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Abstract
Plant microbial fuel cell (PMFC) is a novel bioelectrochemical system that integrates the photosynthetic reaction from the 
living plants to generate electricity via microorganisms at the rhizosphere of the plant roots. To elucidate factors which 
are critical for PMFCs operation, this study investigated the effects of different plants and soil conditioners on PMFCs 
performance. The experiment was done in a controlled lighting incubator at 27 °C and 75% of humidity for 200 days. Two 
waterlogged agricultural plants, paddy (Oryza sativa) and water bamboo (Zizania latifolia), were applied in PMFC systems; 
besides, the compost made from food waste and biochar made from waste wood biomass were selected as soil conditioners. 
Results showed that varied electricity generation during the operation was observed for different PMFC systems, but the Paddy-
PMFC with compost (PC-PMFC) demonstrated relatively more stable electricity generation for 200 days (15.57 ± 8.15 mW/m2) 
and significantly higher voltage production, reaching the highest output voltage of 894.39 ± 53.44 mV (34.78 mW/m2) among 
all PMFCs. It was observed that the output voltage of PMFCs was significantly higher than soil-MFC, and the output voltage 
of P-PMFC was significantly higher than water bamboo-PMFC, implying rhizodeposition of different plant roots could be 
important for the performance of electricity production in PMFCs. However, Paddy-PMFC with biochar (PB-PMFC) demon-
strated significantly lower voltage production than those without biochar, likely due to the inhibitory effect of biochar made 
by waste wood biomass. The taxonomic identification of the microbial community at the anode showed that Proteobacteria 
was the most abundant phylum, and Gammaproteobacteria and Deltaproteobacteria were the most dominant classes of 
the microbial communities. Further analysis showed that the PB-PMFC had the most distinct anode microbial community 
structure, with the predominant family of Gallionellaceae, instead of Geobacteraceae as in other PMFCs. Geobacter was the 
major genus of the microbial population in all samples and showed the highest relative abundance in PC-PMFC, suggesting 
that it was the main exoelectrogen involved in electricity generation in our PMFC systems. This study has demonstrated that 
the power output of PMFC systems can be influenced by different agricultural plants and soil conditioners made from waste 
biomass, which warrants the need to better understand the underlying interaction among the anode microbial community, 
the rhizodeposition of different plant roots, and electrochemical mechanisms for the future scale-up application of PMFCs.
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Abbreviations
EAB  Electroactive bacteria
MFC  Microbial fuel cell
Soil-MFC  Soil microbial fuel cell
P-PMFC  Paddy plant microbial fuel cell
W-PMFC  Water bamboo plant microbial fuel cell
PC-PMFC  Paddy plant microbial fuel cell with compost
PB-PMFC  Paddy plant microbial fuel cell with biochar
OCV  Open circuit voltage

Introduction

Nowadays, the demand for renewable energy or sustainable 
energy sources has been increasing. Bioenergy is consid-
ered as one of the renewable energy sources. Plant microbial 
fuel cell (PMFC) is a novel biotechnology which converts 
solar energy to electrical energy via plants and microorgan-
isms. In the PMFC, the photosynthetic reaction from a living 
plant is integrated to generate the electricity via microor-
ganisms at the rhizosphere of the plant roots (Guan et al. 
2019a). During the photosynthesis process, a wide variety 
of organic compounds or rhizodeposition such as root exu-
dates, secretions, lysates, and gases can be released to the 
rhizosphere (Gregory 2008). The rhizodeposition from plant 
photosynthesis could function as the self-sustained organic 

compounds, and the oxidation of the rhizodeposition at the 
plant roots via electrochemically active bacteria plays a key 
role in PMFC systems to generate electricity (Timmers et al. 
2013a). The electricity can be collected through electrodes 
with an external circuit.

Wetland plants or the waterlogged plants are suitable to 
use in PMFCs (Guan et al. 2019b) because the soil subsur-
face remains anaerobic when the soil is submerged in water, 
and the community of anaerobic microorganisms (comprised 
of sulfate-reducing bacteria, iron-reducing bacteria, fer-
mentative bacteria, and methanogenic archaea, etc.) will be 
established (Chin et al. 1999). Several wetland plants have 
been used to generate bioelectricity in PMFCs, for instance, 
reed mannagrass (Glyceria maxima) (Strik et al. 2008), cat-
tail (Typha latifolia) (Oon et al. 2015), Chinese pennisetum 
(Pennisetum alopecuroides), and common reeds (Phrag-
mites communis) (Guan et al. 2019a). To date, the maximum 
power output achieved was 679 mW/m2 in PMFCs with S. 
anglica, and more efforts are still underway by different 
researchers to achieve a higher power output (Santos et al. 
2018). It is suggested that the high root biomass (Timmers 
et al. 2013b) and the plant growth medium or nutrients could 
improve the power output of PMFCs (Helder et al. 2013).

