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a b s t r a c t

uFTIR is an R package that implements an automatic approach to analyze µFTIR hyperspectral images
with a strong focus on microplastic recognition in environmental samples. The package performs image
classification using a Spectral Angle Mapper algorithm in a library search approach. It interacts with
other R packages used for spectral analysis. It exports its output as raster and vector files that can
be post-processed in common Geographical Information Systems software. The package was designed
around the principles of modular development, compatibility, and open-source software. We hope our
contribution will serve researchers to size the occurrence of microplastics in ecosystems.
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1. Motivation and significance

In the last decade, scientific concerns about environmental
ollution by microplastic have scaled up, reached public opin-
on, and positioned within the political agenda [1,2]. With all
he evidence that scientists have gathered, it is conceivable that
olicy-makers will promote routine environmental monitoring
rograms [3]. However, a problem might hamper the develop-
ent of such initiatives. The same problem that has hindered re-
earch for years. Scientists have not agreed on standard methods
o quantify or identify microplastics in environmental samples [4,
]. The problem hampers not only future monitoring initiatives,
ut it precludes study comparisons and metadata analyses [6].
To date, scientists have mainly used single purpose methods

nd low laboratory automation to address microplastic pollu-
ion [7]. The lack of standardized methods rises as a consequence
f such approach [8]. Available analytical methods propose three
tep analysis that consider extraction, instrument detection, and
article identification and count. Although standards lack for each
f the steps, scientists struggle the most to achieve both particle
uantification and particle count using a single method or instru-
ent [9]. Commonly, methods focus in one or the other, manual

dentification being the most cumbersome step [7]. To tackle
he problem, scientists have proposed workflows that include
aboratory automation.

Laboratory automation has two sides; hardware and software.
he industry has tackled hardware requirements and scientists
ave at disposal equipment capable of identifying plastic poly-
ers [7,8,10]. Literature reviews that summarize monitoring ef-

orts identify FTIR spectroscopy as the most common method
sed to identify plastic polymers [11–13]. To provide a complete
olution, manufacturers couple FTIR spectrometers with micro-
copes. The use of µFTIR instruments – as they are called – avoids
nnecessary steps in sample handling. However, manufacturers
o not provide tools to automate the analysis of the output image.
On the software side, companies do not provide built-in solu-

ions to process the output images automatically. Equipment such
s Agilent Cary 620 FTIR spectrometer come with a (proprietary)
oftware that has only basic pixel classification features [14]. The
ituation is not uncommon for other equipment [7]. Researchers
ave taken the lead, proposing different approaches to fulfill soft-
are requirements which are based on machine learning [15–18]
r bulk library search [8,19–23]. Bulk library search predomi-
ates [7,8,24]. Bulk library search presents the advantage that
t can be adapted quickly through the implementation of new
r extended reference libraries, but it can be computationally
ntensive [21]. Recently, researchers optimized the method per-
ormance by clustering the spectra before the search [22]. An

approach that earth scientists follow when analyzing spectral
data [25].

Scientists have implemented a few alternatives to overcome
the absence of software officially supported by µFTIR instrument
providers. The Systematic Identification of MicroPLastics in the
Environment (siMPle) software is a good representative of the
alternatives to date in one package suit [20]. The software has
some limitations. First, it has shortcomings when dealing with
large files —a single sample file size starts from 12Gb. Second,
the developers restrict the access to the source code, reducing the
possibilities of software modification and adaptation to particular
research needs [19,26]. Third, the code’s obscurantism veils the
analytical workflow and forces the user to choose between a fi-
nite set of pre-processing steps. The software limits the analytical
possibilities to two algorithms to pre-process the data (calculate
spectra’s first or second derivative) and one algorithm to perform
the library search (correlation). These options fall short when
compared with typical spectral analysis steps [27].

Given the software limitations, we set out to develop a pro-
gram able to automate the analysis of µFTIR images built on trust-
worthy and reproducible research principles(see Chambers’s [26]
explanation on the subject). Our main goal was to implement
a set of front-end tools to analyze the output of µFTIR spec-
trometers. Our main focus was its application in environmental
research, especially for microplastics analysis. We addressed our
goal by writing an R package that structures a library search
workflow around the principles of modular development, com-
patibility, and open-source software. In this article we intro-
duce the uFTIR R package architecture, describe its functionality,
present a step by step processing of a soil sample, and contrast
the results with alternative software (siMPle).

