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• The Global Yield Gap Atlas maps yield 
gaps of crops from point to regional 
scale across the globe. 

• Many different uncertainty sources 
affect the calculation of yield gaps. 

• We present a protocol for experts to 
score uncertainties with their justifica
tions made available to users 

• The expert scores of the uncertainty 
sources provide a ranking for users to 
consider per crop-country combination. 

• The expert justifications reveal which 
uncertainties can be reduced and which 
are not reducible  
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A B S T R A C T   

CONTEXT: Yield gap analysis plays an important role in determining potential food availability. The Global Yield 
Gap Atlas maps yield gaps of crops from point to regional scale across the globe. The calculated yield gaps are 
based on comparisons between modelled potential yields with actual farmers’ yields derived from statistical 
sources. The calculations are subject to uncertainty due to various sources, including measurement errors, 
modelling limitations, and scaling issues. 
OBJECTIVES: An important goal of the Atlas is to convey an uncertainty evaluation of the yield gap analysis. The 
aim of this paper is to provide a practical methodology that can make the assessment of the uncertainty by 
experts explicit and accessible for users of the Atlas. 
METHODS: We developed an uncertainty protocol and guidelines listing several sources of uncertainty to be 
considered by country agronomists who were involved in the calculation of the yield gaps. These experts are 
asked to score the level of uncertainty of each source, as well as the relative impact of each source. Both scores 
are combined into uncertainty scores for each source. Aggregated uncertainty scores for yield gaps, potential and 
actual yields are mapped as colours in the Atlas to indicate ranking. Moreover, experts are encouraged to provide 
a justification for their scores, which are also made available to users of the Atlas. 
RESULTS AND CONCLUSIONS: The uncertainty protocol was applied to 189 country-crop combinations by 
fourteen experts. They ranked lack of data for model calibration, model sensitivity to specific conditions, weather 
data, and the data quality on cropping system as the most important uncertainty sources for potential yields. The 
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quality of yield data was ranked as the highest source of uncertainty for actual yields. The justifications provided 
by experts suggest which uncertainty sources may be reducible with relatively little effort, while other uncer
tainty sources may be more difficult or impractical to address. 
SIGNIFICANCE: The decision making on options to improve food production is better informed when un
certainties are accounted for. The proposed uncertainty protocol allows users to distinguish between different 
sources of uncertainty as well as their level and relative effect on the end result. The ranking of uncertainty 
sources suggests a prioritization of future effort to reduce the uncertainty around yield gaps. The justifications 
given by the experts can provide suggestions for options to reduce uncertainty.   

1. Introduction 

Global food security will continue to have a high priority on the 
research and policy agendas over the next decades (FAO, 2019; Rose
grant and Cline, 2003), if only because future demand for food and other 
agricultural products is projected to increase by 50% between 2012 and 
2050 (FAO, 2017). Enhanced food security requires that actions are 
taken on multiple facets of food availability, access and utilisation. One 
of the identified pathways for improving food availability is a sustain
able increase of crop yields on existing cropland (Godfray and Garnett, 
2014). Currently, on many locations yield gaps prevail, i.e., a difference 
between the actual farmers’ yield and what could potentially be ach
ieved under perfect management. An analysis of the yield gaps reveals 
the scope to increase production on current cropland area. It may 
explain the underlying technological and socio-economic causes of 
farmers’ yields, and thus help identify ways for improvement, including 
the required investments and supporting policies (van Dijk et al., 2020; 
van Ittersum and Rabbinge, 1997; van Ittersum et al., 2013). The 
concept of yield gaps thus provides a simple and powerful framing 
concept to stimulate agricultural development (Sumberg, 2012). 

The Global Yield Gap Atlas (GYGA; www.yieldgap.org) aims to 
inform decision making on research and development to achieve higher 
crop yields from existing farmland. It was set up to improve earlier 
global and local yield gap estimates which the developers (van Ittersum 
et al., 2013) considered to be either too coarse, lacking local detail and 
agronomic rigour (global estimates, (Rattalino Edreira et al., 2021)), or 
too partial using inconsistent concepts and methods (local estimates). 
Information for decision making is only as good as the data allows for. 
Like other indicators, the yield gaps presented in the Atlas are subject to 
uncertainty. Broadly speaking, uncertainty is not simply the absence of 
knowledge, but a situation of inadequate information (Funtowicz and 
Ravetz, 1990; Walker et al., 2013). To inform users such as researchers 
and decision makers about the size of local yield gaps, an uncertainty 
assessment should be included. After all, uncertainties present risks for 
stakeholder investments aiming to narrow yield gaps. 

Uncertainty is often interpreted as aleatoric or variability uncer
tainty due to fundamental indeterminacy or randomness (Bles et al., 
2019), like rolling a die or tossing a coin. Uncertainty may however also 
be of an epistemic nature, i.e., something that we may not know now but 
in principle should be able to know (Bles et al., 2019). Epistemic un
certainty is both personal and temporary, as different scientists have 
different knowledge bases, and it may change as new research becomes 
available. When performing uncertainty analysis, it is thus relevant to 
distinguish between aleatoric and epistemic uncertainty, because the 
results may differ (Sahlin et al., 2021). For researchers and stakeholders 
it is relevant to distinguish between the two types of uncertainty, 
because when epistemic sources of uncertainty are determined, there 
may also be options to reduce the uncertainty and improve, in this case, 
the yield gap estimation. 

Here we aim to improve the communication about uncertainty be
tween scientists and decision makers and to help the prioritization of 
uncertainties on a sound scientific basis, so that progress can be made in 
reducing uncertainty. In other words, we aim to answer the questions: 
“Where is the uncertainty coming from? How bad is it? And can we do 
something about it?”. An important aspect in this communication is to 

make the distinction between aleatoric and epistemic uncertainty, so 
that users can distinguish between sources of uncertainty that are 
potentially reducible or not, and preferably also may identify options for 
reducing uncertainty. Purely quantitative, statistical methodologies for 
uncertainty analysis do not fulfil these requirements as they are typically 
limited to uncertainty in model parameters and input data. An alterna
tive approach is to use a more qualitative methodology in which the 
focus is on the identification of sources of uncertainty rather than the 
precise quantification of their effects (van der Sluijs et al., 2004). These 
methods commonly involve expert elicitation for identifying these 
sources. Several methodologies exist for combining quantitative and 
qualitative uncertainty analysis. A review of multivariate uncertainty 
quantification for engineered systems is given by Grenyer et al. (2021), 
while a review of different methods for modelling uncertainties is given 
by Elsawah et al. (2020). 

