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A large database of individual farmer field data (n = 4,107) for rice production in the Northwestern Indo-
Gangetic Plains of India was used to decompose rice yield gaps and to investigate the scope to reduce nitro-
gen (N) inputs without compromising yields. Stochastic frontier analysis was used to disentangle efficiency and
resource yield gaps, whereas data on rice yield potential in the region were retrieved from the Global Yield Gap
Atlas to estimate the technology yield gap. Rice yield gaps were small (ca. 2.7 t ha™" or 20% of potential yield,
Yp) and mostly attributed to the technology yield gap (ca. 1.8 t ha™% or ca. 15% of Yp). Efficiency and resource
yield gaps were negligible (less than 5% of Yp in most districts). Small yield gaps were associated with high input
use, particularly irrigation water and N, for which small yield responses were observed. N partial factor pro-
ductivity (PFP-N) was 45-50 kg grain kg~! N for fields with efficient N management and approximately 20%
lower for the fields with inefficient N management. Improving PFP-N appears to be best achieved through better
matching of N rates to the variety types cultivated and by adjusting the amount of urea applied in the 3rd split in
correspondance with the amount of diammonium-phosphate applied earlier in the season. Future studies should
assess the potential to reduce irrigation water without compromising rice yield and to broaden the assessment
presented here to other indicators and at the cropping systems level.

1. Introduction change and conversion of agricultural land to other uses (Central Rice

Research Institute, 2013). At the same time, consumer demand for rice is

Rice contributes to about 30% of the calories consumed in India
(Mohanty and Yamano, 2017) and is an important source of foreign
exchange for the Government of India. India grows rice on about 43.8
million ha, with a total production of about 116 million tonnes per year
(Government of India, 2019). Yet, rice cropped area in the country is
predicted to decline by 6-7 million ha by 2050, because of climate
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expected to rise from 114 to 137 million tons in the coming years
(Central Rice Research Institute, 2013). As a consequence, rice pro-
duction will need to increase by about 1.1% per year over the next four
decades to ensure rice self-sufficiency at the national level (Gathala
et al.,, 2013). The additional rice demand projected for the decades
ahead must be met through increasing rice yields in low-yielding
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regions, while maintaining current rice yields in high-yielding regions,
as there is limited scope to bring additional land into cultivation. The
maintenance of high-yielding areas must be achieved sustainably, as rice
cultivation alone consumes approximately 80% of the energy and water
used in Indian agriculture, and is responsible for 90% of the total
greenhouse gas (GHG) emissions of all monsoon season cropped cereals
(Davis et al., 2019).

The Northwestern Indo-Gangetic Plains (IGP) of India, which in-
cludes the states of Punjab and Haryana, account for approximately 25%
of the country’s total rice area. The dominant cropping system in the
Northwestern IGP comprises a rice crop grown during the rainy season
(or ’kharif’, between July and November) in rotation with a wheat crop
during the winter season (or 'rabi’, between November to April), with
land kept fallow between wheat harvest and rice planting. Rice is pre-
dominantly grown by transplanting seedlings into wet-tilled puddled
soil and the field is kept flooded for most of the growing season. The high
rice yields in the states of Punjab and Haryana are the result of adoption
of improved varieties, intensive use of irrigation water and fertilizers,
and the expansion of irrigated areas (Mohanty and Yamano, 2017). The
latter were largely encouraged through government subsidies on elec-
tricity and fertilizer N, coupled with market guarantee of paddy pur-
chase through minimum support prices. For instance, farmers in the
states of Punjab and Haryana on average use 1,320 and 1,800 mm of
irrigation water, respectively, for rice cultivation (Sharma et al., 2018),
despite these being water-scarce regions. These two states use nearly
30% of total electricity consumption in the agricultural sector (Sharma
et al., 2018). The overexploitation of groundwater resources for irriga-
tion, a decline in the response to applied fertilisers, the emergence of
micronutrient deficiencies and herbicide resistant weeds, and increasing
pressure from pests and diseases have raised concerns about the sus-
tainability and profitability of rice production in the Northwestern IGP
of India (Bhatt et al., 2016, 2021).

Sustainable intensification aims to narrow yield gaps on existing
agricultural land while increasing resource-use efficiencies and mini-
mizing environemntal externalities (Silva et al., 2021b, Cassman and
Grassini, 2020). Yield gaps are defined as the difference between po-
tential and actual yields for irrigated crops (van Ittersum et al., 2013),
with the magnitude of the gap providing a metric for how efficiently
land is used under on-farm conditions. Potential yield (Yp) is defined as
the yield of a crop cultivar when grown with water and nutrients
non-limiting and biotic stresses effectively controlled, whereas actual
yield (Ya) refers to the yield observed in farmers’ fields subject to water
and nutrient limitations, and to reductions by pests, diseases and weeds
(van Ittersum and Rabbinge, 1997). Identifying the causes behind
existing yield gaps can aid in the development of more appropriate soil
and crop management advisory systems, which, if designed with
on-farm data and through farmer participation, may be more
commensurate with farmers’ objectives and constraints (Silva et al.,
2017a, 2017b; Rattalino-Edreira et al., 2018; Prasad et al., 2017). Yield
gap assessments are also helpful to inform the scope for sustainable
intensification at local level (Silva et al., 2021b; Stuart et al., 2016,
Lobell et al., 2009).

Understanding the drivers behind yield gaps and the opportunities to
increase crop yield, or reduce inputs without compromising crop yield
under on-farm rather than experimental settings, requires a wealth of
individual farmer field data with detailed biophysical and crop man-
agement information (Beza et al., 2017). Such data are becoming
increasingly available across farming systems around the world (Silva
et al., 2020; Rattalino-Edreira et al., 2018). When combined with sec-
ondary biophysical data, such detailed information can be used to infer
the performance of multiple genotypes and their interactions with
environmental and management factors. Such analyses can be compa-
rable to running thousands of field experiments, and can aid in the
identification of best-bet management options in a given biophysical
unit, in a cost-effective way (Rattalino-Edreira et al., 2018). The latter is
crucial to accelerate the sustainable intensification of current cropping
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systems and to design research and development programs supporting
progress towards the application of improved management practices
that reduce yield gaps while improving resource-use efficiency in
farmers’ fields.

The objective of this study was two-fold: (1) to decompose rice yield
gaps into efficiency, resource, and technology yield gaps, and (2) to
assess the scope to reduce input use while maintaining current rice
yields at the regional scale in the Northwestern IGP of India. We hy-
pothesized that rice yield gaps in this region are relatively small (i.e.,
20-30% of Yp), due to the intensive use of inputs, and that input use
(particularly irrigation water and N) could be reduced without
compromising crop productivity. Our analysis builds upon a large
database (n = 4,107 fields) of crop management practices reported by
individual farmers collected during the 2020 kharif season in the states
of Punjab and Haryana. Our study provides both evidence of, and a
methodology for, the quantification of yield gaps and the identification
of approaches to increase resource-use efficiency. This approach repre-
sents a potential alternative to manipulative experimentation that could
be reproduced in different cropping systems and environmental contexts

2. Materials and methods
2.1. Database of farmer field data

2.1.1. Field survey and primary data collection

A field survey was conducted by the Indian Council of Agricultural
Research — Central Soil Salinity Research Institute (ICAR-CSSRI), the
Bourlag Institute for South Asia (BISA) and the International Maize and
Wheat Improvement Centre (CIMMYT) during the 2020 kharif (rainy)
season across rice fields in the states of Punjab and Haryana (Fig. 1).
Haryana and Punjab are the two most important states for rice pro-
duction in the Northwestern IGP and are comprise of arid environment
with saline soil in some parts of Haryana. The surveyed districts in
Punjab lie on the central plain agro-climatic zone characterized by a
semi-arid to dry subhumid climate, with a mean annual temperature of
23.3-25.8 °C and an average rainfall of 600mm (70% of which is typi-
cally received during monsoon season that spans from July to
September), and by medium to deep alluvial soils with textures varying
from sandy to silty clay. The districts surveyed in the state of Haryana lie
on the alluvial plains of the Yamuna River with some pediments of origin
in the Aravalli hills. Climatic conditions are similar to those found in the
Punjab, with a mean minimum temperature of 18 °C and maximum of
34 °C, and an average rainfall of 535mm (80% of which is received
during the monsoon season, usually from July to September).

