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Abstract
High-quality atmospheric CO2 measurements are sparse in Amazonia, but can provide 
critical insights into the spatial and temporal variability of sources and sinks of CO2. 
In this study, we present the first 6 years (2014–2019) of continuous, high-precision 
measurements of atmospheric CO2 at the Amazon Tall Tower Observatory (ATTO, 
2.1°S, 58.9°W). After subtracting the simulated background concentrations from 
our observational record, we define a CO2 regional signal (ΔCO2obs

) that has a marked 
seasonal cycle with an amplitude of about 4 ppm. At both seasonal and inter-annual 
scales, we find differences in phase between ΔCO2obs

 and the local eddy covariance 
net ecosystem exchange (EC-NEE), which is interpreted as an indicator of a decou-
pling between local and non-local drivers of ΔCO2obs

. In addition, we present how the 

www.wileyonlinelibrary.com/journal/gcb
mailto:﻿
https://orcid.org/0000-0002-5447-3968
https://orcid.org/0000-0001-6185-4366
https://orcid.org/0000-0002-2275-0713
http://creativecommons.org/licenses/by-nc/4.0/
mailto:sbotia@bgc-jena.mpg.de
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.15905&domain=pdf&date_stamp=2021-10-26


2  |    BOTÍA et al.

1  |  INTRODUCTION

Amazonia covers approximately one-third of South America, and 
70%–80% of its area is rain forest (Goulding et al., 2003). This vast 
expanse of forest stores approximately 85–130 Pg of carbon in abo-
veground and belowground biomass, making it one of the largest 
carbon pools on the globe (Malhi et al., 2006; Saatchi et al., 2007; 
Baccini et al., 2012; Feldpausch et al., 2012). Hence, Amazonia plays 
a fundamental role in the global carbon cycle not only by storing 
massive amounts of carbon, but also by acting as an immense "bio-
geochemical reactor" (Andreae, 2001). The exchange between the 
biosphere and the atmosphere occurs mainly through CO2 exchange 
(Friedlingstein et al., 2020). Therefore, atmospheric mole fraction 
measurements of CO2 can provide information about this exchange, 
as they integrate signals from the underlying ecosystem over large 
scales. Atmospheric CO2 can thus be used to study the spatial and 
temporal variability of the dominant sources and sinks of carbon, 
which in the central part of Amazonia are mainly photosynthesis and 
respiration (Malhi et al., 2015).

The principal threats to Amazonia are forest degradation and de-
forestation, agricultural expansion, and climate variability (Davidson 
et al., 2012; Mitchard, 2018). Deforestation was recently shown 
to cause disturbed rainfall patterns upwind and downwind of the 
cleared areas during the dry season in Amazonia (Khanna et al., 
2017). In addition, deforestation and agricultural expansion are di-
rectly associated with biomass burning (van der Werf et al., 2010; 
Barlow et al., 2020), which, in turn, can be intensified by severe 
drought (Gatti et al., 2014; van der Laan-Luijkx et al., 2015; Marengo 
& Espinoza, 2016; Aragão et al., 2018). Extremes in the hydrological 

cycle include both droughts and flooding, which can be enhanced 
by large-scale events, such as those occuring during the extreme 
phases of the El Niño Southern Oscillation (ENSO) cycle (Marengo & 
Espinoza, 2016; Malhi et al., 2018; van Schaik et al., 2018). Variability 
in the hydrological cycle in the Amazon has increased over the last 
two decades (Gloor et al., 2015), with more frequent extreme events. 
At the same time, a significant increase in the length of the dry season 
in southern Amazonia has been reported by Fu et al. (2013). Gloor 
et al. (2012) suggest that even though biospheric carbon uptake 
currently compensates for deforestation and fossil fuel emissions in 
South America, the continent could become a net source of carbon 
over the next decades, as projected by up-scaled plot-level studies 
(Brienen et al., 2015; Hubau et al., 2020). Therefore, observational 
ground sites (such as ATTO) that can provide ground truth data for 
evaluating predictions are critical to improve our understanding of 
the carbon cycle in Amazonia.