PMFCs also show the potential to integrate with agri-
cultural plants. The rice plant is one of the most impor-
tant crops, particularly in Asian countries. Rice plants are 
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typically cultivated in flooded land in which the soil can 
be under different redox zones, including oxic zone, anoxic 
or anaerobic bulk soil, and rhizosphere. These redox zones 
could cause microscale chemical gradients and a heterogene-
ous spatial distribution of microbial communities (Liesack 
et al. 2006), which could be observed also in the PMFCs 
(Guan et al. 2019b). The paddy PMFC has been demon-
strated (Kaku et al. 2008), but the voltage generation was 
relatively small and faced the limitation for the growth of the 
roots by the electrode materials. Moqsud et al. (2015) stud-
ied factors which influence the power output of rice paddy 
PMFCs with paddy field soils. They found that the highest 
electricity production from rice paddy PMFCs was around 
700 mV when rice paddy soil was mixed with additional 
compost.

Although PMFCs have been developed for a decade, 
it is still difficult to conclude the factors which are criti-
cal for PMFCs operation, since most of the study reported 
highly varied electricity generation during operation. We 
were uncertain whether the varied electricity generation was 
mainly due to the changing environmental conditions in the 
greenhouse or outoor environment in the previous studies 
(Helder et al. 2013; Guan et al. 2019a). Therefore, in this 
study, we systematically investigated effects of different 
plants and soil substrates on the electricity generation and 
microbial community of PMFCs in the controlled lighting 
incubator. We used semiaquatic crops to compare the elec-
tricity production, including rice paddy (Oryza sativa) and 
water bamboo (Zizania latifolia), which were widely planted 
and used as food in Taiwan. Moreover, since the addition of 
soil conditioner has been reported to stimulate rice paddy 
growth (Khan et al. 2013), in order to improve the effi-
ciency of bioelectricity generation in PMFCs, Paddy-PMFC 
(P-PMFC) operation was compared under the addition of 
waste-based soil conditioners, including compost, and bio-
char, which were converted from food waste and waste wood 
biomass, respectively. Therefore, the information from our 
results will be beneficial for the further improvement of 
PMFCs toward feasible applications.

Material and methods

Soil preparation

The soil was collected from a natural paddy field in Taoyuan 
City (24° 53′ 21″ N, 121° 17′ 20″ E) at the topsoil (0–15 cm 
depth). The rocks and the plant debris were manually 
removed via screening. The screened soil was air-dried 
to remove the moisture content and sieved through 2 mm 
sieved-mesh. Before setup of soil-MFCs and PMFCs, the 
soil was incubated by adding tap water until the saturated 
condition and mixed with  NH4NO3 (120 mg N/kg soil) and 

 K2HPO4 (30 mg P/kg soil and 75 mg K/kg soil), which func-
tion as the essential nutrients for crop farming (Khan et al. 
2013).

Paddy and water bamboo cultivation

The two species of waterlogged agricultural plants, includ-
ing paddy plants (Oryza sativa) and water bamboo (Zizania 
latifolia), were used to evaluate the electrical energy genera-
tion in PMFCs. Rice seeds were obtained from the National 
Taiwan University farm. The rice seeds were cultivated at 
27 °C in the incubator without light. After the root shooting, 
the paddy was transplanted into the soil until the 3-week 
old and then transplanted in PMFCs. Meanwhile, the water 
bamboo plants were obtained at the ages of 2 weeks from 
Honglin Garden Company, Changhua, Taiwan, and continu-
ously cultivated from their stem until they had 5 cm length, 
and they were set up in PMFCs afterward (Fig. S1).