2. Conceptualization and requirements

2.1. Analytical steps

The analysis of hyperspectral images comprises five sequential
steps that we tackled independently; load, pre-process, process,
post-process, and summarize (see Fig. 1). The current version
(v0.1.1) of the uFTIR package implements all the analytical steps
to process Agilent Resolutions Pro Software outputs files [14].
The Agilent Resolutions Pro Software comes with the Agilent
µFTIR Microscope and Bench (Agilent Technologies, Inc., USA) and
together constitute Agilent’s suit for FTIR microscope analysis.

Agilent’s suit for FTIR microscope analysis allows a spectra
recording between 3600 and 700 cm−1 with a collection reso-
lution between 0.5 and 16 cm−1. The manufacturer offers three
2
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Fig. 1. uFTIR R Package architecture. The blue box aggregates the processes that the package performs, all of them inside the R environment. The red boxes individuate
each analytical step. The gray arrow shows how mosaic files are read. By calling the mosaic_sam function the user process each mosaic* (sub)file(s) in one call. The
summary method returns a three column table with information about the number of particles, their area, and the cluster or substance to which they correspond.
The method vectorizes the image that can be saved as ESRI shapefile format. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

objectives to equip the microscope; 4x, 15x, and 25x, which yield
images with a pixel size of 20.6, 5.5, and 1.1 µm respectively.
gilent Resolutions Pro Software can do only pixel wise library
earch to compare its output with a known reference. The soft-
are comes with a (privative) spectral library for plastic polymers

dentification called poly_8. Agilent’s software stores the images
n a file format with special characteristics that we use as input
o start the microplastic recognition analysis in uFTIR. In the next
ection we describe the image characteristics.
It is worth noticing that, despite we focus the analysis and

omparison on Agilent’s FTIR microscope images, the package
orks with any hyperspectral image. We use here the case of
gilent images as: (a) it exemplifies the difficulties that close
ource formats pose to science; (b) it represents the most difficult
nalytical scenario.

.2. Input files

In this subsection we present the challenges of extending R
eading functionalities to load Agilent’s FTIR microscope images.
gilent’s FTIR microscope had two main output file formats. In
ts most simple usage, the microscope takes the spectra of a
ingle tile; a single hyperspectral image taken at a fixed position.
Mosaics extends the single tile format to multiple images. Mosaics
constitute the working horse of all automation efforts. They allow
the user to take hyperspectral images of an area larger than the

microscope field of view. When the mosaic approach is used, the
user defines a priori an area to record. Then, the microscope takes
the images and moves its tray until it covers the whole area. As
a result, mosaic images are a record of multiple single images
(chunks) with a header that identifies them.

Agilent’s output formats pose challenges for post-processing.
Agilent’s software stores its output in a proprietary file format. It
does provide a translation feature to convert the files to ENVI,
another proprietary software commonly used to analyze spa-
tial imagery. Currently, the Comprehensive R Archive Network
(CRAN) does not register any packages to read Agilent file for-
mats. Although the R package caTools can load ENVI files into
memory [28], the problem persists as mosaic files are typically
too large to be loaded without processing them first.

2.3. Reference library

Library search methods rely on the availability of compre-
hensive reference libraries. Unfortunately, researchers lack free
access to such resources. Primpke et al. [21] published the first
freely available library tailor-made for microplastic identifica-
tion. The library includes 270 substances manually aggregated
in 32 clusters that stand for different plastic polymers. It in-
cludes other polymers commonly found in environmental sam-
ples which might cause misclassification, such as chitin, cellulose,
and animal fur. Since Primpke et al. library is the only spectral
3



Fabio Corradini, Nicolas Beriot, Esperanza Huerta-Lwanga et al. SoftwareX 16 (2021) 100857

l
u

3

3

i
p

i
s
q
p
c
a
f
t
c
l
t
s
a
R

w
e
h

3

i

ibrary freely distributed among scientists, we included it in the
FTIR package as accompanying data.

. Software description

.1. Software architecture

The scientific context defined in Section 1 and the character-
stics of the input files served as the cornerstone to design the
ackage principles:

• Researchers are the program end-users.
• The program must be modular and accept user modifica-

tions.
• The program must be compatible with processing algo-

rithms implemented already for spectral analysis.
• The program must support stepwise checking of module

success and user exploration.
• The program must not overload the host memory. Mosaics

should be processed in chunks, since they are usually large
files for personal computers.

• Memory intensive processes should be parallelized, taking
advantage of the chunk-processing approach.

