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ABSTRACT: Computational approaches such as genome and metabolome mining are becoming essential to natural products
(NPs) research. Consequently, a need exists for an automated structure-type classification system to handle the massive amounts of
data appearing for NP structures. An ideal semantic ontology for the classification of NPs should go beyond the simple presence/
absence of chemical substructures, but also include the taxonomy of the producing organism, the nature of the biosynthetic pathway,
and/or their biological properties. Thus, a holistic and automatic NP classification framework could have considerable value to
comprehensively navigate the relatedness of NPs, and especially so when analyzing large numbers of NPs. Here, we introduce
NPClassifier, a deep-learning tool for the automated structural classification of NPs from their counted Morgan fingerprints.
NPClassifier is expected to accelerate and enhance NP discovery by linking NP structures to their underlying properties.

“Classification” is a systematic arrangement of elements into
groups or categories according to established criteria to
recognize, differentiate, and understand ideas or objects. In
natural product (NP) research or specialized metabolite-
guided drug discovery, NPs are categorized based upon their
molecular structures, chemical properties, bioactivities, and
biosynthetic pathways. NPs are an essential resource for drug
design and discovery, as well as for pharmacological tools used
in biomedical applications.1−3 Fundamentally, molecules
belonging to the same class share similar properties based on
the criteria used in the classification scheme; therefore, the
classification of molecular structures facilitates the quick
exploration of large regions of chemical space so as to derive
useful information, such as new sources of drugs or bioactivity
profiles.4,5

In recent years, natural product research has expanded
beyond classical natural product chemistry methodologies to
discover bioactive secondary metabolites by embracing new
technologies such as genome mining, metabolomics, algo-
rithms, and machine learning approaches for the rapid
annotation of candidate molecular structures. Consequently,

a web-based NP classification system for cheminformatic
approaches is needed to leverage such structural data. For
example, CANOPUS, a computational tool for systematic
compound class annotation based on MS/MS data, was trained
using the classification results from ClassyFire.6

Existing ontologies that provide chemical structure-based
classifications include the ChEBI ontology,7 the Medical
Subject Heading (MeSH) thesaurus with PubChem,8 LIPID
MAPS,9 and NP-specific databases such as Super Natural II,10

MIBiG,11 the Natural Products Atlas,12 and the Dictionary of
Natural Products (http://dnp.chemnetbase.com). The mole-
cules in these databases are curated by structural classes,
biological activities, or source organisms. These structures and
their classification terms are used to train various tools for NP
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research.13−15 The ontologies and structures in these databases
were manually curated from the literature. However, these
databases do not have tools for automated classification of
molecules. To tackle this last challenge, ClassyFire was
developed to automatically classify molecular structures
based on chemical properties into the ChemOnt ontology, a
well-defined chemical hierarchy.16 However, ClassyFire was
designed for general organic and bio-organic chemistry
communities, primarily aimed at metabolomics and exposo-
mics, and only provides partial classifications with semantic
knowledge of NPs; thus, its relevance for NP research is
significantly reduced. Among the 4825 classes in the ChemOnt
ontology, 3514 classes describe functional groups or inorganic
compounds that are not related to the semantic knowledge
from NPs. Additionally, this structural motif-based ontology
does not fully match with biosynthetic knowledge. For
example, the ChemOnt class “lignans, neolignans, and related
compounds” is outside of the phenylpropanoid and polyketide
classes, even though lignans are synthesized from phenyl-
propanoids via the shikimate pathway. As another example, the
class “alkaloids and derivatives” provides only structure-based
information and does not include any insights on biological
precursors such as amino acids.
Unlike structure-only based classifications, traditional

classification of NPs encompasses structural information as
semantically defined by NP researchers since the late 1800s.
Accordingly, this classification system implies not only
structural information but also various taxonomic and
functional properties of the compounds. The class name
“limonoids”, for example, encapsulates a variety of general
information about the molecule, such as the typical source
organism (Cucurbitaceae, Rutaceae, and Meliaceae), biosyn-
thetic pathway (mevalonate pathway), bioactivities (insectici-
dal, antibacterial, antifungal, antimalarial, anticancer, or
antiviral) and even their taste (bitter).17 These properties are
commonly expected from limonoid-type NPs. Knowledge
concerning the characteristics and properties of NP classes is
continuously expanded and revised with new discoveries made
by NP researchers. This ensures that, over time, NP
classifications are semantically largely consistent and informa-
tive. Consequently, the established classification ontology for
NPs allows a broader understanding of NPs.
NPs exhibit a very high structural diversity that results in

part from the large number of possible biosynthetic pathways,
the use of multiple pathways to produce a single molecule (e.g.,
hybrids), and the abundance of unique tailoring reactions.18