The ecosystem net carbon exchange can be estimated using ei-
ther a top-down or a bottom-up approach. Atmospheric inversions 
(i.e., the top-down approach) use measurements of atmospheric 
CO2 mole fractions to optimize a prior estimate of net ecosystem 
exchange (NEE) fluxes at global (Gurney et al., 2002; Rödenbeck 
et al., 2003; van der Laan-Luijkx et al., 2017) and continental scales 
(Gerbig et al., 2003; Peters et al., 2007; Schuh et al., 2010; Kountouris 
et al., 2018; Shiga et al., 2018; Hu et al., 2019). This method is highly 
dependent on well-calibrated accurate measurements, their spa-
tial density, and representativeness (Gerbig et al., 2009). Typically, 
fluxes in regions with few measurements will be estimated with high 
uncertainties that will lead to limited understanding of spatial and 
temporal patterns (Gurney et al., 2002; Peylin et al., 2013; van der 

2015–2016 El Niño-induced drought was captured by our atmospheric record as a 
positive 2σ anomaly in both the wet and dry season of 2016. Furthermore, we ana-
lyzed the observed seasonal cycle and inter-annual variability of ΔCO2obs

 together with 
net ecosystem exchange (NEE) using a suite of modeled flux products representing 
biospheric and aquatic CO2 exchange. We use both non-optimized and optimized (i.e., 
resulting from atmospheric inverse modeling) NEE fluxes as input in an atmospheric 
transport model (STILT). The observed shape and amplitude of the seasonal cycle was 
captured neither by the simulations using the optimized fluxes nor by those using the 
diagnostic Vegetation and Photosynthesis Respiration Model (VPRM). We show that 
including the contribution of CO2 from river evasion improves the simulated shape 
(not the magnitude) of the seasonal cycle when using a data-driven non-optimized 
NEE product (FLUXCOM). The simulated contribution from river evasion was found 
to be 25% of the seasonal cycle amplitude. Our study demonstrates the importance 
of the ATTO record to better understand the Amazon carbon cycle at various spatial 
and temporal scales.
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Laan-Luijkx et al., 2015; Thompson et al., 2016). Global inverse mod-
els have been found to be under-constrained (Gurney et al., 2002; 
Gaubert et al., 2019) and to a large extent hampered by model un-
certainties and insufficient measurements in the Amazon region 
(Molina et al., 2015). Moreover, the density of remotely sensed sat-
ellite columns over the region, characterized by deep convection, is 
highly reduced due to persistent cloud cover (Liu et al., 2017; Basu 
et al., 2018). The combination of these factors makes it difficult to 
constrain the seasonal and inter-annual variability of carbon ex-
change in Amazonia (Molina et al., 2015). The aircraft network of 
CO2 profiles (Gatti et al., 2014) at several sites across Amazonia 
represents an important advance in the regional effort to improve 
the observational constraint for inverse modeling studies (van der 
Laan-Luijkx et al., 2015; Alden et al., 2016), yet identifying the rel-
evant processes responsible for inter-annual and seasonal changes 
remains challenging.

Process-based biosphere models (representing the bottom-up 
approach) provide an alternative to constrain carbon exchange ac-
cross a wide range of ecosystems (Sitch et al., 2015). However, the 
inability to reproduce the cycle of gross primary productivity (GPP), 
which influences the amplitude and phase of NEE at equatorial sites 
in Amazonia, is one of the important limitations of biosphere mod-
els (Restrepo-Coupe et al., 2017). Others include, for example, CO2 
fertilization effect (Fleischer et al., 2019) and ecosystem respiration 
(Carvalhais et al., 2014). While process-based model simulations 
show a decline in dry-season GPP at equatorial sites, presumably 
based on an incorrect assumption of water limitation, observations 
typically suggest that GPP increases during the dry season (Huete 
et al., 2006; Myneni et al., 2007; Brando et al., 2010; Restrepo-
Coupe et al., 2013; Borchert et al., 2015; Wu et al., 2016; Green 
et al., 2020). This discrepancy may be explained by the lack of leaf 
phenology in model formulations (Gonçalves et al., 2020). Chen et al. 
(2020) recently corroborated this by implementing this mechanism 
in the biosphere model ORCHIDEE, yet it is still missing in other bio-
sphere models.