We implemented the application as an R package and defined
ts output in a format common for geographical information
ystems (GIS) analysis. This approach has three positive conse-
uences. First, the R environment [29] has a variety of tools im-
lemented already for hyperspectral image analysis. The program
an integrate with those, if the user wants to extend the pack-
ge built-in features. Second, researchers use the R environment
requently to explore, process, and analyze data. The familiarity
hat they have with the R environment should soften the learning
urve of our software. Third, environmental researchers have at
east a common knowledge of GIS and GIS software. GIS allows
he user to visualize, manipulate, and process spatial data. Open
ource libraries and software to work with GIS formats are free
nd well maintained (see GDAL [30], GRASS [31], and QGIS [32]).
esearchers can use these suits to summarize and check the data.
Fig. 1 shows the package general workflow. We subdivide the

orkflow in five sequential steps (see Section 2.1). We describe
ach feature and its characteristics in Section 3.2. Fig. 3 shows
ow each step works when processing an environmental sample.

.2. Software functionalities

The R package uFTIR presents the following major functional-
ties:

Read files. The uFTIR package defines two classes to manip-
ulate Agilent Resolution Pro FTIR files. One reads a single tile
directly into memory and the other creates a virtual class
that holds the location of all mosaic subfiles. We based the
code that implements the reading process on Henderson’s
MATLAB solution [33]. We translated the MATLAB code to
R (single tiles) and C++ (mosaics) to import the reading
functionality to R.
Pre-process. The program implements three methods to
pre-process the spectra: scale, calculate first and second
derivatives, and resample. The user might use any of these
methods to pre-process the spectra. The program includes
one additional method to allow user defined pre-process
functions. The user can pass either a lambda function or
functions defined in other packages. By these means, the
user can perform other common pre-processing steps such
as applying a Savitzky–Golay filter [34] (see the R package

Fig. 2. Spectra recorded for each plastic polymer used to validate the matching
algorithm. Black lines present the average spectra of all pixels that matched the
target polymer while the blue-dotted lines show the spectral library’s spectra
for the target polymers. Polystyrene (a) corresponds to the plastic cup sample,
while polystyrene (b) corresponds to the polystyrene standard.

Process. Currently the package implements only one al-
gorithm to match pixel spectra with known references. It
uses Spectral Angle Mapper (SAM) as implemented in the R
package RStoolbox [35]. The algorithm recognizes different
polymers successfully [36], and to this end the waste recy-
cling industry has used it for over 15 years [37]. The SAM
algorithm is, however, just one of the classical methods used
signal,signal).

4
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Table 1
Polymers scanned and analyzed in the validation test: number of particles detected, total area (pixel2), proportion
of the total area, other polymers identified in the same image, and the area of those other polymers (pixel2).
Polymer Part. Area Other Area

(n) (pixel2) (prop.) – (pixel2)

polyethylene 2 15,705 0.96 ethylene-vinyl-acetate 679
polypropylene 1 16,296 0.99 polyethylene 88
polystyrene 1 16,351 >0.99 polypropylene 33
polystyrene standard 1 16,384 1 – 0

for hyperspectral image classification. Researchers have pro-
posed both algorithm optimizations [38,39] and alternative
approaches [40]. The package modularity allows the user to
add new processing algorithms by calling other R packages.
Post-process. The package implements optional post-
processing methods. The method to smooth the output of
the SAM algorithm has the highest relevance. The program
uses a moving window to remove single-point particles [41,
42].
Check and summarize. To check the accuracy of the library
search algorithm, it is possible to retrieve the spectra of
pixels that matched a particular substance or cluster. The
program defines methods to plot at every step, to allow
stepwise inspection of the process performance.
The summary method returns a three column table with
information about the number of particles, their area, and
the cluster or substance to which they correspond. The user
can save the output as common vector or raster formats.

4. Algorithm validation

Although the Spectral Mapper Algorithm discriminates well
between polymers [36] we tested whether it was correctly imple-
mented in the uFTIR package. To do so, we recorded the spectra of
one polyethylene bag, two plastic cups –one made of polypropy-
lene and the other made of polystyrene–, and a polystyrene
standard film (VARIAN P/N 883-9120). A single tile was recorded
for each polymer, in transmission mode with a spectral resolution
of 8 cm−1 through a spectral range of 3500–1300 cm−1 and
8 co-added scans. Data was recorded in absorbance (%). The
microscope magnification was x4 with a pixel size resolution of
20.6 µm. The analysis used the spectra’s first derivatives. The
images post-process included smoothing them using a 3 × 3
moving window. We used a freely available spectral library for
the library search [21].