To understand and classify NPs, various rule-based approaches
such as analyzing functional groups, comparing structural
similarity, and finding maximum common substructures
(MCS) have been attempted.19−21 However, a rule-based
system must be manually updated whenever new knowledge is

gained, and any exceptions must be added by hand.22 For
example, the rule-based definition of “limonoids” is any
triterpenoid that is highly oxygenated and has a prototypical
structure either containing or derived from a precursor with a
4,4,8-trimethyl-17-furanylsteroid skeleton such as cedrone.23

Nevertheless, as shown in Figure 1, some highly modified
limonoids such as cipadonoids or quivisianones are considered
in the field to be “limonoids” even though they do not fit this
definition of a limonoid.24,25 As a result, current rule-based
structural classification tools or ontologies have limited use for
NP classification.
To develop a new classification tool that incorporates

traditional knowledge in the automated classification of NPs,
we developed an NP classification system based on the
traditional labels provided by the NP community. Over the last
two decades, an average of 1600 new marine and microbial
NPs have been reported annually,20 and most were reported
with their NP classifications during the peer-review and
publishing process. This provides the consistency and
sustainability for classification of NPs based on the
contributions of the NP community. Hence, we used standard
practices in the literature concerning chemical entities and
their classification in order to create the data set for
NPClassifier.
As various types of data have increased for NPs in recent

years, the application of deep neural networks (DNNs) to their
analysis has been developed for enhancing drug discovery,
genome mining, and structure elucidation.14,26−29 The power
of deep learning largely derives from how the features are
extracted from the data. In contrast to traditional machine
learning approaches or rule-based classifications, DNNs learn
features from the data in service of the task via back-
propagation during training.30 Therefore, DNNs avoid issues
of hand-designed features, which may be insufficient for the
task. Hence, DNNs are an attractive technique to apply to the
problem of NP classification.
In this paper, we introduce a deep neural network-based NP

classification tool called “NPClassifier”, which is freely available
at https://npclassifier.ucsd.edu together with a web-API (see
Supporting Information). NPClassifier was developed using
supervised feed-forward networks with 73607 NPs collected
from public databases including Pubchem, ChEBI, Chem-
spider, and the Universal Natural Products Database
(UNPD).31−34 The distribution of molecular weights and
chemical space of the data set are similar to those in the
UNPD, a representative natural product database (Figure S4).
NPClassifier classifies the structure of an NP at three levels
into seven Pathways, 70 Superclasses, and 672 Classes, all of
which are generally recognized by the NP research community
(Figure 2). Already, the classification results and the ontology

Figure 1. Structures of typical (cedrone) and highly modified (cipadonoid B and quivisianone) limonoids.
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Figure 2. Overview of NPClassifier. (A) In the data preparation stage, compound names and their class information were collected from the
literature. The compound names were converted to chemical fingerprints, and class information was assigned based on the NPClassifier ontology.
During the training phase, molecular fingerprints were input to a deep neural network. Binary cross-entropy loss was calculated by comparison
between the prediction result from the sigmoid outputs and the ground truth and back-propagated to adjust the model parameters. In classification,
a submitted chemical structure is classified by NPClassifier at three levels, including Pathway, Superclass, and Class. (B) Classification result of a
highly modified limonoid, cipadonoid B, by NPClassifier and ClassyFire. NPClassifier returns the classification result with three category levels
including Pathway, Superclass, and Class, which are based on the semantic knowledge of natural product research.

Journal of Natural Products pubs.acs.org/jnp Article

https://doi.org/10.1021/acs.jnatprod.1c00399
J. Nat. Prod. 2021, 84, 2795−2807

2797

https://pubs.acs.org/doi/10.1021/acs.jnatprod.1c00399?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jnatprod.1c00399?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jnatprod.1c00399?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jnatprod.1c00399?fig=fig2&ref=pdf
pubs.acs.org/jnp?ref=pdf
https://doi.org/10.1021/acs.jnatprod.1c00399?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


of NPClassifier are being used in natural products
research.12,35−39

■ RESULTS AND DISCUSSION

Training, Optimization, and Evaluation of NPClassi-
fier Models. Classification System. A classification system
was established based on the literature from the specialized
metabolism of plants, marine organisms, fungi, and micro-
organisms17,40−42 The MIBiG database,11 which provides
biosynthetic gene cluster (BGC) information on NPs, was
used to ensure the correctness of the biosynthetic pathways
such as NRPS-PKS hybrids or terpenoids. The categories used
in NPClassifier are defined at three hierarchical levels:
Pathway, Superclass, and Class.
The Pathways of NPClassifier consist of seven categories:

fatty acids, polyketides, shikimates−phenylpropanoids, terpe-
noids, alkaloids, amino acids/peptides, and carbohydrates. The
fatty acids and polyketides are major biosynthetic pathways of
microorganisms and relate to the production of many
antibiotics (e.g., doxycycline, erythromycin, and azithromycin)
or immunosuppressants (e.g., tacrolimus, rapamycin). The
shikimates−phenylpropanoids category is based on the
shikimate biosynthetic pathway and includes the phenyl-
propanoids, which are a diverse family of organic compounds.
Additionally, aromatic amino acids and many aromatic NPs are
formed from phenylpropanoids via this pathway.43 It should be

noted that natural products can be members of more than one
pathway in our classification scheme (e.g., aromatic amino
acids are both shikimates and amino acids, two of our
pathways). The terpenoids are a large and diverse category of
NPs derived from the mevalonate (MVA) or the 2-C-methyl-D-
erythritol-4-phosphate (MEP) pathways. Terpenoids have
diverse biological properties, including cytotoxicity and anti-
inflammatory effects.44 Alkaloids represent nitrogenous organic
compounds from NPs without obvious peptidic characteristics,
although there is some diversity of opinion on this point. A
number of alkaloids are part of traditional medications or have
found use as single-molecule drug candidates due to their
unique bioactivities.45 The amino acid/peptide category results
from different biochemical mechanisms for peptide synthesis,
wherein multiple amino acids are linked via amide (peptide)
bonds. Ribosomal as well as nonribosomal peptide synthetase
(NRPS) biosynthetic pathways are responsible for the
formation of this category of NP and have been widely
investigated using genome sequencing approaches. The
carbohydrate category in NPClassifier includes saccharides,
polyols, amino sugars, amino glycosides, and their derivatives.
The glycosides of other compound classes such as flavonoid
glycosides (shikimates−phenylpropanoids) or saponins (terpe-
noids) are omitted from the carbohydrate category.
The Superclasses represent subcategories within the Path-

ways, and at the present time 70 designations are proposed.

Figure 3. Example of the classification ontology of NPClassifier. (A) Amino acids−peptides Pathway and its Superclasses and Classes in the
NPClassifier classification system. This Pathway contains 12 Superclasses and 51 Classes. (B) The macrolides Superclass is involved in both
polyketides and amino acids−peptides Pathways. (C) The peptide alkaloids Superclass and its Classes belong to both alkaloids and amino acids−
peptides Pathways.
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The categories in the Superclass originate from the general
classes of metabolites (e.g., flavonoids, meroterpenoids, or
steroids), the general chemical or molecular shapes (e.g.,
chromanes, phloroglucinols, or macrolides), or biosynthetic
information (e.g., tryptophan alkaloids, aromatic polyketides,
or pseudo alkaloids). The chemical properties or taxonomic
information on the chemical entities can be expected to be
associated with the Superclass. For example, one of the
Superclasses, steroids, is a well-known biologically active
metabolite group with a specific multi-ring architecture and
consistent chemical properties.46

The Superclasses are subdivided into Classes that represent
specific compound families (e.g., erythromycins, penicillins, or
cannabinoids), characteristic functional groups (e.g., chro-
mones, azaphilones, indole alkaloids, or 3-spiro tetramic acids),
or scaffold diversity within a Superclass (e.g., flavans, flavones,
and chalcones from flavonoids). NPClassifier currently

includes 672 Classes (see Supporting Information for a
complete list of Pathways, Superclasses, and Classes).
Glycosides are also detected by NPClassifier. A glycoside is

any molecule in which one or more sugar groups is bonded
through a glycosidic bond between its anomeric carbon and a
nonsugar component. Because of the numerous important
roles that glycosides play in NPs, distinguishing between the
sugar component and the aglycone is essential to the
understanding of NPs.47 The results of glycoside detection
are provided together with the three-level classification system
(see Supporting Information for additional details concerning
glycoside detection).
Figure 3A shows the classification system for the amino

acids−peptides Pathway, in which 12 Superclasses and 51
Classes were included. Among the Superclasses of the amino
acids−peptides Pathway, some Superclasses such as macrolides
and peptide alkaloids are included in multiple categories. As
shown in Figure 3B, the antimycin Class, which is included in