Experimental design and construction

In this study, round polyvinyl chloride (PVC) buckets (24 cm 
height and 17 cm diameter) were designed in all cases and 
set up in the light incubator (LG-600RH, LIAN SHEN 
ENTREPRISE CO., LTD., Taiwan). Each bucket contained 
3 kg of soils and 1.5 L of water. The experimental setup 
included soil-MFCs without plants and different PMFCs, 
including two species of plants (paddy and water bam-
boo) and two soil conditioners (biochar and compost) for 
P-PMFC. The soil-MFC was set up as a control for compari-
son. P-PMFC and water bamboo-PMFC (W-PMFC) were set 
up to evaluate the impact of different waterlogged agricul-
tural plants on electricity production in PMFCs. Two addi-
tional sets of P-PMFC which were mixed with 10% (w/w) 
of compost (Moqsud et al. 2015) and 1% (w/w) of biochar 
(Khan et al. 2013), respectively, to test the effect of soil con-
ditioners. The compost, which was made from food waste, 
was obtained from Musta Refuse Incineration Plant, Depart-
ment of Environmental Protection, Taipei City government. 
The commercial biochar made from waste wood biomass 
was obtained from the GreenPros CO., LTD, Taiwan. The 
basic properties of soils, compost and biochar are reported 
in Table S1 (Supplementary Information). In this study, the 
soil-MFC and PMFCs were labeled as shown in Table S2, 
and all experimental setups are triplicated.

The electrode material for both anode and cathode was 
made from carbon felt in a round shape (Gansu Haoshi Car-
bon Fiber Company, China) with 13 cm of diameter and 
3 mm of thickness. The cathode was placed on the top of 
the soils but in the waterlogged condition, while the anode 
was buried in the soils. The distance between cathode and 
anode was about 5 cm. Both cathode and anode were con-
nected via titanium wire, and the circuit was connected with 
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1 kΩ of an external resistor. The experimental configurations 
are showed in Fig. 1. All experiments were conducted in 
the controlled environment in the lighting incubator with 
27 °C and 75% of humidity and carried out for a period of 
200 days (December 2018–June 2019). An artificial light 
which includes fluorescent and LEDs lighting was controlled 
at 12/12 h of the light and dark cycle. The average light 
density monitored via a light sensor (UA-002-64, HOBO, 
USA) was 2095.4 Lux within the 63 × 65 × 50 cm space of 
the incubator. To keep all experiments in the waterlogged 
condition, all cases were irrigated with tap water every day.

Analytical methods

To monitor power performance, the voltage across the resis-
tor of all PMFCs was monitored every 5 min via connection 
to the data acquisition system (2700, Keithley, the USA) 
controlled with KE 302 Kick start data logger software, and 
the data were saved to a computer. After 60 days, the polari-
zation tests were made by using different resisters. Internal 
resistances and power density were calculated as described 
in the previous literature (Logan et al. 2006). The electric-
ity output was measured in voltage (V) against time, and 
the current was calculated by using Ohm's law. The cur-
rent density was calculated based on the anode surface area 
according to Eq. (1) (Moqsud et al. 2015).

where V is the measured voltage in volts (V), R represented 
the value of the external load resistor in Ohms, and α is the 
electrode surface area. The power output (P) was calculated 
following Eq. (2)

The internal resistance (Rint, Ω) was calculated by the 
peak power density method with the aid of polarization and 
power density curves. When the maximum power density 
(Pmax, mW/m2) is acquired, the internal resistance is equal 

(1)I = V∕�R

(2)P = V × I

to the external resistance (Rext, Ω) following Eq. (3) (Logan 
et al. 2006)

where i represented the current corresponding to the maxi-
mum power density.

The organic matter content of the soils and compost was 
determined by “loss on ignition” method (LOI). The dry 
weight of the sample was weighted before and after combus-
tion at 600 °C for 2 h. The LOI was calculated according to 
Eq. (4)

where DW105 is the dry weight of sample at 105 °C to con-
stant weight, and DW600 is the weight of dry sample after 
combustion in the furnace at 600 °C for 2 h (Zhao et al. 
2016).

The measurement of pH and the electrical conductivity 
(EC) of all treatments were performed every week using a 
pH meter (HQ40d, HACH USA) and an electrical conduc-
tivity meter (multiHQ40d, HACH USA). Both soil pH and 
EC were analyzed at the soil surface near the cathode. The 
soil samples (approximate 2 g) were mixed with distilled 
water according to 1:2.5 of the soil–water ratio (Thomas 
1996). After waiting for the suspension to precipitate, pH 
meter was used to measure the pH value. For the EC meas-
urement, the same ratio of the soil–water was provided into 
the shaker for 1 h at 140 rpm (Rhoades 1996). After filtered 
by Whatman filter #5, the EC meter was used to measure the 
EC of soil samples.