The evaluation of model-based biosphere-atmosphere flux esti-
mates is generally performed by comparing simulated fluxes with in-
situ flux measurements. Eddy-flux and plot-level studies serve such 
purposes and are valuable for understanding processes and under-
lying drivers of carbon exchange (Verbeeck et al., 2011; von Randow 
et al., 2013; Restrepo-Coupe et al., 2017). An alternative approach 
to evaluate both biosphere models and inverse modeling results is 
to use surface fluxes as an input in atmospheric transport models, 
and compare simulated and observed mole fractions at independent 
measurement sites. This method has the advantage of attributing the 
observed CO2 regional signal to a larger spatial area, as compared to 
local eddy-flux spatial coverage, especially when atmospheric CO2 is 
measured at a tall tower (Gloor et al., 2001). However, atmospheric 
transport errors can add additional biases that should be considered 
when interpreting patterns at different temporal scales (Gerbig et al., 
2008). This leads to different models presenting widely varying per-
spectives on the processes influencing Amazonia's carbon budget, 
with most of them being poorly constrained by actual observations.

All things considered, accurate atmospheric CO2 measurements 
at high temporal resolution can provide valuable information about 
the spatial and temporal variability of sources and sinks of CO2. In 
this work, we present 6 years of observations from the Amazon Tall 
Tower Observatory (ATTO) in central Amazonia, and demonstrate 
how they can be used to increase our process understanding by 
identifying the main sources of variability at seasonal and inter-
annual scales. Furthermore, we use the CO2 measurements to eval-
uate state-of-the-art top-down as well as bottom-up NEE products 
using an atmospheric transport model. A highlight of this study is 
that we use three different estimates of NEE fluxes generated using 
CarbonTracker South America (an inverse modeling system) (van 
der Laan-Luijkx et al., 2015), the Vegetation Photosynthesis and 
Respiration diagnostic model (VPRM) (Mahadevan et al., 2008), 
and a statistically upscaled NEE product (Bodesheim et al., 2018) 
(FLUXCOM). With such a diverse dataset of NEE fluxes, we cover 
the inherent variability of different model formulations. We also 
evaluate the capability of an inversion system, using different data 
streams for optimization, to constrain the variability of atmospheric 
CO2 at ATTO. Thus, we provide valuable insights that will serve not 
only to better understand the processes that control atmospheric 
CO2 at ATTO, but also to evaluate biosphere flux models from an 
atmospheric perspective.

2  | DATA AND METHODS

2.1  |  Site description

The Amazon Tall Tower Observatory (ATTO) site (2.14°S, 58.99°W, 
see Figure 1) has been described extensively in Andreae et al. (2015). 
In this paper, we present aspects considered important for our study. 
ATTO is located in the Uatumã Sustainable Development Reserve 
(USDR) in central Amazonia, 150 km northeast of the closest large 
city, Manaus. The main infrastructure and research facilities were 
built in the dense upland forest (terra fime, at 130 m a.s.l.), where the 
highest vegetation is found. The canopy height at the tower location 
is around 37 m; however, the average tree height on the terra firme 
forest plateau is 20.7 ± 0.4 m (Andreae et al., 2015).

The local precipitation regime shows a distinct seasonality (see 
Figure S1  left panel), and agrees very well (r  =  0.8, p-value <.01) 
with the Multi-Satellite Precipitation Analysis from the Tropical 
Rainfall Measuring Mission (TRMM 3B42-daily at a resolution 
of 0.25  deg, obtained from: https://disc.gsfc.nasa.gov/datas​ets/
TRMM_3B42_Daily_7/summary) (Huffman et al., 2016) sampled 
at the grid cell closest to ATTO (2.12°S, 58.87°W). However, the 
local measurements show a lower mean annual precipitation (MAP) 
than the climatological average obtained using the TRMM data-
set (1934.1  mm yr−1 vs 2382.2  mm yr−1). The monthly and annual 
mean biases of the TRMM estimate with respect to the local mea-
surements are +40 mm and +489 mm, respectively. The local time 
series is based on an 8-year record (2012–2019), and thus the sea-
sonal average is highly affected by the 2015–2016 El Niño drought. 

https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary
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Therefore, we consider the longer TRMM dataset (ATTO-TRMM 
1998–2019 in Table 1) to be more reliable as a climatology. Thus, 
we use the ATTO-TRMM (1998–2019) record as a reference; the dry 
season length (DSL) is 3 months with a mean dry season precipita-
tion of 63.3 mm month−1. The annual minimum average precipitation 
(MiAP) is 45.1 mm month−1. A comparison of these values between 
the local record and the TRMM dataset is shown in Table 1. For this 
study, we have defined the climatological dry season as the months 
whose seasonal median is lower than 100 mm (July–October). For 
the wet season, we selected the months whose 25th percentile was 
clearly above 200 mm (February to June), see Figure S1 right panel 
for details.

