
Customizing a Feature Ontology for Product Line Engineering within a System-
of-Systems Context
2019 International Symposium on Systems Engineering (ISSE)
Tekinerdogan, B.; Duman, S.; Caner, H.; Durak, B.
https://doi.org/10.1109/ISSE46696.2019.8984459

This publication is made publicly available in the institutional repository of Wageningen University and Research, under
the terms of article 25fa of the Dutch Copyright Act, also known as the Amendment Taverne. This has been done with
explicit consent by the author.

Article 25fa states that the author of a short scientific work funded either wholly or partially by Dutch public funds is
entitled to make that work publicly available for no consideration following a reasonable period of time after the work was
first published, provided that clear reference is made to the source of the first publication of the work.

This publication is distributed under The Association of Universities in the Netherlands (VSNU) 'Article 25fa
implementation' project. In this project research outputs of researchers employed by Dutch Universities that comply with the
legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in
institutional repositories. Research outputs are distributed six months after their first online publication in the original
published version and with proper attribution to the source of the original publication.

You are permitted to download and use the publication for personal purposes. All rights remain with the author(s) and / or
copyright owner(s) of this work. Any use of the publication or parts of it other than authorised under article 25fa of the
Dutch Copyright act is prohibited. Wageningen University & Research and the author(s) of this publication shall not be
held responsible or liable for any damages resulting from your (re)use of this publication.

For questions regarding the public availability of this publication please contact openscience.library@wur.nl

https://doi.org/10.1109/ISSE46696.2019.8984459
mailto:openscience.library@wur.nl


 

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Customizing a Feature Ontology for  

Product Line Engineering  

within a System-of-Systems Context 

Bedir Tekinerdogan 

Information Technology 

Wageningen University 
Wageningen, The Netherlands 

bedir.tekinerdogan@wur.nl 

Sami Duman 

ASELSAN 

Ankara, Turkey 
duman@aselsan.com.tr 

Hakan Caner  

ASELSAN 

Ankara, Turkey 
hcaner@aselsan.com.tr 

Bülent Durak 

ASELSAN 

Ankara, Turkey 
durak@aselsan.com.tr 

Abstract—  System of systems (SoS) is an arrangement of 

systems that results when independent systems are integrated 

into a larger system that delivers unique capabilities that 

cannot be provided by the constituent systems. Product line 

engineering (PLE) is a large scale comprehensive reuse 

approach to reduce the cost of development, reduce the time-

to-market, and increase the quality of the system. In this 

paper, we report on our experiences in developing a PLE 

approach for a SoS context, that is SoS-PLE. The results are 

derived from an action research within the context of Aselsan, 

a large scale systems engineering company. One of the 

challenges for SoS-PLE is the selection and customization of 

the required ontology for commonality and variability 

modeling for the SoS context. Various different feature 

modeling approaches have been provided in the literature, 

but these have largely focused on single PLE. We show the 

analysis and selection of a feature ontology for SoS-PLE. 

Subsequently, the selected feature ontology is enhanced and 

integrated within the product line engineering process. The 

results of the paper provide novel insight for the state-of-the-

practice in PLE for systems engineering, and elaborates on 

and complement the existing literature on feature ontologies 

and SoSs. 

Keywords—system of systems engineering, product line 

engineering, feature modeling, method engineering 

 

I. INTRODUCTION 

A system-of-systems (SoS) is an arrangement of 
systems that results when independent and useful systems 
are integrated into a larger system that delivers unique 
capabilities [4][5][6][15]. SoSs have been largely applied in 
the defense domain but obviously, SoSs are also apparent in 
many diverse application domains. Developing SoS is not 
trivial, and cumbersome. SoS development is often 
considered as a special case of systems engineering. 
Systems engineering is an interdisciplinary approach to 
translating users' needs into the definition of a system, its 
architecture and design through an iterative process that 
results in an effective operational system. Systems 
engineering applies over the entire life cycle, from concept 
development to final disposal. While systems engineering 
has focused on defining a systematic life cycle process to 
meet the quality requirements, reuse has largely been an 
implicit concern. 
 To reduce the cost of the developing SoSs reuse 
approaches can be applied. Reuse has been an important 

