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� A fully integrated spectral imaging
system is presented.

� The system allows real-time data
acquisition and model deployment.

� The system was tested for predicting
fruit properties.

� The system allows a non-expert
approach to spectral imaging.
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Spectral imaging (SI) in analytical chemistry is widely used for the assessment of spatially distributed
physicochemical properties of samples. Although massive development in instrument and chemometrics
modelling has taken place in the recent years, the main challenge with SI is that available sensors require
extensive system integration and calibration modelling before their use for routine analysis. Further, the
models developed during one experiment are rarely useful once the system is reintegrated for a new
experiment. To avoid system reintegration and reuse calibrated models, this study presents an intelligent
All-In-One SI (ASI) laboratory system allowing standardised automated data acquisition and real-time
spectral model deployment. The ASI system supplies a controlled standardised illumination environ-
ment, an in-built computing system, embedded software for automated image acquisition, and model
deployment to predict the spatial distribution of sample properties in real-time. To show the capability of
the ASI framework, exemplary cases of fruit property prediction in different fruits are presented.
Furthermore, ASI is also benchmarked in performance against the current commercially available
portable as well as high-end laboratory spectrometers.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Optical spectroscopy is the study of the interaction of
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electromagnetic radiation (EMR) with the matter. Typically, when
the matter is illuminated with EMR three major optical phenomena
occur, reflection, transmission, and absorption. The extent of the
dominance of the phenomenon depends on the physicochemical
properties of matter. Since optical spectroscopy allows non-
destructive and non-contact analysis of the matter, its applica-
tions are prevalent in various domains such as food, medical,
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pharmaceutical, and many more, that require non-invasive
assessment of physicochemical properties of samples matrices
[1e4].

Although optical spectroscopy can be performed over a wide
range of EMR, the most frequently and routinely used technique for
non-destructive prediction of physicochemical properties is based
on the visible (Vis) and near-infrared (NIR) range of EMR i.e. 350-
2500 nm [5]. The interaction of Vis-NIR light with the samples
results in two main optical phenomena i.e., absorption and scat-
tering, where scattering is the result of the interaction of light with
the physical properties of samples, while the absorption is due to
the presence of chemical components having OH, NH and CH bonds
in the samples [6,7]. Due to the presence of both scatter and ab-
sorption, the optical spectroscopy in the Vis-NIR range can be used
for the prediction of simple colour pigments, macromolecules such
as proteins, fats, moisture and sugar, as well physical properties
such as particle size, texture [5].

In recent decades, significant developments in the domain of
optical spectroscopy have taken place. The main development from
the perspective of rapid samples analysis is the availability of
portable low-cost spectral sensors (both point as well as imaging)
which allows easy measurement of spectral signals from samples in
either reflection or interaction mode [8e10]. The main benefit of
portable spectral sensors is that they allow the sensor to be carried
to the samples when the samples cannot be brought to the sensor
[9]. A key factor in the implementation of Vis-NIR spectroscopy is
the sensor calibration and model development which is dependent
on the chemometric analysis of data [7,11]. Almost all spectral
sensors require calibration and model development, unless models
from a similar instrument are available. In the latter case, the
models can be transferred between instruments using advanced
calibration transfer techniques [11,12]. Major developments have
also taken place in the domain of chemometric data analysis such
as the development of ensemble modelling approaches [13] as well
as the combination of chemometrics and deep learning [14e17]
which have outperformed classical chemometric approaches used
for traditional modelling of spectral data.

For Vis-NIR spectroscopy, sensors for both the point measure-
ment [18,19] as well as the imaging spectroscopy [20e22] modality,
called spectral imaging (SI), are available in the market. The main
difference between the point spectrometer and SI is that the point
spectrometer only allows measuring a single spot on the sample,
while the SI measures the complete sample in a single scan where
each pixel are the spectra from the imaged scene [21]. Hence, SI
allows exploring spatially resolved spectral properties of samples
[23]. The point spectroscopy-based sensors are usually portable
and even pocket-sized [9], while the SI sensors are bigger in size
and are more suitable for cases requiring high-throughput analysis.
SI is essential whenever the analysis requires assessment of the
spatial distribution of sample properties or detection of any local-
ised anomaly on samples’ surface which is difficult to access with a
point measurement [24,25].