The field survey covered four districts in Punjab (Kapurthala, Fate-
hgarh Sahib, Ludhiana, and Patiala) and three districts in Haryana
(Ambala, Karnal and Kurukshetra). These districts were selected pur-
posively to represent intensive rice-wheat cropping systems in these
states. These states have extreme specialization of rice and wheat grown
in a rotational cropping system. About 60-80% of the gross cropped area
of each state has been dedicated to rice and wheat rotations (Singh et al.,
2017; DESA, 2020). Within each district, farmers were selected
randomly. This resulted in 2,265 farmers surveyed in Punjab (580 in
Ludhiana, 546 in Patiala, 570 in Kapurthala, and 569 in Fatehgarh
Sahib) and 1,842 farmers in Haryana (652 in Ambala, 571 in Karnal, and
619 in Kurukshetra). The fields to which surveys corresponded were
geo-referenced and farmers were requested detailed self-reported in-
formation for the largest rice field of the farm on rice yield, varietal
information, crop duration, and crop management practices (Table 1).
Socio-economic information of farming households such as household
size and farm size were also collected. Interviews were conducted right
after rice harvest (October-December 2020) by trained enumerators
using a semi-structured questionnaire designed for the Android-based
ODK (Open Data Kit) platform (https://getodk.org/).


https://getodk.org/
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Fig. 1. Location of the surveyed rice fields in the states of Haryana (n = 1842 fields) and Punjab (n = 2265 fields) located in the Northwestern Indo-Gangetic Plains

of India during the 2020 kharif season.

Table 1
Descriptive statistics of non-basmati rice production systems in Punjab and Haryana during the kharif growing season of 2020.
Average Standard deviation Maximum Minimum
LD MD SD LD MD SD LD MD SD LD MD SD
Rice grain yield (t ha™!) 7.8 7.0 6.9 0.6 0.6 0.6 9.0 8.8 8.1 6.2 4.5 5.0
Tillage operations (1) 6.5 5.9 6.1 1.4 1.4 1.4 10.0 12.0 11.0 1.0 1.0 3.0
Sowing date (Julian days) 134.0 141.1 142.9 4.8 7.1 7.5 170.0 182.0 182.0 124.0 122.0 126.0
Harvest date (Julian days) 299.2 287.2 274.7 5.8 7.3 6.6 315.0 318.0 306.0 267.0 253.0 253.0
Growing season (days) 165.2 146.2 131.8 7.8 8.7 4.7 175.0 155.0 135.0 120.0 104.0 104.0
Nursery duration (days) 31.3 28.9 28.7 5.7 5.0 4.3 40.0 40.0 40.0 0.1 0.1 0.1
Number of irrigations (n) 47.0 34.8 36.4 8.2 13.8 12.8 60.0 60.0 60.0 30.0 5.0 4.0
N applied (kg ha™!) 156.2 159.3 162.1 18.5 21.3 21.1 229.5 229.5 229.5 103.5 80.5 80.5
P,0s applied (kg ha™!) 8.9 26.7 31.8 18.4 27.4 27.6 57.5 88.8 97.8 0.1 0.1 0.1
Fungicide applied (kg ai kg ai ") 1.2 1.1 1.1 0.6 0.6 0.7 3.1 3.5 3.9 0.1 0.1 0.1
Herbicide applied (kg ai kg ai 1) 1.0 1.0 0.9 0.4 0.5 0.5 2.8 7.5 6.0 0.1 0.1 0.1
Insecticide applied (kg ai kg ai~!) 2.2 1.6 1.8 1.1 1.0 1.2 7.4 6.9 8.5 0.1 0.1 0.1
1st top dress of urea (DAT) 10.0 10.2 9.5 2.7 3.3 2.8 20.0 35.0 20.0 6.0 4.0 5.0
2nd top dress of urea (DAT) 21.2 20.6 20.0 3.4 4.4 3.9 30.0 45.0 40.0 13.0 12.0 12.0

Data are disaggregated per variety type. Codes: LD = long-duration variety, MD = medium-duration variety, SD = short-duration variety, DAT = days after trans-
planting. We observed negligible application of organic inputs to rice, as organic materials are usually applied to higher-value crops such as vegetables, or to market
and home gardens. Similarly, K and micronutrient application was negligible and therefore excluded.

2.1.2. Actual yield (Ya) estimation

Actual farm yields (Ya) were estimated based on farmer’s self-
reported yields and measured crop-cut yields (Ycc) taken from a sub-
sample of ca. 25% of the surveyed fields (1,014 out of 4,107 fields). The
crop-cut yield assessment was done by manually harvesting a 2 x 2 m?
quadrant (leaving a minimum of a 5-10 m border from each side of the
field) followed by sun drying of bundles of harvested paddy (straw and
grain) until constant weight and determining paddy yield at 14%
moisture content. Grain moisture content was estimated in-situ using a
hand-held moisture meter at the time of yield assessment. Farmers were
also asked to provide their estimate of rice yield from the crop cut field

and for the total area of the field. Rice yields (Ysef) were then estimated
in t ha~! based on self-reported production and measured field area size,
assuming self-reported production was reported at 14% moisture con-
tent. The GPS coordinates of the fields where the crop-cut assessment
was not done were recorded using the ODK platform by revisiting the
field after the interview. Ya of the fields in which crop cuts were not
done were obtained from Y by applying a linear regression fitted
between Yee and Yeerr (Yee = 0.90 + 0.48 x Y3 R = 0.83; Fig. 2). Fields
with a difference between Y. and Y greater than 1t ha~! were
removed from the dataset prior to fitting the linear regression (these
comprised < 5% of the total sample). Such large discrepancy between
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Fig. 2. Relationship between crop cut yield (t ha ') and self-reported yield (t
ha™1) for rice in the Northwestern Indo-Gangetic Plains of India during the
2020 kharif season. The solid line shows the linear regression fitted to the data,
which was then used to estimate the actual yield for the fields where crop cuts
were not conducted.

crop cut and self-reported yields was probably the result of moisture
contents below or above 14% while reporting Ysejs, and/or due to errors
in the self-reported production or area of the surveyed field.

2.1.3. Cleaning and curation of data

A web-based dashboard was developed to visualize the data as they
were collected from farmers’ fields in real-time. The dashboard extrac-
ted the relevant data from a server housing the ODK data managed by
the Cereal Systems Initiative for South Asia (CSISA) project, with errors/
extreme observations identified by employing univariate statistical
methods (e.g., boxplots) as dashboard outputs that could be visually
assessed. Enumerators were then asked to revalidate any outlying ob-
servations by re-interviewing the farmer surveyed. The most common
errors during data collection were related to spelling, the number of
digits applied to numerical inputs, and due to misinterpretation of units,
which were corrected following re-survey of farmers and using expert
knowledge.

