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Abstract: Conduit bursts or leakages present an ongoing problem for hydraulic fluid transport grids,
such as oil or water conduit networks. Better monitoring allows for easier identification of burst
sites and faster response strategies but heavily relies on sufficient insight in the network’s dynamics,
obtained from real-time flow and pressure sensor data. This paper presents a linearized state-space
model of hydraulic networks suited for optimal sensor placement. Observability Gramians are used
to identify the optimal sensor configuration by maximizing the output energy of network states.
This approach does not rely on model simulation of hydraulic burst scenarios or on burst sensitivity
matrices, but, instead, it determines optimal sensor placement solely from the model structure, taking
into account the pressure dynamics and hydraulics of the network. For a good understanding of the
method, it is illustrated by two small water distribution networks. The results show that the best
sensor locations for these networks can be accurately determined and explained. A third example is
added to demonstrate our method to a more realistic case.

Keywords: optimal sensor placement; state-space representation; observability gramian; water
distribution network

1. Introduction

Hydraulic models are an essential tool for ensuring safe, reliable, affordable, and
continuous delivery of fluids, such as water or oil, to end-users [1]. Due to the physical
size and complexity of most conduit networks, the actual operational conditions of these
grids are hard to monitor [2]. Besides serving as a digital twin of the network, model
simulations of the real system can be used to predict and forecast, in real-time, network
flows and pressures under varying hydraulic scenarios, valve configurations, or conduit
leakages [3–6]. In addition, distribution system modelling can help optimize network
design, sensor and actuator placement, or facilitate operation of the network through
testing of control strategies of pumping and valve configurations [2–4,6–11]. Models,
therefore, act as an active tool for network management and leakage control, instead of the
classical passive approach of solely reacting when a defunct asset is detected.

In order to successfully deploy these models, accurate, and up-to-date, insight into the
network is required in the form of real-time measurements from sensors placed throughout
the network. Sensor placement, operation, and maintenance is costly, meaning there is a
tradeoff between network information gain and sensor costs. A wireless sensor network
of as few as possible flow and pressure sensors, at key positions within the network, is of
vital importance for optimal network management. Therefore, optimal sensor placement
poses an ongoing challenge in hydraulic conduit networks.

Various studies have been conducted with the goal of maximizing the diagnostic
performance of a system under budgetary constraints by means of applying optimal
sensor placement. Current methods often consider optimal sensor placement with regards
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to leak detectability by simulating hydraulic scenarios with leakages [2,11–14]. These
studies are mostly based on simulating leakages at various locations within a hydraulic
network. The change in each state (pressure/flow), as a consequence of these leakages, is
captured in a binarized sensitivity matrix, represented by, e.g., a Jacobian or forward finite
differences matrix. The potential sensor locations are then ranked based on the number of
burst locations for which significant sensitivities are found [15,16]. This approach can be
expanded in several directions, for example, by using artificial bursts achieved by opening
fire hydrants in various areas of the network instead of model simulated bursts [9], by
considering demand uncertainty [7], by not binarizing the sensitivity matrix [10,17], by
using optimization techniques instead of iterative techniques to determine the optimal
sensor location [14], or in combination with a leakage localization algorithm [11]. In
addition to these studies on hydraulic networks, observability and sensor placement
studies on electrical networks have also been performed [18–20].

Although practical and efficient, the performance of existing sensor placement tech-
niques, based on virtual leakage simulation, is highly dependent on the accuracy of the
hydraulic model. The estimated sensor placement is very sensitive to uncertainty in de-
mand estimates, model parameters, measurement noise, and asset properties, and has to
consider different leakage locations and fluid loss rates, in order to provide accurate sensor
placement suggestions [21]. Considering all these factors does, not only, result in a high
dimensional problem and extensive simulations of hydraulic scenarios but also in high
cumulative uncertainties, which exponentially worsens when considering simultaneous
placement of multiple sensors. Recent publications, on the topic of tackling this high
dimensional and highly uncertain problem, all suggest to invest more research into these
uncertain factors and focus on development of smart optimization strategies to reduce
the computational load [6,7,11,17,22]. Additionally, an extra source of uncertainty in ex-
isting theories is that pressure changes are assumed to take place instantaneously, which,
especially, for larger networks is too rough an assumption [11,23].

The objective of this study is to investigate the observability of conduit networks and
optimal sensor placement designs, only considering the structure of the hydraulic network
model, and without a dependence on dynamic network simulations. By not relying
on simulation of hydraulic scenarios, no computationally expensive high dimensional
optimization is required. In this study, a linearized hydraulic network model is presented
in state-space form, with, as model states, the pressures in all network junctions and the
flows through all network pipes. Model outputs are the model states corresponding to
network junctions and/or conduits where a pressure or flow sensor is installed. Based
on a likely hydraulic scenario, with corresponding stationary network flows calculated
with an EPANET model, the original non-linear hydraulic network model was linearized.
This linearization step enables conventional observability analysis [24,25] and optimal
sensor placement based on maximizing the output energy of observability Gramians [26].
Current research often focuses on smart optimization to reduce the computational load
associated with simultaneous placement of multiple sensors [6,7,11,17,22]. This study,
however, aims to present an alternative sensor placement framework that starts with state-
space modelling. The advantages of using a state-space model, for sensor placement in
hydraulic conduit networks, are demonstrated by two illustrative examples and one more
realistic example with corresponding EPANET models [27].