Although plentiful applications of Vis-NIR SI can be found in the
scientific literature [18,19,26e28], when it comes to the practical
implementation of the technique for routine analysis, the number
is difficult to access. A major reason for it is because most of the SI
sensors in the market are currently supplied as data acquisition
tools, and the user needs to design experimental setups where the
sensor needs to be integrated into a well calibrated measurement
setup, before any measurement can be done, and models devel-
oped. Moreover, the best practice followed in research laboratories
is usually to perform the sensor operation/spectral data acquisition
and data modelling in separate steps. Although this approach has
shown promising potential and has resulted in plentiful research
[18,19], it cannot be considered a practical solution for routine use
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by non-experts. In the domain of point spectroscopy, this concern is
now addressed, and several spectrometer manufacturers now offer
spectrometers with embedded computing where the models can
be deployed and used for real-time prediction of sample properties
[18,19]. The portable spectrometer manufacturers are also supply-
ing the instruments pre-loaded with models which users can
directly apply without any need to recalibrate the instrument from
scratch [5,9].

Even though major developments can be seen in the develop-
ment of embedded portable point spectroscopy, the development
of SI as a routine tool is still lacking, making the technology inac-
cessible for non-expert users. One of the primary challenges with SI
is that market available cameras require extensive system inte-
gration and calibration modelling before any experiment can be
performed. Further, the models developed during one experiment
are rarely useful once the system is reintegrated for a new exper-
iment. To avoid system reintegration and reuse of calibratedmodels
for practical use, the best approach is to develop a standardised SI
systemwith embedded computing to have minimal influence from
unwanted sources on the measurement. In the current state of the
art laboratory use, SI can bemajorly divided into two steps: the first
step is to use the software supplied by the cameramanufacturer for
data acquisition, and the second step is data analysis using either
open source [29] or commercial SI processing software. Such an
approach facilitates laboratory research but is not a practical so-
lution for routine analysis by non-expert users such as lab techni-
cians. In a practical scenario, one can assume a standardised SI
system with pre-loaded models to be an ideal solution as it allows
repeatable measurement, with minimal effort, from a non-expert
user in terms of system use and management.

The aim of this study was to develop an intelligent all-in-one
spectral imaging (ASI) laboratory system for standardised auto-
mated data acquisition and real-time spectral model deployment.
The ASI system supplies a controlled standardised illumination
environment, an in-built computing system, embedded software
for automated image acquisition and model deployment to predict
the spatial distribution of sample properties in real-time. The
automation covered two main parts: first, the mechanical auto-
mation based on the integration of the line-scan SI camera and
lightning with a linear stage inside a closed blackout cabinet; the
second part relates to the development of software tools for
simultaneous control of the camera and linear stage for data
acquisition and simultaneous deployment of the pre-loaded
models for the prediction of spatially distributed sample proper-
ties. To show the capability of the ASI framework, exemplary cases
of fruit property prediction in several fruits were conducted. Key
novelties related to the development of the ASI are as follow:

� This is the first setup that brings the concept of embedded
spectral imaging to life for non-expert users as well as the
analytical chemistry community.

� In the ever-growing era of sensing and data, just like the
development of new fundamental analytical chemistry tech-
niques, it is especially important to automate the analytical
sensing techniques for their widespread use and reuse of data
which are generated in experiments.

� Currently, in most scientific studies related to SI, the concept of
data and models reuse is rarely practiced. ASI brings forward an
integrated setup for fair and sustainable usage of data and
models generated in novel experiments.

� Although several of the camera manufacturers supply basic
software for data acquisition or for modelling, there is no single
solution that is capable of controlling cameras, translation stage,
automated referencing, automated image acquisition, model
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deployment. The embedded software tool with these capabil-
ities is another key contribution.