goal in many industrial practices and broadly addressed in 
the literature. While reuse was initially focused on small 
scale, ad hoc reuse, currently it is widely recognized that the 
broadest and the most valuable benefits are derived from a 
large-scale systematic reuse approach. This idea has 
culminated in the product line engineering (PLE) approach 
that indeed focuses on exploiting reuse over the whole 
lifecycle process. Traditionally, a product line is defined as 
a set of systems sharing a common, managed set of features 
that satisfy the specific needs of a particular market segment 
or mission and that are developed from a common set of 
core assets in a prescribed way [3][12]. Despite earlier reuse 
approaches, PLE aims to provide pro-active, pre-planned 
reuse at a large granularity (domain and product level) to 
develop applications from a core, shared asset base. With 
this large scale systematic reuse it is envisioned to reduce 
the development costs, reduce the time-to-market, and 
increase the quality of the products. [2][13] While PLE has 
initially focused on software reuse the idea has further and 
is now also being applied in the systems engineering 
domain, leading to the notion of systems product line 
engineering.  
 In this paper, we report on our experiences in developing 
a PLE approach for SoSs, that is SoS-PLE. The results are 
derived from an action research that has been carried out 
within the context of Aselsan, a large scale systems 
engineering company [1].  In this context, one of the 
challenges for SoS-PLE appeared to be the selection and 
customization of the required ontology for commonality 
and variability modeling. Various different feature 
modeling approaches have been provided in the literature 
but these appear to have largely focused on single PLE and 
do not directly align or scale with the larger scope of SoS. 
We show the results of our analysis on the popular state-of-
the-art variability modeling approaches  with respect to their 
applicability for SoS. Based on the analysis a feature 
ontology is selected for SoS-PLE. We adopt and enhance 
the selected feature modeling approach and discuss the 
integration of the ontology within a PLE process for SoS.  
The results of the paper provide novel insight for the state-
of-the-practice in PLE for systems engineering, and 
elaborates on and complement the existing literature on 
feature ontologies and SoSs. 

The remainder of the paper is organized as follows. In 
section 2 we present the background. Section 3 presents the 
adopted research method for developing the integrated 
systems PLE. Section 4 presents the analysis of the feature 
modeling approaches. Section 5 presents the selected 



 

 

feature ontology for the integration in SoS-PLE. Section 6 
presents the related work, and finally section 7 concludes 
the paper.  

II. BACKGROUND 

A. System-of-Systems Engineering 

Obviously, one of the frequently cited classification of 
SoS is based on the management of the constituent systems. 
The initial classification from this perspective was provided 
by Maier [4] who distinguished among directed, 
collaborative and virtual SoSs.  

 

NoYes

Virtual SoS
Yes

Collaborative SoS

No

 

Yes

Acknowledged SoS

No

Directed SoS

Systems interact 

voluntarily?

Central management authority and 

centrally agreed upon purpose?

Component systems retain 

independent ownership?

 

Fig.  1. Different types of SoS (adopted from: [8]) based on management 

policy 

Directed SoS are built and managed to fulfill specific 
purposes. The SoS is centrally managed to fulfill the agreed 
purpose. The component systems can operate 
independently, but their normal operational mode is 
subordinated to the central managed purpose. Collaborative 
SoSs have a commonly agreed purpose but do not have a 
central management. The component systems interact 
voluntarily to fulfill agreed-upon central purposes.  Virtual 
SoSs lack a central management authority and a centrally 
agreed-upon purpose. Further, the component systems have 
their independent ownership. Acknowledged SoS have also 
a recognized objective and central management. In contrast 
to Directed SoS the constituent systems retain their 
independent ownership. Changes in the systems are based 
on collaboration between the SoS and the system. Fig.  1 
shows a diagram (in BPMN) that shows the different types 
of SoS from this classification perspective. This paper 
focuses on PLE within an SoS context of a single 
organization. Thus, we can state that the approach largely 
applies to directed SoSs.  