Given the lack of readily applicable blueprints that meet our criteria, 
here, our aim is to develop and apply a method for differentiating be
tween sources of uncertainty that are related to yield gaps provided in 
the Global Yield Gap Atlas and communicate these to the users of the 
Atlas. The underlying intention is to provide additional information 
about the yield gaps for users to act upon, for instance, to establish 
whether or not some type of data can be improved. 

2. Methods 

The objective of our study is to develop and execute a semi- 
quantitative uncertainty analysis that helps to communicate estimates 
of uncertainty, including the sources and types of uncertainty, to users of 
yield gap estimates. In this section, we first briefly summarize the Global 
Yield Gap Atlas framework. We then discuss some general concepts and 
approaches regarding uncertainty analysis. Finally, we introduce our 
uncertainty protocol tailored towards the Atlas. 

2.1. The global yield gap atlas framework 

The Global Yield Gap Atlas presents yield gaps based on a bottom-up 
approach, involving local country experts and using local data for 
weather, cropping systems and soils. Despite the individual country-by- 
country approach, yield gaps are determined by following a standard 
framework (Fig. 1). In brief, the approach distinguishes the following 
main steps per country:  

(1) selection of designated climate zones (polygon shape) by 
combining crop areas (5′ raster) and climate zonation (5′ raster), 

(2) selection of reference weather stations (point shape) that repre
sent the designated climate zones,  

(3) creation of buffer zones of 100 km radius around the reference 
weather stations (polygon shape),  

(4) selection of dominant soil types and cropping systems in the 
buffer zones of 100 km radius around the reference weather 
stations,  

(5) crop model simulations for time series of five to 20 years to 
establish rainfed or irrigated yield potential, 
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(6) re-scaling times series of five to 15 years of actual yields from 
country specific administrative regions (e.g. district, county or 
province) to buffer zones,  

(7) calculating the average yield gaps, and  
(8) aggregating potential yields, actual yields, and yield gaps from 

buffer zones to climate zones and countries based on area 
weights. 

Details about the protocol followed by the Global Yield Gap Atlas are 
provided elsewhere (Grassini et al., 2015; van Bussel et al., 2015). 

Potential crop yields are simulated for the irrigated and rainfed 
production situation, whichever is relevant for the specific location. The 
potential yield for irrigated crops (Yp) is determined by temperature, 
day length, solar radiation and genetic characteristics assuming absence 
of any water or other abiotic or biotic stress factors. The potential yield 
for rainfed crops (Yw) is limited by water supply, and hence influenced 
also by rainfall, soil type and depth. 

Several crop growth models with a daily time step are used to 
simulate potential yields, using either the light use efficiency (LUE) 
approach or the photosynthesis approach. In the GYGA protocol it is 

prescribed to use the best available model that has been shown to 
perform well for a specific crop-country combination (Grassini et al., 
2015). 

The yield gap is calculated as the difference between potential yield, 
for irrigated or rainfed conditions, and the actual yield. Detailed infor
mation is available on the GYGA website (https://www.yieldgap. 
org/web/guest/methods-overview) and in separate publications on 
climate zones (van Wart et al., 2013), upscaling from reference weather 
stations to climate zones and national scale with area-weighted averages 
(van Bussel et al., 2015), and criteria for data selection (Grassini et al., 
2015). Currently the country by crop combinations included in the Atlas 
account for 91%, 86%, 58% and 82% of the global rice, maize, wheat 
and soybean production, respectively. Examples of yield gap estimates 
are presented in van Ittersum et al. (2016) for sub-Saharan Africa, 
Hochman et al. (2016) for Australia and Schils et al. (2018) for Europe. 

2.2. Theoretical basis: The uncertainty matrix 

We base our methodology on the ‘Uncertainty Matrix’ (Janssen et al., 
2005; Walker et al., 2003). A distinction is made between three 

Fig. 1. Flow diagram for calculating yield gaps according to the Global Yield Gap Atlas framework. The numbers refer to the explanation in the main text. The spatial 
scale of the data is indicated between brackets. 
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dimensions of uncertainty: the location of uncertainty, the level of un
certainty, and the nature of uncertainty. 

2.2.1. Location 
The ‘location’ refers to the source of uncertainty. Walker et al. (2003) 

distinguish five locations:  

(1) Context or framing is the identification of what is included in the 
model. Uncertainty may, for instance, arise from actors and re
searchers having different views on reality and what should be 
included. 

(2) Model structure concerns the conceptual, mathematical or nu
merical model. Uncertainty may result from differences in func
tional forms and equations for relations, and assumptions and 
simplifications underlying the model.  

(3) Input concerns the data for describing benchmark states and 
external drivers. Uncertainty in input may cover the use of 
different maps of, among others, land-use, policy-related drivers 
or climate scenarios.  

(4) Model parameters may be exact or inexact, variable or fixed, 
chosen by an expert focus group, or obtained through calibration. 
Uncertainty may result from different views of experts, the data 
that is used in calibration, or the used calibration methodology. 

(5) Accumulated output uncertainty is the end result of the propa
gation of uncertainty from the other locations. 

Input and model parameters are typically known, because they are 
given, but we may not know the range of their uncertainty. Model 
structure may clearly affect the outcome and should be available, but 
not all studies clarify the full range of possible model structures for a 
particular application. The framing of a model or study may affect what 
is chosen to be included in a conceptual model and may also present a 
considerable source of uncertainty. For example, the yield gap as a 
concept is a framing of agricultural development in terms of a deficit 
approach, but others have presented an asset-based approach (Sumberg, 
2012). 

2.2.2. Level 
The level refers to the ‘magnitude’ of uncertainty. Funtowicz and 

Ravetz (1990) point out that information can be inexact, unreliable, or 
even border with ignorance. Inexact means we know it is a random 
process, but we are unsure about the exact variability. Unreliable means, 
for example, we think we are dealing with variability in a certain pro
cess, but we may be wrong. Border with ignorance means we generally 
have no clue what we are dealing with,1 for instance errors due to factors 
not considered in our models. 

2.2.3. Nature 
The ‘nature’ refers to the distinction mentioned earlier, namely 

epistemic uncertainty, which is due to imperfect knowledge and which 
may be reducible, and aleatoric uncertainty that cannot be reduced 
because it is caused by inherent variability. 