� The last novelty of the ASI is the push-button approach to SI.
One of the main contributions of the work is the simplification
of the usage of the analytical technique (in this study spectral
imaging). This will allow any non-expert users of spectral im-
aging in the analytical chemistry community technique to use
and explore the technique.
2. Materials and method

2.1. All-in-one spectral imaging setup

The ASI setup was designed as a closed system. The system was
designed as a closed form to keep the illumination standardised
and to avoid any influence caused by external light in the operating
room. One of the aims while designing the ASI setup was to have a
portable setup that can be easily carried to various locations based
on the experimental needs. To keep the system portable, the ASI
setup was mounted on four wheels. An image of the ASI setup is
shown in Fig. 1. Apart from the physical setup there were four main
electronic components in the system: a line-scan hyperspectral
camera and halogen lights; a linear stage where the line-scan
camera and the lights were mounted; an automated height
adjustment platform for samples presentation; and a computer
system which connects with the camera and the linear stage. The
Fig. 1. An overview of the All-In-One spectral imaging (ASI) setup. (A)
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setup uses the FX10 Vis-NIR spectral camera (Specim, Oulu,
Finland) which works in the spectral range of 400e1000 nm. These
cameras have a high spatial resolution of 1024 pixels and 224
spectral bands. The FX10 camera was a gigabyte ethernet camera
and connected to themain computer system over the ethernet port.
A lens with a view angle of 38�, as supplied by the camera manu-
facturer, was used. In the current research, the lens with a view
angle of 38� was sufficient due to the small size of the fruit crate,
however, based on the necessity the user can buy different lenses
from the camera manufacturer and improve their system. Since the
camera was a line scan, it was mounted on a servomotor-actuated
spindle axis from Festo (Esslingen, Germany). This linear stage was
controlled with a CMMT-AS servo drive, also from Festo. The servo
drive communicated with the computer system via Ethernet and
ran with the MODBUS TCP/IP protocol using the software drivers
supplied by the drive manufacturer. The Festo servo drive was first
commissioned with the Festo automation suite and later controlled
with the in-house software. The commissioning of servo drive is an
essential step to synchronize different electronic components of
the complete system. Along with the camera, the halogen lamps
were also mounted on the linear stage on side of the camera to
supply homogenous illumination in the field of view of line scan.
Two halogen lamps, with 3 halogen bulbs each, were integrated
sidewise to the camera. The halogen lamps were supplied by the
camera manufacturer (Specim, Oulu, Finland). The linear stage, the
camera, and the light source are mounted at the top with a view to
nadir. The cabinet has a push-button height adjustment platform
The ASI setup, and (B) workflow of ASI setup for spectral imaging.
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that can be electronically controlled to increase or decrease the
distance of the samples from the camera. Automated height
adjustment allows a wide variety of samples to be measured with
the setup i.e., from grapes to melons. The setup is provided with a
periphery touchscreen (Illyama, Nagona, Japan) which allows the
setup control of multiple tasks such as data acquisition, model
deployment and visualisation. The setup is also provided with a
periphery keyboard and a mouse (Logitech, Lausanne, Switzerland)
if the user intends to control the system without interacting with
the touchscreen.