Figure 4. Chemical descriptor and the deep learning architecture of NPClassifier. (A) Illustration of the difference between Morgan fingerprints
and counted Morgan fingerprints; the latter was used in this application. Morgan fingerprints are generally presented in a binary data format over all
radii. Alternatively, the counted Morgan fingerprints have an integer format reflecting the count of atomic substructures. (B) Illustration of the
structure of the neural network used for NPClassifier. Three different networks were trained: one for each level of classification in NPClassifier. The
same structure was used for all three networks with just the top layers differing as a result of the number of alternatives for each level, as indicated in
the legend.
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the macrolides Superclass, biosynthetically belongs to hybrid
NRPS-PKS synthases. Consequently, this Class is shared
between both the amino acids−peptides and polyketides
Pathways. The peptide alkaloids are generally considered as
alkaloids but are also composed of natural amino acids linked
by amide bonds.48 Thus, the peptide alkaloids Superclass is
included in both the amino acid−peptides and alkaloids
Pathways; hence, the classification system in NPClassifier has a
directed acyclic graph structure rather than a strict hierarchy,
reflecting the fact that NPs can be classified in multiple ways
and may derive from more than one pathway (i.e., hybrids).
Chemical Descriptors. The Morgan fingerprint method was

chosen as the format for inputting structural information to the
neural network. Morgan fingerprints encode the structure of a
molecule in a form that allows for rapid and efficient
quantification of similarity between molecular structures or
for finding matches to a query substructure. The molecular
fingerprint method is generally used in a binary format
representing the presence (indicated by a 1) or absence
(indicated by a 0) of a given atomic substructure in a molecule.
However, this method does not indicate the number of times
that a given atomic substructure occurs in a molecule, and this
is an important factor to be taken into consideration for NP
classification. The count of atomic substructures is particularly
important for the classification of oligomeric or structurally
iterative NPs, such as proanthocyanidins, tannins, or
carotenoids.
Therefore, the “counted Morgan fingerprint method” was

used in NPClassifier, which uses non-negative integers to
indicate the number of atomic substructures in each location of
the vector. RDKit version 2019.09.3 was used to compute the
counted Morgan fingerprints for training NPClassifier (Figure
4).49,50

Model Optimization and Evaluation. During the training
experiments, the performance of the models using two kinds of

chemical descriptors, Morgan fingerprints (MFs) and counted
Morgan fingerprints (CMFs), was compared. As shown in
Table 1, the loss of the CMF-based model was significantly
lower, and the cosine similarity and mean average precision
(mAP) of the CMF-based model were significantly higher than
that of the MF-based model in Superclass and Class. Hence,
CMFs were chosen as the input format for the DNN. These
results also indicated that training deep neural networks with a
semantic knowledge-based ontology resulted in excellent
classification accuracy.
For the three levels of classification of NPs, two different

architectures using CMFs were compared: one with three
separate single-task classifiers and a multitask model. In the
multitask model, the output layers were divided into three
different heads to predict the three levels (Pathway, Superclass,
and Class) simultaneously; this allowed for the hidden layers
to receive feedback from the three output layers.51 We found
that at all three levels the loss and cosine similarity were
improved by using the single-task classifiers. Especially at the
Class level, the results from the single-task model were
significantly better in cosine similarity (0.0053 higher) and
mAP (0.0238 higher) (Table 2); hence, the three single-task
models were chosen for NPClassifier (see Supporting
Information for additional details about the model optimiza-
tion and metrics).
Finally, we used Hyperband Tuner for TensorFlow hyper-

parameter tuning with keras-tuner to achieve the best
performance. The performance for each category is described
in the Supporting Information.

Performance of NPClassifier vs ClassyFire. To evaluate the
general performance of NPClassifier, it was tested with an
external test set. The test set contained representatives from
three of the Pathways (amino acid−peptides, polyketides, and
terpenoids) and Superclasses (flavonoids, steroids, and
lignans), which were established from the Dictionary of

Table 1. Comparison of Loss, Cosine Similarity, and Mean Average Precision (mAP) from Neural Networks Trained with
Different Chemical Descriptorsa

model classification levels loss (SD) cosine similarity (SD) mAP (SD)

MFs (binary) Pathway 0.0197 (0.0004) 0.9863 (0.0004) 0.9932 (0.0003)**
Superclass 0.0050 (0.0000) 0.9642 (0.0003) 0.9423 (0.0010)
Class 0.0012 (0.0000) 0.9314 (0.0002) 0.8734 (0.0018)

CMFs (Integer) Pathway 0.0211 (0.0016) 0.9849 (0.0013) 0.9920 (0.0004)
Superclass 0.0046 (0.0001)** 0.9682 (0.0009)** 0.9515 (0.0030)**
Class 0.0010 (0.0000)*** 0.9377 (0.0005)*** 0.8951 (0.0022)***

aEach model was optimized based on results from the validation set (n = 11777) and evaluated by using the test set (n = 14721). The results are
the average values from five runs of each model. There was no significant difference in the pathway loss or cosine similarity between the two
models, so neither is bolded. *Significant at p < 0.05; **significant at p < 0.005; ***significant at p < 0.001. SD = standard deviation. MFs =
Morgan fingerprints. CMFs = counted Morgan fingerprints.