We also show how the suitability of each conduit and junction, in the model for
sensor placement, can be mapped on a graph of the network. This visualization allows
for easy identification of optimal regions in the network for sensor placement. This
visual information can be used to combine observability function-based optimal sensor
placement with other network-specific knowledge regarding sensor placement. The state-
space methodology in this paper has been developed using open source software and is
equipped with the capacity to transform EPANET model files into state-space models using
a Python 3 algorithm.
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2. Materials and Methods

In order to perform optimal sensor placement in a hydraulic network, based on
systems theory, in this study, the network characteristics and dynamics are presented in
state-space form. Given the network characteristics, such as conduit lengths, diameters,
and roughness, flows and pressures within the hydraulic system can be modelled using
continuity and momentum equations for unsteady, nonuniform flow of a slightly com-
pressible fluid in slightly elastic conduits. For each conduit, these assumptions lead to the
following set of hyperbolic partial differential equations [1,28]:

∂
∂t

(
p
V

)
+

[
V ρc2

ρ−1 V

]
∂

∂x

(
p
V

)
=

(
0

−g sin(θ)− f V|V|
2D

)
(1)

Here, p is the pressure in Pa, V is the flow velocity in m
s , ρ is the mass density of the

transported fluid in kg
m3 , c is the elastic wave velocity in m

s , g is the acceleration due to
gravity in m

s2 , θ is the angle the conduit makes with the horizontal, with the angle taken
positive if the conduits slopes upwards in the flow direction, f is the Darcy–Weisbach
friction factor (dimensionless), and D is the diameter of the inside of the conduit in m. The
distinction between the magnitude of flow velocity |V| and directional flow velocity V is
made to allow for flow in both directions through a conduit. For a thorough observability
analysis of systems described by hyperbolic partial differential equations, we refer to [29].

The slope term g sin(θ) is relatively small for most applications and may be neglected.
Even if the slope is taken into account, the term will be interpreted as a disturbance and
will therefore not influence optimal sensor placement, which solely relies on flow and
pressure dynamics, as well as sensor configurations.

Also, in many applications, the convective acceleration terms V(∂p/∂x) and V(∂V/∂x)
are small compared to the other terms and may, therefore, be neglected [1]. However, in
this study, we assume slightly compressible fluid in slightly elastic conduits and thus

changes in pressure and flowrate with distance ∂
∂x

(
p
V

)
are not zero. Furthermore, with

p = ρg(H + z0) and V = Q
A , Equation (1) can be expressed in terms of the piezometric head

H = p
ρg − z0 above a specified level z0, and volumetric flow rate Q with conduit’s cross-

sectional area A = 1
4 πD2 [1,30]. In this state transformation both ρ and A are assumed to

be constant. The variation of ρ and A is still indirectly taken into account by using a finite
elastic wave velocity c. The elastic wave velocity c is a function of various properties of the
transported fluid as well as the conduit, but is assumed constant within a pipe, since the
changes within a single conduit are assumed small [31]. For water transport without air
bubbles through PVC conduits, the wave velocity is estimated as c = 1200 m

s [1].
Equation (1) makes use of the empirical Darcy–Weisbach equation to describe friction

losses as f |V|
2D V, where the Darcy–Weisbach friction factor f is a function of the Reynold’s

number. When solely considering water transport and assuming constant temperature
and viscosity, such as is the case in water distribution networks, the friction losses are not
dependent on the Reynold’s number according to the empirical Hazen–Williams equa-
tion [1]. Expressed in volumetric flow rate and piezometric head, the Darcy–Weisbach
friction related flow loss 8

π2
f |Q|
D3 Q is replaced by the Hazen–Williams friction related flow

loss π
4

10.67g|Q|0.852

C1.852D2.8704 Q, where C is the conduit-specific dimensionless Hazen–Williams rough-
ness coefficient. Implementing all these assumptions, we can rewrite Equation (1) in the
form [1]:

∂
∂t

(
H
Q

)
+

[
0 4

π
c2

gD2
π
4 gD2 0

]
∂

∂x

(
H
Q

)
=

(
0

−π
4

10.67g|Q|0.852

C1.852D2.8704 Q

)
(2)
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We will apply this system of hyperbolic partial differential equation to a conduit net-

work with ni junctions and nij conduits, connecting junctions i and j. Assuming ∂
∂x

(
Hij
Qij

)
along conduit ij may be approximated by

(
∆Hij/L
∆Qij/L

)
, where L is the length of the con-

duit in the flow direction, we arrive for the head in junction i = 1, 2, . . . , ni at the following
equation [32]:

dHi
dt =

deg(i)
∑

j=1

(
4
π

c2

gD2
ij Lij

(
Qij(i) −Qij(j)

))
(3)

The difference between the flow in a conduit ij at conduit start i and end j is a
consequence of the slight compressibility of the fluid and the slight elasticity of the conduit.
For fluid transport, the difference between flow at beginning and end of a conduit is usually
very small. Commonly, large pressure changes, as a result of high elastic wave velocity
c, are assumed immediate. Hence, both the low flow variation within a conduit and the
rapid pressure changes motivate the assumption that pressure changes are instantaneous,
implying that the head in each junction is always in steady state, thus dHi

dt = 0 and thus
Qij(i) = Qij(j) ≡ Qij [1]. Consequently, under these assumptions, the dynamics of the
system would be solely governed by the momentum Equation (2):

dQij
dt = π

4
gD2

ij
Lij

(
Hi − Hj

)
− π

4
10.67g|Q|0.852

ij

C1.852
ij D2.8704

ij
Qij (4)