2.2. Software for real time acquisition and model deployment

2.2.1. Data acquisition
The software in the setup is an essential part of the ASI. Some

commercial software such as Prediktera (https://prediktera.com/),
Perception parks (https://www.perception-park.com/perception-
park) and perClass Mira (https://www.perclass.com/apps/
perclass-mira) are emerging in the market, but their applicability
is application centric, and users have limited freedom to control
different mechanical components, explore the data and imple-
mentation of optimized model. Therefore, to advance the applica-
tion of HSI, we herein designed and developed a user-friendly
software interface for controlling the actuation of the mechanical
components, image collection and real-time data analysis and
result visualisation which if required, can further be adopted for
different applications, and thus accelerate the speed of quality
analysis tests in both laboratory and industrial environment which
is not possible with existing commercial software. It is also the first
software in the chemometric community that allows real-time data
acquisition and model deployment. The developed software can be
divided into two parts, the first part deals with communication and
operation of the camera and the linear stage for data acquisition,
and the second part allows handling the acquired data by per-
forming radiometric calibration and later model deployment. The
software also allows visualisation of the predicted traits. The soft-
ware is based on MATLAB 2018b and developed as an independent
standalone application. For camera connection with the GigE
interface, the software uses the GigE vision toolbox from Math-
Works, USA (United States of America). The GigE interface allows
loading the camera as an object as well as several pre-available
functions to preview the output of the camera in real-time. The
settings of the camera, such as exposure time, frame rate, spatial
and spectral binning, can be changed by assigning the property
value to the camera object. The preview tool can be used to visu-
alise the real-time output from the camera which allows real-time
adjustment of the exposure time best suited for the application. The
setup also has an integrated white Teflon plate used as a white
reference for radiometric correction of the images. Thewhite Teflon
plate is scanned before any imaging and all images are indepen-
dently radiometrically corrected to drop any differences due to
illumination intensity fluctuations in the reflection measurements.
The dark current is also measured prior to any imaging by auto-
matically closing the shutter of the camera. The image frames were
acquired using the ‘snapshot’ function from the GigE vision toolbox
implemented inside a loop. The linear stage was also controlled
from the MATLAB app using software drivers provided by Festo,
Germany along with the servo drive. Since in the standardised
setup the linear stage has the same motion and same travel dis-
tance, the only parameter requiring synchronisation with the
camera frame capture was the travel speed of the linear stage. The
travel speed was further optimized with the camera frame using a
checker box plate in the FOV (field of view) of the camera. A best
travel speed of 30 mm/s with a camera exposure time of 20 ms was
provided as a default setting to the setup, although if the user
4

changes the height of thewhite reference plate, the user can use the
checker box plate to reach the best travel speed by observing the
pattern of the plate. After the controlled acquisition of the images,
the software automatically performs the dark and the white
reference correction to estimate the reflection as Eq. (1).

Reflectance¼ I � D
W � D

(1)

where I is the radiance of the captured FOV, D is the dark current of
the sensors andW is the radiancemeasured for thewhite reference.
A point to note is that the software, together with automated image
acquisition in the ASI setup, by default provides the reflectance data
which can be directly used for either modelling or model
deployment.

2.2.2. Real-time model deployment and software output
A key feature of the ASI is that it allows real-time deployment of

the models for predicting the property of interest. Once the
reflectance data is collected, the samples of interest can be
segmented from the background, for example, for fresh produce,
such as fruit and plants, using a threshold (>0.3 for fruit) on the
normalised difference vegetation index (NDVI). NDVI was used as it
attains high value for fresh produce (~1) and can easily segment the
fruit from the background scene consisting of non-fresh produce.
After the segmentation, the pre-calibrated partial least-square
regression (PLSR) models based on the type of sample under
study were automatically applied to each pixel representing the
sample. The models used for predicting the properties were pre-
calibrated PLSR models integrated into the software of the sys-
tem. Although currently the ASI system only has models related to
fruit property prediction, the list of models can be expanded
depending on the need.

As the output, the user gets a property map which is an image
presenting spatially distributed properties of the samples. To make
the visualisation more interactive, the software can be adapted to
identify automatically each individual sample in the imaged scene
and generates bounding boxes around it and highlights the mean
values of the predicted property. The software can also be easily
adapted to integrate option to save the results with a push-button
which exports the predicted properties as an excel file and the
spatial maps of predicted properties as an image file. The user
interface for the system is specifically designed by keeping non-
expert users in mind and is operated using a simple touch screen
interface.

