast algorithms: a Random Forest regression (RF), and a
Gradient Boosting regression (GB). Both RF and GB consist of a
number of trees eachmade up of tn layers and 2tn decision nodes. At
each of these decision nodes, a test to any of the input variables is
applied. The test outcome determines what sub-branch of the tree
is selected until a leaf node is reached, where a prediction is made.
Each decision node in a tree is constructed by randomly sampling a
few variables. From these variables the most valuable split variable
and value is chosen by optimizing on a loss function, i.e. the Mean
Squared Error (MSE) [13]. In RF the decision trees are created
independently from one another based on a bootstrap sample of
the training dataset. Consequently, each tree is trained on the
bootstrap sample, while considering the loss function. The mean of
the output of all constructed trees forms the forecasted value [38].

Contrary to RF, in GB the individual decision trees depend on
each other and are built considering the entire dataset. In GB each
subsequent tree is built and stacked upon its predecessor, in order
to diminish the obtained forecast or estimation error (i.e., boost-
ing). Moreover, each new built tree takes the residual of the pre-
vious learner to decrease the errors of the model. The first built tree
considers the deviation of the mean as input residual. The gener-
atedmodel output is equal to the sum of the output of all trees [13].

2.1.4. Deep learning
Furthermore, this study includes two different types of Neural

Networks (NNs). The architectural design of NNs allows to build
complex nonlinear relationships between the predictor and target
variables, without assuming any form of relationship between
these variables. A NN consists of an input layer that receives the
input data, an output layer that yields the predictions and a pre-
defined number of hidden layers in between that transform the
input data. Each of these layers are made up of a number of nodes,
in which the data transformation takes place [39].

The first NN architecture we consider is a feed-forward Artificial
Neural Network (ANN). In this ANN, data is transmitted in a uni-
directional manner, i.e. information is passed from each node in
one layer to every node in the consecutive layer. Within every node
the data is transformed according to the activation function, weight
and bias [39]. This process is described by equation (8).

Liþ1 ¼ aðWi*Li þ biÞ; (8)

where Wi presents the weights of each input node per processing
node bi holds a vector of the bias per processing node present for
layer i. The activation function a determines if the fed data triggers
the operations in the node, and L indicates the layer that consists of
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multiple nodes. In this study several activation functions are tested
including Sigmoid, Rectified Linear Unit, Softmax and Hyperbolic
Tangent [39]. The model output, in this study ŷann, is calculated in
the output layer as in equation (8). The output node in the output
layer is fed with information of all nodes in the last hidden layer.

Secondly, we consider a Recurrent Neural Network (RNN) ar-
chitecture in the form of a Long Short-Term Memory (LSTM). In
contrast to ANN, where samples are fed to the model separately, in
an RNN a sequence of samples is given to the model at once. The
RNNmodel then processes each sample individually, while in every
layer the output of the preceding sample is passed on as additional
input [40].

LSTM is a special type of RNNwhere multiple preceding outputs
of nodes in all layers including the output layer can be remembered.
To guide the conservation of information, three steps are added in
the form of gates to the data transformation steps taken in the
nodes. These include a forget, input and output gate. These gates
respectively determine what information is removed, stored and
provided as an input to the following sample. Similar to the oper-
ations in the node, these gates utilize an activation function, weight
and bias to generate its output [40].

Apart from the difference in the node operation and the sub-
sequent ability to remember information, an LSTM model operates

similarly to an ANN. Consequently, the forecast ŷlstm can be
described similarly to ANN by equation (8), where the inserted
information from the previous layer (Li) is accompanied by infor-
mation from the previous samples.

2.1.5. Physical model
We include a PV model that obtains a power forecast by

considering the NWPs of the GHI, wind speed, surface pressure, and
ambient and dew point temperature. This PV model forecast is also
referred to as an indirect forecast approach as it is computed in
three consecutive steps. Firstly, the GHI is decomposed in the Direct
Normal Irradiance and Diffuse Horizontal Irradiance with the
DIRINT model [41]. Secondly, the Perez model is used to transpose
the irradiance components in their in-plane counterparts [42]. And
thirdly, the power output of the PV system is simulated through a
PV model [33]. An advantage of the PV model to the models dis-
cussed above is that the former does not require any training data.
This advantage comes at a cost of the additional information that is
required regarding the characteristics of the PV system.