16S rRNA gene amplicon high‑throughput 
sequencing and statistical analysis

After 120 days of the operation, the anodes were carefully 
removed to analyze the microbial community using 16S 
rRNA gene amplicon high-through sequencing. The DNA 
was extracted from the anodes of soil-MFCs and PMFCs 
by using the commercial DNA extraction kit (DNeasy 

(3)R
int

= R
ext

= P
max

∕i2

(4)LOI (%) = ((DW105−DW600)∕DW105) × 100

Fig. 1  Schematic diagrams of 
the PMFCs configuration
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PowerSoil Kit, QIAGEN, Germany). The fragments of 16S 
rRNA genes were amplified using the universal primers: 
16S V3–V4; 341F (5′-CCT ACG GGNGGC WGC AG-3′) 
and 805R (5′GAC TAC HVGGG TAT CTA ATC C-3′). The 
DNA was amplified using the thermal cycling with the ini-
tial denaturation at 95 °C for 3 min, followed by 30 cycles 
of denaturation at 95 °C for 30 s, annealing at 57 °C for 
30 s, elongation at 72 °C for 30 s, and the final extension at 
72 °C for 5 min. All 16S rRNA gene amplicons were sent to 
sequencing (Genomics company, Taiwan). The sequencing 
libraries were generated using Truseq nano DNA Library 
Prep Kit (Illumina, the USA) following the manufacturer’s 
recommendations, and index codes were added (Caporaso 
et al. 2010; Schloss et al. 2009). The mothur (Caporaso et al. 
2010) and QIIME (Schloss et al. 2009) softwares were used 
to analyze raw sequencing data as mentioned previously. 
Every representative sequence was described as an opera-
tional taxonomic unit (OTU) using the RDP classifier with 
the SILVA database version 132 (Quast et al. 2013).

The descriptive statistics and analysis of variance 
(ANOVA, IBM SPSS Statistics version 22.0) with Tukey 
post hoc test were used to compare the electrical voltage, pH, 
and EC values of P-PMFC, W-PMFC, soil-MFC, PMFCs 
with conditioners. Using α = 0.05, statistical significance 
(P value) was provided to compare the different treatments 
of soil-MFCs and PMFCs. UniFrac principle coordinate 
analysis (PCoA) which is a distance metric using phylo-
genetic information was also used to compare microbial 
communities among the soil-MFC and PMFCs (Lozupone 
et al. 2011). Meanwhile, the unweighted pair group method 
with arithmetic mean (UPGMA) hierarchical clustering was 
used to classify the average linkage of the microbial com-
munity in soil-MFCs and PMFCs based on their pairwise 
similarities (Saitou and Nei 1987). The method can be more 
effective in revealing ecological patterns than taxon-based 
methods (e.g., use of lists of species, genera, and OTUs) 
used in the previous study (De Schamphelaire et al. 2010). 
In this study, UniFrac coupled with PCoA and UPGMA 
hierarchical cluster was carried out by PALSTAT software 
package version 3.21.

Results and discussion

Electricity generation in PMFCs

The output voltages of the multiple PMFCs tested in this 
study are shown in Fig. 2. After operating soil-MFC and 
PMFCs for 10 days, the closed circuit voltage of all treat-
ments increased gradually and showed varied voltage out-
puts, which were similar to the previous study (Timmers 
et al. 2010). For the soil-MFC, the highest output voltage 
was 468.57 ± 34.64 mV, while the P-PMFC and W-PMFC 