Results showed that the algorithm matches the expected poly-
mer in all cases (Table 1). uFTIR classified correctly all pixels
of the standard polystyrene film, and almost all pixels of the
polystyrene cup. The algorithm was confused in 1% of the cases
when it classified the polypropylene cup, attributing wrongly 88
pixels to polyethylene. The analysis of the polyethylene bag had
the lowest success rate, misclassifying 4% of the pixels. However,
the algorithm attributed those pixels to ethylene-vinyl-acetate,
which is a polymer composed by polyethylene and vinyl-acetate
in a ratio from 10:1 to 10:4. Fig. 2 shows the average spectra
recorded for each of the polymers used in the validation test and
contrasts them with their reference spectra.

5. Illustrative example

To illustrate the workflow of uFTIR and compare its output
with its alternative (siMPle), we prepared a soil sample and
captured its spectral signal (Section 5.1). We processed the im-
age using both uFTIR and siMPle software with similar settings
(Section 5.2). siMPle was developed to automate a similar analyt-
ical procedure. To produce comparable results, we used Primpke
et al. [21] library for both analyses. Sections 5.3 and 5.4 show the
results of uFTIR and siMPle, respectively.

5.1. Sample preparation and image acquisition

We selected a soil sample from our archive [43] that had 1.4
plastics particles per gram of soil by Zhang et al. method [44].
The soil sample was suspended in ZnCl2, stirred, centrifuged,
and vacuum-filtered three times. At the end of the prepara-
tion process, a filter (Whatman(R) Anodisc Inorganic Membranes)
that collected all buoyant particles was ready for µFTIR anal-
ysis. The µFTIR analysis was performed in transmission mode
with a spectral resolution of 8 cm−1 through a spectral range
of 3500–1300 cm−1 and 8 co-added scans. Data was recorded in
absorbance (%). The microscope magnification was x4 with a pixel
size resolution of 20.6 µm. The final mosaic comprised 64 tiles
and 12Gb.

The collected image showed a large plastic particle placed on
the filter’s lower half. We opened the image in Agilent’s Resolu-
tion Pro software and performed a library search in 10 random
pixels within the particle. We used the correlation algorithm and
the poly_8 built-in library. The particle matched polystyrene in all
the 10 runs.

5.2. Hardware information

The image analysis with uFTIR r-package and siMPle software
(see Section 5.4) was done in a HP EliteBook 840-g3, Intel(R)
Core(TM) i7-6600U CPU @ 2.60 GHz, with 2 cores and 4 threads,
and 8GiB of memory. The testing environment was Windows 10
enterprise, with R version 3.5.2, and siMPle Version 1.0.0.

5.3. uFTIR pre-processing and results

The image was processed as mosaic using the package parallel
features. The pre-process included scaling and taking the spectra
first derivatives. The post-process included smoothing the image
with a moving window of 3 × 3 pixels and clipping it to the
extent of the filter to leave out the filter’s polypropylene support
ring. The clipping mask was a circle with a radius equal to 490px
and its center placed at (512,512)px. Fig. 3 shows the output of
each analytical step.

The analysis revealed the presence of two different polymer
clusters on the filter. Polystyrene dominated with 3 particles
that accounted for more than 5000 pixels2. Polypropylene was
the other, having 48 particles and a total area of ∼800 pixels2.
Table 2 reports the summarized output. Fig. 3(f) shows the cor-
respondence between the library spectra (blue-dotted) and the
average spectrum of the 3 particles that matched polystyrene
(red-solid). The polystyrene particle was fragmented into three
particles. However, two of them had an area of 2pixels2 and one
encompassed >99% of the particle area.

The analysis took 9 min 52 s to complete (elapsed time).

5.4. siMPle pre-processing and results

The pre-process included cutting out the CO2 signal and tak-
ing the spectra first derivatives. We exported siMPle results as
comma delimited to summarize them in R. Fig. 4 shows the image
output and a close-up to the large polystyrene particle.
5
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Fig. 3. uFTIR workflow and analysis at different steps for an environmental sample: (a) load the sample (visual) image into memory, (b) pre-process the spectra and
run the library search algorithm (spectral angle mapper), (c) post-process the image with a smoother algorithm (moving window), (d) post-process the image removing
unnecessary information (clip), (e) check the accuracy by tracing a polygon over all particles matching a given polymer (polystyrene), (f) check the accuracy by
comparing the spectral signal (mean) of all particles that matched a given polymer (polystyrene - red-solid line) and the reference spectra of the polymer (polystyrene
in Primpke et al. library [21] - blue-dotted line).