2.1.6. Benchmark models
Finally, in order to provide context with respect to the accuracy

obtained by the forecast models presented above, we consider two
benchmark models. Firstly, we include a Diurnal Persistence (DP)
model where the PV forecast equals the observations for the most
recent available daily series. As PV production values are only
available up to noon at day T, we consider the production values for
T � 1, see Eq. (9). In addition, we include a Clear Sky Persistence
(CSP) model that presumes that the current condition, which is
defined by the clearness index (k*), will last in the future. As a
result, the model accounts for solar irradiance variations due to the
diurnal and seasonal cycles (see Eq. (10)). The k* is calculated for
the most recent observed PV power output value, which is noon
(see Eq. (11)).

ŷdpðtÞ ¼ yðt� 48Þ; (9)

where the time t ranges from h ¼ 0 to h ¼ 24.

ŷcspðtÞ ¼ ycsðtÞk*t ; (10)
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where ycs is the expected PV production in case of a clear sky and:

k*t ¼
yðth¼12Þ
ycsðth¼12Þ

: (11)

2.2. Pre-processing

The variables considered in this study (see section 3) are
collected in a matrix Xwith dimensionm � n. Here,m presents the
number of hours considered in this study and n is the number of
predictor variables. Next, the dataset is cleaned, which includes: (i)
the power output during timestamps that fall in the night are set to
0, (ii) if present, negative values are labeled as NaN and lastly (iii)
NaN values are filled by linear interpolation of the clear-sky index
for a maximum of 3 consecutive hours. In case a day holds more
than 3 NaN values, the entire day is removed from the dataset.
Furthermore, in case of time-series basedmodels like SARIMAX and
LSTM, nighttime values are kept. This is required as these models
consider a dataset as an equally spaced sequence of observations
and therefore demand a successive equally spaced dataset. For the
remaining models, all nighttime values are excluded from the
dataset, as this is found to improve the model performance and
simultaneously reduces the computational requirements. To create
a fair comparison between all the models, nighttime values are
excluded for evaluation.

Subsequently, the dataset is split in a training and testing set,
respectively Xtrain and Xtest. The training set concerns 2 years, from
February 2014 until February 2016. The test set runs for one year,
until February 2017. The training set is firstly used for hyper-
parameter tuning, where the best settings according to a numerical
score are found by means of a grid search. A k-fold cross-validation
method is used, where the training set is divided in k¼ 8 sequential
folds. An 8-fold grid search considering a two year training period
(see section 3) results in 8 iterations where the model is trained on
21months and evaluated on one quarter of a year. The performance
of eachmodel is for all hyperparameter configurations tested on the
MSE, for all 8-folds. Due to computational constraints the grid
search is executed for 10 PV systems, which are, based on the
system characteristics (i.e. location, size, orientation, tilt), deemed
to be representative for the entire PV fleet. Next, the optimal set-
tings for each system and model are weighted to obtain the best
overall hyperparameter setting configuration. This configuration is
then used in the execution of all PV power output forecasts.

Finally, the predictor and target variables are all pre-processed
before being used in the forecast models. Moreover, the predictor
variables are scaled according to the maximum observed value
during the training period. Similar to the predictor variables, the
target variable PV power output is normalized according to the PV
system capacity. In order to produce model performance results
that are independent of the PV system size, the normalized values
are also considered in the evaluation.

2.3. Post-processing

After the forecast models are executed, the predicted values are
post-processed (see Fig. 1). In this post-processing step, all fore-
casted values are compared and limited to the theoretical
maximum production. Since at an hourly time resolution potential
cloud enhancement effects are undetectable [43], the actual yield
should not exceed the maximum production of the PV system that
is obtained under clear sky conditions. Moreover, the production of
a PV system under these circumstances can be estimated by using a
PV model that is fed with CSI values and depends on the PV system
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characteristics, location and time (see section 2.1.5).

2.4. Aggregating PV systems

To evaluate the impact of aggregating PV systems on the tech-
nical and economic performance of the forecast models, a multi-
tude of sets of aggregated systems is considered by the forecast
models. The power output of these aggregated systems is
described:

yt ¼ 1
N

XN

s¼1
yt;s; (12)

where s is an index for each system in the number of systems
considered (N). Note, since the constructed aggregated production
dataset requires all systems to have data available, the performance
results obtained for single and multi-site forecasting cannot be
compared directly.