had the highest output voltage of 668.28 ± 32.53 and 
618.11 ± 45.38 mV, respectively, as shown in Fig. 2a. Com-
paring soil-MFC with PMFCs, PMFCs with paddy and water 
bamboo had significantly higher voltage values (P < 0.05) 
than soil-MFC (Table S3). The significantly higher output 
voltage in PMFCs should be related to the available carbon 
sources from rhizodeposition, which is the root excretion of 
organic compounds to the soils including sugars, organic 
acids, polymeric carbohydrates, enzymes, and dead-cell 
material (Timmers et al. 2010). As also shown in the previ-
ous study, it revealed that PMFC with paddy was still able 
to generate electricity even using inert vermiculite as the 
growing medium, where the plants were the only sources of 
organic compounds (De Schamphelaire et al. 2010). These 
results suggest that living plants like rice paddy and water 
bamboo used in this study are important to enhance the bio-
electricity generation, since electroactive bacteria (EAB) 
could access more carbon sources from the rhizodeposition 
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Fig. 2  Variation of voltage generation versus time. a Soil-MFC and 
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in PMFCs. In addition, the declining trend of output voltage 
in soil-MFC after 20 days in Fig. 2a implied the depletion 
of readily biodegradable organic matter in soil. However, 
after 60 days, there was a gradual increase in output volt-
age in soil-MFC again, which might suggest after a period 
of acclimation, microorganisms were likely able to use the 
complex organic matter in soil as the new substrate for elec-
tricity generation. Overall, plants are critical to supply the 
organic compounds through rhizodeposits in PMFCs, espe-
cially in the long-term operation. From the result in Fig. 2a, 
the P-PMFC showed significantly higher output voltage 
than W-PMFC (P < 0.05), suggesting that different plants 
could cause the different performances of electricity pro-
duction in PMFCs. Although plant roots in PMFCs could 
fuel the EAB at the anode by providing rhizodeposits (Md 
Khudzari et al. 2018), previous studies mentioned that the 
root architecture, quality and the quantity of plant rhizodepo-
sition would vary over the growth stages and plant species 
(Aulakh et al. 2001). The variation in amount and speciation 
of rhizodeposits from different plants probably resulted in 
different performances of electricity production in P-PMFC 
and W-PMFC. Furthermore, the varied plant rhizodeposi-
tion over the growth stages likely caused changes in the flux 
of organic compounds and therefore caused fluctuation in 
anode potential as a consequence cell potential of PMFCs 
(Timmers et al. 2010), since all environmental conditions 
were maintained under constant conditions throughout the 
operation.

As shown in Fig.  2b, it is found that P-PMFC with 
compost (PC-PMFC) reached the highest voltage at 
894.39 ± 53.44 mV (34.78 mW/m2), which was the high-
est voltage values among all treatments. The previous study 
of outdoor paddy PMFCs observed the increase involtage 
generation with the addition of compost made from kitchen 
and yard waste (Moqsud et al. 2015). However, the compost 
experiments in the previous study were conducted based on 
one single PMFC without replicate, and the observation was 
not yet statistically confirmed. Our PMFCs were triplicated 
and clearly demonstrated that PC-PMFC with the addition 
of compost made from food waste could produce signifi-
cantly higher voltage than those without compost (P < 0.05) 
(Table S3). In addition, compared with other treatments with 
largely varied electricity production, P-PMFC showed more 
consistent output voltage with the addition of compost. A 
stable output voltage suggested that the organic substrates in 
compost could provide sufficient foods for EAB to minimize 
the impact from varied plant rhizodeposition and resulted in 
additional capacity to enhance the bioelectricity in P-PMFC. 
Food waste management has been a critical environmental 
issue in different countries (Gustavsson et al. 2011). There-
fore, our results demonstrate that compost converted from 
food waste can be considered as an efficient organic fertilizer 
to apply in paddy PMFCs to enhance electricity production.

On the other hands, the P-PMFC with biochar (PB-
PMFC) had quite low electricity generation in the first and 
second month of the experimental duration. Even though 
it largely increased after 120 days, the output voltage still 
showed high fluctuation and significantly lower than PC-
PMFC (P < 0.05). This result implied that adding the biochar 
in soils might cause some adverse effects to PMFCs, e.g., 
the higher EC after adding the biochar in the soils could 
impact some microorganisms which have a low tolerance to 
higher EC (Tremouli et al. 2010). In addition, although the 
previous study reported the addition of biochar produced by 
sewage sludge significantly stimulated rice growth (Khan 
et al. 2013), our study observed the inhibited rice growth 
after the addition of biochar produced from waste wood 
biomass (Fig. S2). One study has shown that free radicals 
can be detected in biochar produced from biomass charring, 
and these free radicals were persistent and could inhibit the 
germination and growth of rice seedlings (Liao et al. 2014). 
The authors also found that lignin in the biomass played an 
important role in the free radicals generation during biochar 
production. As mentioned earlier, the biochar used in our 
experiments was made from waste wood biomass, which 
may contain sufficient amount of lignin to produce free 
radicals and inhibit rice growth, and further influence the 
performance of electricity production in PMFCs. Further-
more, the low electricity generation also might be caused 
by the electrical resistivity of biochar granules and the oxy-
gen intrusion occurred through the porous of the biochar 
near the cathode (Md Khundzari et al. 2019). According 
to biochar made from numerous and abundantly feedstock, 
e.g., forest, agricultural residues or even wastewater sludge 
(Huggins et al. 2014), the chemical and physical properties 
of biochar could have different effects on the crops and soil 
microorganisms when added into the soil. Therefore, our 
results warrant the need for future studies to identify biochar 
quality requirements for PMFC application.