2.2  | Atmospheric mole fraction measurements

The continuous measurement system was installed in March 2012 at 
the 81 m walk-up tower at ATTO and has been described in Andreae 
et al. (2015) and Botía et al. (2020). Here we highlight the features 
relevant for this study. The atmospheric mixing ratio data presented 
here were collected with two cavity ring-down-based analyzers 
(Picarro Inc.), a G1301 and a G1302 measuring CH4/CO2 and CO2/
CO, respectively. Both analyzers provide CO2 data at a 15-minute 
resolution calibrated on the World Meteorological Organization 
(WMO) CO2 X2007 scale. These data were subsequently averaged 
to half-hourly data. The overall accuracy of both analyzers, includ-
ing the uncertainties of the water vapor correction, is estimated to 
be 0.09 ppm CO2 (1 ppm = 1 μmol mol-1 of dry air). The analyzers 
measure the air from five lines connected to inlets located at 79, 
53, 38, 24, and 4 m above ground. Downstream of each sampling 
line, a stainless steel sphere (8 L volume) acts as a buffer volume. 
By mixing the sampled air, these buffers integrate the atmospheric 
signal, allowing a continuous, near-concurrent measurement from all 
heights (Winderlich et al., 2010). The time series presented here is 
based on only daytime dry air mole fractions (i.e., 13:00−17:00 local 
time (LT)), representative of well-mixed convective conditions. To 
maximize the data coverage, we use observations from both instru-
ments whenever they are available, with the mean calculated for the 
periods when both were operational simultaneously. The mean bias 
between the datasets at half-hourly resolution was estimated to be 
0.02 ppm CO2. The data presented here are available upon request 
at https://attod​ata.org (last access: 25 January 2021).

2.3  |  Phenology measurements and leaf area index 
age classes

Upper canopy leaf phenology is monitored with a RGB Stardot 
Netcam model XL 3MP (2048 × 2536 pixels) mounted on the top 
of the 81 m tower. For an in-depth description of the camera set-
up, radiometric calibration and detection of phenostages, we refer 
the reader to Lopes et al. (2016). We used only pictures obtained in 
the morning (i.e., no backlit crowns), under cloudy sky or under the 
shadow of a cloud, providing a spatially even and temporally con-
sistent illumination of the irregular canopy surface. For each crown 
(n = 194), we were able to detect abrupt increase in greenness (i.e., 
leaf flush) or abrupt green-down (i.e., leaf abscission). By counting 
the number of individual trees per month for each category (flush or 
abscission), we built a monthly time series for the period between 
July 2013 and November 2018. From the trees that the camera sees, 
69% (n = 134) have clear flushing and abscission patterns, and from 
these the time series was built.

Using the number of days after each individual flushing event, we 
determined leaf age classes and attributed a fraction of the upper 
canopy crowns to an age class at monthly intervals. As in Wu et al. 
(2016), we defined the following leaf age classes: (i) young leaves 
(0−2  months), (ii) mature leaves (2−6  months), and (iii) old leaves 
(>6  months). Next, we partitioned the age classes into classes of 
leaf area index (LAI) (i.e., young, mature, and old LAI) by normalizing 
each leaf age class with the total LAI measured at ATTO. We used a 
constant LAI of 5.32 m2 m−2 for all months, as the variability of this 
number throughout the year was not statistically significant (unpub-
lished results). For the normalization we took into account the total 
number of trees in the camera frame (n = 194), assuming that the 
31% that does not have clear flushing patterns are part of the old 
age class. For more details on the methods and assumptions for the 
separation of LAI into leaf age classes, see Wu et al. (2016). LAI was 
measured using two LAI-2200 PCA sensors (LI-COR Inc.) recording 
simultaneous readings above and within the canopy. The sensor 
above the canopy (the reference) was installed on the 81 m tower 
(approximately 50  meters above top canopy). All measurements 
were performed under diffuse light conditions. The within-canopy 
measurements were carried out using 40  cm supports (sampling 
points) on the ground. The spatial sampling design was a square 
grid with 42  sampling points (21  ×  2 and 80  m between points). 
We carried out monthly campaigns from March 2016 to March 