Subsequently, in the analysis of the results the impact of
aggregating PV systems is categorized according to the spatial
distribution of the PV systems, which includes the spatial area as
well as the density of the aggregated systems. The latter is
considered by labelling each set with the number of PV systems
includedN in the aggregation, namelyN¼ 1, 2, 3, 5,10, 25, 50 or 100
systems. Next, we label each of these sets using the inter-system
distance D, with D ¼ 0.5, 1, 2, 5, 10, 15, 20, 25 or 30 km. Here, we
denote a combination of a number of systems and an observed
inter-system distance as a category. For instance, N ¼ 5 PV systems
with an inter-system distance of D ¼ 10 km is considered as one
category. Subsequently, within each category ten different sets are
included in order to identify trends and minimize the impact of
potential outliers. The sets within each group are random.

The inter-system distance D is defined as the diameter of the
smallest circle that encloses the area holding all PV systems. We
construct the smallest enclosing circle with the randomized in-
cremental construction algorithm [44]. Here, let l1, …, lN be the
location of the PV systems in a certain set N and Ci the smallest
enclosing circle of i points (i.e. PV systems) l1,…, lN. To establish this
smallest enclosing circle we first create a circle where the center is
exactly in the middle of l1 and l2 (see Fig. 2a). If N exceeds 2, we
want to add an additional location l3, which will be located either
within the current circle Ci such that C3 ¼ C2 or outside (see Fig. 2b).
In the latter case, a new larger circle C3 is constructed, where l3 is
considered a boundary point (see Fig. 2c). Next, the radius of the
circle is reduced until another location meets the boundary of the
circle. Hereafter, the origin of the circle is moved towards the centre
of these two locations until either any third location hits the
boundary or to the point where the circle diameter is equal to the
distance between these two known locations (see Fig. 2d). This
process is repeated until all points in N are included in the circle
Cl1 ;…;lN .

2.5. Performance metrics

The last step in the methods considers evaluation of the fore-
casts (see Fig. 1). To examine the performance of the proposed
forecast models we firstly consider the technical evaluationmetrics
the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE)
and Mean Bias Error (MBE) [6]. These can be referred to as a
technical evaluation of themodel performance as it pronounces the
magnitude of the forecast error in terms of the quantity.

In addition to the technical performance metrics described
above, we include an economic metric that measures the perfor-
mance of the forecast models. This indicator considers the net
revenues made when the generated forecast of a model was used



Fig. 2. A visual example of the process followed to define the inter-system distance (D), where the red triangles present the spatial distribution of the selected PV systems in case of
N ¼ 5.
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for bidding in the DAM, where the production of electricity per
trading block is compensated with the DAM Price (DAMP). To
include the economic consequences of a forecast error, the eco-
nomic indicator includes the financial penalty that a bidding party
is required to pay when the day-ahead bid deviates from the actual
power production. This penalty, i.e. Settlement Price (SP), is raised
in case of a production deficit or surplus and must be paid by the
responsible party to the local Transmission System Operator (TSO),
which is TenneT in the Netherlands [45]. The sum of the penalties
depends on the grid imbalance at the respective moment in time
and therefore depends on all participants in the DAM [46]. The
distribution of the DAMP [47] and SPs [45] during the study period
can be found in Fig. 3, where the SP is split into a SP in case of a
surplus (SPs) and deficit (SPd). During most of the time the bidding
party is paid when the actual production exceeds the forecast and
vice versa. Moreover, the compensation of the overshoot is usually
lower than the DAMP and the costs of the shortage higher than the
revenues made on the DAM (see Fig. 3). This translates as a price
incentive to the bidding party to forecast the production as accu-
rately as possible. However, due to major imbalances, the
mentioned logic does not always persist, which may lead to un-
expected revenues from forecast errors [45]. In extreme cases the
logic can even be reversed such that the bidding party is paid by the
TSO for their production shortage and vice versa [45]. This occurs in
case of a negative SP, see Fig. 3.

In this study, the economic indicator is represented by the
Economic Revenues (ER). The ER is calculated by Eq. (13): the first
term describes the initial revenues made on the DAM and the
second term presents the net imbalance costs due to the observed
forecast error. In contrast with the technical performance metric,
the ER evaluates the economic consequences of forecast errors.
Moreover, a large forecast error could have little economic
Fig. 3. Distribution of the observed DAMP, and SP in case of a production deficit or
surplus for 2016 and 2017.
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consequences at times the SPs approaches the DAMP.