2.2.4. Approach to assess location, level and nature 
The involvement of experts is essential for the identification of the 

locations of uncertainty, and in the assessment of the impact of locations 
based on their level and nature relative to those of other uncertainty 
locations. Some form of quantification is convenient to quickly convey 
the information to users and to allow for the ranking of uncertainty 

sources. For this we use a simple coding classification (scores) on a 
discrete numerical scale to indicate the severeness of the uncertainty 
(Funtowicz and Ravetz, 1990). The true value of the methodology, 
however, is that the assessments by the experts are accompanied by 
justifications. Experts are asked to provide justifications for their 
grading of uncertainty. The listed justifications may help stakeholders in 
identifying the uncertainty locations and whether they may be reducible 
or not and at what cost. In other words, the combination of scores and 
the justifications of these should provide suggestions for: “Where is the 
uncertainty coming from? How bad is it? And can we do something 
about it?” 

2.3. The global yield gap atlas uncertainty protocol 

The GYGA framework involves different types of data, models and 
scaling methods. An uncertainty assessment based on the Uncertainty 
Matrix can easily involve many experts who each spend a considerable 
amount of time on identifying and discussing the different sources of 
uncertainty. To reduce the workload for the experts involved in the 
uncertainty analysis of the Atlas, we developed an uncertainty protocol 
tailored to the framework used in the Atlas, accompanied by scoring 
guidelines for the experts. Table 1 summarizes the symbols used in the 
protocol and their definitions. 

2.3.1. Uncertainty protocol 

2.3.1.1. Uncertainty source. Each of the five uncertainty locations may 
include several uncertainty sources. For example, if we make use of land- 
use maps and weather data to run a crop model, the location ‘input’ 
contains a source ‘uncertainty in land-use maps’ and a source ‘uncer
tainty in weather data’. In our uncertainty protocol, we will not 
explicitly refer to locations, but instead directly refer to the different 
uncertainty sources (Table 1 – weather, soil, crop area, cropping system, 
crop modelling and scaling). The uncertainty value of each source and 
each yield indicator (Ûsy) is calculated as: 

Ûsy = f
(
Lsy, Ssy

)
(1) 

The level of uncertainty Lsy is scored as 1 (‘low uncertainty’), 2 
(‘medium uncertainty’), or 3 (‘high uncertainty’). The ‘sensitivity’ Ssy is 
introduced to reflect the relative impact on the overall uncertainty in
dicator. Sources that are expected to contribute more to the overall 
uncertainty are considered to be more ‘sensitive’. Sensitivity is similarly 
scored from 1 (‘low impact’) to 3 (‘high impact’). Ûsy is determined from 

Table 1 
Symbols and definitions used in the uncertainty protocol.  

Uncertainty 
parameters  

Ûsy Uncertainty of source s for yield indicator y 
Lsy Level of uncertainty of source s for yield indicator y 
Ssy Sensitivity to uncertainty of source s on yield indicator y 
Uy Aggregated uncertainty of yield indicator y 
W Weighing factor for relative contribution of uncertainty of 

potential yield or actual yield to the uncertainty of the yield 
gap  

Sources (s) 
s1 Weather 
s2 Soil 
s3 Crop area 
s4 Cropping system 
s5 Crop modelling 
s6 Scaling  

Yield indicators (y) 
yp Irrigated yield potential (Yp) 
yw Rainfed yield potential (Yw) 
ya Actual yield (Ya) 
yg Yield gap (Yg)  

1 Or in the words of the late former Secretary of Defense of the United States, 
Donald Rumsfeld, in 2002: “… there are known knowns; there are things we 
know we know. We also know there are known unknowns; that is to say we 
know there are some things we do not know. But there are also unknown un
knowns – the ones we don’t know we don’t know” (Schermer, 2005). 

R.L.M. Schils et al.                                                                                                                                                                                                                             



Agricultural Systems 195 (2022) 103311

5

Lsy and Ssy using a look-up table (Table A-1 in the Supplementary Ma
terial). The assessment is carried out for all relevant combinations of the 
yield indicators (Yp or Yw and Ya - index y) and the listed uncertainty 
sources (index s). 

2.3.1.2. Aggregated uncertainty. The calculation of the aggregated un
certainty of the potential and actual yields, and yield gap, is determined 
by the accumulated output uncertainty that has propagated through the 
GYGA protocol. The aggregated uncertainty (Uy) of the yield indicators 
(Yp or Yw and Ya) is calculated as the unweighted mean of the uncer
tainty scores of all relevant sources: 

Uy =

(
1
n

)
∑n

s=1
Û sy (2) 

Value n indicates the number of uncertainty sources, which varies 
per yield indicator (see next section on scoring guidelines). 

The uncertainty of the yield gap (Uyg) is calculated from the weighted 
aggregated uncertainties of either the irrigated yield potential (Uyp) or 
rainfed yield potential (Uyw), and the actual yield (Uya): 

Irrigated conditions : Uyg = (W∙Uyp + Uya)/(W + 1) (3a)  

Rainfed conditions : Uyg = (W∙Uyw + Uya)/(W + 1) (3b) 

The weighing factor (W) is defined as the weight of the potential 
yield, relative to the actual yield. In the default setting, both components 
of the yield gap are given an identical weight (W = 1). Experts may 
adjust the weights if they expect that the uncertainty of either the po
tential yield or the actual yield has a higher impact on the uncertainty of 
the yield gap. For instance, in currently low-yielding situations, uncer
tainty of the actual yields will have a minor effect on the uncertainty of 
the yield gap if the potential yield is much higher. 

The scores for Uyp, Uyw, Uya and Uyg are transformed into five equi
distant classes (1, 1.5, 2, 2.5, and 3) and mapped in the Atlas with a 
colour scale from dark green to dark red, to represent increasing un
certainty (Fig. 2). Importantly, users have access to the underlying 
scores of Lys and Sys for all uncertainty sources, as well as the textual 
remarks made by the experts to justify their assessments. 

2.3.2. Scoring guidelines 
To save time and to make it more practical for the experts, guidelines 

are given for the relevant combinations of uncertainty sources and yield 
indicator to score (Table 2). We have made several assumptions, sim
plifications, and adjustments to obtain a limited list of uncertainty 
sources with suggested scoring criteria. The uncertainty sources cover 
aspects that have been identified to be important in studies on the use of 
GYGA (Grassini et al., 2015). Like many assessment studies, GYGA uses a 
tiered approach, with different tiers of data, which may affect outcomes. 
In Table 2 we distinguish between five uncertainty sources for irrigated 
crops and six sources for rainfed crops: for irrigated crops water supply is 
considered non-limiting and thus the soil is not included as an uncer
tainty source. 