TA B L E  1  Mean annual precipitation (MAP), mean dry season precipitation (DSP), mean dry season length (DSL), and annual minimum 
average precipitation (MiAP) at ATTO using the local precipitation measurements (2012–2019) and data from the tropical rainfall measuring 
mission (TRMM) from 1998 to 2019 (Huffman et al., 2016). For comparison, we show the same values reported by Restrepo-Coupe et al. 
(2017) for the research station (K34) for the period 1998–2014

Site Lat (°) Lon(°) MAP (mm yr−1) DSP (mm month−1) DSL (months) MiAP (mm month−1)

ATTO-Local (2012–2019) −2.14 −58.99 1934.1 53.2 3.8 25.3

ATTO-TRMM (2012–2019) −2.12 −58.87 2422.6 63.3 2.8 42.2

ATTO-TRMM (1998–2019) −2.12 −58.87 2382.2 63.3 3 45.1

K34-TRMM (1998–2014) −2.61 −60.21 2672.6 99.7 1–2 99.7

https://attodata.org


    | 5BOTÍA et al.

2019. The flushing and abscission data (http://doi.org/10.17871/​
atto.223.7.840) together with the raw LAI age classes (http://doi.
org/10.17871/​atto.230.4.842) are available upon request request at 
https://attod​ata.org.

2.4  |  Eddy covariance measurements

In this study, we use eddy covariance (EC) measurements from 2014 
to 2019. They were done using a 3D sonic anemometer (CSAT3, 
Campbell Scientific Inc.) and an open-path infrared gas analyser 
(LI7500, Li-COR Inc.), both installed at the top of the 81 m tower, 
approximately 50  m above the local canopy top. Half-hourly EC-
sensible heat (EC-H), EC-latent heat (EC-LE), and EC-CO2 fluxes were 
calculated using EddyPro software (Li-COR Inc.). Raw time-series 
data were de-spiked and screened according to Vickers and Mahrt 
(1997), and data quality control on half-hourly EC-H/LE/CO2 fluxes 
was carried out following the method of Mauder and Foken (2004). 
EC flux data meeting the highest quality criteria (flags 0 and 1) for 
H, LE, and CO2 and from the EC-favourable wind direction ([−90°: 
+90°] sector) were selected for further analysis. The raw eddy-flux 
data are available upon request at https://attod​ata.org (last access: 
25 January 2021).

Net ecosystem exchange (EC-NEE) was calculated as the sum of 
the half-hourly EC-CO2 flux and storage CO2 flux. The storage flux 
was obtained using the 5-inlet CO2 mole fraction profile measure-
ments at the 81 m tower (cf. Section 2.2) following the calculation 
procedure of Winderlich et al. (2014). When the profiles were miss-
ing measurements from one or two heights, the storage flux was ob-
tained from 3 or 4 inlets that included both the 4 m and 79 m heights, 
this occurred only 2.42% of the time over the 6 years. In cases where 
only half-hourly EC-CO2 flux data were available, missing CO2 stor-
age fluxes were gap-filled with mean diurnal variations over ±14-
day periods as performed by the REddyProc package (Wutzler et al., 
2018). In addition, negative EC-NEE data during nighttime periods 
(defined as 18:00−6:00 with global radiation (Rg) <20 W m−2) were 
removed. In cases where nighttime Rg data were not available, we 
discarded negative EC-NEE data between 19:00 and 5:00.

A distribution of friction velocity (u*) thresholds (5th, 50th, and 
95th percentiles) in each year was estimated according to Papale 
et al. (2006) using REddyProc. For this study, we used the yearly 
median (50th percentile) u* values as representative for our site 
(see Table S1). Our u* values are lower than those from previous 
studies due to the higher measurement height (81 m), we refer the 
reader to Table S2 for a comparison of u* values in other sites in 
Amazonia. After the u* filtering, 20.4% of EC-NEE data remained. 
The effect of having more or less data due to a larger or lower u* 
threshold does not affect the seasonal cycle of neither EC-NEE, GPP 
nor Reco, this is shown in Figure S2. The gap filling of the EC-NEE 
data was performed using REddyProc and then negative gap-filled 
nighttime EC-NEE data were screened out. The missing nighttime 
EC-NEE data were gap filled by a linear interpolation for less than 
two missing hours or a mean NEE value over one nighttime period. 