ER ¼
Xm�1

t¼0
DAMP*ŷþ SPs*ðy� ŷÞ if ŷ< y;

ER ¼
Xm�1

t¼0
DAMP*ŷþ SPd*ðy� ŷÞ if ŷ> y:

(13)
3. Data input and analysis

3.1. PV data

In the present study the PV power output of a total of 152 PV
systems is considered. All these systems are located in the province
of Utrecht, the Netherlands and cover an area of 38 by 54 km (see
Fig. 4). The PV systems are all rooftop mounted and differ in their
characteristics, with an installed capacity ranging from 0.5 to 6.8
kWp. The system orientation varies between 86� and 285� (south is
180�), with one exception of a single system oriented towards the
north (5�). The system tilt ranges from2� to 60�. More details on the
distribution of the PV systems according to these characteristics
and the observed average annual system yield for three years from
January 2014 are depicted in Fig. 5. Among others, this figure shows
that the capacity of most systems is lower than 3 kWp. Besides,
most systems are tilted and oriented towards the south. Systems
due south are found to have an average energy yield of 1050 kWh/
kWp, whereas yield of all systems varies between 660 and
Fig. 4. Geographical distribution of the PV-systems (red circles) in the province
Utrecht, the Netherlands.



Fig. 5. An overview of the characteristics and observed annual yield of the PV systems considered in this study. The figure should be read as a matrix, where the sub figures in the
diagonal are probability density functions that present the probability distribution of the characteristics among the PV fleet. The sub figures to the left are scatter plots, whereas the
trend, i.e. a best fit line, is represented by the red line. The figures in the top right corner present a heat map, where the color marks the density of systems found from low (blue) to
high (red).

Fig. 6. A distribution plot presenting the observed monthly yield per year of all the PV
systems considered in this study. The mean yield of the 152 PV systems per month is
indicated by a blue line, the red marker presents the median.
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1225 kWh/kWp.
The power output of these PV systems has been collected with a

1-min resolution from January 2014 until February 2017 and are
averaged to obtain mean hourly production values. The considered
PV systems have a data availability of at least 95% for diurnal hours.
The distribution of the monthly summed PV power generation of
the considered systems is shown in Fig. 6. The figure indicates
annual variations in the PV power output per month as well as a
significant distribution among the PV systems in terms of elec-
tricity generation per unit of installed capacity.

3.2. Predictor variables

For the same period, historic weather predictions of several
variables are collected from the European Centre for Medium-
Range Weather Forecasts (ECMWF) weather archive [48]. These
NWPs are generated by the High Resolution Forecast Configuration
(HRES) of the Integrated Forecast System (IFS) developed by
ECMWF. The historic archive holds the weather predictions for two
separate simulations per day, one at noon and one at midnight.
These have a time horizon of 10 days, an ascending time step from 1
to 6 h depending on the time horizon, and a lead time of 0 h. Since
in this study we focus on day-ahead PV power output forecasts, we
only collect day-ahead weather predictions. This corresponds to
weather predictions with a lead time of 12 h and a time horizon of
36 h. Moreover, for these hours, predictions are available with an
hourly time resolution. In total 12 predictor variables are collected
from these NWP forecasts, i.e. variables 1e12 in Table 2.
274
These variables are complemented with the hour of the day
(HoD), which is presented by a sine and cosine component in order
to deal with its cyclic nature [9]. In addition, several variables are
included that describe the time dependent position of the sun in
the sky. These variables include the CSI, Solar Zenith Angle (SZA)
and the Solar Azimuth Angle (AZI).
4. Results

This section firstly presents the technical and economic per-
formance of the forecast models when a single PV system is
considered. Next, the impact of aggregating PV systems on the
performance of the models is discussed.
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4.1. Single PV system

4.1.1. Technical comparison
Fig. 7 presents the performance of each forecast model for the

test period (i.e. February 2016 until February 2017) by showing the
distribution of the MAE observed per PV system. Similar results are
found in terms of the RMSE. The MAE is depicted, as this metric is
easier to interpret with respect to under- and overestimation of the
forecasted PV power output. From Fig. 7 it becomes clear that all
forecast models outperform the benchmarkmodels, i.e. DP and CSP.
Moreover, the competitiveness amongst the top performing
models, with respect to the average observed MAE among all
considered PV systems, is obvious from Fig. 7. The RF model is the
best performing model with an average MAE of 6.13%. This is fol-
lowed by the LSTM and GB models, for which MAE values of 6.22%
and 6.29% are found. Since the ANN model achieves a similar per-
formance, it can be concluded that in terms of the MAE ensemble
and deep learning based models are superior to the alternatives.
Consequently, these models are found to best filter and capture the
relevant information from the available predictor variables.