Table 2. Comparison of the Losses, Cosine Similarities, and Mean Average Precisions (mAPs) from the Multitask and Single-
Task Modelsa

model classification levels loss (SD) cosine similarity (SD) mAP (SD)

multitask Pathway 0.0234 (0.0006) 0.9694 (0.0009) 0.9928 (0.0004)
Superclass 0.0049 (0.0001) 0.9571 (0.0006) 0.9551 (0.0016)
Class 0.0011 (0.0000) 0.9324 (0.0008) 0.8713 (0.0009)

single-task Pathway 0.0211 (0.0016)* 0.9849 (0.0013)*** 0.9920 (0.0004)
Superclass 0.0046 (0.0001)* 0.9682 (0.0009)*** 0.9515 (0.0030)
Class 0.0010 (0.0000) 0.9377 (0.0005)*** 0.8951 (0.0022)***

aEach model was optimized based on the result from the validation set (n = 11777) and evaluated by using the test set (n = 14721). The results are
the average values over five runs. *Significant at p < 0.05, **significant at p < 0.005, ***significant at p < 0.001. SD = standard deviation.
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Natural Products. These Pathways and Superclasses were
chosen because they represent overlapping categories between
NPClassifier and ClassyFire,16 allowing for a direct compar-
ison. Each Pathway and Superclass had 1000 chemical entities,
resulting in 6000 in total. Precision (PRE), recall (REC), and
F1 score (the harmonic mean of precision and recall) are
reported in Table 3. As observed in Table 3, except for amino
acids and peptides, where the two models performed similarly,
NPClassifier outperformed ClassyFire and generally showed
excellent results. NPClassifier was especially outstanding in
recognizing polyketides and lignans. The F1 scores reveal that
NPClassifier returned equal or better scores in the majority of
cases. We observed that in the cases where ClassyFire had
better precision, its recall was much worse than NPClassifier,
resulting in poorer F1 scores.
The performance of NP annotation by NPClassifier and

ClassyFire was investigated in more detail at the Class level. A
total of 62 classes that contained at minimum 100 chemical

entities each were tested on both platforms, as shown in Figure
5. Again, NPClassifier outperformed ClassyFire for 47 Classes,
often by very large margins, and performed equally or slightly
worse for the remaining 15 Classes. Three classes comprising
hopane triterpenoids, xanthones, and ergostane steroids classes
showed significantly worse performance than ClassyFire. In the
hopane triterpenoids class, 25 compounds were classified as
other similar triterpenoids such as oleanane, dammarane,
lupane, and cucurbitane triterpenoids. In the xanthones class,
16 compounds were unclassified, which means no output was
over 0.5, four compounds were classified as flavones, three
compounds were classified as anthraquinones, and two
compounds were classified as catechols. In the ergostane
class, 53 compounds were classified as cholestanes and four
compounds were unclassified. Ergostane and cholestane
steroids share similar scaffolds, differing only by a methyl
group on their side chain, so that might confuse the

Table 3. Comparison of the Performance between NPClassifier and ClassyFire on the External Test Set from the Dictionary of
Natural Products (n = 6000)a

NPClassifier ClassyFire

classification levels name PRE REC F1 score PRE REC F1 score

Pathway amino acids and peptides 0.925 0.879 0.902 0.949 0.860 0.902
polyketides 0.781 0.893 0.834 0.927 0.331 0.488
terpenoids 0.969 0.974 0.972 0.902 0.751 0.819

Superclass flavonoids 0.967 0.919 0.943 0.879 0.908 0.893
steroids 0.998 0.980 0.989 0.998 0.892 0.942
lignans 0.992 0.654 0.788 0.997 0.353 0.521

aEach class had 1000 chemical entities.

Figure 5. Comparison of the classification results from NPClassifier (blue) and ClassyFire (orange); overlap is shown in brown. Chemical entities
(n = 6200, 100 chemical entities for each of 62 classes) were analyzed by NPClassifier and ClassyFire, and the classification accuracy was measured.
Classes are numbered around the circumference of the circle, while the ratio of correct predictions to total predictions ranging from 0 to 100 is
denoted by the scale across the radius. NPClassifier showed better results for 47 classes and equal or slightly worse results for 15 classes compared
with ClassyFire.
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NPClassifier network (see Supporting Information for addi-
tional details on the external test set).
Interpretation of Models. DNNs are sometimes considered