Univariate outlier screening was conducted with the analysis of the
Inter Quartile Range (IQR; boxplot technique) using the name of the rice
variety as a sub-category and rice yield, fertilizer inputs, duration of the
growing season, and irrigation number as dependent variables. There
were many different varieties reported by farmers, all with varying
frequency. Varieties reported by farmers were therefore grouped based
on their growing season duration (short-, medium- and long-duration
varieties). This grouping facilitates the comparison within the groups
as short-, medium- and long-duration varieties are assumed to be ho-
mogenous among themselves. The first quartile minus 1.5 x IQR was
considered as the lower threshold and the third quartile plus 1.5 x IQR
was considered as the upper threshold for the dependent variables. The
minimum and maximum values for each variable were fixed based on a
combination of expert knowledge and the distribution of the data
observed for each variable (Table 1). Values of a particular variable
greater than the maximum value or lower than the minimum value were
identified as outliers and excluded from further analysis. Furthermore,
bivariate and multivariate outliers were identified by applying the
Robust Mahalanobis Distance (RMD, Gnanadesikan and Kettenring,
1972) method. As an example, an N application rate of 80 kg N ha™! is
not a univariate outlier but obtaining a rice yield of 8.0t ha™! with
80 kg N ha ! is an outlier in the Punjab and Haryana states. RMD is not
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sensitive to the presence of outliers up to a breakdown point of 50% (i.e.,
the method generates robust results even if 50% of the data are outliers).
The algorithm finds the centre and the scale of the ellipse that represents
the cloud of datapoints in the direction of maximum spread by taking a
subset of the data, thus identifying potential outliers. If the calculated
RMD for a given observation was greater than the cut-off value equal to
the 0.975 quantile of the Chi-square distribution at n degrees of freedom
(i.e., number of variables), then such observation was identified as a
potential outlier. The RMD was calculated only when the presence of
outliers was expected from the visual observation of the distribution of
the data. Datapoints with such outliers were excluded from further
analysis. This resulted in 4,107 out of 4,267 samples that were retained
for final analysis.

2.2. Secondary data sources

Weather and soil data were obtained from secondary data sources
using the GPS coordinates of the surveyed fields to co-locate crop
management and yield data with secondary environmental data (Fig. 1).
Minimum and maximum temperatures were obtained from the ERA5
hourly re-analysed database (Sabater, 2019), which were converted to
daily values by averaging hourly data. Rainfall data at 0.05° x 0.05°
resolution were obtained from the Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS; Funk et al., 2015). CHIRPS is a
quasi-global rainfall dataset which combines data from real-time auto-
matic weather stations with infrared data derived from sattellite ob-
servations to estimate precipitation. Minimum and maximum
temperatures and precipitation data were further averaged over the
growing season (i.e., for the dates between sowing and harvesting) and
combined with farmers’ reported management data obtained from the
field survey. Soil texture data (i.e., percentage of sand, silt, and clay in
the top 0-30 cm layer) were obtained for each field from the Interna-
tional Soil Reference and Information Centre (ISRIC) soil database at a
spatial resolution of 250 m (Hengl et al., 2017). Soil texture data were
then used to derive soil classes for each of the observed fields (i.e., fine
and medium textured soil) using the USDA textural triangle
classification.

2.3. Yield gap analysis

Rice yield gaps in the Northwestern IGP of India were decomposed
into efficiency, resource, and technology yield gaps. The efficiency yield
gap refers to the difference between technical efficient yields (Y1gy, i-€.,
the maximum yield that can be obtained for a given input level) and
actual yields (Silva et al., 2017), and can be explained by sub-optimal
crop management in relation to time, space and form of the inputs
applied. Technical efficient yields and efficiency yield gaps were esti-
mated for each rice field using stochastic frontier analysis, and were
informed by concepts of production ecology (van Ittersum and Rab-
binge, 1997). The resource yield gap refers to the difference between
highest-farmers’ yields (Yyg, i.e., mean Ya above the goth percentile Ya)
and Ytgx, and can be attributed to sub-optimal amounts of inputs
applied. Lastly, the technology yield gap refers to the difference between
Yp simulated with crop growth models and Yyp, hence reflecting
resource yield gaps of individual inputs and/or technologies used by
farmers not being able to reach Yp (Silva et al., 2017a, 2017b). The
reader is referred to (Silva et al., 2017a) for a visual illustration of these
concepts.

The yield gap analysis focused on non-basmati rice only due to the
small sample for basmati rice (scented rice) and differential management
(e.g., N management and variety types) requirement of basmati
compared to non-basmati rice. The area under non-basmati rice was 2.3
M ha out of 2.9 M ha of rice area in Punjab and 0.6 M ha out of 1.3 M ha
of rice area in Haryana (Udhayakumar et al., 2021). The area share of
basmati rice area in both states varies between 20% and 50% of the total
rice area depending on the year (APEDA, 2018).
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2.3.1. Yy and efficiency yield gaps

Stochastic frontier analysis (Kumbhakar and Lovell, 2000) is useful
to estimate the maximum yield that could have been produced in
farmers’ fields with the level of inputs used. Stochastic frontiers differ-
entiate two random errors — technical inefficiency u; (translated to
agronomic terms as the efficiency yield gap) and random noise, or v;,
hence separating the effects of sub-optimal crop management from
random noise in the response variable. The relationship between rice
yields on the one hand, and biophysical conditions and inputs applied on
the other, was assumed to follow a translog functional form, which
generic formulation is as follows (Eq. 1):

K 1 K
In yi= po+ B nx += O (Inxy;) x (Inx;) +v; —u; 1)
b Po ;/k k 2;‘/_11 jy (1) < (Ina;) (
Eff. Ygj=1-exp(-ui) 2)
Y1Exi=Yai/exp(-ui) 3

where y; is the rice grain yield of the i farmer, x; is the k™ input
(fertilizer, irrigation, variety, etc.) used by the ith farmer, py is an un-
known vector of parameters to be estimated, and 6y; are the parameters
describing the second-order effects (squared and interactions) on the
response variable. The random error v; is assumed to be independently
and identically distributed (i.i.d.) following a N| (0,5‘%) distribution, while
the random error u; is assumed to be i.i.d. following a N* (0, afl) distri-
bution. The parameter y = 62 /(02 + 62) represents the fraction of the
model residuals explained by the random error u;, from which the effi-
ciency yield gap is calculated (Eq. 2). Stochastic frontier models with a
Cobb-Douglas functional form (i.e., considering first-order variables
only) were also fitted to the data for comparative purposes. Log-
likelihood ratio tests comparing nested Cobb-Douglas and translog sto-
chastic frontier models indicated the stochastic frontier model with a
translog functional form fitted the data best (i.e., the log-likelihood
value of the translog model was significantly greater than that of the
Cobb-Douglas model at p < 0.0001). Efficiency yield gaps (Eq. 2) and
Y1ex (Eq. 3) were thus estimated from the stochastic frontier model with
the translog functional form.

The vector of biophysical and management variables, xij, was
defined according to concepts of production ecology (van Ittersum and
Rabbinge, 1997). The variables maximum and minimum temperature
(°C), sowing date, seed rate (kg ha~1) and rice variety (short-, medium-,
and long-duration) were included in the analysis to capture the effects of
growth-defining factors on crop yield. Growth-limiting factors in rela-
tion to water and nutrient management were captured in the analysis
with the following variables: precipitation (mm), number of irrigations
(n), soil type (fine and medium textured soils), number of tillage oper-
ations (n), N applied (kg N ha™!) and P applied (kg P20s ha™1). The
extent to which growth-reducing factors affected crop yields was
assessed through the variables including the total amount of fungicide,
herbicide, and insecticide applied, seed treatment (yes/no) and weed
control method (manual, herbicide, or both). The amount of herbicides
applied per hectare were divided by the recommended dose to stan-
dardize the effect of high and low dose of herbicides. A similar trans-
formation was done to the amount of fungicides and insecticides
applied. Multicollinearity between the aforementioned variables was
checked using the Variable Inflation Factor (VIF) as implemented in the
vif() function of the car package in R (Fox and Weisberg, 2019). All
variables used in the analysis had a VIF value below 5 and hence, were
not multicollinear. All continuous variables were mean-scaled and
log-transformed prior to the analysis so that model parameters can be
interpreted as elasticities, assuming all other inputs kept at their mean
level.

The stochastic frontier model described in Eq. (1) was also estimated
with inefficiency effects to identify the deteminants of crop management
on the efficiency yield gap (Battese and Coelli, 1995). To do so, the
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production frontier and the inefficiency effects were estimated simul-
taneously in a single step in which the production frontier was defined as
per Eq. (1) and the inefficiency effects were described as follows (Eq. 4):

J
Ui = Z/. 6izji + € @

where the z; comprises the sources of inefficiency due to sub-optimal
crop management and ¢ is a random error. In this model, u; is
assumed to be i.i.d. following a N* (Zféjzji,oﬁ) distribution (Battese and
Coelli, 1995). The vector g; includes the duration of the nursery of the
rice seedlings (days), the duration of the fallow period (days), the days of
the first and second top-dress application of urea (days after trans-
planting, DAT), the number of insecticide splits (n) applied and the days
of the first application of fungicide, herbicide, and insecticide (DAT).
The stochastic frontier models were fitted to the pooled data using the
sfa() function of the R package frontier (Coelli and Henningsen, 2020).