The changes of pH and EC in PMFCs

The pH and EC values of the surface soils close to the cath-
ode of soil-MFC and PMFCs varied with time as shown 
in Fig. 3. After operating for 15 weeks, pH values of soil-
MFC showed the range of 7.23 ± 0.65 to 8.57 ± 0.57, while 
pH of the P-PMFC and W-PMFC varied from 6.00 ± 0.69 
to 7.89 ± 0.44 and 6.95 ± 0.41 to 8.30 ± 0.12 as shown in 
Fig. 3a, respectively. Comparing pH values of P-PMFC, 
PC-PMFC and PB-PMFC, it is found that adding compost 
significantly increased pH values (P < 0.05) (Table S3). The 
pH values of PC-PMFC and PB-PMFC as demonstrated in 
Fig. 3b were at the range from 7.5 ± 0.11 to 8.3 ± 0.29 and 
6.9 ± 0.15 to 7.8 ± 0.34, respectively. Generally, pH values 
showed increasing trend in the top soil close to the cath-
ode, although a variation of pH was also observed during 
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operation, likely due to the heterogeneity of soil samples. 
Similar findings were also reported in the PMFCs study 
of remediation of metal contaminated soils, which showed 
significantly higher pH values of soils close to the cathode 
than those close to the anode after long-term operation 
(Guan et al. 2019b). As shown in the previous study, rapid 
consumption of  H+ in the oxygen reduction reaction in the 
cathode could cause the increase in pH values in the cathode 
chamber of MFCs (Wu et al. 2019), and therefore, increasing 
pH values in the top soil close to the cathode could be due 
to the redox reaction effects driven by the electrochemical 
reactions through the relationship among microorganisms, 
plants, soils, substrates, and electrode systems in the soil-
MFC and PMFCs.

The weekly EC was monitored at the soil surface near the 
cathode in the experiment. Generally, EC values of all treat-
ments showed a decreasing trend since the 1st week of oper-
ation, which was similar to the previous study (Guan et al. 
2019a), as shown in Fig. 3c, d. After 15 weeks of operation, 
the EC of soil-MFC, P-PMFC, and W-PMFC decreased 

to 246 ± 46.11, 162.30 ± 45.57, and 171.80 ± 34.55 µS/
cm, respectively. The EC of PC-PMFC and PB-PMFC 
were 115.75 ± 40.77 and 254.01 ± 49.11 µS/cm, respec-
tively. From the results, the EC of soil-MFC was signifi-
cantly higher than that of P-PMFC and W-PMFC (P < 0.05) 
(Table S3), indicating that the electrokinetics mechanism 
of PMFCs driven by the bioelectrochemical process (Guan 
et al. 2019b) and the ion absorption by plant root systems 
could cause the decrease of EC in soils. In addition, com-
pared with W-PMFC, P-PMFC had significantly lower EC 
(P < 0.05). As mentioned earlier, P-PMFC had better perfor-
mance in electricity production than W-PMFC, and there-
fore, the stronger electrokinetic effects in P-PMFC might 
cause the more significant migration of soluble ions. Com-
pared with other treatments, PB-PMFC had the highest EC 
values (254.01 ± 49.11 to 514.00 ± 38.18 µS/cm) from the 
beginning till the end of the operation as shown in Fig. 3d, 
although the weekly EC of PB-PMFC decreased during 
operation. The high EC values should be caused by bio-
char, whose properties have changed the soil physiochemical 
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properties such as pH, EC, cation exchange capacity, salin-
ity, and redox potential in the PMFC systems (Palansooriya 
et al. 2019). Even though sometimes the high soil EC could 
imply more nutrients in the soils, the high EC or saline soils 
could likely affect the plant growth (Corwin and Lesch 
2005) and consequently affect the bioelectrochemical per-
formance of the anodophilic bacteria with a lower tolerance 
and cause lower coulombic efficiency and electricity genera-
tion of PMFCs (Tremouli et al. 2010; Lefebvre et al. 2011).