Although this equation is very suitable for calculation of hydraulic scenarios and thus,
for performing optimal sensor placement through the use of burst simulations, significant
and measurable pressure transients do occur [31]. Since modern sensors can operate
under sampling frequencies higher than once per second, the damping oscillations, as a
consequence of pressure transients and friction in the conduits, can be detected. Since
large pressure transients, also referred to as water hammers, can cause conduit wear and
bursts, it is important to be able to identify where, how often, and to what extent these
transients occur in order to identify their causes and adopt a mitigation strategy. For
optimal sensor placement, based on observability analysis, we take into account these
transients by assuming dHi

dt 6= 0, and assuming a linear relationship between change in
flow rate and flow rate throughout each conduit in the flow direction i→ j :

Qij(i) −Qij(j) = εQijL (5)

The relative flow gradient ε in m−1 is small, since the compressibility of fluids and
elasticity of conduits are very small in most hydraulic conduit networks. As ε is unknown,
in this study, we assume it is unknown-but-bounded. Thus, ε is defined on an interval that
represents the uncertainty in the values of the compressibility and elasticity. For details
about the relative flow gradient, see Appendix A. This assumption (5) yields a system
consisting of a linear continuity and a non-linear momentum equation:

dHi
dt =

deg(i)
∑

j=1

(
4
π

c2ε
gD2

ij
Qij

)
dQij

dt = π
4

gD2
ij

Lij

(
Hi − Hj

)
− π

4
10.67g|Q|0.852

ij

C1.852
ij D2.8704

ij
Qij

(6)

Notice that Equation (6) is nonlinear with regards to volumetric flow Qij. However,
for small perturbations from a specific hydraulic scenario, as a result of steady state
computations in EPANET with steady state pressures H and flows Q, the model can be

linearized around that hydraulic scenario. Thus, we assume
∣∣Qij

∣∣0.852
ij Qij ≈

∣∣∣Qij

∣∣∣0.852

ij
Qij.
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Consequently, the dynamics of the system are then expressed in terms of the ‘resistance’

Xij =
4
π

c2ε
gD2

ij
, ‘conductance’ Yij =

π
4 g

D2
ij

Lij
, and ‘friction’ Zij = −π

4

10.67g|Q|0.852
ij

C1.852
ij D2.852

ij
constants:

dHi
dt =

deg(i)
∑

j=1

(
XijQij

)
dQij

dt = Yij
(

Hi − Hj
)
+Zij Qij

(7)

Simulation of a steady-state hydraulic scenario is, thus, required in order to obtain
estimates for the linearization points Qij. Although EPANET hydraulic simulations do not
include pressure dynamics, these dynamics are still taken into account in the state-space
model Equation (7).

Notice that Equation (3) and thus also Equation (7) describe the pressure change as a
result of gradients in the flow rates. In steady state, for incompressible fluid and non-elastic

networks, the continuity equation at each node is given by: dHi
dt =

deg(i)
∑

j=1

(
Qij
)
/Ai = 0. Small

deviations in the flow rates through a node, as a result of changing boundary conditions,
may lead to small increases or decreases of the pressure in the node, which are also covered
by Equation (5). Consequently, as a result of our approximations, for large changes in the
hydraulic scenario, new steady states need to be calculated, using, e.g., the EPANET model
(Rossman, 2000).

To put these equations in matrix-vector form, we introduce the state vector

x :=
[

H1, H2, . . . , Hni , Q1, Q2, . . . , Qnij

]T
∈ Rn with n = ni + nij, where the first ni elements

contain the heads Hi, and the remaining elements the flows Qij. We further introduce the

output vector y =
[
y1, y2, . . . , yp

]T ∈ Rp with p = pi + pij, where the first pi elements
contain the heads Hi of those junctions equipped with a pressure sensor and the remaining
elements contain the flows Qij of those conduits equipped with a flow sensor. In what
follows, we assume a pressure sensor is always placed in a junction and a flow sensor
halfway on a conduit. Equation (7) can thus be represented in the following form:

d
dt x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(8)

where u(t) contains the boundary conditions and in what follows D = 0. The dynamics of
the system are determined by the system specific parameters Xij, Yij, and Zij, which make
up the elements of the n × n matrix A. The positions of the sensors are specified via the
p × n matrix C. For applications of optimal sensor placement, only the system dynamics
(matrix A) and the sensor locations (matrix C) are required. For model simulations, however,
the n × m input matrix B would also be required and would contain inputs such as height
differences between junctions, minor losses (valves, pumps), storage junctions (tanks),
and the set values of flow or pressure at water sources and sinks (demand or reservoir
junctions), and thus, at the boundaries of the system. Thus, for the intended goal of optimal
sensor placement, based on state-space methodology, matrices B and D do not need to be
specified and no temporal discretization of the system, Equations (7) and (8), is required.

The output vector y is dependent on the pi junctions with head sensors and the pij
conduits with flow sensors, resulting in a binary pseudo-diagonal output matrix C with
p = pi + pij, where those elements of C are 1 if a sensor is present at that junction or in
that conduit. For any chosen sensor configuration and accompanying output vector y
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and output matrix C, the network is observable if the pn × n observability matrix O has
full rank:

O =


C

CA
CA2

...
CAn−1

 (9)

A system that is observable allows a full reconstruction of the states over time from
given input-output data. However, for large networks, the observability matrix O may
be ill-conditioned, which would lead to an observability analysis that does not lead to
accurate conclusions [33]. If the eigenvalues of matrix A all have negative real parts, the
system is called (asymptotically) stable. In that case, for each sensor configuration, the
n × n observability Gramian WO of the network can be calculated, after solving the
discrete Lyanupov equation ATWO + WOA = −CTC, and is given by:

WO =
∫ ∞

0

(
eATτCTCeAτ

)
dτ (10)

If WO , a symmetric matrix and unique solution to the discrete Lyapunov equation, is
positive definite, that is, has all eigenvalues larger than zero, then the system defined by A
and C is observable.