 

B. Product Line Engineering Process 

Different product line engineering processes have been 
proposed in the literature. In general, the PLE process 
consists of two different activities. In the domain 
engineering the focus is on developing reusable assets, 
while in the application engineering these reusable assets 
are used to develop products. The terms domain engineering 
is also called core/reusable asset development, while 
application engineering is sometimes termed product 
development.  

The common PLE process is shown in Fig.  2. . This is 
the traditional first generation PLE process in which both 
the horizontal (within domain engineering, within 
application engineering), and the vertical transitions (from 
domain engineering to application engineering) are manual. 
For example, application requirements engineering is based 
on a manual process for analyzing existing reusable domain 
requirements assets.  

Application Engineering

Domain Engineering

Domain Req. 

Engineering

Product

Management

Domain 

Design

Domain 

Implementation

Application 

Req.Engin.

Application

Design

Application 

Implementation

 
T

e
c
h

n
ic

a
l 

M
a

n
a

g
e
m

e
n

tAsset Base

Domain 

Asset

Application

Asset

Application Verification and Validation

 
O

rg
a
n

iz
a

ti
o

n
a

l 

M
a

n
a

g
e
m

e
n

t
 

Fig.  2. First Generation SPLE Process 

Recently, enhancements have been provided for the 
PLE process that focus on an automation of the activities. 
This so-called second generation-PLE embodies a more 
well-defined and repeatable process, centered on a strong 
factory paradigm. In this process, a configurator tool takes 
as input a feature-based description of a product and 
exercises the variation points (VP) in the shared assets to 
produce an artifact set that supports the named features. 
Product development thus becomes automated, so that 
application engineering which is important in first-
generation approaches becomes very small. The overall 
process for 2G-PLE is shown in Fig.  3.  This figure shows 
the overall PLE process without considering the systems 
engineering process.  

Requirements

Engineering

Design

Development

Quality Assurance 

and Testing

Requirements+VP

Design+VP 

Development 

Assets+VP

Test Artefacts+VP

Configure 

Product

Product 

Management

Feature Profile

Product

Deltas

Feature Profile

 

Fig.  3. The 2G-PLE factory paradigm 



 

 

C. Variability Modeling 

Variability Modeling is one of the key activities in the 
product line engineering context. Over the last decade, 
several variability modeling techniques have been 
developed that are aimed to support variability management 
during product derivation. In this context, feature models 
were introduced in the Feature-Oriented Domain Analysis 
(FODA) method by Kang in 1990 [7]. Since its introduction 
feature modeling has been widely adopted by the software 
product line community and a number of extensions have 
been proposed. A feature is a system property that is 
relevant to some stakeholder and is used to capture 
commonalities or discriminate between systems.  

A feature model is a model that defines features and 
their dependencies. Feature models are usually represented 
in feature diagram (or tables). A feature diagram is a tree 
with the root representing a concept (e.g., a software 
system), and its descendent nodes are features. 
Relationships between a parent feature and its child features 
(or subfeatures) are categorized as: 

• Mandatory – child feature is required. 

• Optional – child feature is optional. 

• Or – at least one of the sub-features must be 

selected. 

• Alternative (xor) – one of the sub-features must be 

selected 
A feature configuration is a set of features which 

describes a member of an SPL. A feature constraint further 
restricts the possible selections of features to define 
configurations.  The most common feature constraints are: 

• A requires B – The selection of A in a product 

implies the selection of B. 

• A excludes B – A and B cannot be part of the same 

product. 

 
Besides of the basic variability model as defined by 

FODA different extensions have been proposed. A nice 
classification of these approaches is defined by Sinnema 
and Deelstra [14] who list, among others, the following 
variability modeling approaches: FeatureRSEB,  
RequiLine, Cardinality-Based Feature Modeling (CBFM), 
ConIPF, PureVariants, GEARS, OVM, VSL, and Gomaa. 
All of these techniques provide a modeling approach for 
variability to support variability management. They share 
lots of commonality but are different in terms of modeling 
concepts and in terms of the tools that support them.  