The polarization curve of PMFCs

The polarization curve, which presented the voltage as a 
function of current, was provided as the characteristics of 
our P-PMFC to compare with the previous study. However, 
as shown in Fig. 2, the output voltage of P-PMFC varied 
during operation and could achieve around 600 mV on the 
60th day, which was roughly the highest values achieved by 
P-PMFC in our study. Therefore, the obtained polarization 
curve could represent the better performance of P-PMFC. As 
shown in Fig. 4, the polarization curve of P-PMFC started 
with initial open-circuit voltage (OCV), and then, the volt-
age was evaluated across several different resistors (10, 
39, 68, 100, 320, 510, 820, 912, 1 K, 1.5 K, and 22 KΩ). 
Starting with the OCV of 608.8 mV, this point means no 
current in the system, and during the polarization, the cell 
potential decreased stepwise. After measuring with differ-
ent resistors, the power density reached the peak value with 
decreasing external resistance. The maximum power density 
of P-PMFC was 8.66 mW/m2. At the maximum power den-
sity point of polarization, the internal resistance was esti-
mated to be 328.85 Ω according to Eq. (3), which indicates 
the internal resistance will be equal to the external resist-
ance at the maximum power density. Afterward, the power 
density began to drop with an increasing current density 
which indicated typical fuel cell behavior. The polariza-
tion trend of P-PMFC showed similarity to the polariza-
tion curves reported in previous MFC studies and PMFC 
studies (Logan et al. 2006; Moqsud et al. 2013, 2015). The 

previous reed mannagrass (Glyceria maxima) PMFCs study 
reported the internal resistance in the range of 450–600 Ω, 
and their maximum voltage was at 253 mV (Strik et al. 
2008). It indicated that the high internal resistance could 
affect the electron transfer in the bioelectrochemical systems 
and could influence the power density of PMFCs. Kaku et al. 
(2008) estimated that the maximum power density, internal 
resistance, and OCV via polarization curve of the rice paddy 
PMFCs were 5.75 mW/m2, 156 Ω, and 701 mV, respectively. 
Watanabe et al. (2017) reported paddy PMFC using carbon 
graphite felt as electrodes achieved power density around 12 
mW/m2. In this study, the polarization curve was generally 
similar to most of the previous PMFCs studies, with the 
compatible maximum power density and internal resistance 
values. However, this study used the simple setup of PMFCs, 
and the tubular PMFCs with biocathodes have been reported 
to improve the power generation to 82 mW/m2 (Wetser et al. 
2017). Therefore, the better design of PMFCs can be consid-
ered to further increase the electrical performance.

Microbial community structure

After 120 days of long-term incubation, anode samples of 
all experimental setups were analyzed for their constituents 
of the microbial community. High-throughput sequencing 
of 16S rRNA genes amplified using 16S V3–V4:341F-
805R primers was adopted for the microbial community 
analysis. Overall, total 406,044 high-quality 16S rRNA gene 
sequences were obtained and classified into OTUs with 97% 
of similarity. Species richness and evenness of community 
distribution indicated by Shannon index and Chao1 are 
showed in Table S4. The results of taxonomic classification 
demonstrated that Proteobacteria was the most predomi-
nant phylum with relative abundance ranging from 20.25 to 
34.10% followed by Patescibacteria, Bacteroidetes, Chlor-
flexi, Verrucomicrobia, and Planctomycetes, accounting for 
16.39–21.02%, 9.56–15.17%, 5.02–13.24%, 4.40–16.09%, 
and 3.54–8.13%, respectively (Fig. 5a). The most abundant 
classes were Gammaproteobacteria and Deltaproteobacte-
ria which comprised 5.44–14.62% and 5.48–11.54% of the 
microbial communities as showed in Fig. 5b. A previous 
study showed that Proteobacteria (31.7–38.7%), Chlor-
flexi (8.1–8.9%) and Bacteriodetes phyla (1.7–6.9%) were 
enriched at the anode of Canna indica PMFCs, and the 
results also showed the dominance of Gammaproteobacte-
ria at the class level (Lu and Xing 2015). Furthermore, the 
other study found that Proteobacteria was the most abundant 
phylum of the anode rhizosphere bacterial community in 
Glyceria maxima PMFCs (Timmers et al. 2012). In addi-
tion, the phyla of Bacteriodetes and Chlorflexi, which were 
considered as the rhizosphere bacterial groups, were also 
found enriched on the anodes of the previous study of paddy 
PMFCs (De Schamphelaire et  al. 2010). Generally, our 
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results of microbial communities in the anodes of PMFCs 
were in agreement with the previous PMFC studies at the 
phylum and class levels. 