to be “black boxes” because the transformations from layer to
layer obscure the role of specific input variables; nevertheless,
understanding how the model makes its decisions is important
to improving its performance. For example, why does it fail in
some cases, and how can its reliability be improved? To this
end, the change in response from NPClassifier was tracked as a
function of modified input structures. This allowed us to
evaluate whether the model classified a molecule based on
class-related structural features. As shown in Figure 6A, when
the ester bonds in the cyclic depsipeptide were replaced with
amide bonds, the classes of cyclic and depsipeptides were
changed to cyclic peptides. In the same fashion, when the C
ring of the flavonone was modified from a 4-keto to a 3-
hydroxy-4-keto, the results were changed from flavonones to

dihydroflavonols. Finally, when the C ring of the dihydro-
flavonol was modified from a 3-hydroxy-4-keto to a simple 3-
hydroxy group, the results were altered from dihydroflavonols
to flavan-3-ols (Figure 6B). From these experiments, the
classification results from NPClassifier appear to be influenced
by specific structural moieties associated with the general
definition of the compound class, in this case, for flavonoids
and peptides. The neural networks therefore recognize and
utilize class-related features in making these designations.
Additionally, the cases where NPClassifier failed were

investigated to understand the conditions underlying these
incorrect classifications. Incorrectly classified examples were
chosen from five categories with the lowest F1 scores in the
test set (Figure 7). In the minor lignan class, the norlignan
named breviscapin C was classified correctly at the pathway
level as shikimates−phenylpropanoids, but unclassified, which
means no output was over 0.5 in the Superclass and Class

Figure 6. Examples of the correlations between structural modifications and classification results. (A) Ester bonds of a cyclic depsipeptide were
sequentially replaced with amide bonds, and the classification result changed from cyclic peptide and depsipeptides to cyclic peptides. (B)
Correlations between the modification of the C-ring substituents in flavonoids and the resulting classifications.

Figure 7. Incorrectly classified structures and five categories with low F1 scores in the test set.
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levels. In the acetate-derived alkaloids class, the hemlock
alkaloid 1′-oxo-γ-coniceine was classified correctly in the
alkaloids at the Pathway level, but was left unclassified at the
Superclass and Class levels. The seco-germacrane anhydride
shown in Figure 7, which is a ring-opened germacrane
sesquiterpenoid, was recognized as a terpenoid, but incorrectly
classified as a prenylquinone meroterpenoid at the Superclass
level and unclassified at the Class level. Sinulobatin D, a

cycloamphilectane diterpenoid, was correctly classified as a
terpenoid at the Pathway level and diterpenoid at the
Superclass level, but unclassified in the Class level. Patellamide
B, which is a cyclic peptide and also a kind of cyanobactin,
which is a member of the ribosomally synthesized and post-
translationally modified peptides (RiPPs), was expected to be
classified as an amino acid and peptide at the Pathway level, an
oligopeptide at the Superclass level, and cyclic peptides and

Figure 8. Application of NPClassifier to natural products research and drug discovery. (A) NPClassifier analysis of the diversity of metabolites and
BGCs from bacteria and fungi (see text for more details). (B) Distribution of PKS-derived metabolites from bacteria and fungi. (C) The results of
in silico antimalarial screening of NP Atlas using the MAIP tool (upper) and the analysis of these results using NPClassifier (lower). The level of
predicted antimalarial activity is colored red for active and blue for inactive. (D) Spirotetronate macrolides with high (decalin containing) and low
(non-decalin containing) MAIP scores present in the NP Atlas database.
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RiPP−cyanobactin at the Class level. It was classified correctly
as an amino acid and peptide at the Pathway level and an
oligopeptide at the Superclass level. However, it was just
classified as a cyclic peptide at the Class level and was not
classified as a RiPP−cyanobactin.
The common feature in these unclassified or misclassified

metabolites is that the number of representatives in the
training set is smaller than the chemical diversity present
within their respective Superclass or Class. For example, the
minor lignan class represents a group of metabolites with a
rarely reported lignan scaffold. Rearranged structures, such as
seco- or cyclo-scaffolds, are less often reported than the general
parent scaffolds.
In summary, incorrect outputs of NPClassifier can be traced

to deficiencies in the training data set or limitations imposed
by a limiting number of different classes. The addition of more
entries to the reference data set or expanding the number of
metabolite classes is expected to reduce these deficiencies.
Therefore, user feedback and evaluation forms have been
created on the NPClassifier website to collect the community’s
contributions and suggestions.
Application of NPClassifier to Natural Products

Research and Drug Discovery. NPClassifier was designed
for natural product classification and is expected to assist
natural product research in a variety of ways. The possible
applications where NPClassifier would be useful include

• providing a quick chemical overview of a set of natural
products, highlighting possible novel chemical architec-
tures

• accelerating large-scale genome−metabolome-based nat-
ural products discovery studies through compound class-
based selection of possible BGC−molecular links; BGCs
are better aligned with NPClassifier natural product
ontologies than with ClassyFire52,53