For linear, time-invariant systems, such as given by Equations (7) and (8), the sensitiv-
ity of the output y with respect to the initial state x(0) is given by CeAt [33]. Therefore, the
observability Gramian WO from Equation (10) can be interpreted as a Fisher Information
Matrix, and it can thus be understood as a measure of information content. Its inverse,
apart from a scaling factor, represents the uncertainty in the estimates of the states [34].
In the following, a norm of the observability Gramian WO will be used as a measure for
network observability. In this study, the smallest eigenvalue of WO is chosen as norm,
instead of a summarizing functional based on “optimality criteria” from optimal exper-
iment design [35,36]. Georges showed that the eigenvalue-optimality criterion can be
used to determine which system configuration, defined by y, as a result of the choice of
matrix C, maximizes the observability [26]. This is achieved by quantifying the informa-
tion content or “output energy” E(y) associated with each different sensor configuration,
based on the real-valued non-negative eigenvalues λWO of the corresponding observability
Gramian WO :

E(y) = min
k=1,...,n

λWO,k (11)

The smallest eigenvalue λWO corresponds to a combination of states that are least
observable. Choosing a sensor configuration that maximizes this minimum eigenvalue
ensures maximum observability of this combination of least observable network states,
thereby realizing the most meaningful increase in network observability. The sensor
configuration that maximizes the output energy E(y) is the optimal sensor configuration
yopt that maximizes the network’s observability:

yopt = argmax
y

(E(y)) (12)

Although the exact magnitude of the observability index, in this case the smallest
eigenvalue, of a specific sensor configuration y might not be preserved after our approxi-
mations, eigenvalue-optimality still allows for comparison of the observability index of
different sensor configurations.

3. Results and Discussion

In order to illustrate the power of the state-space representation of hydraulic conduit
networks introduced in Section 2, we will apply the proposed method, for optimal sensor
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placement, to two hydraulic models of water distribution networks. Since the aim is to
show the essence of the method, we restrict ourselves to small networks. In what follows,
we assume a constant relative flow gradient ε = 10−3 m−1. See Appendix B for an analysis
of the effect of the value of ε on output energy and optimal sensor placement.

3.1. Example 1: Triangular Network

The small triangular network we study here is sketched in Figure 1a, and its properties
are specified in Table 1. The network consists of three junctions i = 1, 2, 3 that are connected
in a loop via conduits ij = 12, 23, 13 (Table 2). An additional conduit ij = 41 connects a
reservoir i = 4 with constant head H0

4 = 243.84m to node j = 1. The outgoing reservoir
flow is assumed to be known, either inferred from measured reservoir volume or directly
measured with a flow sensor on conduit ij = 41 The eigenvalue decomposition of the state
matrix A of the triangular network is detailed in Appendix C, showing that the system
is asymptotically stable. The question, however, is: where could one extra sensor be best
positioned?
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corresponding eigenvalue λWO .

Table 1. Network conduit properties of the triangular network.

Conduit Length
[m]

Diameter
[m] Roughness Flow [m3/s] Xij[1/m2/s] Yij[m2/s2] Zij[s−1]

12 1524 0.2032 120 2.50 × 10−2 4.53 × 103 2.09 × 10−4 −4.85 × 10−2

13 914.4 0.1524 80 1.10 × 10−2 8.05 × 103 1.96 × 10−4 −1.10 × 10−1

23 243.8 0.3048 200 −1.48 × 10−3 2.01 × 103 2.93 × 10−3 −5.29 × 10-4
41 304.8 0.3048 100 4.86 × 10−2 2.01 × 103 2.35 × 10−3 −3.74 × 10−2

Since the triangular network is small, the corresponding observability matrix is well-
conditioned. Eigenvalue decomposition of the observability Gramian WO reveals that the
three smallest eigenvalues are significantly smaller than the others (Figure 1a). Especially
regarding the two smallest eigenvalues, the corresponding weights of the states of node 2
and node 3 are significantly higher than the weights of the other states in the eigenvectors
associated with these two smallest eigenvalues. This indicates that the heads in nodes 2
and 3 are significantly less observable compared to the other states, and placing a sensor in
either of these nodes will greatly improve the observability of the least observable part of
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the network. Singular value decomposition of the observability matrix will give the same
result, but WO is less prone to ill-conditioning for large networks and thus presents a more
robust indicator for optimal sensor placement.

Table 2. State matrix A of the triangular network including network topology.