2.3. Samples for demo analysis

To demonstrate the functionality of the ASI system, demon-
strative analyses were carried out for predicting a key fruit prop-
erty, soluble solids content (SSC), on multiple kinds of fruits. The
SSC was chosen as the quality parameter as it is widely used in the
fruit industry to assess the quality of fresh fruit and is related to the
sweetness of the fruit. The 4 fruit cases, as used for the demon-
stration of ASI, are shown in Table 1.

All fruits were obtained from the local supermarket called Albert
Heijn, Ede, The Netherlands. Before any experiment, all fruits were
stabilised to the room temperature of ~22 �C to avoid any effects
related to temperature differences. SSC of the extracted fruit juice
was determined using a handheld refractometer (HI 96801, Hanna
Instruments Inc, Woonsocket, RI, USA). For spectral data acquisi-
tion, a key point to note is that the grapes and cherry fruit were only
measured with the ASI setup, while the pear fruit were measured
with Felix handheld spectrometer, USA, and a high-end laboratory
spectrometer called Lab spec, ASD, USA. Two extra spectrometers

https://prediktera.com/
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Table 1
A summary of fruit and reference properties analysed to demonstrate the potential
of the ASI setup.

Fruit (Variety) Total samples Property

Black grapes 100 Soluble solids
Green grapes 100 Soluble solids
Cherry fruit 100 Soluble solids
Pear 200 Soluble solids
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were used to benchmark the performance of the ASI setup with the
commercially available spectrometers currently used for non-
destructive analysis.

2.4. Chemometric data modelling to validate the functioning of the
setup

In this study, two main chemometric data modelling tasks were
performed. The first modelling was performed to show the func-
tioning of the ASI system, and the secondmodelling was performed
to benchmark the performance of the ASI system with respect to
the commercially available spectrometer systems. For the first part
of the analysis, data for grapes and cherry fruit were used, while for
the second part, data from the pear fruit were used. More
description of the specific analysis is as follows.

2.4.1. Analysis for testing functionality of the ASI setup
To test the functionalities of the ASI setup, three partial least-

square regression (PLSR) [30,31] models were developed on 60%
of the data and were tested on the remaining 40% of the data. The
three models were for black grapes, green grapes, and cherry fruit,
respectively. The PLSR models were developed and tested on the
mean spectra extracted by manually drawing the region of interest
on the top surface of the fruit. Please note that the mean spectra
were only taken from the central part of fruit with a square of size
10� 10 pixels. Such an extraction was performed to avoid the
spectra from the curved surface of fruit which may suffer from
physical light scattering effects. The spectra were partitioned as
model training (60%) and independent testing (40%) using the
Kennard-Stone algorithm [32]. The optimal number of latent vari-
ables were selected using a 5-fold cross-validation procedure. Prior
to data modelling, the mean spectra were reduced to the near-
infrared (NIR) spectral range of 700e1000 nm as SSC have the
most correlation with the NIR spectral range. Furthermore, the
spectra were smoothened [33] and normalised with the standard
normal variate (SNV) [34] to compensate for any inhomogeneity in
illumination [22]. The spectral pre-processing was performed using
the in-house software in MATLAB 2018b (Natick, MA, USA). The
PLSR was performed with the ‘plsregress’ function available in the
Statistics and Machine Learning Toolbox in MATLAB 2018b (Natick,
MA, USA). Once the PLSR models were calibrated and tested, the
prediction maps for SSC were generated by applying the model on
each pixel of the spectral image. The performance of individual
models was evaluated as the root mean squared error of prediction
(RMSEP) on the corresponding independent test sets.