2.3.2. Yyr and resource yield gaps

Farmers’ fields were categorized into highest-, average- and lowest-
yielding based on the distribution of Ya observed in the dataset. Field
categories were defined for unique variety x soil type combinations to
ensure yield differences between fields in each category were due to
variation in crop management rather than to differences in genotype and
biophysical factors. Rice varieties reported by farmers were further
classified into three groups based on growth duration (i.e., short, me-
dium, and long) using expert knowledge from agronomists in the region.
Soil types with fine and medium texture were retrieved from ISRIC
database using the field-specific GPS coordinates. Climatic conditions
were assumed to be homogenous across Punjab and Haryana, as the IGP
are characterized by flat alluvial soils (see Section 2.1.1).

Highest-yielding fields were defined as those with rice yields above
the 90 percentile of Ya, and highest-farmers’ yields (Yyr) were calcu-
lated as the mean Ya in the highest-yielding fields. The resource yield
gap was estimated for each field as the difference between Yyr and Yrgx.
Lowest-yielding fields refer to the fields where rice yields were below
the 10T percentile of Ya, and lowest-farmers’ yields (Yrr) were calcu-
lated as the mean Ya in lowest-yielding fields. Finally, average-yielding
fields include the fields where rice yields were between the 10™ and 90
percentile of Ya, and the average-farmers’ yield (Ysf) were calculated as
the mean Ya in average-yielding fields. Quantile regressions were fitted
to the 98™ percentile of the pooled data with the smf() function of the
statsmodels library in Python (Seabold and Perktold, 2010) to assess the
rice yield response to the number of irrigations and N applied. A logistic
functional form of the typey =a + b x x 4+ ¢ x 0.99x was assumed for
this relationship. A similar analysis was conducted for the relationship
between sowing and harvest dates on the one hand and rice yield on the
other. A linear relationship of the type y = a x x + b was assumed for
the latter.

2.3.3. Yp and technology yield gaps

Yp for irrigated rice in the Northwestern IGP of India were retrieved
from the Global Yield Gap Atlas (GYGA, www.yieldgap.org). GYGA in-
cludes data on yield ceilings for yield gap analysis simulated with cali-
brated crop models embedded within a spatial framework (van Ittersum
et al., 2013). Yp of irrigated rice in India included in the GYGA was
simulated with the APSIM crop model (Holzworth et al., 2014) for the
monsoon kharif season over the years 1997-2015 (Grassini et al. 2015;
van Bussel et al., 2015). Further details about the parametrization of the
crop model, the weather data used, and the cropping systems considered
in the simulations are available at www.yieldgap.org/India.

The average Yp over the years 1997-2015 for a given climate zone
was taken as a benchmark for the rice yields obtained in the field survey
conducted during the kharif season of 2020. Ideally, the Yp benchmark
should coincide with the year of the Ya data, but this was not possible in
this study due to lack of updated data in GYGA. Yet, the average Yp
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values adopted here for irrigated rice in the Northwestern IGP of India
can be considered reliable because there is little evidence of major
changes in management practices over the past decade and because of
the small inter-annual variability of Yp for irrigated rice in the region
(CV = 13%; data not shown). The average Yp from the GYGA was then
obtained for each field using field-specific GPS coordinates and the
technology yield gap was calculated as the difference between Yp and
Yyr for unique variety x soil type combinations.

2.4. Sustainability assessment in relation to N-use efficiency

N fertilizers are an important driver of cereal yields, particularly rice,
in South Asia (Ladha et al., 2020), but the nitrogen use efficiency (NUE)
of South Asian cereal cropping systems remains low (Farnworth et al.,
2017). Opportunities exist to further enhance yield, profitability and
NUE in these systems through adoption of various precision nutrient
management techniques (Sapkota et al., 2017, 2020, 2021). Therefore, a
detailed NUE analysis was conducted to assess the scope to reduce N
inputs without compromising actual yields. To do so, farmers’ fields
were classified into four groups of N partial factor productivity (PFP-N,
kg grain kg ! N applied), a commonly used indicator of NUE obtainable
from farmers’ field data that is defined as the ratio between grain yield
and N applied (Dobermann, 2005). The four groups were defined based
on actual yields and N applied as follows: (1) the high yield and high N
applied group (HYHN) includes fields with actual yields above the mean
actual yield and with N applied above the mean N applied observed in
the database, (2) the high yield and low N applied group (HYLN) in-
cludes fields with actual yields above the mean actual yield and with N
applied below the mean N applied observed in the database, and (3) the
low yield and low N applied group (LYLN) includes fields with actual
yields below the mean actual yield and with N applied below the mean N
applied observed in the database. Finally, (4) the low yield and high N
applied group (LYHN) includes fields with actual yields below the mean
actual yield and with N applied above the mean N applied observed.
PFP-N is consequently expected to be greater, on average, for the HYLN
group followed by the LYLN, HYHN and LYHN groups.

Following the field classification into different PFP-N groups, further
analyses looking into variety type, N split, N amount per split and N time
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were conducted to identify opportunities to reduce N applied with little
or no reductions in rice yields, or in other words, to increase PFP-N. For
each PFP-N group, the variability in PFP-N was assessed using boxplots
and the relative proportion of short-, medium- and long-duration vari-
eties was estimated to understand the interaction between variety type
and NUE. The average amount of N applied per split, both in absolute
and relative terms (i.e., in relation to total N applied) was also sum-
marized for each PFP-N group to assess whether differences in PFP-N
were attributed to the number of N splits, to the amount of N applied
per split, or both. Moreover, differences in PFP-N were further assessed
for fields with three or four applications of urea and with or without
application of diammonium-phosphate (DAP). Finally, the timing of the
different N splits was compared for each PFP-N group using N calendars
(Silva et al., 2021a). These summarized the number of fields receiving a
given N split in each calendar week (Supplementary Fig. S1).

3. Results
3.1. Rice yield gaps in the Northwestern Indo-Gangetic Plains

Rice actual yield (Ya) across the surveyed fields was on average 7.2 t
ha~! (Fig. 3A), which corresponds to ca. 73% of Yp (Fig. 3B). The
highest-farmers’ yields (Yyr) and technical efficient yields (Ytgx) across
the pooled sample were, on average, 8.1 and 7.6 t ha~! (Fig. 3A), which
corresponds to ca. 82% and 78% of Yp (Fig. 3B), respectively. Differ-
ences in Yp, Yur, Yrex and Ya were small across states and districts
(Fig. 3). For instance, considering the state of Haryana, Ya was greatest
in Kurukshetra (7.3 t ha™! or ca. 73% of Yp) and smallest in Ambala
(6.4t ha™! or ca. 67% of Yp), while Ya in Punjab was greatest in
Ludhiana (7.7 t ha ! or ca. 84% of Yp) and smallest in Fatehgarh Sahib
(6.9t ha~! or ca. 69% of Yp). In all districts, except Ludhiana where
actual yield was slightly above 80% of Yp, narrowing yield gaps to the
Yyr resulted in a yield gap closure of ca. 80% of Yp (Fig. 3B).