III. RESEARCH METHOD 

The overall objective of this study is the identification 
of a variability model for the system-of-systems context, 
and develop a method adopting the variability model. The 
research has been carried out within the context of 
ASELSAN whereby the main reason is to enhance reuse 
and likewise reduce cost, reduce time-to-market of the 
developed products and increase quality. In particular the 
following research question was defined: 

RQ1. What is the required feature ontology for the product 
line engineering process in a system-of-systems engineering 
context? 

RQ2. How to integrate variability modeling in the PLE 
process for system-of-system?  

The defined research questions require a thorough 
understanding of the literature and also the development of 
a novel method. For this, we have adopted an empirical 
research approach based on so-called action research which 
appears to be an important and valid instrument for solving 
research and development problems within an industrial 
context. The adopted steps in the research are shown in 
Figure 3.  

1. Identify the goals for 
PLE in SoS context

5. Evaluate Feature Ontology and SoS 
Process Model

3. Select and Customize Feature 
Ontology for PLE in SoS 

DIAGNOSIS

ACTION
PLANNING

ACTION
TAKING

EVALUATION

6. Report and discuss the process 
models

SPECIFY THE
LEARNING

2. Analyze existing Variability 
Modeling approaches

4. Describe and specify 
PLE process model for SoS

 

Fig.  4. Overall approach for modeling the SPLE process. 

IV. SELECTING AND MODELING FEATURE ONTOLOGY 

To select a suitable variability modeling approach we 
have first listed the requirements that we think are essential 
in the context of SoS-PLE. Inspired from the classification 
framework for classifying variability modeling approaches 
as defined by Sinnema and Deelstra [14] we analyzed each 
approach with respect to the expressiveness for modeling 
features, modeling formal constraints, modeling traceability 
to artefacts, abstraction mechanisms for coping with 
complexity, and tool support. In addition to these criteria we 
deliberately analyzed each approach for its explicit 
consideration of SoS. From this analysis we selected the so-
called feature ontology of Krueger et al. [8][9] which is also 
the subject of an upcoming ISO standard that is in progress 
with involvement and support from INCOSE through its 
Product Line Engineering International Working Group [6]. 
The so-called enterprise ontology includes the following 
terms [9]:  

Feature Catalog is a model of the collection of all of the 

feature options and variants that are available across the 

entire product line. 

Bill-of-Features is a specification for a product in the 
product line portfolio, rendered in terms of the specific 
features from the Feature Catalog that are included in the 
product. 

Bill-of-Features Portfolio is the collection of Bills-of-
Features for the entire product line. Portfolio teams, 
typically working with product marketing teams, create 



 

 

Bill-of-Features for product families based on the features 
available in the Feature Catalog. 

Shared Assets are the digital artifacts associated with the 
systems and software engineering lifecycle of the product 
line. Shared assets typically include requirements, source 
code, test cases, user documentation, a bill of materials 
(parts lists) and more.  

PLE Factory Configurator is the mechanism that 
automatically produces application assets for the digital 
twin of a specific product. The configurator provides the 
abstraction-driven automation the eliminates the labor 
intensive and error-prone activity of manually assembling 
and modifying engineering assets for the digital twin for 
each product in the product line. 