State Conduit Junction

State 12 13 23 41 1 2 3
Conduit 12 −4.85 × 10−2 0 0 0 2.09 × 10−4 −2.09 × 10−4 0

13 0 −1.00 × 10−1 0 0 1.96 × 10−4 0 −1.96 × 10−4

23 0 0 −5.29 × 10−4 0 0 2.93 × 10−3 −2.93 × 10−3

41 0 0 0 −3.74 × 10−2 −2.35 × 10−3 0 0
Junction 1 −4.53 × 103 −8.05 × 103 0 2.01 × 103 0 0 0

2 4.53 × 103 0 −2.01 × 103 0 0 0 0
3 0 8.05 × 103 2.01 × 103 0 0 0 0

For observability-based sensor placement, six options, and thus six different C matrix,
were considered: a head sensor in one of the nodes or a flow sensor in one of the conduits
other than conduit 41, since the flow in conduit 41 is already metered. Notice from Equation
(10) that the observability Gramian WO is defined in terms of an inner product. In order to
best visualize the output energy differences between various sensor placements, a square
root color scale was used to put emphasis on the comparison between the output energies
(Equation (11)) of the different sensor placements (Figure 2). As can be seen from Figure 2,
sensor placement in junction 2 maximizes the output energy (smallest eigenvalue), closely
followed by junction 3. As discussed above, this is in line with expectations, since nodes 2
and 3 were the states responsible for the smallest eigenvalues of the observability Gramian.
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3.2. Example 2: Net1 Case Study

In order to perform observability-based sensor placement, based on linear state-space
models, estimates of the flow Qij through the network are required, using steady state
hydraulic simulation of the system. However, these flows can differ significantly between
scenarios. Therefore, an additional investigation was performed to determine the effect
of hydraulic scenarios on resulting optimal sensor location. Optimal placement of one
additional sensor for the EPANET chlorine decay model named ‘Net1′ was also considered
(Figure 3a) [27]. Net1 is a network with one reservoir, tank, and pump, where the flow
from/to the reservoir and the tank are assumed measurable, either directly or indirectly,
from monitoring the reservoir and tank volumes. Depending on the time of day and the
tank water volume, reservoir 9 is decoupled from the network, and tank 2 will act as
a water source instead of a sink (Figure 3b). Scenarios with and without the reservoir
will result in different optimal sensor locations. Therefore, placement of one additional
sensor in Net1 was investigated with and without reservoir, at 08:00 and 20:00, respectively.
Analysis at intermediate time instants, and thus, for different supplies and demands with
corresponding steady state values of Hi and Qij, did show different values of the output
energy. However, this did not lead to changes in the optimal sensor location.
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Figure 3. Optimal sensor placement for Net1 network with one tank (T), Reservoir (R), and pump (P)
at 08:00 (a) and 20:00 (b). Black dashed lines indicate a conduit with a flow sensor. Each additional
possible sensor junction and conduit is colored based on the square root of the energy corresponding
with sensor placement in that specific state. At 20:00, conduit 9 is closed, thus decoupling reservoir 9
from the network.

Placement of one sensor was considered, in addition to the existing flow sensors,
at conduit 110 and 9 (if the valve on conduit 9 is open). We found, for the case at 08:00,
that a head sensor in junction 31 is optimal regarding network observability, as seen from
the maximum output energy of this sensor configuration compared to alternative sensor
placements (Figure 3). Depending on the valve configuration in the network, junction 32
could also be considered for sensor placement (Figure 3b). However, junction 31 is found
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to be optimal for both network configurations, whereas junction 32 is not significantly
more suited for sensor placement compared to 31, and it is significantly less suitable for
the network configuration where the reservoir is connected to the network (Figure 3a).
In both cases, the optimal sensor location is at the south end (bottom) of Net1. This is to
be expected, since the original Net1 network only contains sensors in the north (top) of
the network, so an additional sensor in the south enables network-wide insight. The fact
that our placement procedure leads to optimal positions that are very close to each other,
although the flow conditions are rather different, indicates that the linearization step does
not significantly impact sensor placement performance. Since the valve configuration of
the network for other time instances is similar to the configurations at 08:00 or 20:00, with
only slight differences in network pressures and flows, optimal sensor placement for other
time instances yields the same optimal sensor placement results.

If pressure changes are assumed instantaneous, and thus dHi
dt = 0, only Equation (4)

would remain for analysis of optimal sensor placement. Consequently, only flow sensor
placement will be regarded optimal using this approach. In this case, the best choice is to
place a flow sensor in the conduit with the largest resistance. Since both pressure and flow
dynamics of the hydraulic system are included in the state-space model (Equation (7)),
factors such as pressure wave velocity will effect sensor placement and thus result in more
robust placement and investigation of pressure sensor placement in addition to flow sensor
placement. In a practical sense, for full real-time reconstruction of all states, thus including
the effect of water hammer, high speed (milliseconds—seconds) sampling sensors are
needed, which are not commonly used. However, high speed sampling (in the order of
milliseconds to seconds) is not considered a challenge nowadays, and the results presented
vote for this strategy.

3.3. Hanoi Network

The triangular network was used to illustrate the state-space methodology, and the
Net1 example network shows the robustness of state-space sensor placement with regards
to changes in hydraulic scenario used for linearization. However, both networks are small
theoretical networks. In order to investigate optimal sensor placement in a real network,
the Hanoi network was used as a third case study. The Hanoi (Vietnam) network, is a
drinking water distribution network with 34 conduits and 31 demand junctions, and it is
used as a benchmark for optimal network design application [37,38].

Placement of one additional pressure sensor in the Hanoi network was successfully
performed using the state-space methodology (Figure 4). When assuming the reservoir
outflow conduit already contains a flow sensor, placement of a single pressure sensor
in junction 25 is deemed optimal for increasing the observability of the network’s least
observable regions. A sensor on the border of the first and second network loop is, therefore,
deemed optimal. Since the boundary of second and third loop is already metered via the
flow sensor at the network reservoir, this configuration allows for metering all three loops
as thoroughly as possible when placing just a single pressure sensor. This, in turn, will
result in greatly improving the observability of each region of the network. In practice,
this means that placement of one additional sensor will greatly benefit reconstruction
of all network states (flows and pressures) and, therefore, will greatly supplement all
network-wide methods and models, such as leakage detection algorithms or digital twins
based on hydraulic models.
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Figure 4. Comparison of possible pressure sensor placements in the Hanoi network. Possible pressure
sensor junctions (squares) are colored based on 10-log output energy associated with placement of a
sensor in that junction. Those conduits (black lines) attached to a reservoir (R) are already metered
(dashed black lines).