Important simplifying assumptions are the following. First, the 
GYGA framework (Fig. 1) is accepted as a given. We thus explicitly 
ignore an important uncertainty location, namely the framing of the 
yield gap concept. We also ignore model structure as uncertainty loca
tion: in the GYGA protocol it is prescribed to use the best available 
model that has been shown to perform well for a specific crop-country 
combination (Grassini et al., 2015), and hence we assume that the 
‘best’ model is selected for each crop-country combination. In addition, 
we consider only data involved in model calibration and ignore model 
calibration methodologies. In other words, we consider only one aspect 
of model parameter uncertainty. 

Below, we discuss the suggested scoring criteria for the uncertainty 
sources listed in Table 2. 

2.3.2.1. Potential yields. For weather data, Grassini et al. (2015) suggest 
that 10 years of weather data are sufficient to estimate an average yield 
and CV that are within ±10% of the estimates for the last 30 years, 
assuming environments with relatively little inter-annual variation in 
rainfall; for arid regions with high year-to-year variation in precipitation 
the number of years should be higher. Therefore, in our guidelines we 
list the suggestion for experts to consider the number of years of weather 
data. The implicit assumption is that the data are recent enough to 
qualify as ‘quality data’. Also, weather data quality is affected by “sus
picious and missing values”. For this reason, one of our suggested 

Fig. 2. Example of presentation of uncertainty outcomes in the Global Yield Gap Atlas for water-limited potential yields (Yw) of rainfed wheat. Users of the Atlas 
have access to the details of the underlying assessments by clicking on a country (www.yieldgap.org). The displayed colours are linked to the final uncertainty scores 
(‘very low’ to ‘very high’ corresponds to scores ranging from 1 to 3, respectively). 

R.L.M. Schils et al.                                                                                                                                                                                                                             

http://www.yieldgap.org


Agricultural Systems 195 (2022) 103311

6

scoring criteria is to account for ‘suspicious’ data in the uncertainty 
score. 

Uncertainty around soil data is only included when the water-limited 
yield potential of rainfed crops is concerned. The resolution of the soil 
maps should allow for a correct selection of the dominant soil series that 
are most widely used for the targeted crop. For the guidelines we assume 
that a higher resolution will reduce the uncertainty level of this source. 
Also, soil input data are required for crop models to simulate water- 
limited yield potential. Data on rooting depth and plant available soil 
water are generally required, either based on actual measurements or 
estimated from pedo-transfer functions (PTFs) based on soil texture or 
other properties. A proper validation of the PTFs reduces uncertainty. 

Regarding crop area, the harvested areas of the crops were derived 
from SPAM, the global Spatial Production Allocation Model (You et al., 
2010). Given the changing trends in some crop growing areas, these 
maps may not accurately represent the current crop distribution. van 
Bussel et al. (2015) stress the importance of a continuous updating and 
improvement of the crop distribution maps to increase the accuracy of 
yield gap estimates. Therefore, in the guidelines we suggest that experts 
check for deviations and whether or not they have been corrected as a 
level of uncertainty of this source. 

Cropping systems are defined by water regime, sowing date, cultivar 
maturity and plant density. Uncertainty varies with the availability of 
recent data and the spatial resolution of those data. The availability of 
recent data is important as crop genotypes and cropping practices are 
dynamic (Fischer et al., 2014). Sources of error associated with cropping 
systems may also be related to sub-optimal sowing or harvest dates due 
to restricted availability of machinery and labour (Grassini et al., 2015). 
For these reasons, in the guidelines we suggest to consider the ‘age’ of 
the crop calendar as well as the availability and resolution of high 
quality data. 

Crop model results are sensitive to calibration (Grassini et al., 2015), 
and we consider the availability of recent calibration data and their 
resolution as important criteria for uncertainty assessment. 

The final uncertainty source of potential yield is scaling. The main 
aspect of scaling to be considered is whether the selection, i.e., weather 

stations, soil types, and cropping systems in designated climate zones, 
has resulted in an adequate cover and representation of the national crop 
area. Poor coverage can be caused by a lack of quality weather stations, 
but also by the geographical nature of a specific country, for instance, if 
there are many small climate zones due to topography. 

2.3.2.2. Actual yields. For actual yields we distinguish between three 
uncertainty sources. First, the quality of the data is related to the avail
ability of disaggregated data for cropping system and water regime. 
Here, we also consider whether the expert has knowledge of suspicious 
or missing data. Second, the temporal scale is considered in relation to the 
water regime. Due to the lower yield variability of irrigated crops 
compared to inter-annual variation in precipitation for rainfed crops, we 
assume that a lower number of years of data for irrigated crops will 
already qualify as ‘low uncertainty’. Third, the spatial scale and resolu
tion is considered, which may vary considerably between countries. 
Actual yields are re-scaled from the administrative regions to the buffer 
zones. Therefore, in the guidelines we propose to consider that the 
quality of re-scaling improves with the resolution of the administrative 
regions. 

2.3.3. Application 
The uncertainty was assessed for 189 unique country-crop combi

nations in 59 countries by 14 experts (Table 3). For 32 country-crop 
combinations the uncertainty assessment was carried out twice, inde
pendently by two experts. The results presented in the next sections are 
therefore based on 221 individual expert estimates in total. The experts 
were country agronomists leading the teams that were responsible for 
the assessment of yield gaps in the specified countries, or who were part 
of the two leading institutes of GYGA, Wageningen University & 
Research and University of Nebraska-Lincoln. The experts used a score 
sheet to assess the level of uncertainty and sensitivity for each uncer
tainty source (Figs. A-1 in the Supplementary Material). 

Table 2 
Guiding criteria for scoring the level of uncertainty for different sources.  

Source Criteria Low uncertainty (1) Medium uncertainty (2) High uncertainty (3) 

Potential yields (Yp or Yw) 
Weather # years of quality data >10 3–10 0–2  

Presence of suspicious data No Some Many 
Soil* Resolution and availability of the of 

required parameters and quality of the 
pedo-transfer functions 

Good resolution / PTF 
validated for the targeted 
area 

Moderate resolution / PTF validated for 
the targeted area 

Low resolution / PTF not validated 
for targeted area 

Crop area Observed deviations between SPAM** and 
current land use; corrected or not 

No observed deviations 
after checks 

Observed deviations, but corrected Observed deviations, and not 
corrected 

Cropping system Crop calendar: Recent; sufficient resolution 
of high-quality data (i.e. from experiments 
or expert networks) 

Recent (not older than 10 
years); high resolution 

Not recent (older than 10 years) or low 
resolution 

Global database (not recent & low 
resolution) 

Data for model 
calibration 

Calibration based on recent, location- 
specific experimental data 

Recent local high-quality 
trials that allow detailed 
calibration 

Recent local high-quality trials or 
literature from similar regions that 
allow for a limited calibration 