• analyzing the distribution of secondary metabolite
chemical pathways among different environments54

Additionally, we demonstrate here the application of
NPClassifier in conjunction with the Natural Products Atlas
(NP Atlas) database.
Analysis and Interpretation of Databases. The NP Atlas is

an open source database that provides compound names,
chemical structures, organism sources, and a structure
similarity-based chemical space for natural products from
fungi and bacteria along with their literature references.12 In a
previous study of NP Atlas, the metabolites from fungi and
bacteria were well distinguished using a MAP4-based support
vector machine, even though the biosynthetic pathways in
bacteria and fungi are generally quite similar.55 However, this
study did not explain what factors were responsible for
distinguishing between fungal and bacterial metabolites, but
suggested that the difference of molecular weight range, the
fraction of sp3 carbons, and the presence of glycoside moieties
might be responsible.
To further explore the differences between secondary

metabolites produced by bacteria and fungi from a biosynthetic
perspective, we classified all of the molecules in the NP Atlas
using NPClassifier. These results provided some interesting
insights into the basis of this separation. At the pathway level,
the major difference between the two types of organisms was
the number of reported terpenoids (Figure 8A). Over 3000
terpenoids of various sizes were reported from fungi, whereas
only around 300 were obtained from bacteria. This is similar to

the ratio of BGCs reported from the two types of organisms in
the MIBiG database (Figure 8A). We also compared the
polyketide metabolites in these two groups; this is a
biosynthetic class that is abundantly produced by both fungi
and bacteria, and many polyketide synthase (PKS) biosyn-
thetic gene clusters are reported in the MIBiG database for
these organisms.
Interestingly, classifications of the PKS products present in

bacteria and fungi showed little overlap with each other
(Figure 8B). Macrolides and polycyclic aromatic polyketides
represent the majority of the bacteria-produced polyketides. In
contrast, cyclic polyketides, chromones, aromatic polyketides,
and naphthalene derivatives were mainly reported from fungi.
These results are similar to those obtained from a large-scale
comparison study between bacterial and fungal biosynthetic
gene cluster families.56 This study revealed dramatic differ-
ences in the biosynthetic logic and chemical space between the
two types of organisms. Therefore, even though the
biosynthetic pathways used by these two classes of organisms
are similar, the products are notably different, and this possibly
explains why the previous classification using a machine
learning algorithm was successful in this regard (see
Supporting Information for all classified results of the NP
Atlas database using NPClassifier).

Natural Product Scaffolds-Based in Silico Screening. Over
the past few decades, improvement in virtual screening has
resulted from the increased size of real as well as virtual
compound databases, as well as improvements in the applied
algorithms.57 Natural products possess high structural
diversity, although this diversity is readily mapped to the
outputs of specific biosynthetic pathways. If a specific scaffold
is chosen as a candidate structure type from in silico screening,
NPClassifier can help identify related source organisms and
their compounds for further investigation. This can provide
insights into structure−activity relationships (SAR) by
integrating NPClassifier with other target prioritization
strategies and databases. Such an approach can also be
integrated with engineered biochemical pathways and synthetic
biology.
For example, using the malaria inhibitor prediction (MAIP)

platform from EMBL-EBI (https://www.ebi.ac.uk/chembl/
maip/), 25523 chemical entities from the NP Atlas were
screened to find potential natural product-derived antimalarial
agents.58 The MAIP platform is a machine learning based web
service for predicting blood-stage malaria inhibitors and was
trained with the results of 4 million screening results. The
predicted antimalarial compounds from this MAIP analysis
were classified by NPClassifier and labeled with their MAIP
score (Figure 8C). The predicted active compounds could
then be organized by Pathway, Superclass, and Class.
Interestingly, a number of scaffolds were predicted as having
highly potent antimalarial activity among the chemical entities
in the NP Atlas database (a high-resolution interactive
sunburst chart described in Figure 8C is available on
https://zenodo.org/record/5068687#.YPm57ehKiUl).
For example, spirotetronate macrolides from the polyketide

pathway in the NP Atlas showed a mild MAIP score (65.8),
but the range of the scores was quite wide, from 14.2 to 138.8.
Among the 100 spirotetronate macrolides in the NP Atlas
database, we found that the presence of a decalin moiety as
part of the macrolide structure was highly correlated with
better MAIP potency. The average MAIP score of decalin-
containing macrolides (n = 55) was 97.2, whereas it was only
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25.1 when this structural motif was absent (Figure 8D).
Interestingly, these prediction results are consistent with
previous antimalarial studies where kijanimicin was quite
active but the abyssomicins were not.59,60 In this regard,
scaffold-based analysis as enabled by NPClassifier could allow
for scaffold prioritization in NP drug discovery efforts or could
be used to initiate SAR studies of synthetically modified NPs.