4. Conclusions

Optimal sensor placement is a well-studied topic within the literature on smart water
grids. However, the focus of these studies often lies on reducing placement uncertainty,
as well as more computationally efficient optimization of the involved calculations. The
method presented in this study expands the often used burst detectability-centric sensor
placement criterion to an observability-based criterion. Our approach ensures that place-
ment of additional sensors will provide more information about the entire network and will
help improve hydraulic models or digital twins of the water distribution process. Using
a state-space approach that takes flow, as well as pressure dynamics, into account, and
does not rely on dynamic simulations, optimal sensor placement can be performed with
limited computational efforts. Results based on three case studies indicate a robust sensor
placement performance solely based on network observability. Additionally, the effect of
piece-wise linearization of the system, as a result of changing hydraulic scenarios, is shown
to not significantly impact sensor placement.
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editing. All authors have read and agreed to the published version of the manuscript.
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Notation:
The following symbols are used in this paper:

Pressure p Pa
Flow velocity V ms−1

Mass density of transported fluid ρ kgm−3

Elastic wave velocity c ms−1

Gravitational acceleration g ms−2

Angle of conduit versus horizontal θ rad
Darcy–Weisbach friction factor f
Inside diameter of conduit D m
Elevation z m
Cross-sectional area of conduit A m2

Piezometric head H m
Volumetric flowrate Q m3s−1

Hazen–Williams roughness coefficient C
Relative flow gradient ε m−1

Observability matrix pn× n O
observability Gramian n× n WO
Eigenvalue optimality output energy E
Eigenvalues of the observability Gramian n× 1 λWO
State vector n× 1 x
Output vector p× 1 y
Output vector associated with the optimal sensor
configuration p× 1

yopt

Input vector u
State matrix n× n A
Input matrix B
Output matrix p× n C
Feedthrough matrix D
Network junction i
Network conduit connecting junction i and j ij
Total number of states n
Number of junction head states ni
Number of conduit flow states nij
Total number of states whose corresponding asset
contains a sensor

p

www.wetsus.nl
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Appendix A

Let us analyze the approximation of flow differences in a pipe,
Qij(j)−Qij(i)

L = εQij(i)
with ε ∈ R, in some more detail. This approximation is derived as follows. Assume the
flow at the end points of a pipe is given by: Qij(j) = (1 + εL)Qij(i). Then,

Qij(j)−Qij(i)
L =

(1+εL)Qij(i)−Qij(i)
L = εQij(i) (A1)

With ε the relative flow change per meter. Let the unsteady, nonuniformflow of a
slightly compressible fluid in slightly elastic conduits, after linearization of the friction
term around Q, be described by the hyperbolic partial differential equation:

∂
∂t

(
H
Q

)
+

[
0 X
Y 0

]
∂

∂x

(
H
Q

)
=

(
0
−ZQ

)
(A2)

where resistance X = 4
π

c2

gD2 , conductance Y = π
4 gD2 and friction loss Z = π

4
10.67g|Q|0.852

C1.852D2.8704

are constants. After spatial discretization and defining the boundary conditions: H(0, t) :=
H0 and Q(L, t) := Q1

d
dt

(
H(L, t)
Q(0, t)

)
+

[
0 X
Y 0

]( H(L,t)−H0
L

Q1−Q(0,t)
L

)
=

(
0

−ZQ(0, t)

)
(A3)

For easy of notation, we define: H(t) := H(L, t) and Q(t) := Q(0, t). Then,

d
dt

(
H(t)
Q(t)

)
=

[
0 X

L
−YL −Z

](
H
Q

)
+

(
0 −XL
Y
L 0

)(
H0
Q1

)
(A4)

Using the approximation: Q1−Q(t)
L = εQ(t), gives

d
dt

(
H(t)
Q(t)

)
=

[
0 εX
−YL −Z

](
H
Q

)
+

(
0 0
Y
L 0

)(
H0
Q1

)
(A5)

Both (A4) and (A5) are a two-dimensional linear time invariant system of the form
d
dt x(t) = Ax(t) + Bu(t). The eigenvalues λA of the system matrix A in (A6) are given by,

λA = −Z2 ±
1
2

√
LZ2−4εXY

L
(A6)

Hence, choosing ε = 1/L will give the eigenvalues or poles of system (A4). Conse-

quently, for ε ≥ LZ2

4XY , 4XYZ2L2 and all variables positive, both systems are asymptotically

stable and have the same time constant 1
|Re(λA)| . The approximate system becomes unstable

for ε < 0.

Appendix B

As expected, placing a sensor in the triangular network, in addition to the sensor in
conduit 41, will always result in a higher output energy, as an additional sensor will increase
system observability, independent of assumed value of the flow gradient ε (Figure A1). For
values of ε within the interval [10−6,1], the sensor configuration with a pressure sensor
at node 2 or 3 maximizes the output energy. Therefore, in the case studies we chose
ε = 10−3m−1, a good estimate regarding the application of optimal sensor placement.
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Appendix C

The eigenvalues λA and eigenvectors vA (row-wise) of the state matrix A of the
triangular network are presented in Table 1. Notice from the eigenvalues that the system
is asymptotically stable and will show oscillatory behavior, as expected. The “fastest”
characteristic mode is related to the heads in the three nodes (see 5th row of eigenmatrix).