Calibration based on default 
parameters or trials of lower 
quality, or global literature 

Scaling Coverage (crop area in selected buffer 
zones as % of national crop area) 

>50% 25–50% <25%  

Also consider whether important climate 
zones are missing 

All important climate 
zones included 

Missing climate zones Many important climate zones 
missing  

Actual yields (Ya) 
Yield data Source and disaggregation by crop-water 

regime Suspicious data 
Crop-specific national data Crop-aggregated national data Expert data or SPAM gridded 

yields 
No Some Many 

Number of (recent) 
years 

# recent years for Rainfed / Irrigated > 10 / > 5 5–10 / 3–5 <5 / <3 or not recent 

Scaling 
(administrative 
region) 

Spatial resolution High (District) Intermediate (Province) Low (Region/Country)  

* Only relevant for water-limited yield potential. 
** SPAM = global spatial production allocation model (You et al., 2010; Yu et al., 2020). 
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Table 3 
Overview of uncertainty assessments: number of countries per crop.  

Region Wheat Barley Maize Millet Rice Sorghum Soybean Sugarcane Rapeseed Potato Total 

Irrigated 
Africa 2 1   6     1 10 
Asia 2  3  4     1 10 
Europe   5        5 
North America   1        1  

Rainfed            
Africa 5 2 10 10 7 9     43 
Asia 3 1 3 1 3 1     12 
Europe 36 36 22        94 
North America 1  1        2 
South America 3 2 3    1 1   10 
Oceania 1        1  2             

Total 53 42 48 11 20 10 1 1 1 2 189  

Fig. 3. Average values and standard deviations for irrigated crops (a) and rainfed crops (b) per geographical region of the aggregated uncertainty estimates of the 
yield gap (Uyg), potential yields (Uyp and Uyw) and actual yields (Uya). Overall average across regions indicated by dashed line. Number of observations indicated 
below error bar of yield gap; same numbers of observations apply to potential and actual yields. 
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3. Results 

3.1. Aggregated uncertainty 

The aggregated uncertainty scores for yield gaps (Uyg) varied from 
1.0 to 2.6, with an average value of 1.7 for irrigated crops and 1.8 for 
rainfed crops (Fig. 3, dashed line). In general, low uncertainties were 
scored for the Americas and Oceania, and relatively higher uncertainties 
for the other regions (Fig. 3 and Table A-2 in the Supplementary Ma
terial). The scores vary between countries and crops within regions. For 
Africa, Asia and Europe the average scores are largely similar, yet the 
individual countries within the respective regions score differently. For 
example, uncertainty was higher in southeastern Europe than in other 
parts of Europe. 

In 22% of the cases, the default weight for the uncertainty of po
tential yields relative to the uncertainty of actual yields (W = 1) was 

adapted by the evaluating expert (Table A-2 in the Supplementary Ma
terial). The weight was even adjusted to 2.5 for rainfed potential yields 
of millet, wheat and sorghum in African countries. The justification of 
the low impact of uncertainty of actual yields was quoted as “its effect on 
yield gap is practically nil, because actual yields are so low relative to 
the potential yields”. Increased weights of 1.5 or 2.0 for potential yields 
were allocated to several irrigated crops in Africa, but also to irrigated 
and rainfed wheat in Bangladesh. 

The average aggregated uncertainty scores of the potential yields 
was 1.7 for irrigated crops (Uyp) as well as for rainfed crops (Uyw) (Fig. 3, 
dashed line), Table A-2 in the Supplementary Material). The uncertainty 
scores increased in the order of Oceania equal to North America, South 
America, Europe, Asia, and Africa with the highest score. The average 
aggregated score for actual yields (Uya) was 1.7 for irrigated crops and 
1.8 for rainfed crops, also with low uncertainties for the Americas and 
Oceania, and higher uncertainties for Europe, Asia and Africa. 

Fig. 4. Average values of the estimates of uncertainty level (L), sensitivity (S) and uncertainty (Û) of the underlying uncertainty sources of potential and actual yields 
of irrigated crops (a) and rainfed crops (b). Ranked from high to low uncertainty. 
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3.2. Assessment of the separate uncertainty sources 

According to the results of our study, model, weather, and yield data 
are the most influential uncertainty sources to consider. In all these 
cases, the high ranking is mostly the result of a high sensitivity score. 

The average uncertainty (Ûys) estimates of the uncertainty sources 
for potential yields of irrigated crops decreased in the order modelling, 
area, weather, cropping systems, and scaling (Fig. 4). The scores for 
potential yields of rainfed crops showed a wider range among the six 
sources (now including ‘soil’). The ranking of the sources was almost 
similar to that of irrigated crops, though area had a lower uncertainty 
score. Moreover, the order was not consistent across regions and crops 
(Tables A-3.1 and A-3.2 in the Supplementary Material). On average, 
uncertainty in weather data was considered more important for rainfed 
potential yields than for irrigated ones. Overall, the average uncertainty 
estimates for actual yields decreased in the order yield data, scaling, and 
number of years (Fig. 5 and Table A-3.3 in the Supplementary Material). 

The ranges in sensitivity across sources were higher than the ranges 
in uncertainty level. For instance, for the uncertainty sources of poten
tial yields of irrigated crops, the average level of uncertainty varied from 
1.3 to 1.7, while the average sensitivity varied from 1.6 to 2.4 (Fig. 4). 
Similar observations apply to the uncertainty sources for potential yields 
of rainfed crops, and for the actual yields. The sensitivity level of 
weather data was considered to be considerably larger for rainfed crops 
than for irrigated crops. 

3.2.1. Potential yields 
The average uncertainty score for modelling was 2.0 for irrigated 

crops and 2.6 for rainfed crops. Lack of data for calibration was 
mentioned frequently as reason for high levels of uncertainties, whereas 
the sensitivity of the model for specific conditions was also mentioned. 
Examples of quotes on this were: “We are uncertain about the ability of 
ORYZA2000 to simulate cold sterility in medium/high altitude (=cold) 
sites” (ORYZA2000 is a crop model for rice), and: “Very few experi
mental data for Niger”. 

The average final uncertainty score for weather was 1.6 for irrigated 
crops and 2.4 for rainfed crops. As noted earlier, this is mainly due to the 
higher sensitivity score for weather data for rainfed crops. Data quality 
was mentioned as the most important factor affecting the level of un
certainty, such as quoted for Brazil: “Radiation estimated from tem
perature. We have to fill in some gaps in the weather data”, or for Mali: 
“Partly propagated weather data and obscure rainfall data”. 