Besides, Fig. 7 indicates that the PV model performs slightly
better than the regression-based models, including MLR, SARIMAX
and LASSO, and LSVR. This is remarkable as the PV model requires
the input of less predictor variables nor does it need any training
before it can be applied. However, the PV model does rely on the
availability of information concerning the characteristics of the PV
system, e.g. azimuth and tilt angle, which information is not
included in any other model. The results prove the advantage of
utilizing a PV model to describe the relation between predictor
variables that affect the PV power output directly and exclude the
remainder variables. Subsequently, the inclusion of variables that
indirectly affect the PV power output within the linear regression
models may cloud the learning process, causing a poorer perfor-
mance for the linear regressors.

Furthermore, the difference in the performance between the
two benchmark models should be pointed out as the simpler DP
model shows a slightly lower MAE than the CSP with an average
MAE of 11.3% and 11.4%, respectively. This can be explained as the
DP model can better describe similar weather patterns that occur
on consecutive days. Hence, the DP model performs better during a
series of typical summer days where cloud formation occurs in the
afternoon. Since the CSP forecasts the day-ahead PV power pro-
duction based on the current situation only, it lacks the capability to
include such daily patterns.

Lastly, a MBE of less than 1% is observed for the two benchmark
models and under 0.5% for all others.

4.1.2. Economic comparison
The economic performance in this study is assessed based on
Fig. 7. The Mean Absolute Error per forecast model for each individual PV system.
Color reflects ordering per model type.

275
the ER, see Section 2.5. Fig. 8 presents the average economic per-
formance per model over all 152 PV systems for the entire test
period. Moreover, this figure presents the revenues made on the
DAM as well as those made on the imbalance markets during the
studied period. The different revenue streams are separated,
whereas the first bar per model presents the revenues from trading
on the DAM. The second bar shows the net revenues due to a deficit
in the delivery of electricity. Since these are negative, the deficit
comes at a net costs for the PV operator and results in lower rev-
enues made per installed capacity. The third bar presents the net
revenues from a surplus in electricity delivery, increasing the
average annual revenues per kWp.

Although in Fig. 8 it can be observed that the deficit in electricity
production comes at a net cost for the PV operator during the
studied period, it should be noted that it can lead to additional
revenues for the PV operator from time to time in case of a (strong)
negative SP. In practice, this would be the case when the electricity
grid is highly congested, such that involved parties are rewarded for
reducing their production [45]. Similarly, a surplus of electricity
production could at times be met with net costs. Moreover, a
varying SP results in less and higher penalized forecast errors. This
observation is important to note because it explains the fact that a
(high) prediction error may increase the benefits, promoting a less
accurate forecast model. Nevertheless, imbalance market prices are
unpredictable and in general the revenues on the imbalancemarket
are less profitable for traders, which stimulates them to minimize
the forecast error (see Section 2.5).

The overall economic performance of all models as well as a
perfect forecast case (Perfect) is presented in Fig. 8. The results
show that over the test period, the revenues made in case of a
perfect forecast of the PV power output amount to 27.18 V per kWp
installed. This could also be referred to as the theoretical potential
of a perfect forecast model. We find that adopting the forecast
models lead to revenues varying between 24.77 and 26.39 V per
kWp on an annual basis. Remarkably, the best performing model is
the PVmodel. Fig. 8 shows that this is closely followed by the LSTM,
KSVR and ANN models, respectively. Similar to the MAE, the
benchmark models also show worse performance according to the
economic metric. However, in this case the CSP is found to
outperform the DP model.

Furthermore, Fig. 8 shows a clear relationship between high
revenues made at the DAM and high costs related to production
deficits. This relationship subsist due to an overestimation of the
electricity production, i.e. a positive bias, and the SP raised on the
deficit in production that emerges from this overestimation. This is
the case for MLR, SARIMAX, LASSO, CSP and the PV model, where a
high production deficit occurs due to an overestimation of the PV
production in the day-ahead bid (on the DAM). The deficits are met
by significant amounts of imbalance penalties that must be paid.
Fig. 8. Overview of the observed economic performance in terms of costs and reve-
nues per kWp installed capacity of solar PV for each forecast model when used for
trading on the DAM, including raised imbalance penalties.
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Another interesting result is found for the LSVR model, which is
the only model found to generate more income from the surplus in
electricity production than costs associated with production defi-
cits. These net profits made on the imbalance market are explained
by a structural underestimation of the PV power output by the LSVR
model, i.e. a significant negative bias. This production underesti-
mation leads to relative low quantity bids resulting in lower reve-
nues made at the DAM and a higher surplus of electricity when
compared to other models, which leads to the observed net profits.