Table 2
Summary of uFTIR’s analysis.
Cluster name Number of particles Total area

(n) (pixel2)

animal fur 155 60,877
chitin 41 1,109
coal 482 239,974
plant fibers 433 415,434
polypropylene 48 791
polystyrene 3 5,224

The analysis revealed the presence of 18 synthetic polymers.
able 3 shows a synthesis of the output. The polystyrene particle
atched both polyimide and polysulfone (and not polystyrene).
iMPle identified only 3 polystyrene particles, with a total area of
pixels. The large number of particles for each cluster revealed a
roblem of particle fractionation. The large amount of polypropy-
ene corresponds to the filter’s support ring (see Fig. 4(c)). The
rogram has no features to crop, or smooth the output.
The software took 50 s to convert the image to siMPle’s format,

8 s to load the reference library, 46 min to analyze the image for
pectra fit, and 3 h 48 min 9s to run the MP detection algorithm
o find the particles. The total time was 275 min.

. Impact

The uFTIR package provides a general-purpose software to au-
omatize hyperspectral images acquired in µFTIR spectrometers.
Its primary orientation is towards microplastic detection. It con-
stitutes a step forward for environmental research as it provides
a tool for researchers to increase the accuracy of state-of-the-art
analytical methods. The software implements a scalable method-
ology – in a language familiar to scientists – that quantifies

Table 3
Abbreviated summary of siMPle’s analysis.
Cluster name Number of particles Total area

(n) (pixel2)

polypropylene 26,633 1,214,800
not identified 14,516 608,093
cellulose chemical modified 2,793 27,192
acrylates/PUR/varnish 905 3,249
polyimide 16 3,046
polyethylene 878 2,864
polyester 600 1,940
polysulfone 61 1,142
polycaprolactone 286 974
plant fibers 108 447
.
.
.

.

.

.
.
.
.

animal fur 3 10
polystyrene 3 9

and identifies microplastics in environmental samples. It uses
spectral angle mapper, and algorithm that had not been imple-
mented before in any similar software (such as siMPle [20] or
MPhunter [8]).

The idea of using the spectral angle mapper algorithm came
from earth sciences and Geographical Information Systems. Har-
ris [25] proposed a two step library search that first runs a feature
recognition algorithm and calculates spectral end-members and
then runs a library search algorithm [25]. The method, known
as spectral angle mapper, is widely used in earth sciences as
it outperforms other common classification procedures [36–39].
However, the method loses information when calculating the
end-members, thus for some applications it should be used with
care [45]. Despite its disadvantage, the method reduces the pro-
cessing time compared to bulk library search [22].
6
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Fig. 4. Output of siMPle: (a) image map after the MP detection, (b) close-up to the polystyrene particle, revealing the particle fractionation problem, (c) close-up to
he filter support ring that matched polypropylene.

The algorithm and the analytical workflow implemented in
FTIR allows the package to work several orders of magnitude
aster than its alternative (siMPle, see Section 5). The increase in
peed will allow researchers to increase the number of samples
n assessment efforts. This will contribute to size the problem of
lastic pollution in ecosystems without the current limitations
mposed by time consuming and tedious laboratory routines [46].

The package improves the reproducibility of the results, since
rocedural scripts can be shared and published together with
cientific articles. The software open-source nature allows trust-
orthy analysis and scientific communication [26]. Moreover,
– a functional programming language – is strongly modular,

acilitating the addition of new functions and analytical tech-
iques. To date, researchers have recognized the need for a Open
ource Community devoted to contribute to microplastics spec-
ral classification [19]. Our software walks one step into that
irection.
In its first release, the package implements only one matching

lgorithm. However, the R environment is full of packages that
an interact in any of the analytical steps described. As a proof of
oncept, we show an example that uses the R signal package [47]
o include a Savitzky–Golay filter to pre-process a sample in
he CodeOcean capsule that accompanies the article (). In future
eleases, we expect to include a support vector machine algo-
ithm, another hyperspectral image classification method with
ood reputation among scientists [40].

. Conclusions

We presented uFTIR, an R-based software that implements
n automatic approach to analyze µFTIR images. The package
s mainly oriented towards the analysis of environmental sam-
les and microplastic identification. It supports parallel compu-
ations, and interaction with other R packages and procedures.
t is fast, compared with other library search alternatives, and it
romotes collaborative science through an open-source approach.
FTIR is an ongoing project. We intend to implement additional
atching algorithms in future releases, and a pre-processing fea-

ure for a priori feature recognition. As presented, we hope that
ur contribution will serve researchers to size the occurrence of
icroplastics in ecosystems.
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