The uncertainty scores for cropping systems were equally affected by 
the level of uncertainty and sensitivity. The required data on cropping 
systems was often collected through experts. Related quotes were: 
“Precise information provided by local agronomists”, “Extensive 
experimental phenology network”, but also: “Not sure if the country 
agronomist had access to the right information”. 

For rainfed crops, the level of uncertainty around soils was relatively 
low, but with a high sensitivity. Concerns about the level of uncertainty 
were mostly related to the data quality, for instance “Unlikely shallow 
rooting depth in some areas”. The level of sensitivity varied per region, 
and was often region-specific. For example: “Model is very sensitive to 
groundwater table depth for which we do not have good data”. 

Information on crop areas was mainly a concern in Africa, especially 
for rice (2.7), due to rapid changes in crop areas. For example: “Ac
cording to FAOSTAT, rice area has strongly increased in recent years, 
therefore total harvested area (SPAM) is not representative for the 
current situation”. For other regions, the uncertainty score for crop areas 
was relatively low (1.0 to 2.0). Concerns were mainly related to general 
and spatial data quality, like “Area statistics on grain and silage maize in 
northern areas uncertain”, or: “We left out weather stations because, 
although selected based on SPAM, they are located in areas where wheat 
cannot be grown”. 

Finally, the average uncertainty scores for scaling were generally 
relatively low (1.0 to 2.0). The highest uncertainty scores were given for 

all crops in Africa and irrigated rice in Asia. All concerns were related to 
spatial data quality such as having many small climate zones and a poor 
coverage of the total crop area by selected buffer zones. Quotes by ex
perts on this were, for instance: “Many small climate zones”, or “Rainfed 
rice is present in Volta region, buffer zone assigned, but insufficient 
weather data for this buffer zone”. 

3.2.2. Actual yields 
The average uncertainty score for actual yield data was 2.3 (Fig. 4), 

but varied from 1.0, mainly in the Americas, to more than 2.4 for Africa. 
The average score for Europe was also relatively high (2.3). Concerns on 
data quality were important motivations for the expert assessment, such 
as: “Actual yield data are given with a moderate quality for the whole 
country from national statistics”, “Uncertain whether large contrast 
between large and small farms is represented correctly in national sta
tistics”, or: “Uncertain whether green harvested barley is excluded”. 

In line with the scores for potential and water-limited potential 
yields, the average uncertainty scores for scaling of actual yields were 
generally considered relatively low, namely 1.0 to 2.1. The highest un
certainty scores were given for crops in Europe. All motivations were 
related to spatial data quality, either positively, like: “Very high spatial 
resolution (municipalities)”, or negatively, like: “Uncertainty about 
what are grain and what are silage maize areas in northern Germany” 
(while the focus of the yield gap analysis was on grain maize). 

The uncertainty scores for the number of years was low on average 
(1.5), and slightly higher for rainfed crops than for irrigated crops. The 
score was relatively high for rice crops in Africa, but also for all crops in 
South America (2.2). The temporal data quality was the most important 
aspect mentioned, such as: “Acceptable number of years (5), maybe 
insufficient at some locations in harsh production environments”, or: 
“Based on a single year”. 

3.2.3. Identifying possibilities for reducing uncertainty 
The expert remarks can be clustered along three categories:  

• reducible sources worth investing in;  
• reducible sources not worth investing in;  
• irreducible sources, either because they are of aleatoric origin or it is 

impractical. 

3.2.3.1. Reducible sources of uncertainty. We can identify several sug
gestions that may lead to improved estimations of the yield gaps on 
several locations (Table 4). For instance, the uncertainty resulting from 
use of the model ORYZA2000 to simulate rice yields can be improved as 
the model is adapted to incorporate the desired capability as indicated 
by the experts and then validated, or replaced by a model that already 
has this capability. Stakeholders will probably also be interested in 
doing so, because model uncertainty is ranked as the high-scoring source 
(Fig. 4). In other words, it can be expected that an investment in 
addressing this uncertainty source may result in a considerable reduc
tion of the overall uncertainty. Summarizing, it would answer our 
questions as:  

- “Where is the uncertainty coming from?” – uncertainty regarding the 
ability of the model ORYZA2000 to simulate cold sterility in me
dium/high altitude sites.  

- “How bad is it?” – the uncertainty source ranks high.  
- “And can we do something about it?” – the model can be adapted or 

eventually replaced. 

3.2.3.2. Uncertainty not worth investing to reduce. If the ranking of the 
uncertainty source is relatively low, this suggests it may not be worth the 
effort to try and reduce it further. For instance, uncertainty resulting 
from scaling scored lowest for all three yield indicators (Fig. 4). 
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Therefore, we argue that scaling should not be the focal point of efforts 
on reducing uncertainty in the yield gap assessments. 

3.2.3.3. Non-reducible uncertainty. Other uncertainty sources may not 
be readily reducible, at least not in the short term and without clear 
strategies. For instance, weather is a highly-ranked source of uncer
tainty, in particular for the potential yield of rainfed crops. This is 
illustrated by comments like: “Partly propagated weather data and 
obscure rainfall data”, or: “Rainfed rice is present in Volta region, a 
buffer zone was assigned, but insufficient weather data for this buffer 
zone”. Improved availability of high quality weather data, e.g., in sub- 
Saharan Africa, will require a long-term strategy of investing in 
weather stations that make data publicly available for the purpose of 
research and development in agriculture. Public availability of weather 
data in developing countries is far from trivial and hinders good R&D. 

In Table 4 we list a selection of quotes by experts and what may be 
done to reduce the uncertainty. 

4. Discussion 

In this paper we developed a semi-quantitative protocol for the 
assessment of uncertainty in the yield gap estimations presented in the 
Global Yield Gap Atlas. While the yield gaps give relevant information to 
assess options for potential food availability, the assessment of the 
sources of uncertainty in the GYGA framework and their impact on the 
yield gap predictions augment the decision making of users. Our pro
tocol is based on methodology presented earlier by Walker et al. (2003) 
and Janssen et al. (2005). It delivers estimates by experts of the level and 
relative impact (sensitivity) of different sources of uncertainty, as well as 
justifications of these estimations. As such, it makes expert knowledge 
explicitly available to stakeholders. The scores are encoded as colours in 
the maps in the Atlas for easy visualisation for users, and indicate a 
ranking of the sources. The combination of this ranking with the pro
vided justifications produces directions on which of the sources of un
certainty may be reducible or not with further invested efforts, and 
whether it is worth the effort. 