2.4.2. Analysis for benchmarking the performance of the ASI setup
To benchmark the performance of the ASI setup with respect to

the commercially available spectrometers, three different PLSR
models were developed for predicting SSC in pear fruit. The three
models were related to data collected with ASI setup, Felix hand-
held setup and ASD Lab spec spectrometer, respectively. Since all
three spectral sensors recorded the spectral data in different
spectral ranges, to have a fair comparison, all spectral data were
reduced to a common spectral range of 700e1000 nm.
5

Furthermore, the spectra were partitioned as model training (60%)
and independent testing (40%) using the Kennard-Stone (KS) al-
gorithm [32]. Like previous analysis, the optimal number of latent
variables were selected using a 5-fold cross-validation procedure.
As before, the spectra were smoothened [33] and normalised with
the standard normal variate (SNV) [34]. The model performances
were evaluated as the root mean squared error of prediction
(RMSEP) on the independent test set. To compare the performance
of the three spectrometers, a 1-way analysis of variance (ANOVA)
was performed on the predictions over the independent test set
from all three spectrometers. All analysis was carried out in MAT-
LAB 2018b (Natick, MA, USA).

3. Results and discussion

3.1. Validation analysis of the performance of the setup

The validation analysis to show the performance of the ASI
setup was performed using the black grapes, green grapes, and
cherry fruit. The reflectance spectra (Fig. 2AeC), SNV normalised
spectra (Fig. 2DeF) and corresponding reference SSC (%) (Fig. 2GeI)
for the three types of fruit are shown in Fig. 2. The spectral profiles
show typical fresh fruit spectrawith the low reflection in the visible
region i.e., <670 nm and high reflectance in the NIR range>670 nm.
The low reflection in the visible region is due to the presence of
fruit pigments in the fruit skin, while the high reflection in the NIR
regression is due to the presence of high moisture in the fresh fruit.
Furthermore, there was also a rapid transition from visible to NIR
and can be related to the red-edge reflection related to the
photosynthetic activity of the fresh fruit. For black grapes (Fig. 2A)
and cherry (Fig. 2C), the reflection in the visible region was lower,
compared to the green grapes (Fig. 2B). The green grapes have a
higher reflection in the visible region due to the presence of the
chlorophyll pigment in the grape skin imparting green colour to the
grapes. In the spectra presented for low, mid, and high SSC fruit,
differences in the reflectance and normalised reflectance intensities
can be noted, such differences are indicative of the presence of
variability related to the differences in SSC in fruit samples.
Furthermore, the SSC range of different fruit suggests that black
grapes have the widest range of SSC, 18e30%, while the range of
green grapes and cherry fruit was between 8 and 20%. Such a high
SSC range for black grapes shows that it had sweeter fruit compared
to green grapes and cherry.

The performance of the PLSR model calibrated and indepen-
dently tested for green grapes, black grapes and cherry are shown
in Fig. 3. The RMSEP for all three fruits were lower than 0.8%, which
is typically in the prediction range of NIR spectroscopy [18,19]. For
grapes, the performance of the spectral setup was better than
cherry, however, this could be due to the difficulty in extracting the
juice from the cherry fruit compared to grapes, as the spectral
measurements were performed in a standardised way for all three
fruits. The main benefit of the ASI setup is its capability to provide
spatial distribution maps of the physicochemical properties. As an
example, the spatial distribution maps of the SSC in the cherry fruit
are shown in Fig. 4. In Fig. 4, the visualisation illustrates that the
cherry fruit has wide variability in the SSC content. A key point to
note is that on the borders the effect of fruit shadow is dominant in
some fruit, and a reason for it was the blue background plate used
for holding fruit. To avoid this problem, in future use, black high-
absorbing material plates should be used.