Geobacteraceae, which consisted of the commonly 
known EAB genus Geobacter, was the most abundant fam-
ily of the whole microbial communities and was found more 
abundant in PMFCs (2.99–5.82% of the total microbial com-
munity) than the soil-MFC (1.3%) as showed in Fig. 5c. 
In addition, the family Desulfobulbaceae, containing the 
sulfate-reducing bacteria, was also enriched at the anode. 
Desulfobulbaceae is known to contain filamentous bacte-
ria, cable bacteria, and mesophilic sulfate-reducing bacteria, 
which can use sulfate, thiosulfate and sulfite and nitrate as 
electron acceptors (Kuever et al. 2005). Desulfobulbaceae 
was also found more abundant in PMFCs (0.85–1.13%) than 
soil-MFC (0.43%). Geobacter was the most dominant genus 
which accounted for 6% of the whole microbial communi-
ties followed by Anaeromyoxobacter, Candidatus Nitroga, 
and Sideroxydans as shown in Fig. 5d. Since Geobacter is 

the well-characterized EAB with high electrical production 
capacity (Bond and Lovely 2003), the result indicated that 
Geobacter should be involved in electricity generation in 
PMFC systems in this study. Anaeromyoxobacter has been 
reported to use acetate, lactate, and pyruvate as the elec-
tron donor (Hwang et al. 2015). Since the root exudation or 
rhizodeposition of PMFCs could provide acetate or other 
organic compounds as electron donors for microorganisms, 
whether the functions of microbial population found in this 
study were related to current generation or related to the car-
bon, nitrogen, sulfur, and iron cycling in paddy soil (Liesack 
et al. 2006) needs further validation. Competition for elec-
tron donors among the different microorganisms could result 
in the decrease in electron donors available for EAB and thus 
lower current generation (Timmers et al. 2012).

The microbial community structure was analyzed by 
using UniFrac analysis coupled with PCoA and UPGMA 
hierarchical clustering to compare the linkages of micro-
bial community among different samples of soil-MFC and 
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Fig. 5  Microbial communities at the anode after 120 days of opera-
tion. a Relative abundance of phyla of the soil-MFC and multiple 
PMFCs; b relative abundance of classes of the soil-MFC and mul-

tiple PMFCs; c relative abundance of families of the soil-MFC and 
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multiple PMFCs based on beta diversity and their phylo-
genetic assignments as shown in Fig. 6. Figure 6a showed 
the comparison of microbial communities among five sam-
ples by PCoA, and the dendrogram cluster analysis of the 
microbial communities (at the family level) of the anode 
is showed in Fig. 6b. From the results, PCoA and cluster 
analysis of microbial community structure roughly showed 
three different groups, i.e., (1) soil-MFC and W-PMFC, (2) 
P-PMFC and PC-PMFC, and (3) PB-PMFC (Fig. 6). Thus, 
the results suggest that microbial communities could be 
influenced by the soil fertilizers and conditioners, the plant 
root systems, and root exudates. However, the PB-PMFC 
had the most distinct anode microbial community from other 
samples (Fig. 6). From the microbial community analysis 
in PB-PMFC, we found Gallionellaceae as the predomi-
nant family, which is considered to be involved in the iron 
cycling (Hallbeck and Pedersen, 2014), but Geobacteraceae 
was the most dominant family in other PMFCs (Fig. 5c). As 
mentioned above, the electricity generation of PB-PMFC 

was significantly less than that of P-PMFC and PC-PMFC 
(Table S3). Therefore, these results demonstrated that the 
performance of electricity generation by PMFC systems 
would be influenced by the dominant microbial commu-
nity, not only including EAB, e.g., Geobacter but also other 
microbial population with different pathways of electron 
transports in PMFC systems.

Conclusions

Multiple PMFCs were operated under the controlled envi-
ronments, and the voltage output of PC-PMFC, which was 
added with compost made from food waste, reached the 
highest value of 894.39 ± 53.44 mV (34.78 mW/m2). PB-
PMFC demonstrated significantly lower voltage produc-
tion than those without biochar, likely due to the inhibi-
tory action of biochar made from waste wood biomass. All 
PMFCs had significantly higher voltage outputs than soil-
MFC. The significantly higher output voltage of P-PMFC 
than W-PMFC indicated that plant species would affect 
electricity generation of PMFCs. The 16S rRNA gene high-
throughput sequencing revealed Proteobacteria, Bacteroi-
detes and Chloroflexi were the most abundant phyla of the 
anode microbial community. The exoelectrogen Geobacter 
was the most dominant genus of anode microbial communi-
ties and showed the highest abundance in PC-PMFC. This 
study has demonstrated that the power output of PMFC sys-
tems can be influenced by different agricultural plants and 
soil conditioners, and soil conditioners made by suitable 
waste biomass could be applied in PMFCs to enhance the 
performance of electricity production.
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