Table 4 
Selected examples of possible actions to reduce uncertainty for actual and po
tential yields, based on the quotes considered in the main text. The right column 
summarizes our brief evaluation whether actions can be taken to reduce the 
uncertainty.  

Yield 
indicator 

Category Quote from text Can we do something 
about it? 

Actual 
yield 

Data 
quality 

“Uncertain whether 
large contrast between 
large and small farms is 
represented correctly in 
national statistics” 

Probably reducible. This 
should be discussed with 
local experts to clarify.  

Spatial data 
quality 

“Actual yield data are 
given with a moderate 
quality for the whole 
country from national 
statistics” 

Requires long-term and 
strategic investment by 
governments to collect 
accurate yield data at fine 
resolution.   

“Uncertain whether 
green harvested barley 
is excluded” 

Probably reducible. This 
should be checked with 
the local agronomist.   

“Uncertainty about 
what are grain and what 
are silage maize areas in 
northern Germany” 
(while the focus of the 
yield gap analysis was 
on grain maize). 

Maybe reducible. It should 
be discussed with local 
experts what is the origin 
of this problem. Perhaps 
identification with remote 
sensing data is a 
possibility.  

Temporal 
data quality 

“Acceptable number of 
years (5), maybe 
insufficient at some 
locations in harsh 
production 
environments” 

Probably reducible. We 
expect this would 
naturally improve in 
future years as long as 
measurements continue to 
take place, but requires 
strategic investments.   

“Based on a single year” Unlikely to be reducible, 
unless there are any other 
data available from other 
years that have not yet 
been included, or from 
comparable locations. 

Potential 
yield 

Data 
quality 

“Partly propagated 
weather data and 
obscure rainfall data” 

Maybe reducible. It should 
be clarified what is meant 
by ‘obscure’. Maybe there 
is a way, e.g. through 
communication with the 
local agronomists to make 
it less obscure.   

“Area statistics on grain 
and silage maize in 
northern areas 
uncertain” 

Maybe reducible. It should 
be discussed with local 
experts what is the origin 
of this problem. Perhaps 
identification with remote 
sensing data is a 
possibility.  

Lack of 
data 

“Very few experimental 
data for Niger”. 

Not easy to reduce at short 
notice; requires strategic 
investments in well- 
designed and managed 
experiments targeting 
potential yield conditions.   

“Not sure if the country 
agronomist had access 
to the right information” 

Likely reducible. Check 
with multiple agronomists 
– requires some resources.   

“Rainfed rice is present 
in Volta region, buffer 
zone assigned, but 
insufficient weather 
data for this buffer zone” 

Maybe reducible. See 
above about investment in 
weather stations that 
make data publicly 
available.  

Model 
sensitivity 

“We are uncertain about 
the ability of 
ORYZA2000 to simulate 
cold sterility in 
medium/high altitude 
(=cold) sites” 

Reducible. Model can be 
improved with good 
experimentation and 
further model 
development.   

“Model is very sensitive 
to groundwater table 

Probably reducible, 
through better data on  

Table 4 (continued ) 

Yield 
indicator 

Category Quote from text Can we do something 
about it? 

depth for which we do 
not have good data” 

groundwater depth, but 
requires investments.  

Spatial data 
quality 

“Unlikely low rooting 
depth in some areas” 

Reducible, through 
further consultations of 
experts of perhaps 
measurements (which 
require investments).   

“We left out weather 
stations because, 
although selected based 
on SPAM, they are 
located in areas where 
wheat cannot be grown” 

Understandable reason. 
Reducible through 
updates of crop mask (e.g. 
SPAM, see below).   

“Many small climate 
zones” 

Not likely reducible, as it 
is inherent to the natural 
variability. A more 
detailed spatial coverage 
would be needed, which 
requires finer resolution 
input data.  

Temporal 
data quality 

“According to 
FAOSTAT, rice area has 
strongly increased in 
recent years, therefore 
total harvested area 
(SPAM 2005) is not 
representative for the 
current situation” 

Probably reducible. 
Regular updates of SPAM 
become available though 
often with 5–10 years 
delay.  

R.L.M. Schils et al.                                                                                                                                                                                                                             



Agricultural Systems 195 (2022) 103311

11

4.1. Reflection on the uncertainty protocol 

The yield gaps in the Atlas are calculated as the difference between 
simulated potential yields and observed actual yields. These components 
have different origins, each with their own error ranges and un
certainties. Crop modelling studies address uncertainty through many 
different approaches. For instance, in AGMIP, crop model sensitivity and 
uncertainty are derived from the responses of an ensemble of crop 
models for a given crop and region (Asseng et al., 2013; Rosenzweig 
et al., 2013). Also, parameter and input uncertainty has received ample 
attention (Wallach and Thorburn, 2017). Also the calibration method
ology may be a source of uncertainty (Seidel et al., 2018), as different 
calibration methodologies may yield different results for the same model 
(Carrella, 2021). Confalonieri et al. (2016) proposed a methodology to 
quantify the uncertainty in model output due to the uncertainty in the 
observations used for the calibration of model parameters. In contrast, 
the uncertainty of observed actual yields has received less attention. Yu 
et al. (2020) combined information from users, local experts, and col
laborators to build a SPAM uncertainty map (area and yield) that gives a 
rating in five classes, mainly based on the availability of and confidence 
in the subnational data. The strength of our approach is that it allows for 
an uncertainty assessment across different data sources and calculation 
procedures. 

We argue that the justifications of the expert opinions are a unique 
aspect of this approach, that contributes to a prioritization of actions and 
the ability to identify which sources of uncertainty may be reducible. At 
the same time, the use of experts may also be flagged as a weakness, as it 
may be subject to personal bias. In our application often only one or two 
experts were involved per (sub-)region, and they were also often unique 
to a (sub-)region. This may well introduce systematic bias in the esti
mation of uncertainty across regions. For instance, this may have 
contributed to a rather large difference in uncertainty scores between on 
the one hand Oceania and North America and on the other hand Europe. 
The division of Europe in many, relatively small countries, compared to 
Oceania and North America, may have contributed to this difference. 
Ideally, experts should have experience across many world regions and 
crops to improve consistency in scoring. 

Even though the views of the experts on uncertainty were also 
influenced by the views of the local country agronomists, the uncer
tainty assessment would certainly benefit from additional views. For 
instance, scientists from other disciplines and stakeholders like farmers, 
policy makers, and food producers and people from agro-industry could 
be involved. In a project-specific adaptation of the uncertainty matrix in 
the context of water quality, it was concluded that the matrix is a good 
platform that may facilitate a structured dialogue between water man
agers, modellers and stakeholders on possible sources and types of un
certainty, which helps the key actors to approach a common 
understanding on the uncertainties and their importance (Refsgaard 
et al., 2007). The extension from a limited number of experts, as in our 
case, to a broad expert judgement may be hampered by the cost in terms 
of time and resources, and funding for participation, and meetings 
(Aspinall and Cooke, 2011). Preferably, in a semi-quantitative assess
ment such as developed here more experts are involved who take more 
time to discuss and identify sources of uncertainty from all five locations 
as suggested by Walker et al. (2003). 