Nighttime EC-NEE was assigned as nighttime ecosystem respiration 
(Reco), and daytime Reco was derived from averaging Reco over two 
adjacent nighttime periods, similar to Restrepo-Coupe et al. (2013). 
Then, gross primary productivity (GPP) was obtained by subtracting 
EC-NEE from Reco. We adopted the above NEE partitioning method 
because nighttime Reco did not correlate well with nighttime air tem-
perature, which is needed for commonly used methods (e.g., the 
nighttime method, Reichstein et al. (2005); the daytime method, 
Lasslop et al. (2010); and modified daytime methods, Keenan et al. 
(2019)). In this study, we interpret EC-GPP (hereafter GPP) as gross 
ecosystem productivity (GEP).

2.5  |  STILT simulations

2.5.1  |  STILT model description

The Stochastic Time Inverted Lagrangian Transport (STILT) model 
(Lin et al., 2003) is useful for diagnosing the impact of surface emis-
sions at a specific measurement location or receptor by resolving 
transport in the near field (i.e., the surface with which the planetary 
boundary layer air has had contact with). STILT simulates the trans-
port in the near field by following the time evolution of an ensemble 
of particles (to be interpreted as an air parcel) and by interpolat-
ing meteorological fields to the sub-grid location of each particle. 
Turbulent motions in the planetary boundary layer (PBL) are mod-
eled as a Markov chain process using turbulent velocity statistics 
(Lin et al., 2003). Moist convection in STILT uses vertical profiles 
of convective mass fluxes within updrafts and downdrafts, as well 
as entrainment and detrainment fluxes into and out of the up- and 
downdrafts (for details, see Nehrkorn et al., 2010). Vertical profiles 
of in-cloud mass fluxes are derived from the driving meteorological 
fields using the Tiedtke (1989) scheme.

The time-inverted feature of the model refers to the capability 
of resolving the near-field transport of the particle ensemble prior to 
its arrival at the receptor location. In this study, the model was run 
at hourly resolution for the 6-year period from 2014 to 2019. Every 
hour a 100-particle ensemble was released at the receptor height of 
80 m above ground, and the back trajectories were calculated for the 
preceding 10 days to ensure most backward trajectories have left 
the continent such that the footprints represent the full influence of 
surface fluxes on measurements at ATTO. The difference between 
the modeled receptor height and the air inlet is only 1 meter, which 
we assume can be neglected. The model was driven by 3-hourly 
meteorological fields from ECMWF short-term forecasts (following 
the contemporary IFS cycle development; for more info, see https://
www.ecmwf.int/en/publi​catio​ns/ifs-docum​entation). The original 
meteorological fields were preprocessed and interpolated to a spa-
tial resolution of 0.25° by 0.25°, covering South America between 
20°S–15°N latitude and 85°W–35°W longitude bands. The original 
vertical structure was maintained; however, only the 89  lowest of 
the 137 total levels were used, limiting the top model level to an 
altitude of about 21 km.

http://doi.org/10.17871/atto.223.7.840
http://doi.org/10.17871/atto.223.7.840
http://doi.org/10.17871/atto.230.4.842
http://doi.org/10.17871/atto.230.4.842
https://attodata.org
https://attodata.org
https://www.ecmwf.int/en/publications/ifs-documentation
https://www.ecmwf.int/en/publications/ifs-documentation
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2.5.2  |  Seasonally averaged footprint calculation

To better interpret our measurements and attribute signals to par-
ticular regions, spatially explicit surface influence maps or footprints 
were calculated using the STILT model. From the back trajectory 
particle ensembles, we derived hourly gridded footprints. The foot-
prints are derived at higher spatial resolution (1/12° by 1/8°) than 
the driving meteorological data, and they can be defined as the flux 
sensitivity of mole fractions measured at the receptor location, with 
units of ppm per μmol m−2  s−1. To obtain the seasonally averaged 
footprints, we first filtered for daytime (i.e., 13:00–17:00 LT at the 
receptor) values to ensure well-mixed convective conditions at the 
measurement location. These individual hourly footprints were ag-
gregated to a climatological monthly mean. From these monthly 
means, we averaged over November, December, January (NDJ), 
February, March, April (FMA), May, June, July (MJJ) and August, 
September and October (ASO). The averaging periods were chosen 
in this way to allow a good distinction between wet and dry sea-
sons (FMA and ASO), as well as the transition periods in between 
(NDJ and MJJ). The monthly climatology of concentration footprints 
generated for this study is available at http://doi.org/10.17871/​
atto.208.8.811.