Finally, it should be noted that the smallest costs and revenues
components associated with the imbalance market are present for
the LSTM and RF models. This is closely followed by the ANN and
GB models, see Fig. 8. The limited revenues of the ensemble and
deep learning models on the imbalance market is in line with the
low MAE found for these models in Section 4.1.1, since a low pre-
diction error results in less deviations that are to be settled.

4.1.3. Overall comparison
The order of best performing models with the purpose of fore-

casting the day-ahead power output of a single PV system differs
depending on the performance metric considered, e.g. MAE or ER.
While the results show some overlap, the differences are more
striking. Firstly, the PVmodel outperforms all other forecast models
when examined on the ER metric, whereas it is rated the sixth
model in terms of the MAE. The opposite applies to the RF model,
which was rated as the best model to the MAEwhile in terms of the
economic metric it is outperformed by the PV, LSTM, KSVR and
ANNmodels. On the other hand, similarities are found between the
performance of the forecast models according to the performance
metrics for the MLR, SARIMAX and LASSO models. In addition, the
benchmark models considered in this study are the worst per-
forming alternative according to both performance metrics.
Nevertheless, whereas CSP was the worst model when evaluated
on the average MAE, the DP model performs the worst in case of
considering the economic metric. These results are in line with one
other study that was found to evaluate operational solar forecasts
on both technical and economic metrics [24]. Although the order of
best performing models did not significantly change in this case
study on the Spanish DAM, the results show differences in the best
model based on the technical and economic metric used.

The preference for the PV model in terms of the ER metric is
explained by the interaction between the observed forecast errors,
the DAMPs and the varying SPs. Consequently, no single reason can
be indicated that explains the better performance of the PV model.
Nevertheless, one unique feature of the PV model that should be
highlighted in this context is the ability to forecast outliers. The
LSTM model proves a valuable option to forecast the PV power
production as in this study it is found to perform as the second best
model for both performance metrics. However, the decision to
adopt a specific model to forecast the day-ahead power production
of a PV system is in this study shown to depend on the objective of
the user. If the objective is to forecast the exact power production as
accurate as possible, those models that perform well on the MAE
(RF and LSTM) are preferred. On the other hand, if the objective is to
maximize the revenues from electricity trading, the ER is a more
important metric leading to a preference for the PV model.

4.2. Multiple PV systems

4.2.1. Technical comparison
The performance of all forecast models in terms of the MAE are

summarized in Figs. 9 and 10. Fig. 9 presents the MAE and shows
how the MAE per forecast model depends on the number of PV
systems considered in the forecast and the spatial distribution
covered by these systems. Firstly, Fig. 9 clearly points out the
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benefit of considering PV systems that are spread over a larger
spatial area as the MAE decreases with an increasing inter-system
distance. Moreover, this trend is observed for all forecast models,
except for DP and CSP, and is independent of the number of systems
considered. As no clear stagnation of this trend is found in this
study and the improvement are observed to be constant with an
increasing distance, the results raise the question at what inter-
system distance the positive effect will reduce. Lorenz et al. [30]
found that this effect was exponential and stabilized at an area of
approximately 200 � 200 km for a solar irradiance forecast model.

Secondly, the results depicted in Fig. 9 show how the MAE per
forecast model depends on the density of the PV systems consid-
ered in the forecast. From these results it is found that the perfor-
mance of all forecast models increases with an increasing number
of PV systems that is considered. This is explained as in addition to
spatial smoothing also an increasing number of systems scattered
throughout a region of interest smoothens the PV production
profile, enhancing the forecast performance. Moreover, the MAE of
each forecast model improves significantly as the number of PV
systems considered in the forecast increases from e.g. 2 to 5 PV
systems. However, the rate of improvement becomes limited after a
total number of 10 PV systems are included in the forecast. Also, no
significant difference between theMAE in case of 25, 50 and 100 PV
systems is observed. Subsequently, for the spatial area considered
in this study, the advantage found of increasing the number of PV
systems appears to stagnate around 10 PV systems and is not
present anymore at a level of 25. The advantage of adding a PV
system is therefore the greatest when the size of the initial set is
limited.

Overall, when we compare the separate effects of the density
and spatial distribution of the aggregated systems, it is found that
the number of systems is a more significant factor in improving the
model forecast performance, if the initial set holds a limited
number of PV systems. In this study, this tipping point lays around
10 PV systems. When the initial set of PV systems exceeds 10, the
inter-system distance becomes a more significant factor to improve
the forecast accuracy. Consequently, this implies that there is a
saturation level with respect to the spatial density of the number of
systems included and the observed forecast performance
improvement.