System of System

System

2..*

Sub-System

0..*

Component

0..*

SYSTEM-OF-SYSTEMS LEVEL

SUB-SYSTEM LEVEL

COMPONENT LEVEL
0..*

SYSTEM LEVEL

0..*

 

Fig.  5. Metamodel Systems engineering in Feature-Driven PLE 

*

*

Sub-System

Feature Model

Component

Feature Model

*

Asset

Variation Point

Component

Feature Profile

instantiates 

instantiates Sub-System 

Feature Profile 

(Bill of Features)

*

*

System-of-Systems

Feature Model

System

Feature Model

*

*

Bill-of-Features
instantiates

instantiates

Bill of Features

based on

based on

based on

 

Fig.  6. Metamodel Feature Modeling in Feature-Driven PLE 

Based on the analysis of the feature ontology we 
extracted and modeled the perspective on SoS and the 
feature modeling approach. The metamodel representing 
the structure of SoS in the enterprise ontology is defined as 
in Fig.  5. As we can observe from the figure an SoS consists 
of systems, which consist of sub-systems, and sub-systems 
consists of components. A system can also directly include 
components. The metamodel of the feature ontology of the 
feature-driven PLE approach is shown in Fig.  6.  The bill 
of features are instantiated from a SoS feature model, which 
is then gradually refined and selected up to the component 
level. For more detail about the feature-driven PLE we refer 
to [8][9]. 

In the previous sub-sections we have discussed the basic 
metamodel and the ontology for feature-driven SPLE. In the 
original studies [8][9] an implicit bottom-up process is 
defined. We have modeled this as shown in Fig.  7. Hereby, 
the process starts from the shared assets, from which 
primitive standalone feature models are developed, 
component feature models, sub-system feature models and 
system feature models.  

Primitive Standalone 
Feature Models

Bill of Features

Derive Bill of 
Featuress

Develop Primitive 
Standalone 

Feature Models

Configure
Product

ProductDeltas

Develop 
Component 

Feature Models

Component 
Feature Model

Develop Shared 
Assets

Shared Asset Base

Develop Sub-
System Feature 

Models

Sub-System
Feature Model

Develope System 
Feature Models

System
Feature Model

 

Fig.  7. Bottom-Up PLE Process for Feature-Driven PLE 

V. CUSTOMIZING FEATURE ONTOLOGY  

The ASELSAN process is in essence a second 
generation PLE process that focuses both on systems 
engineering and automation. In addition, it builds on the 
feature-driven PLE process as described in the previous 
section. The ASELSAN Proline process however differs in 
three ways from the feature driven SPLE approach. First of 
all, the system metamodel for Proline is more refined than 
that of feature-driven SPLE. Second, as a consequence of 
the different system metamodel, the corresponding feature 
ontology (metamodel) is also customized. Thirdly, the 



 

 

ASELSAN process adopts (also) a top-down approach 
rather than a bottom-up approach.  

Fig.  8 shows the conceptual view for the adoption, 
customization and application of the selected feature 
ontology. The top-level Feature Ontology  is selected from 
the literature. The Customized Feature Ontology is based on 
this ontology but is customized for the company and SoS 
context. Finally, the Applied Feature Ontology defines the 
used Customized Ontology in a particular project. In this 
paper we describe the first two layers, that is, the Feature 
Ontology, and the Customized Feature Ontology. In the 
following sub-sections we elaborate on these steps.  

Feature Ontology

Customized Feature Ontology

based on

Applied Feature Ontology

instantiates

 

Fig.  8. The conceptual view for the adoption, customization and 

application of the selected feature ontology 

A. ASELSAN SoS Metamodel 

The ASELSAN Systems metamodel is shown in Fig.  9. 
Note that in this case a somehow different decomposition of 
the system elements is defined. This is based on the current 
practical view of the system decomposition. Hence the 
metamodel is also developed to reflect the practice.  

Integrated 

System

Standalone 

System

2..*

Integrated 

Sub-System

0..*

Standalone 

Sub-System

0..*

Unit

2..*

Unit Component

2..*

SYSTEM LEVEL

SUB-SYSTEM 

LEVEL

COMPONENT 

LEVEL

0..*

0..*

 

Fig.  9. Metamodel for ASELSAN SoS Structure  

B. Customized Feature Ontology 

Based on the metamodel for SoS, the ASELSAN 
Feature Metamodel is shown in Fig.  10. 