Table 1. Eigenvalues and accompanying eigenvectors of system matrix A.

λA

vA

Link 12 Link 13 Link 23 Link 41 Node 1 Node 2 Node 3

−0.003 + 0.112j −0 + 0.001j 0.001 − 0.001j 0 − 0.037j −0.001 − 0.001j −0.018 + 0.046j 0.709 −0.702 − 0.032j
−0.003 − 0.112j −0 − 0.001j 0.001 + 0.001j 0 + 0.037j −0.001 + 0.001j −0.018 − 0.046j 0.709 −0.702 + 0.032j
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−0.025 − 0.08j 0.001 + 0.003j 0.001 + 0.001j −0.002 + 0.002j −0.004 − 0.028j 0.971 −0.116 + 0.073j −0.191 + 0.029j
−0.091 0.004 −0.014 0.019 −0.023 −0.534 0.23 0.813

−0.025 + 0.003j −0.005 + 0.001j −0.001 −0.003 + 0.001j −0.019 + 0.002j 0.102 + 0.012j 0.716 0.69 + 0.008j
−0.025−0.003j −0.005 − 0.001j −0.001 −0.003 − 0.001j −0.019 − 0.002j 0.102 − 0.012j 0.716 0.69 − 0.008j
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4. Sophocleous, S.; Savić, D.A.; Kapelan, Z.; Giustolisi, O. A Two-stage Calibration for Detection of Leakage Hotspots in a Real
Water Distribution Network. Procedia Eng. 2017, 186, 168–176. [CrossRef]

5. Fuertes, P.C.; Alzamora, F.M.; Carot, M.H.; Campos, J.C.A. Building and exploiting a Digital Twin for the management of drinking
water distribution networks. Urban Water J. 2020, 17, 704–713. [CrossRef]

6. Qi, Z.; Zheng, F.; Guo, D.; Maier, H.R.; Zhang, T.; Yu, T.; Shao, Y. Better Understanding of the Capacity of Pressure Sensor Systems
to Detect Pipe Burst within Water Distribution Networks. J. Water Resour. Plan. Manag. 2018, 144, 04018035. [CrossRef]

7. Steffelbauer, D.B.; Fuchs-Hanusch, D. Efficient Sensor Placement for Leak Localization Considering Uncertainties. Water Resour.
Manag. 2016, 30, 5517–5533. [CrossRef]

8. Sarrate, R.; Nejjari, F.; Rosich, A. Sensor placement for fault diagnosis performance maximization in Distribution Networks.
In Proceedings of the 2012 20th Mediterranean Conference on Control & Automation (MED), Barcelona, Spain, 3–6 July 2012;
pp. 110–115. [CrossRef]

9. Farley, B.; Mounce, S.R.; Boxall, J.B. Field testing of an optimal sensor placement methodology for event detection in an urban
water distribution network. Urban Water J. 2010, 7, 345–356. [CrossRef]

http://doi.org/10.1061/(ASCE)WR.1943-5452.0000621
http://doi.org/10.1007/978-3-030-05348-2_36
http://doi.org/10.1016/j.proeng.2017.03.223
http://doi.org/10.1080/1573062X.2020.1771382
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000957
http://doi.org/10.1007/s11269-016-1504-6
http://doi.org/10.1109/MED.2012.6265623
http://doi.org/10.1080/1573062X.2010.526230


Water 2021, 13, 3105 15 of 15

10. Bonada, E.; Meseguer, J.; Tur, J.M.M. Practical-Oriented Pressure Sensor Placement for Model-Based Leakage Location in Water
Distribution Networks. In Proceedings of the International Conference on Hydroinformatics, New York, NY, USA, 17–21
August 2014.

11. Boatwright, S.; Romano, M.; Mounce, S.; Woodward, K.; Boxall, J. Optimal Sensor Placement and Leak/Burst Localisation in a
Water Distribution System Using Spatially-Constrained Inverse-Distance Weighted Interpolation. In Proceedings of the 13th
International Conference on Hydroinformatics, Palermo, Italy, 1–6 July 2018; Volume 3, pp. 282–289.

12. Nagar, A.K.; Powell, R.S. Observability analysis of water distribution systems under parametric and measurement uncertainty. In
Proceedings of the Joint Conference on Water Resource Engineering and Water Resources Planning and Management, Minneapolis,
MN, USA, 30 July–2 August 2000; Volume 104, p. 55. [CrossRef]

13. Marchi, A.; Dandy, G.C.; Boccelli, D.L.; Rana, S.M.M. Assessing the Observability of Demand Pattern Multipliers in Water
Distribution Systems Using Algebraic and Numerical Derivatives. J. Water Resour. Plan. Manag. 2018, 144, 04018014. [CrossRef]

14. Sarrate, R.; Blesa, J.; Nejjari, F.; Quevedo, J. Sensor placement for leak detection and location in water distribution networks.
Water Sci. Technol. Water Supply 2014, 14, 795–803. [CrossRef]

15. Quintiliani, C.; Vertommen, I.; van Laarhoven, K.; van der Vliet, J.; Van Thienen, P. Optimal Pressure Sensor Locations for Leak
Detection in a Dutch Water Distribution Network. Environ. Sci. Proc. 2020, 2, 40. [CrossRef]