4.2. Lessons from the application 

The application of the procedure for a selection of country-crop 
combinations showed that we were able to identify and rank sources 
and types of uncertainty. Some results obtained with the application of 
the uncertainty protocol are more obvious than others. For instance, 
rainfed yield potential scored a higher uncertainty level than irrigated 
yield potential. Precipitation concerns aleatoric uncertainty, while irri
gation is under more control and also soil properties matter less when 
crops are irrigated. Estimation of actual and potential yields under 

rainfed conditions requires longer times series of high-quality weather 
and yield data to capture the natural variation (Grassini et al., 2015; van 
Ittersum et al., 2013), which is an obvious limitation particularly for 
many developing countries. 

Other results may be less obvious to explain, for instance, the 
geographical differences in uncertainty scores. This may be a ‘real’ 
result, but it may also be explained by some sort of bias, as already 
indicated above. The outcomes of our study are most likely affected by 
confounding effects of expert and region, country or crop. It is neither 
rational nor appropriate to expect total consensus among experts when 
they are asked to make judgements on ill-constrained complex problems 
(Aspinall and Cooke, 2011). This was illustrated for the 32 cases where 
we had two expert opinions, mainly for rainfed crops in Africa and rice 
in Asia. Overall, the average uncertainty score for the yield gap differed 
by 0.2 points, with a range between 0.0 and 1.0 points. The average 
differences in the underlying uncertainty sources varied from 0.0 
(weather) to 1.1 (actual yield data). 

Some identified sources of uncertainty may be challenging to reduce 
at short notice and without strategic investments. For instance, several 
quotes refer to lack of data for certain locations of uncertainty. These 
align with earlier reported suggestions for the improvement of yield 
predictions. For example, van Ittersum et al. (2013) and van Wart et al. 
(2013) identified a number of substantive concerns associated with used 
data sources and methods, namely (1) poor quality of weather and soil 
data, (2) unrealistic assumptions about the cropping-system context, (3) 
poorly calibrated crop simulation models, and (4) lack of transparency 
about underpinning assumptions and methods. Grassini et al. (2015) 
also point to the lack of published guidelines for standard sources and 
quality of data input for weather, soil, actual yields, and cropping- 
system context, and requirements for calibration of crop models, in 
spite of the wide use of crop models for yield gap predictions. This may 
explain the high uncertainty scores for models in this assessment, and 
indeed, some expert quotes refer to lack of data as the primary source for 
model uncertainty, while other quotes suggest the model structure of 
some models may be insufficient. 

While model use is a high-ranking source of uncertainty, it is also a 
reducible source, and the improvement of crop models may present a 
good ‘value-for-effort’ investment for research efforts. This includes the 
revision of crop model structure, but also looking at model calibration 
and evaluation. Scaling issues are lowly-ranked, which suggests it is less 
pressing to consider the reduction of this uncertainty. Some other 
sources of uncertainty may not be reducible, irrespective of their 
ranking. 

5. Conclusion 

We conceived a practical method that uses expert assessment to 
determine the uncertainty sources of yield gaps provided in the Global 
Yield Gap Atlas. The ranking of the uncertainty sources, together with its 
justification, allows for a prioritization of future efforts to reduce the 
uncertainty around yield gaps. The outcomes of our study may help to 
prioritize research and data collection efforts into reducing un
certainties, and as such also help to reduce the yield gap and thus in
crease food security. In the Atlas, the overall uncertainty outcomes are 
presented in a colour scheme at the country-crop scale. However, we 
argue that uncertainty is more than a single number or colour, and 
therefore the sources and types of uncertainty are directly accessible as 
well. While in this paper we presented the average outcomes, the added 
value for users lies in the country-crop specific uncertainty, to be used 
for prioritizing policies, investments, or research and development. 

Availability of data and material 

Data are available at www.yieldgap.org 

R.L.M. Schils et al.                                                                                                                                                                                                                             

http://www.yieldgap.org


Agricultural Systems 195 (2022) 103311

12

Authors’ contributions 

RS, GV and MI designed the research, RS and GV analysed the data, 
RS and GV wrote the paper; MI and PG edited various drafts. RS and GV 
contributed equally. 

Declaration of Competing Interest 

The authors declare no conflicts of interest or competing interests. 

Acknowledgements 

We would like to thank Jeroen van der Sluijs and Peter Janssen for 
contributing to an initializing workshop, and Haithem Bahri, Lenny van 
Bussel, Nanyan Deng, Juani Rattelini Edreira, Patricio Grassini, Nicolas 
Guilpart, Zvi Hochman, Baohua Liu, Pepijn van Oort, Said Ouattar, 
Muien Qaryouti, Justin van Wart, Joost Wolf and Haishun Yang for their 
expert assessments. We also acknowledge the support of Marloes van 
Loon, Antoine Languillaume, and Hugo de Groot. 

We received a financial contribution from the strategic investment 
fund (IPOP) of Wageningen University & Research and from the Bill & 
Melinda Gates Foundation. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.agsy.2021.103311. 

References 

Aspinall, W., Cooke, R., 2011. Quantifying scientific uncertainty from expert judgement 
elicitation. Risk and Uncertainty Assessment for Natural Hazards 64–99. 

Asseng, S., Ewert, F., Rosenzweig, C., Jones, J.W., Hatfield, J.L., Ruane, A.C., Boote, K.J., 
Thorburn, P.J., Rötter, R.P., Cammarano, D., Brisson, N., Basso, B., Martre, P., 
Aggarwal, P.K., Angulo, C., Bertuzzi, P., Biernath, C., Challinor, A.J., Doltra, J., 
Gayler, S., Goldberg, R., Grant, R., Heng, L., Hooker, J., Hunt, L.A., Ingwersen, J., 
Izaurralde, R.C., Kersebaum, K.C., Müller, C., Naresh Kumar, S., Nendel, C., 
O’Leary, G., Olesen, J.E., Osborne, T.M., Palosuo, T., Priesack, E., Ripoche, D., 
Semenov, M.A., Shcherbak, I., Steduto, P., Stöckle, C., Stratonovitch, P., Streck, T., 
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