3.2. Comparative analysis of the performance of the setup with
market popular point spectrometers

In the earlier section, a demonstration of the functioning of the



Fig. 2. Spectra corresponding to various levels of soluble solids content and soluble solids distributions for grapes and cherry fruit. Reflectance spectra (blue to green transition
indicates low to high SSC values) for (A) black grapes, (B) green grapes, and (C) cherry. Standard normal variate normalised spectra for black grapes (D), green grapes (E), and cherry
(F). Soluble solids content distribution in black grapes(G), green grapes (H), and cherry (I). (For interpretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)
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ASI setup using the grapes and cherry fruit was showed. In this
section, the performance of the ASI setup in comparison with two
popular point spectrometers commonly used for fresh fruit analysis
was showed. The mean spectra of pear fruit from different spec-
trometers are shown in Fig. 5. Since different spectrometers has
different spectral ranges, in Fig. 5A the mean spectra in the com-
plete spectral ranges are shown, while in Fig. 5B, the mean spectra
in the common spectral range of 400e1000 nm are shown. Spectra
from all three spectrometers in the spectral range of 400e1000 nm
showed a similar reflectance pattern i.e., low reflection in the
visible part and high reflection in the NIR part. The spectra of the
Felix spectrometer showed higher reflection in the NIR part. An
apparent reason for such a high reflection of the Felix spectrometer
is unknown but the only assumed reason could be the different
mode of measurement compared to ASI setup and ASD Lab spec.
Unlike ASI setup and ASD Lab spec which acquire data in diffuse
reflection, the Felix instrument acquires data in interaction mode.
The performance of the PLSR calibration performed with spectral
data from different sensors on the pear data set is shown in Table 2.
In terms of RMSEP, the performances of all the three spectrometers
were similar ranging from 0.40 to 0.52% which is in the typical
range of SSC prediction in pear with NIR spectroscopy [35,36].
6

Although the point spectrometer showed a slightly lower RMSEP
compared to the ASI setup, the differences between the prediction
(Fig. 6) of different spectrometers were insignificant as the 1-way
ANOVA analysis (Table 3) reached a F-score of 0.88.

4. Conclusions

This study involved developing a new all-in-one spectral im-
aging (ASI) system for standardised image acquisition and real-time
model deployment. The functioning of the setup was showed using
a case of soluble solids content prediction in a range of fresh fruits.
Furthermore, the performance of the developed system was
benchmarked with the commercial point spectrometer systems
currently available in the market. The result showed that ASI sys-
tem allowed a precise prediction of soluble solids content over
three types of fresh fruit, grapes, cherry, and pear. Moreover, the
comparison with commercial spectrometers showed that the ASI
setup achieved similar performance and there were insignificant
differences between the prediction of ASI setup and the commer-
cial spectrometers widely used for NIR analysis. Although in this
study the demonstration case involved a prediction of soluble
solids content, ASI can be used to analyse any type of samples



Fig. 3. Performance of PLSR calibration for soluble solids content prediction. (A) cross-validation plot, (B) prediction plot for black grapes, (C) prediction plot for green grapes, and
(D) prediction plot for cherry. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. Spatial distribution map for soluble solids content (SSC) predicted in cherry fruit. (A) RGB images, and (B) soluble solids content distribution maps.
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where NIR spectroscopy is of interest. A key benefit of ASI setup
compared to the market available point spectrometers is that it
7

allows exploring spatially distributed properties due to the rich
spatial information captured by the SI. A special attentionwas given



Fig. 5. Mean pear fruit spectra from three different spectroscopy setups. (A) spectra in the full spectral range of each sensor, and (B) spectra chopped to 400e1000 nm for each
spectroscopy setup to keep the analysis comparable.

Table 2
A summary of root mean squared error of prediction for Felix, ASD Lab Spec, and ASI setup.

Sensor Root mean squared error of prediction for SSC (%)

ASD Lab spec 0.48
Felix handheld 0.40
AleIn-One spectral imaging 0.52

Fig. 6. Whisker box plot to explain the predictions on the same test set by different
spectral sensors.

Table 3
1-way analysis of variance results for prediction from three different sensors.

Source SS df MS F Prob > F

Groups 0.24 2 0.12 0.88 0.42
Error 33.31 237 0.14
Total 33.55 239

P. Mishra, M. Sytsma, A. Chauhan et al. Analytica Chimica Acta 1190 (2022) 339235
to usability of the tool so that it is accessible to expert and non-
expert users alike. The new ASI setup promotes the reuse of
8

spectral data and models usually acquired during laboratory ex-
periments with the help of embedded computing. The ASI setup
will contribute to thewider usage of spectral sensingwheremodels
and data can be shared between different users of spectroscopy.
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