16. Pudar, R.S.; Liggett, J.A. Leaks in Pipe Networks. J. Hydraul. Eng. 1992, 118, 1031–1046. [CrossRef]
17. Cugueró-Escofet, M.; Puig, V.; Quevedo, J. Optimal pressure sensor placement and assessment for leak location using a relaxed

isolation index: Application to the Barcelona water network. Control Eng. Pract. 2017, 63, 1–12. [CrossRef]
18. Qi, J.; Sun, K.; Kang, W. Optimal PMU Placement for Power System Dynamic State Estimation by Using Empirical Observability

Gramian. IEEE Trans. Power Syst. 2015, 30, 2041–2054. [CrossRef]
19. Xu, B.; Abur, A. Observability analysis and measurement placement for systems with PMUs. In Proceedings of the IEEE PES

Power Systems Conference and Exposition, New York, NY, USA, 10–13 October 2004; Volume 2, pp. 943–946. [CrossRef]
20. Johnson, T.; Moger, T. A critical review of methods for optimal placement of phasor measurement units. Int. Trans. Electr. Energy

Syst. 2021, 31, e12698. [CrossRef]
21. Quiñones-Grueiro, M.; Bernal-De-Lázaro, J.M.; Verde, C.; Prieto-Moreno, A.; Llanes-Santiago, O. Comparison of Classifiers for

Leak Location in Water Distribution Networks. IFAC-PapersOnLine 2018, 51, 407–413. [CrossRef]
22. Casillas, M.V.; Puig, V.; Garza-Castañón, L.E.; Rosich, A. Optimal sensor placement for leak location in water distribution

networks using genetic algorithms. Sensors 2013, 13, 14984–15005. [CrossRef] [PubMed]
23. Giustolisi, O.; Savic, D.; Kapelan, Z. Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. J.

Hydraul. Eng. 2008, 134, 626–635. [CrossRef]
24. Kwakernaak, H.; Sivan, R. Linear Optimal Control Systems; Wiley-Interscience: New York, NY, USA, 1972; Volume 1.
25. Kalman, R.E. Mathematical Description of Linear Dynamical Systems. J. Soc. Ind. Appl. Math. Ser. A Control 1963, 1, 152–192.

[CrossRef]
26. Georges, D. Use of observability and controllability gramians or functions for optimal sensor and actuator location in finite-

dimensional systems. In Proceedings of the IEEE Conference on Decision and Control, New Orleans, LA, USA, 13–15 December
1995; Volume 4. [CrossRef]

27. Rossman, L.A. EPANET 2; U.S. Environmental Protection Agency: Washington, DC, USA, 2000.
28. Watters, G.Z. Analysis and Control of Unsteady Flow in Pipelines, 2nd ed.; Butterworths: Waltham, MA, USA, 1984.
29. Dager, R.; Zuazua, E. Wave propagation, observation and control in 1-d flexible multi-structures. Math. Appl. 2006, 50, 227.
30. Izquierdo, J.; Pérez, R.; Iglesias, P.L. Mathematical models and methods in the water industry. Math. Comput. Model. 2004, 39,

1353–1374. [CrossRef]
31. Ramos, H.; Covas, D.; Borga, A.; Loureiro, D. Surge damping analysis in pipe systems: Modelling and experiments. J. Hydraul.

Res. 2004, 42, 413–425. [CrossRef]
32. Zhang, Z. Hydraulic Transients and Computations; Springer: Cham, Switzerland, 2020.
33. Grubben, N.L.M.; Keesman, K.J. Controllability and observability of 2D thermal flow in bulk storage facilities using sensitivity

fields. Int. J. Control 2018, 91, 1554–1566. [CrossRef]
34. Keesman, K.J. Sytem Identification, an Introduction, Advanced Textbooks in Control and Signal Processing; Springer: Cham,

Switzerland, 2011.
35. Pronzato, L.; Pázman, A. Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-

Sample Properties. Linear Notes Stat. 2013, 212, 404.
36. Wald, A. On the Efficient Design of Statistical Investigations. Ann. Math. Stat. 1943, 14, 134–140. [CrossRef]
37. Fujiwara, O.; Khang, D.B. A two-phase decomposition method for optimal design of looped water distribution networks. Water

Resour. Res. 1990, 26, 539–549. [CrossRef]
38. Bi, W.; Dandy, G.C.; Maier, H.R. Improved genetic algorithm optimization of water distribution system design by incorporating

domain knowledge. Environ. Model. Softw. 2015, 69, 370–381. [CrossRef]

http://doi.org/10.1061/40517(2000)213
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000909
http://doi.org/10.2166/ws.2014.037
http://doi.org/10.3390/environsciproc2020002040
http://doi.org/10.1061/(ASCE)0733-9429(1992)118:7(1031)
http://doi.org/10.1016/j.conengprac.2017.03.003
http://doi.org/10.1109/TPWRS.2014.2356797
http://doi.org/10.1109/psce.2004.1397683
http://doi.org/10.1002/2050-7038.12698
http://doi.org/10.1016/j.ifacol.2018.09.609
http://doi.org/10.3390/s131114984
http://www.ncbi.nlm.nih.gov/pubmed/24193099
http://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(626)
http://doi.org/10.1137/0301010
http://doi.org/10.1109/cdc.1995.478999
http://doi.org/10.1016/j.mcm.2004.06.012
http://doi.org/10.1080/00221686.2004.9728407
http://doi.org/10.1080/00207179.2017.1321782
http://doi.org/10.1214/aoms/1177731454
http://doi.org/10.1029/WR026i004p00539
http://doi.org/10.1016/j.envsoft.2014.09.010

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Example 1: Triangular Network 
	Example 2: Net1 Case Study 
	Hanoi Network 

	Conclusions 
	
	
	
	References