Rice yield gaps were mostly attributed to the technology yield gap,
followed by efficiency and resource yield gaps (Fig. 3). The technology
yield gap was on average 1.8 t ha™! (corresponding to ca. 18% of Yp),
while the efficiency and resource yield gaps were, on average, 0.5 and
0.4t ha™! (ca. 5% of Yp), respectively. Yet, there was considerable
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Fig. 3. Rice yield gap decomposition into efficiency, resource and technology yield gaps for the state of Haryana (Ambala, Karnal and Kurukshetra) and Punjab
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variation in efficiency and resource yield gaps across the surveyed fields
(Fig. 4). The efficiency yield gap exhibited a normal distribution with
values ranging between nil and ca. 1.6 t ha™! (Fig. 4A). No major dif-
ferences in the mean and distribution of the efficiency yield gap were
observed between fields with varieties of different growth duration
(Fig. 4A). The distribution of the resource yield gap was slightly left
skewed and smaller for fields with short-duration varieties than with
medium- or long-duration varieties (Fig. 4B). Overall, greater Ya resul-
ted in smaller efficiency (Fig. 4C) and resource yield gaps (Fig. 4D)
independently of the varieties cultivated, which indicates that Ya values
close to Yp were observed in some of the fields surveyed (8.0-9.0 t ha™!
vs. 8.7-10.5 t ha™1).

3.2. Production frontier and drivers of Ya variability

The gamma value of the fitted stochastic frontier models was 0.82
(Table 2), meaning that the random errors u; contribute more to the
overall model residuals than the random errors v;, and hence, that a
stochastic frontier approach was preferred over a multiple regression
approach based on Ordinary-Least Squares (OLS).

The sign, magnitude and significance level of the parameter esti-
mates was rather similar across the different stochastic frontier models
fitted (Table 2). As Model 3 described the variability observed in the
data better than the other models, this model was chosen for describing
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the results. Soil texture had a small but statistically significant effect on
rice yields, with the latter being 0.5% greater in soil types with medium
texture than in soil types with fine texture. Similarly, seed treatment had
a small but statistically significant positive effect on rice yield: treated
seeds resulted in 1.6% greater yields than untreated seeds. Rice yields
were also statistically different across varieties with different growth
duration, with short- and medium-duration varieties yielding 4-5% less
than long-duration varieties. There was no statistically significant yield
difference between fields in which both herbicides and hand-weeding
were used and fields where only herbicides were used. Yet, rice yields
were significantly greater (ca. 5%) in fields where herbicides were used
than in fields reporting only hand-weeding or no weeding.

There was a statistically significant positive effect of maximum
temperature on rice yields, with a 1% change in maximum temperature
resulting in ca. 0.39% increase in rice yields. By contrast, minimum
temperature and precipitation had a statistically significant negative
effect on rice yields: a 1% change in minimum temperature and pre-
cipitation resulted in ca. 0.14% and 0.10% decreases in rice yields,
respectively. The effects of temperature and precipitation on rice yield
were consistent across the four stochastic frontier models fitted
(Table 2), although the exact effect size was slightly different for each
model. For sowing date, both the quadratic and linear terms were sta-
tistically significant, indicating rice yields decreased until a minimum
level was reached, after which rice yields increased. Yet, the effect of
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Fig. 4. Density plot of the (A) efficiency yield gap and (B) resource yield gap as faceted by variety type. Scatterplots showing the relationship between the efficiency
yield gap and the resource yield gap on the one hand, and the actual yield on the other are shown in panels (C) and (D), respectively.
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Table 2
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Parameter estimates of the stochastic frontier models describing non-basmati rice production systems in the Northwestern Indo-Gangetic Plains of India during the

kharif growing season of 2020.

Variables CD without inefficiency effects CD with inefficiency effects TL without inefficiency effects TL with inefficiency effects
(Model 1) (Model 2) (Model 3) (Model 4)
Production frontier
Intercept 0.091*** 0.093*** 0.072%** 0.075%**
Texture (Medium) 0.005* 0.005* 0.005* 0.005*
N applied (kg N ha™!) 0.005 -0.005 -0.001 0.001
N applied® -0.286*** -0.272%*
P,0s applied (kg PoOs ha™') -0.002%** -0.001 # -0.003 -0.002
P,05 applied? 0.001 0.001
Irrigation number (n) 0.030%** -0.026 -0.018
Irrigation number? 0.006 0.009
Sowing date (DOY) -0.017 -0.036 -0.307*** -0.299%**
Sowing date? 1.555%* 1.588%*
Tillage number (n) -0.013** -0.010* -0.022** -0.018*
Tillage number? 0.047* 0.052%*
Fungicide applied (kg ai kg™ ai) -0.005%** 0.004* 0.013%** 0.012%**
Fungicide applied® 0.022%* 0.011%**
Herbicide applied (kg ai kg~" ai) -0.003 0.001 0.001 0.003
Herbicide applied? 0.014* 0.013*
Insecticide applied (kg ai kg™ ai) ~ 0.006%** 0.006%* 0.001 0.009*
Insecticide applied® 0.001 0.013%***
Seed rate (kg ha 1) -0.004 -0.004 0.001 -0.001
Seed rate? -0.089%* -0.080*
Variety type (MD) -0.049%** -0.050%*** -0.038*** -0.038***
Variety type (SD) -0.058%** -0.058%** -0.046%** -0.045%**
Seed treatment (Yes) 0.020%*** 0.017%%* 0.014%**
Weed control (Herbicide and -0.005 # -0.003 0.001
manual)
Weed control (Manual) -0.024%* -0.026%* -0.062%*
Weed control (None) -0.024* -0.024* -0.055**
Precipitation (mm) -0.092%** -0.098%** -0.102%** -0.103***
Maximum temperature (°C) 0.404%** 0.278%%* 0.385%** 0.343%**
Minimum temperature (°C) -0.137%** -0.140%** -0.143*** -0.146%**
N x P2Os 0.005 0.006
N X Irrigation number 0.055** 0.051**
N x Sowing date -0.176 -0.283 #
N x Tillage number 0.055 0.058
N x Fungicide 0.016 0.012
N x Herbicide -0.043** -0.040**
N x Insecticide 0.003 -0.001
N x Seed rate 0.033 0.077*
P,0s x Irrigation number -0.005%** -0.005%**
P,0s x Sowing date -0.004 -0.003
P,0s x Tillage number -0.001 -0.002
P,0s x Fungicide 0.000 0.000
P,0s5 x Herbicide -0.001 -0.001
P,0s5 x Insecticide 0.001 0.001
P,0s5 x Seed -0.004 # -0.004 #
Irrigation number x Sowing date 0.091* 0.071
Irrigation number x Tillage number 0.005 0.005
Irrigation number x Fungicide -0.015%** -0.013%***
Irrigation number x Herbicide 0.000 0.000
Irrigation number x Insecticide -0.003 -0.003
Irrigation number x Seed -0.079%*** -0.078%***
Sowing date x Tillage number -0.333%** -0.334%**
Sowing date x Fungicide -0.066 # -0.050
Sowing date x Herbicide -0.040 -0.040
Sowing date x Insecticide 0.040 0.045
Sowing date x Seed -0.283** -0.244*
Tillage number x Fungicide -0.014* -0.012*
Tillage number x Herbicide -0.003 -0.001
Tillage number x Insecticide -0.012 # -0.013 #
Tillage number x Seed -0.001 -0.009
Fungicide x Herbicide -0.002 -0.001
Fungicide x Insecticide -0.002 -0.004 #
Fungicide x Seed -0.001 0.000
Herbicide x Insecticide 0.002 0.003
Herbicide x Seed 0.008 0.008
Insecticide x Seed 0.003 -0.001
N x medium duration variety 0.035 0.037
N X short duration variety 0.004 -0.003
Irrigation number x MD variety 0.021 0.018
Irrigation number x SD variety 0.019 0.017
Sowing date x MD variety 0.248** 0.223**
Sowing date x SD variety 0.163 # 0.154 #
Seed x MD variety -0.042%** -0.045%**
Seed x SD variety -0.013 -0.015