*

*

Unit
Feature Model

Unit Component
Feature Model

*

Asset
Variation Point

Unit Component
Feature Profile

instantiates 

instantiates Unit Feature Profile 
(Bill of Features)

*

*

Integrated Sub-System 
Feature Model

Standalone Sub-
System

Feature Model

*

*

Standalone Sub-
System Feature Profile

instantiates

instantiates
Integrated Sub-System 

Profile

based on

based on

based on

Standalone System 
Feature Model

Integrated System 
Feature Model

Standalone System 
Feature Profile

Integrated System 
Feature Profile

*instantiates

 

Fig.  10. Metamodel for ASELSAN SoS-PLE Feature Modeling 

C. Customizing Process for 2G-FPLE Process 

In essence, the feature-driven PLE process can be 
applied in different ways. Fig.  11 shows the generic process 
flow for the 2G-FPLE. The arrows Top-Down and Bottom-
Up shows the direction in which the process activities can 
proceed. A pure-top-down process will start with the first 
step that is Develop Integrated System Feature Model and 
continue until the last steps of Feature Modeling and System 
Architecture design processes. The bottom-up process will 
start with lower level units and define the variability and 
system modeling at increasing abstraction levels. For the 
ASELSAN Proline a top-down approach has been adopted 
which is shown in Fig.  12. 

Develop 
Integrated System 

Develop 
Standalone System 

Develop 
Integrated Sub-System 

Develop 
Standalone Sub-System 

Develop 
Unit

Develop Unit Component

TOP-DOWN

BOTTOM-UP

Feature Modeling System Architecture

FORWARD 

ENGINEERING

BACKWARD

ENGINEERING

Develop Integrated System 
Feature Model 

Develop Standalone System 
Feature Model

Develop Integrated Sub-System 
Feature Model

Develop Standalone Sub-System
Feature Model 

Develop Unit Feature Model

Develop Unit Component
Feature Model

 

Fig.  11. Generic flow diagram for feature-driven PLE  



 

 

 

Develop  Standalone 
System 

Feature Model 

Develop  Integrated 
System Feature Model 

Define the Standalone 
System Profile Names

Describe/Detail the 
Standalone System Profile 

Names

Identify Names Integrated 
Sub-Systems and 

Standalone Sub-Systems

Describe/Detail Integrated 
Sub-Systems and 

Standalone Sub-Systems

Define the Integrated 
System Profile Names

Describe/Detail the 
Integrated System 

Profile Names

Identify the Names 
for the Standalone 

Systems

Describe/Detail the 
Standalone Systems

Define Integrated 
System Profiles

Develop  Integrated 
Sub-System 

Feature Model 

Define the Integrated 
Sub-System Profile 

Names

Describe/Detail the 
Integrated Sub-

System Profile Names

Identify Names for 
the Standalone Sub-
Systems and Units

Describe/Detail the 
Standalone Sub-

Systems and Units

Define Standalone 
System Profiles

Define Integrated 
Sub-System Profiles

Develop  Unit Feature 
Model 

Develop  Standalone 
Sub-System Feature 

Model 

Define the Unit Profile 
Names

Describe/Detail the 
Unit Profile Names

Identify the Names 
for the Unit 

Components

Describe/Detail the 
Unit Components

Define the Standalone 
Sub-System Profile 

Names

Describe/Detail the 
Standalone Sub-

System Profile Names

UIdentify the Names 
for the Units

Describe/Detail the 
Units

Define Standalone 
Sub-System Profiles

Develop Unit 
Component Feature 

Model

Define the Unit 
Component Profile 

Names

Describe/Detail the 
Unit Component 

Profile Names

Identify the names for 
the Unit Component 

Features

Describe/detail the 
Unit Component 

Features

Define Unit Profiles
Define Unit 

Component Profiles

 

Fig.  12. Adopted Top-Down Feature-Driven PLE Process 

 