The regional extent of the seasonally averaged footprints is 
shown in Figure 1 to provide an idea of the dominant vegetation 
types within the areas of influence. The 50th percentile footprint 
during NDJ and FMA covers an area of mainly intact forest, whereas 
in MJJ and ASO the footprints cover areas characterized by a larger 
presence of disturbed forest, located on the southern bank of the 
Amazon River. The area of the 50th percentile footprint increases 
from 208,058  km2 in NDJ to 236,969  km2 in FMA and decreases 
from 244,482  km2 in MJJ to 207,812  km2 in ASO. Note that the 
Cerrado and Caatinga biomes (semiarid ecosystems) are within the 
75th percentile footprint in MJJ and ASO, although their relative 
influence on the signals measured at ATTO is estimated to be low 
(Figure 1).

2.5.3  |  STILT tracer simulations

Lateral boundary conditions (LBC)
As we are dealing with an atmospheric transport model within a 
limited domain, we have to consider the influence of the air masses 
entering it at its borders (LBC, Lateral Boundary Conditions) to com-
pare the simulated mole fractions to in-situ observations. This ad-
ditional signal, hereafter also referred to as "background," is added 
in STILT to the CO2 mole fractions related to fluxes from within the 
domain. In the case of ATTO, it is almost exclusively advected from 
the northeastern or eastern border of our domain (see Figure 1). The 
LBC include the global information that influences our domain of in-
terest, such as the increasing trend due to fossil fuel burning and var-
iations on seasonal and synoptic scales. In this study, we have used 
the Jena Carboscope (s04ocv4.3) as our LBC. We refer the reader to 
Rödenbeck et al. (2003) and to http://www.bgc-jena.mpg.de/Carbo​
Scope/ to get more details on the data assimilated in this system.

The validity of the LBC is a fundamental aspect in our tracer 
simulations. To assess this validity and potential biases, we evalu-
ated the 3D fields of CO2 used as LBC at three background stations 
located at the east and northeast of our regional domain: Ragged 
Point Barbados (RPB, 13.16°N, 59.43°W), Ascension Island (ASC, 
7.94°S, 14.35°W), and Cape Verde (CVR, 15.12°N, 23.60°W). We 
sampled the original global fields at the location of each station 
and calculated the difference between the simulated and observed 
mole fractions (see Figure S3). Since the data from the above sta-
tions were assimilated in the Jena CarboScope inversion system, 
they have small Mean Bias Errors (MBE) (−0.09 ± 0.26 ppm at RPB, 
−0.036 ± 0.28 ppm at ASC, and −0.176 ± 0.8 ppm at CVR). Even 
though these small MBE indicate a strong constraint on the LBC, 
we have bias-corrected the LBC used to calculate the observed re-
gional signal. The magnitude of the bias-correction will be shown in 
the Results section. We define an observed regional signal (ΔCO2obs

 , 
which is bias-corrected) and a simulated regional signal (ΔCO2sim

). 
The first is calculated by subtracting the LBC from the measured 

F IGURE  1 The 50th and 75th percentiles for the seasonally averaged footprint for NDJ and FMA (left panel) and MJJ and ASO (right 
panel) overlain with the distribution of intact forest (dark green), non-intact forest (pale green), moderately deforested (pink), and severely 
deforested (magenta). Cerrado and Caatinga biomes are labeled but not colored. The ATTO site is indicated with a red triangle. The 
distribution of vegetation state is taken from Baker and Spracklen (2019)

http://doi.org/10.17871/atto.208.8.811
http://doi.org/10.17871/atto.208.8.811
http://www.bgc-jena.mpg.de/CarboScope/
http://www.bgc-jena.mpg.de/CarboScope/
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CO2 mole fractions, and the second by leaving the LBC tracer out of 
Equations 1 and 2.

Input fluxes
To obtain simulated mole fractions at the tower location, we coupled 
the footprints with the surface fluxes at hourly resolution. By adding 
all the tracer components and the LBC, we can obtain multiple realiza-
tions of simulated CO2 mole fractions at the ATTO site that can be 
compared to observations, and assess how the underlying fluxes affect 
the simulated signal. To account for all the sources and sinks of CO2 
and their uncertainties in Amazonia, we use a wide range of available 
datasets, including both optimized (i.e., resulting from atmospheric in-
verse modeling) and non-optimized NEE flux fields (see Table 2).