Next, Fig. 10 presents the average MAE per forecast model
observed for the different kind of aggregations sets. This figure
therefore enables to compare the performance of the forecast
models among each other. Firstly, the results show the dominance
of the RF and LSTMmodels where the MAE decreases from 0.062 to
0.048 kWper kWpwith an increasing number of systems and inter-
system distance. These models, which alternate one another as the
top performing forecast model for all categories, are followed by
the ANN and GB models. Fig. 10 also indicate the large difference in
the superiority of all forecast models compared to the benchmark
models, DP and CSP. In addition, the DP model outperforms the CSP
models in terms of the MAE as for most distance and number of
systems combinations4.1.1. These results are largely inline with the
results observed for single PV system forecasting, except that LSTM
may be preferred over the RF model in case of forecasting the po-
wer production of multiple PV systems. Finally, the PV model ap-
pears to profit less from an increasing number of systems spread
over a larger distance, as the linear-based regression models are
found to outperform the PV model more and more with an
increasing number of systems and distance. Lastly, similar obser-
vations with respect to the best performing models and the
observed trends are found when considering the RMSE instead of
the MAE.



Fig. 9. The MAE per forecast model where each point considers a set of N PV systems. The trend lines show the average MAE for an increasing inter-system distance. Note, the y-axis
scales are different (best viewed in color).
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4.2.2. Economic comparison
Fig. 11 presents the performance of the forecast models in terms

of the ER in a similar fashion as Section 4.2.1 described the technical
performance. Moreover, Fig. 11 shows the influence of the number
of PV systems and inter-system distance on the observed ER per
forecast model. Firstly, from the results the revenues are found to
increment slightly as the inter-system distance increases up to
10 km. Hereafter the revenues remain approximately constant per
kWp with an increasing spatial distribution. This relation is found
for all forecast models and is also observed in case of a perfect
forecast model. Consequently, the gain in ER cannot be credited to
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an improved forecast performance as was found in Section 4.2.1.
Moreover, this observation is explained by the smoothing effect
that a larger considered spatial distribution of PV systems has on
the power production profile, resulting in a more balanced elec-
tricity supply to the DAM. Furthermore, Fig. 11 does not show any
consistent relationship between the number of PV systems that is
considered by the model and the revenues made nor the potential
revenues that could have been made, i.e. in case of a perfect
forecast.

Fig. 12 depicts the average revenues per aggregation level as a
fraction of the maximum revenues that could have been generated



Fig. 10. An overview of the average MAE found for a varying number of systems (N) and inter-system distances (D) (best viewed in color).
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in case of a perfect forecast. Consequently, this figure enables to
examine the model forecast performance to its potential revenues,
giving insights into the economic forecast improvements that can
still be gained. Fig. 12 shows that the performance of the forecast
models, as a fraction of the maximum revenues, remain more or
less constant with an increasing inter-system distance and number
of systems. This proves the absence of a clear trend showing a gain
in the performance of the forecast models as a result of aggregating
PV systems over an increasing spatial area. Nevertheless, Fig. 12
does show a more constant economic performance of the forecast
models when the number of systems included grow. The absence of
an economic gain is remarkable as it implies that the improvement
that was observed for the forecast models in terms of the MAE in
section 4.2.1 does not translate into increased ER.

The results in Fig. 12 also enable for comparing the economic
performance of the forecast models amongst one another. The re-
sults clearly indicate the superiority of the PV model, which is
found to outperform the other models in all categories except one.
The ER for the PV model vary between 26.7 and 30.3 V per kWp.
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Next, with a tested ER in the range of 26.6 and 30.1 V per kWp the
deep learning models tested in this study prove as valuable alter-
natives, where the LSTM model outperforms the ANN model.
Subsequently, a relative consequent order of performance for the
forecast models can be observed over all categories in Fig.12, where
the deep learning models are in order followed by the ensemble
learning, SVRs and linear regressor models. Finally, all forecast
models are found to outperform the CSP and DP model that obtain
an ER value between 25.2 and 28.5 V per kWp. Moreover, in terms
of the ER, the CSP and DP forecast models are identified to be
competitive to one another.
4.2.3. Overall comparison
Similar to section 4.1, the order of the best performing models

that forecast the PV power output of multiple sites depends on the
performance metric of interest. Again, the RF and LSTM models
showed their superiority when assessed on the MAE. This is fol-
lowed by the ANN and GB models. If we consider the model per-
formance from an economic perspective, these models lose their



Fig. 11. The revenues per forecast model where each point considers a set of N PV systems. The trend lines show the average revenues over an increasing inter-system distance (best
viewed in color).
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superiority to the PV model. Along with the ANN model, the LSTM
model proves to be a valuable alternative to the PV model in terms
of the ER metric. Therefore, completely in line with the results
found for single site forecasting, the objective of the user de-
termines what model is preferred.