(continued on next page)
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Table 2 (continued)
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Variables CD without inefficiency effects CD with inefficiency effects TL without inefficiency effects TL with inefficiency effects
(Model 1) (Model 2) (Model 3) (Model 4)
Inefficiency effects
Nursery duration (days) -0.002 0.001
Urea 1% top dress (DAT) -0.009 -0.032*
Urea 2™ top dress (DAT) 0.153%** 0.165%**
Fallow duration (days) 0.009 0.005
Insecticide splits (#)
1" insecticide application (DAT)
1°* fungicide application (DAT)
1 herbicide application (DAT)
Model evaluation
SigmaSq (62) 0.010* 0.009* 0.009%
Gamma (y) 0.812%** 0.816* 0.820*
Mean technical efficiency (%) 0.94 0.94 0.94
Sample size (n) 4107 4107 4107

Codes: CD = Cobb-Douglas; TL = Translog; LD = long-duration variety, MD = medium-duration variety, SD = short-duration variety, DAT = days after transplanting.
Significance codes: “**** 0.1%, “*** 1%, “** 5% and ‘#’ 10%. Note: Supersript 2 indicates the square of the variable.

sowing date on rice yield was also generally small and variety-specific as
indicated by the statistically significant positive interaction between
sowing date and medium-duration varieties. Nonetheless, statistically
significant effects of sowing date on rice yield were only observed in
Models 3 and 4, but not in Models 1 and 2, neither of which consider
second-order terms. The first-order or second-order terms of irrigation
number were not statistically significant in Models 3 and 4, as opposed
to a statistically significant positive effect of irrigation number on rice
yield in Models 1 and 2. Finally, the effect of seed rates on rice yields was
not statistically significant for the first order term in either model. It was
conversely significant and negative for the squared term in Models 3 and
4. Increasing seed rates was associated with decreased rice yield re-
sponses to irrigation number, sowing date and to medium-maturity va-
rieties compared to long-duration varieties, but again the effects were
small and may not be agronomically relevant.

The effects of N and P applied on rice yield were mostly non-
significant across the fitted models, a characteristic of high-yielding
cropping systems (Silva et al., 2017b), whereas the squared and linear
effects of tillage number and fungicide active ingredient on rice yield
were statistically significant but with a small effect sizes (Table 2). In the
case of N applied, only the squared term was statistically significant.
Rice yield response to N applied increased with increases in the number
of irrigations and decreased with increases in herbicide use. The number
of tillage operations reduced rice yields slightly, until a minimum level
was reached. Rice yield response to sowing date was negatively affected
by the number of tillage operations, suggesting that if sowing is delayed
then farmers may wish to consider reducing the tillage rate to avoid
yield penalty. Fungicide active ingredient positively affected rice yields,
but less so with increasing number of irrigations applied and tillage
operations.

The analysis of the inefficiency effects revealed that sub-optimal
management in relation to the timing of the inputs applied explained
part of the variation observed in the efficiency yield gap (Table 2). For
instance, late applications of the first fertilizer top-dress, and early ap-
plications of the second fertilizer top-dress resulted in smaller efficiency
yield gaps. Similarly, earlier application of insecticide and later appli-
cation of fungicide and herbicide also contributed to a smaller efficiency
yield gap.

3.3. Crop management in highest-, average-, and lowest-yielding fields

Rice yields were on average 8.0, 7.1 and 5.9t ha™! in highest-,
average- and lowest-yielding fields, respectively (Fig. 5; Table S1). The
number of irrigations was smaller in lowest-yielding fields (26 irriga-
tions) than in average- and highest-yielding fields (38 and 42 irrigations,
respectively; Fig. 5A). Rice yield response to irrigation number for the
98" percentile followed a non-linear relationship with diminishing

returns (intercept of ca. 2t ha~! and a local maximum of 8.6 t ha’l,
which was reached with 45 irrigations) for the fields reporting more
than 20 irrigations during the growing season (Fig. 5A). No relationship
between rice yield and irrigation number was observed for fields
reporting less than 20 irrigations (Fig. 5A) because these fields were in
areas with low hydraulic conductivity (i.e., Ambala district; data not
shown). Despite the yield difference between highest-, average-, and
lowest-yielding fields, there was no difference in the amount of N
applied in each field category (Fig. 5B). On average 159 kg N ha™! was
applied in highest-, average-, and lowest-yielding fields (Fig. 5B and
Table S1). Similar to irrigation number, rice yield response to N applied
for the 98 percentile followed a non-linear relationship with dimin-
ishing returns (Fig. 5B). The intercept was predicted at ca. 1.5 tha™! and
a local maximum at 8.5 t ha™! with ca. 150 kg N ha™! applied, beyond
which rice yield slightly declined (Fig. 5B).

Rice yield declined with later sowing date (Fig. 5C) and increased
with later harvest date at the 98" percentile (Fig. 5D). Rice yield
declined by 20 kg day ™! after the sowing date of May 1% (day of the
year, DOY, 122) and increased by 30 kg day ! after a harvest date of
September 9™ (DOY 253). Sowing and harvest dates were dependent on
the type of rice varieties cultivated (Fig. 5C and 5D). Long-duration
varieties were sown earlier (May 14, on average) and harvested later
(October 26, on average), than medium- and short-duration varieties.
Medium-duration varieties were sown on average on May 21 and har-
vested on October 14, whereas short-duration varieties were sown on
average on May 22 and harvested on October 1. No major differences in
other crop management practices were observed between highest-,
average- and lowest-yielding fields, respectively (Table S1).

3.4. N management and N-use efficiency assessment

Out of 4,107 fields surveyed in Punjab and Haryana, 18%, 35%, 21%
and 26% were classified as HYHN, HYLN, LYHN and LYLN, respectively.
Average N applied in HYHN, HYLN, LYHN and LYLN groups was ca.
180, 150, 180 and 145 kg N ha™!, corresponding to an average rice yield
of 7.5,7.7, 6.6 and 6.5 t ha !, respectively (Table 3). Clearly, N applied
was rather similar across the different PFP-N groups, yet there were
considerable differences in rice yield across groups (Fig. 6A, Table 3).
PFP-N for the LYLN group was on average 47 kg grain kg ! N, which was
20% greater than the average PFP-N of the LYHN group (37 kg grain
kg~ ! N; Fig. 6A). Conversely, PFP-N for the HYLN group was on average
52 kg grain kg’1 N; this was also 20% greater than the PFP-N of 41 kg
grain kg~ N observed in the HYHN group (Fig. 6A).

Fields with long-duration varieties were mostly found in the HYLN
group (Fig. 6B). The proportion of fields with medium- and short-
duration varieties was similar across the different PFP-N groups, with
30% in the LYHN and LYLN groups and 20% in the HYLN and HYHN
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Fig. 5. Rice yield response to (A) number of irrigations, (B) N applied, (C) sowing date and (D) harvest date in the Northwestern Indo-Gangetic Plains of India during
the 2020 kharif season. Solid lines show the 98™ quantile regressions. Dashed lines in (A) and (B) show the average rice yield on the one hand and the average
irrigation number and N applied on the other, respectively, for highest- (Yyr), average- (Yar) and lowest-yielding fields (Yir). Dashed lines in (C) and (D) show the
average rice yield on the one hand and the average transplanting and harvest dates on the other, respectively, for long- (LD), medium- (MD) and short-duration
varieties (SD). Fields with irrigation number lower than 20 were located in a region with low hydraulic conductivity and hence, are shown separately in panel (A).

groups (Fig. 6B). PFP-N was 53.5 kg grain kg~* N for long-duration
varieties in the HYLN group and greater than 50 kg grain kg™! N for
medium- and short-duration varieties in the HYLN group (data not
shown). PFP-N was also similar across the different variety types for the
fields classified as LYLN (47 kg grain N kg~ N), LYHN (37 kg grain kg ™!
N) and HYHN groups (41 kg grain kg~! N, data not shown).