VI. CONCLUSION  

In this paper we have reported on our experiences in 
customizing a feature ontology for a product line 
engineering process in a system-of-system context (SoS-
PLE). For this we have analyzed the existing variability 
modeling approaches and selected the ontology as provided 
by the so-called Feature-Based Software and Systems 
Product Line Engineering (“Feature-Based PLE”) which is 
the subject of an upcoming ISO standard that is in progress 
with involvement and support from INCOSE through its 
Product Line Engineering International Working Group. 
One of the key goals of the approach is to provide an 
enterprise ontology for features that is suitable for managing 
product line engineering in the largest and most complex 
product line organizations. This ontology appeared to be 
also useful for our own context, that is, a PLE process within 
an SoS context. Based on the inputs from the defined 
systems PLE and the feature-based PLE we have developed 
the customized PLE process. Hereby, we have developed 
the metamodel that represents the systems engineering 
concepts within ASELSAN and integrated this 
subsequently with the feature-based PLE approach. In 
contrast to the initial feature-based PLE approach we have 
developed a top-down process that starts with the 
configuration of the highest abstraction level which is 
incrementally refined to the lower more concrete levels until 
the eventual assets. The process has been developed to cope 
with the overall complexity and likewise realize the 
required scalability. In our future work we aim to validate 
the process for selected SoSs by applying the process in real 
projects.  

REFERENCES 

[1] Aselsan website: http://www.aselsan.com.tr/default.asp?lang=en, 
accessed February 2011. 

[2] G. Boeckle, P. Clements, J.D. McGregor, D. Muthig, & K. Schmid, 
K. Calculating ROI for Software Product Lines. IEEE Software 21, 
3, pp. 23-31, June 2004. 

[3] P.C. Clements, L. Northrop. Software Product Lines: Practices and 
Patterns. Boston, MA:Addison-Wesley, 2002. 

[4] Guide to the Systems Engineering Body of Knowledge (SEBoK), 
October 2016 

[5] M. Henshaw et al., “The Systems of Systems Engineering Strategic 
Research Agenda Systems of Systems Engineering,” 8th Int. Conf. 
Syst. Syst. Eng. Maui, Hawaii, USA - June 2-6, 2013, no. 2, pp. 99–
104, 2013. 

[6] INCOSE Product Line Engineering International Working Group, 
http://www.incose.org/ChaptersGroups/WorkingGroups/analytic/p
roduct-lines, accessed October 2017. 

[7] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson, Feature 
Oriented Domain Analysis (FODA) Feasibility Study, Technical 
Report CMU/SEI-90-TR-021, 1990. 

[8] C.W. Krueger, New Methods in Software Product Line 
Development.  BigLever Software, Austin, TX; in Proc. of  10th 
Software Product Line Conference, 2006. 

[9] C. Krueger, P. Clements. An Enterprise Feature Ontology for 
Feature-Based Product Line Engineering, 27th Annual INCOSE 
International Symposium (IS 2017). Adelaide, Australia, July 15-
20, 2017. 

[10] F. van der Linden, K. Schmid, E. Rommes. Software Product Lines 
in Action: The Best Industrial Practice in Product Line Engineering, 
Springer, 2007.  

[11] J.D. McGregor, S. Jarrad, L.M. Northrop, and K. Pohl. Initiating 
Software Product Lines, IEEE Software, vol. 19, no. 4, pp.24–27, 
2002.. 

[12] K. Pohl, G. Böckle, F. van der Linden. Software Product Line 
Engineering – Foundations, Principles, and Techniques, Springer, 
2005.  

[13] K. Schmid, M. Verlage. The Economic Impact of Product Line 
Adoption and Evolution. IEEE Software, Vol. 19, No. 4, 50-57, 
2002.. 

[14] M. Sinnema, S. Deelstra. Classifying Variability Modeling 
Techniques, Information and Software Technology, Volume 49 
Issue 7, July, 2007. 

[15] B. Tekinerdogan. Engineering Connected Intelligence: A Socio-
Technical Perspective, technical report (inaugural lecture), 
Wageningen University, https://edepot.wur.nl/401115, 2017.  