Furthermore, the results show that a decreasing MAE can be
expected as the inter-system distance or the number of aggregated
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systems grow. Similar results were found for a case study in Italy,
where the performance of day-ahead PV power output forecast
models improvedwhen several regionswere aggregated [3]. On the
other hand, in this study the improvement is not observed for the
model performance in terms of the ER with respect to the
maximum ER. Still, the maximum ER, i.e. Perfect, is found to in-
crease when a multitude of systems is considered with inter-



Fig. 12. An overview of the average revenues per forecast model found as a fraction of the maximum trading revenues in case of a perfect forecast. The results show the average
revenues per category, i.e. the number of systems (N) and their inter-system distance (D) (best viewed in color).
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system distance of up to 10 km.
Consequently, users who are interested in implementing an

operational PV power forecast model should carefully consider the
objective of the forecast. Moreover, for parties involved in trading
on the DAM the ER may be considered as more important, resulting
in a preference for adopting a PV model. On the other hand, grid
operators, responsible for balancing the electricity grid and
scheduling balancing reserves, may prefer the forecast model with
the best technical performance, i.e. LSTM and RF.
5. Conclusions

In this studywe have developed and compared the performance
of 12 models that forecast the PV power production on a day-ahead
basis. The models operate in agreement with the DAM and are
tested when applied to forecast the production of individual and
aggregated PV systems. The performance of the forecast models is
examined to their technical (MAE) and economic (ER) performance,
where the latter concerns a novel application to evaluating solar
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forecasting methods.
Firstly, the results show that from a technical perspective and in

case of forecasting the PV power production for a single PV system,
the best performance is obtained by the RF and subsequently the
LSTM model. Moreover, as we aggregate a number of PV systems,
the technical performance of the RF and LSTM model is tied and
superior over all other models. Consequently, these models are
recommended to users that aim to minimize grid imbalances, e.g.
system operators. Furthermore, from an economic viewpoint the
results in this study show that the PV model outperforms all al-
ternatives as it delivers the highest ER for both single sites and
aggregations. The PV model is therefore recommended to users
that participate in the DAM, e.g. utilities and aggregators. Following
the PVmodel, the deep learning models (i.e. LSTM and ANN) obtain
the best economic performance. Hence, based on the consistent
good performance achieved by the LSTM model for both error
metrics and a varying spatial distribution, it could claim superiority
over the investigated alternatives.

Furthermore, since the preferred forecast model was found to
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depend on the interest of the user, this study uncovers a conflict of
interest as pursuingmaximal economic revenues leads to increased
grid imbalances. This adds to the ongoing discussion on the selec-
tion of error metrics and confirms that the importance of consid-
ering users’ objective while developing a forecast model.

Next, this study shows the dependence of the performance of
each model on the spatial distribution of the considered PV sys-
tems, which was decomposed in two factors: density and spatial
area. From a technical perspective, the empirical results show that
both factors have a positive effect on the model performance,
where the effect of the number of aggregated PV systems was more
significant in improving the model performance up to an aggre-
gation of approximately 10 PV systems. Thereafter, the positive
impact of an increasing inter-system distance was found to prevail.
Consequently, system operators or portfolio managers that aim to
minimize grid imbalances are found to benefit from aggregating PV
systems, especially over a larger spatial area. System operators may
therefore prefer a larger spatial spread of installed PV systems.
Since the performance improvement in terms of the MAE did not
translate into a monetary benefit, participants in the DAM can be
indifferent to the number of systems in their portfolio as well as the
spatial area.

From this study a number of directions for future work can be
derived. Firstly, the application of probabilistic forecasts along with
a strategy to extract an optimal single value for bidding in the DAM
deserves attention. Secondly, we did not observe a stagnation of the
model performance improvement in the MAE with respect to the
inter-system distance. Subsequently, additional research should
consider a larger area in order to quantify the improvement of the
MAE considering larger spatial distributions. Furthermore, future
research into the economic value of PV power forecast models
should consider additional markets, e.g. the intradaymarket, as this
may increase revenues by reducing the raised imbalance penalty.
Finally, as we identified that the forecast objective sets the best
forecast model, a topic that deserves attention is the interaction
between the objective, the selection of a model and the effect on
the required balancing capacity.
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