An average of 50 kg N ha~! was applied during 1% and urea
splits, irrespective of the PFP-N group (Fig. 6C). N applied in the 1% and
2™ yrea splits was ca. 60% of the total N applied in LYHN and HYHN
groups and 70% of the total N applied in LYLN and HYLN groups
(Fig. 6D). N applied on the grd split was also on average ca. 50 kg Nha!
for the LYHN and HYHN groups, but slightly lower for the LYLN and
HYLN groups, ca. 38 and 45 kg N ha™!, respectively (Fig. 6C). The latter
corresponded to 30% of total N applied for LYHN, HYHN and HYLN
groups and to 25% of total N applied for the LYLN group (Fig. 6D). A 4th
urea split was only observed for fields classified as LYLN and HYHN
groups, with an average N applied of 5 kg N ha™? (Fig. 6C), or 3% of
total N applied (Fig. 6D), whereas less than 1% of the fields the high PFP-
N groups (LYLN and HYLN) reported a 4M yrea split. On average 20 kg N
ha™!, or 10% of total N applied, was provided as DAP, mostly basal, in
the low PFP-N groups (LYHN and HYHN), whereas barely any N was
applied as DAP in the high PFP-N groups (LYLN and HYLN; Fig. 6C and

2nd

10

6D). In summary, the greater PFP-N observed in the LYLN and HYLN
groups, relative to the LYHN and HYHN groups, was associated with
slightly lower amounts of N applied in the 37 urea split and with barely
any N applied as a 4Myrea split late in the season and as DAP early in the
season.

The variation observed in PFP-N was partly explained by the number
of urea splits and by the type of fertilizer used (Fig. 6E-H), and partly by
the timing of N application of the different splits (Table 2; Suppl. Fig.
S1). The most common N management strategy observed in the low PFP-
N groups was the application of three urea splits with the application of
basal DAP. The latter was observed on 723 and 579 fields in the LYHN
and HYHN groups, respectively (Fig. 6E and 6F). Conversely, most fields
in high PFP-N groups used 3 urea splits only (i.e., 771 fields in the LYLN
group and 1,307 fields in the HYLN group; Fig. 6G and 6H). For the
LYHN group, PFP-N was slightly greater in fields with three urea splits
than in fields with four urea splits, 37 vs. 33 kg N kg~ ! N, independently
of whether basal DAP was used or not (Fig. 6E). For the HYHN group,
PFP-N was lower on average for the fields receiving four applications of
urea and basal DAP, i.e., 36 kg grain kg™! N, than for the fields with
three urea applications (with and without basal DAP, 43 kg grain kg !
N, respectively) and with four urea applications without basal DAP
(41 kg grain kg ™! N; Fig. 6F). Finally, no major differences in PFP-N
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Table 3
Sample size and average value of selected management practices across different
N partial factor productivity groups.

HYHN HYLN LYHN LYLN
Number of fields (n) 724 1,447 865 1,071
Sample size per district
Ambala 45 69 287 251
Kurukshetra 282 81 175 81
Karnal 123 86 190 172
Ludhiana 42 444 33 61
Patiala 20 345 8 173
Kapurthala 210 155 171 34
Fatehgarh Sahib 1 267 301
Rice grain yield (t ha ') 7.5 7.7 6.6 6.6
N applied (kg N ha™") 181.5 149.1 178.8 143.0
PFP (kg grain kg ! N) 41.4 51.8 37.0 47.0

Nitrogen splits (n) 4.1 3.1 4.1 3.2

DAP basal (kg ha™) 45.7 40.6 44.3 46.1
DAP 1% top dress (kg ha 1) 45.2 46.7 46.1 42.4
DAP 1% top dress (DAT) 7.2 5.6 5.9 6.5
Urea 1% top dress (kg ha™?!) 45.8 44.3 45.1 44.1
Urea 2" top dress (kg ha 1) 45.2 44.0 45.1 43.1
Urea 3™ top dress (kg ha ') 44.8 40.5 44.4 36.1
Urea 4™ top dress (kg ha™!) 30.9 18.0 30.1 25.0
Urea 1% top dress (DAT) 10.2 9.3 10.3 10.4
Urea 2™ top dress (DAT) 20.7 19.9 21.2 20.9
Urea 3" top dress (DAT) 33.1 321 335 31.7
Urea 4™ top dress (DAT) 40.6 38.3 41.3 37.6
Irrigation number (n) 43.7 41.0 329 31.8
Sowing date (Julian day) 139.2 138.5 141.3 142.3
Harvest date (Julian day) 285.2 291.0 283.2 283.5

Data refer to the non-basmati rice during the kharif 2020 growing season. Codes:
LD = long-duration variety, MD = medium-duration variety, SD = short-dura-
tion variety, DAT = days after transplanting; HYHN = high yield high N;
HYLN = high yield low N; LYHN = low yield high N; LYLN: low yield low N.

were observed on average for the LYLN and the HYLN groups across
number of urea splits and use of basal DAP with an average PFP-N of ca.
50 kg grain kg ! N (Fig. 6G and 6H).
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4. Discussion
4.1. High-yielding rice systems in the Northwestern IGP of India

The states of Punjab and Haryana in the Northwestern IGP of India
are popularly known as the ’rice bowl’ and ’breadbasket’ of India
(Dhillon et al., 2010; Chauhan et al., 2012). Rice yield gaps in this region
were small, accounting on average to 2.7 t ha™! for an average Yp of
9.8t ha™! corresponding to a yield gap closure of 70-80% of Yp
(Fig. 6B), an often-quoted level of yield gap closure for high-yielding
cropping systems (Silva et al., 2021b; van Ittersum et al., 2013; Lobell
etal., 2009). A similar level of yield gap closure, i.e., 70-80% of Yp, was
observed for intensive rice cropping systems in Southern Vietnam
(Stuart et al., 2016) and in parts of China (Deng et al., 2019). Rice yields
in the Northwestern IGP are close to the potential yield due to favorable
alluvial soils and weather conditions for rice cultivation and high levels
of inputs applied (Bhandari et al., 2017; Bhatt et al., 2021), particularly
irrigation water and N fertilizers (Fig. 5A and 5B; Koshal, 2014). The
latter is made possible through policies subsidizing and promoting the
use of electricity and fertilizers to farmers. Our data also showed that
there were no major differences in rice yield and input use across the
districts covered by the field survey.

The small rice yield gaps in the Northwestern IGP of India were
mostly explained by the technology yield gap (10-20% of Yp; Fig. 3).
The efficiency yield gap explained on average 5% of Yp, whereas the
resource yield gap was negligible across most districts. These findings
are consistent with those found for intensive arable crops in the
Netherlands (Silva et al., 2017b) and are to be expected in high-yielding
cropping systems such as those studied here. Small resource yield gaps
are the result of high use, and sometimes overuse, of inputs as shown
here for the case of N applied (Fig. 6). Small efficiency yield gaps indi-
cate that current technologies and management practices allow most
farmers to manage inputs efficiently in relation to the time, space and
form of inputs applied (cf. Fig. 6 and Suppl. Fig. S1). Yet, there is scope
for improvement, for example to fine-tune the timing of the ond top dress
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of urea as well as the timing of the 1% application of most plant pro-
tection products (cf. Table 2). Large technology yield gaps in
high-yielding cropping systems are most likely the result of management
imperfections in relation to pests and diseases (Buresh et al., 2021),
which are challenging to overcome in larger commercial fields with less
intensive day-to-day observation and management by farmers. Other
factors not controlled for in our analysis, including micronutrient de-
ficiencies or herbicide resistant weeds (Bhatt et al., 2016, 2021), or the
lack of adoption of land levelling and other precision agriculture tech-
nologies (Aryal et al., 2015), might also explain the technology yield gap
for rice in the Northwestern IGP of India.

The biophysical and management determinants of rice yield vari-
ability in our study were identified using stochastic frontier analysis.
The quadratic response from applied N fertilizers (negative response
after a plateau) and declining N partial factor productivity with
increased N application rates suggest there is scope to improve NUE.
Minimum and maximum temperature had a significant negative and
positive effect on rice yield, respectively. It is well-known that rice yield
declines with increases in minimum temperatures, which have been
linked to higher physiological maintenance respiration with increases in
minimum (night) temperature, which can reduce the accumulation of
assimilates and affect yield (Peng et al., 2004). The strong negative ef-
fect of rainfall on rice yield might be explained by lower amounts of
radiation intercepted with increases in rainfall.