■ CONCLUSION
In this study, we introduce NPClassifier, a tool that is designed
for the classification of natural products using deep learning,
including a specific training strategy, optimized parameters,
and its evaluation and application. The classification ontology
used in NPClassifier is categorized into three hierarchical levels
based on expert knowledge. The specialized metabolism
(Pathway), chemical properties or chemotaxonomic informa-
tion (Superclass), and structural details (Class) of the analyzed
molecules can be deduced from the classification results of
NPClassifier. We anticipate that by supporting large-scale
computationally driven NP discovery studies, such as linking
the results from genomic and metabolomic mining, NPClassi-
fier can assist with natural products drug discovery as well as
understanding the molecular basis for ecological interactions,
including human health and the microbiome.

■ EXPERIMENTAL SECTION
Data Set Preparation. The data set for training the neural

network was prepared using Class, Superclass, and Pathway
categories. Compounds with these same category descriptions were
manually collected from hundreds of research papers, review papers,
titles, books, and abstracts. These collected keywords were converted
to structures using the PubChem identifier exchange service (https://
pubchem.ncbi.nlm.nih.gov/idexchange) and Chemspider (http://
www.chemspider.com). Additional compounds from the ChEBI
database7 were added to improve the data set balance between the
different classes of NPs. The structures of unconverted keywords via
PubChem (https://pubchem.ncbi.nlm.nih.gov) or Chemspider were
manually curated by searching the UNPD database34 or by drawing
the structures from primary literature sources. Duplicates were
removed by comparing InChIKey representations; these in turn were
produced by conversion from their SMILES strings. In total, 73607
natural products were labeled and established as a data set for training
NPClassifier. This data set was split in a stratified fashion using the
Class labels; 64% were assigned to the training set, 16% to the
validation set, and 20% to the test set. After hyperparameter tuning,
the training and validation sets were merged together and subjected to
the final model training.
Preparing an External Evaluation Test Set. To evaluate and

compare the performance between different platforms, compound
Classes that were included in both the NPClassifier and ClassyFire
platforms were chosen from the Dictionary of Natural Products
(http://dnp.chemnetbase.com/). In the external test set, 3000
chemical entities for three Pathways (amino acid−peptides,
polyketides, and terpenoids), 3000 compounds for three Superclasses
(flavonoids, lignans, and steroids), and 6200 compounds for 62
Classes were included. As these structures were used from a
commercial library, these data were only used for testing and were
not included in the training set of NPClassifier.
Data Labeling and Evaluation Metric. Each unique category

from the three classification levels was encoded by the binary
encoding method. Cosine scoring was used to measure the similarity
between these binarized vectors, and this allowed comparison
between the predicted results and the ground truth results during
training.
To compare the performance between each model, (1) average

precision, (2) mean average precision, and (3) F1 scores were
computed from the results. In the precision recall curves, the trade-off

between precision and recall was shown for different thresholds. A
high area under the curve represents both high recall and high
precision, where high precision relates to a low false positive rate, and
high recall relates to a low false negative rate. Thus, high scores for
both demonstrate that NPClassifier is returning correct results (high
precision) as well as a majority of all correct results (high recall).
Average precision (AP) summarizes a precision−recall curve as the
weighted mean of precisions achieved at each threshold, with the
increase in recall from the previous threshold used as the weight:
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k k k
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where Pk and Rk are the precision and recall at the kth threshold.
Mean average precision is the average AP from k classes in order to
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F1 score is defined as the harmonic mean of precision and recall. This
score is often used in the field of information retrieval for measuring
search, document classification, and query classification performance.
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Precision Recall
Precision Recall

= × ×
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Deep Neural Network Architectures. The training of
NPClassifier was performed on a server with an Intel Core i7-
6850K CPU, NVIDIA GeForce GTX 1080 with 8GB video memory
GPU, and 64 GB RAM. For the purpose of this research, the Python
programming language was used and the TensorFlow 2.3.0 deep
learning framework was used. The DNN for the NPClassifier was
composed of three different networks that classified the molecular
structure at the three levels of hierarchy with feed-forward neural
network architecture. For each network, there was an input layer,
representing the counted fingerprints, followed by three hidden layers
and a fully connected layer to the output. Dropout was applied to the
fully connected layers to improve generalization. The activation
function for the hidden layers used the ReLu function and all hidden
layers were normalized by batch normalization. Hyperparameters
including the number of hidden layer units, learning rates,
regularization, and dropout rate were optimized by the Hyperband
algorithm in Keras Tuner.
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