Regarding crop management practices, the effects of number of
tillage operations, sowing date, variety type and management of pests,
diseases, and weeds (e.g., seed treatment, amount of plant protection
products applied and weed control method) on rice yield were clearer
than those associated with water and nutrient management. Rice yield
was also affected by interactions between crop management practices
(Table 2). For instance, rice yield response to N applied increased with
the number of irrigations whereas rice yield response to P applied
decreased with the number of irrigations. The former is expected
because irrigation helps mobilizing free nitrate in the soil and favors
uptake of N through transpiration driven mass flow and diffusion (Plett
et al., 2020) whereas the latter might be the result of greater indigenous
soil P availability under saturated conditions (Ponnamperuma, 1972).
Similar to (Silva et al., 2017a), rice yield response to N applied increased
with lower amounts of herbicide due to lower weed infestation level
when herbicide applications were also lower (data not shown). As weeds
compete for nutrients, radiation, and water with crops (Blackshaw et al.
2005), their presence can hamper crop yield responses to N if they are
not adequately managed (Gholamhoseini et al., 2013). Similarly, a
greater response to N and Zn was observed where herbicide application
was lower; this is a proxy of lower weed infestation levels (data not
shown).

4.2. N management and sustainable rice production

The small yield gap observed for kharif rice in the Northwestern IGP
of India indicates little scope to further increase rice yields and hence,
that opportunities to improve the economic and environmental sus-
tainability of rice cropping in the region must also be considered.
Judicious N management is essential to balance the economic and
environmental performance of cereal cropping systems (Sapkota et al.,
2020; Parihar et al., 2017b, 2017a). Currently, the Government of India
subsidizes 75% of the production cost of urea, meaning that inefficient N
management is indirectly associated with considerable risk of economic
losses at national scale (Ministry of Chemicals and Fertilizers, 2016).
From an environmental perspective, the application of 100 kg of N can
also result into emission of about 1.2 kg of N in the form of N»O from the
soil (Albanito et al., 2017). As the NUE of India is one of the lowest in the
world (Farnworth et al., 2017), it is indispensable to improve NUE of
Indian agriculture, particularly in regions with high N use (Ladha et al.,
2020), such as the Northwestern IGP. The latter must be linked with a
reduction of the N surplus (i.e., the difference between N input and N
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output), which is also high in the states of Punjab and Haryana (Maaz
et al. 2021). Improving NUE and reducing N surplus in situations where
both N input and N output are high requires reductions in N input,
without compromising N output (Silva et al., 2021a). The small rice
yield response to N applied (Table 2), the similar N rates across highest-,
average- and lowest-yielding fields (Fig. 5B), and the declining PFP-N
with increased N application (Fig. 6) observed in this study suggest
that there is scope to improve NUE in the Northwestern IGP of India by
reducing N rate. The simple fact that many fields had more N applied
than observed in highest-yielding fields indicates it is possible to reduce
N application rates without compromising rice yields.

Our results showed that farmers adopting long-duration varieties
managed N more efficiently than those adopting medium- and short-
duration varieties (Fig. 6B). Long-duration varieties have greater yield
potential than medium- and short-duration varieties and hence, require
greater N application rates and the sustained supply of N over longer
periods. Yet, the N application rates reported by farmers in our dataset
were not tuned to the type of variety cultivated, which results in dif-
ferences in PFP-N across variety types (Fig. 6B). Excess N application is
associated with yield decline under some circumstances and a potential
reduction in grain quality due to increased pest and disease pressure,
lodging or induced soil acidity over time (Cassman and Harwood, 1995;
Guo et al., 2010; Ogoshi et al., 2020). Increasing PFP-N in fields with
medium- and short-duration varieties is possible (e.g., Fig. 6D), yet it
requires smaller N application rates than currently observed for those
variety types. Fine-tuning the source of N fertiliser and the number of
fertiliser splits can also contribute to increased NUE for rice in the
Northwestern IGP. For instance, a 4 urea split later in season could
have been saved in some of the fields surveyed (Fig. 6 and Supple-
mentary Fig. 1). The amount of N applied in the 3" urea split should be
also attuned to the amount of basal DAP applied to satisfy crop re-
quirements of P while considering the addition of N (Fig. 6C-6H).
Timelier N management also seems to be possible given the large vari-
ation observed in fertiliser application dates (Supplementary Fig. 1),
which can contribute to improve N-use efficiency through narrowing
efficiency yield gaps (Table 2).

4.3. Harnessing data from farmers’ fields to inform sustainable
intensification

Declining ground water levels, deteriorating soil quality, reductions
in resource-use efficiencies, herbicide resistant weeds, and the threat
climate change are the major sustainability issues and production con-
straints for rice production systems in much of the intensively cropped
areas of the IGP India (Bhatt et al., 2021, Chauhan et al., 2012).
Traditional agronomic research conducted on-station is primairly
focused on testing alternative management practices and improved
technologies for rice production through manipulative experimentation
(Jat et al., 2019; Jat et al., 2020). On-station experiments, however,
cannot easily account for the large number of management configura-
tions and potential effects of environmental heterogenity that is typi-
cally observed in farmers’ fields. Moreover, the technologies performing
best on station might not be easily adopted by farmers due to resource
constraints or other barriers that prevent their uptake. Conversely, as
demonstrated in this paper, large databases of farmer field data coupled
with spatially-explicit biophysical data can be used to assess a wide
range of management practices and their interaction with environ-
mental factors in a comparatively cost-effective way (Cassman and
Grassini, 2020). In particular, this approach helped inform what appear
to be more appropriate N management practices given the farmers’
production conditions and resource constraints (e.g., Fig. 6).

This study focused on rice yields and yield gaps as well as on sus-
tainable N use. Future studies should also assess the sustainability of
crop production across scales based on multiple criteria relevant for
farmers and stakeholders at large (e.g., Devkota et al. 2019, Silva et al.,
2018). The latter include energy-use efficiency, greenhouse gas
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emissions, profitability, and other socio-economic aspects influencing
labor productivity and the gender appropriateness of management
practices. Farmer field data can also be used to rank farmers based on
multiple criteria and to make explicit to policy-makers what synergies
and tradeoffs between the different indicators might exist. Finally, as-
sessments at the crop level, as presented here, must be complemented
with assessments at the cropping systems level (Guilpart et al., 2017).
This will aid in capturing the interactions between different crops in the
cropping sequence, which is of critical importance for the sustainable
intensification of rice-wheat cropping systems in South Asia.

5. Conclusion

A large database of farmer field data characterizing rice cultivation
in the Northwestern Indo-Gangetic Plains (IGP) of India was used to
estimate and decompose rice yield gaps and to assess the scope for
sustainable intensification through improved resource-use efficiency in
the region. Rice yield gaps in the Green Revolution corridor of Punjab
and Haryana were small, in the range of 20-30% of the potential yield —
a feature of high-yielding cropping systems. Most of the existing yield
gap was explained by the technology yield gap (10-20% of the potential
yield), whereas efficiency and resource yield gaps were small (less than
10% of the potential yield). The technology yield gap relates to man-
agement imperfections in relation to pests and diseases, and to other
factors not controlled for in our analysis such as the adoption of preci-
sion agriculture technologies. The small resource yield gap is the result
of high use, and sometimes overuse, of inputs. The small efficiency yield
gap indicates that there is little scope to improve crop management in
terms of the time and form of inputs applied. Yet, it is questionable
whether rice yield gaps should be further narrowed given economic and
environmental considerations for farmers. For instance, the small yield
gap observed in this study was associated with high N application rates
and with a small yield response to N applied and to irrigation number.
There is thus considerable scope to improve NUE in this region, partic-
ularly by attuning N application rates to the crop variety being grown,
by adjusting the amount of subsequent urea split to the amount of basal
DAP applied, and by saving a 4™ yrea application later in the season.
Future studies should assess the scope to reduce irrigation water, and
increase water productivity and energy-use efficiency, and broaden the
current sustainability assessment to other indicators related to profit-
ability and environmental issues at the cropping systems level.
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