Equations 1 and 2 show the main tracer components that were 
added to obtain the integrated CO2  mole fractions at ATTO. The 
subscripts represent the flux categories associated with different 
processes and the * indicates we use multiple NEE sources for each 
equation as we explain below. The complete overview of input flux 
fields used for each tracer is given in Table 2.

As vegetation dominates the CO2 exchange within our domain, 
we used five Net Ecosystem Exchange (NEE) datasets, three of 
which are optimized using an atmospheric inversion system. The 
atmospheric inversion system (Peters et al., 2005) utilizes avail-
able in-situ and remote sensing measurements for the assimila-
tion process; it should be noted, however, that observations from 
ATTO were not assimilated in any of the products discussed here. 
In Equations 1 and 2, NEE is replaced according to the list in Table 2 

and thus we obtain five STILT-model results for simulated CO2 mole 
fractions at ATTO.

The optimized NEE flux fields (i.e., Top-down) were pro-
duced using different settings but the same CarbonTracker Data 
Assimilation System (CTDAS, van der Laan-Luijkx et al. (2017)). All 
inversions use the transport model TM5 (Krol et al., 2005), where 
the default run (CTE2020) uses a global transport resolution of 3° 
×  2° with 1° ×  1° zoom regions over Europe and North America, 
and two South-America-specific setups of the system (CT-SAM, van 
der Laan-Luijkx et al. (2015); Koren (2020): CT-SAM-OCO2 and CT-
SAM-Flask) use a global resolution of 6° × 4° with a nested zoom 
over South America of 3°  ×  2° and 1° ×  1°. The three inversions 
also use different sets of atmospheric CO2 data for the assimilation: 
surface flask measurements from ObsPack GLOBALVIEWplus 5.0 
(available here: https://doi.org/10.25925/​20190812) (CTE2020), 
the same GLOBALVIEWplus 5.0 but with additional aircraft profiles 
(Gatti et al., 2014) from different locations in Amazonia (CT-SAM-
Flask), or OCO2 satellite column retrievals (CT-SAM-OCO2). For the 
CT-SAM-OCO2, the NASA retrieval v9r was used (https://docse​rver.
gesdi​sc.eosdis.nasa.gov/publi​c/proje​ct/OCO/OCO2_DUG.V9.pdf). 
The column observations were aggregated to 10-second super ob-
servations (following the method described in Crowell et al. (2019)) 
and retrievals above water were excluded. CT-SAM optimizes NEE 
on a gridded state vector of 1° ×1° over South America, whereas 
CTE2020 optimizes NEE in the region using larger "ecoregions" 
following the plant-functional types in the prior biosphere model 
(SiBCASA, Schaefer et al., 2008). Note that the driving meteorology 
in CTE2020 uses ERA5 (C3S, 2017) instead of ERA-interim, as in CT-
SAM-Flask and CT-SAM-OCO2.

The non-optimized NEE fluxes (VPRM and FLUXCOM, i.e., bot-
tom-up) use different approaches. The Vegetation Photosynthesis and 
Respiration model (VPRM) estimates NEE using a simple diagnostic 

(1)CO2TopDown
[ppm] =

∑

CO2k
, k = LBC, NEE

∗

TopDown
, ocean, fires, fossilfuel

(2)CO2BotUp
[ppm] =

∑

CO2k
, k = LBC, NEE

∗

BotUp
, ocean, fires, rivers, fossilfuel

TA B L E  2  Input fluxes and lateral boundary condition datasets used in STILT. Column "Input type" indicates whether the fluxes are based 
on atmospheric inversions (prefix "Opt")

Tracer Product Name Input type
Time 
coverage Notes Reference

LBC Jena CarboScope 
(s04ocv4.3)

mole fractions 2014–2019 LBC - lateral boundary condition Rödenbeck et al. (2003)

Ocean CTE2020 Opt flux 2014–2019 Top-down (TD) and Opt. atm. 
inversion

van der Laan-Luijkx et al. (2017)

NEE CTE2020 Opt flux 2014–2019 TD and Opt. van der Laan-Luijkx et al. (2017)

NEE FLUXCOM Flux 2014–2019 Bottom-up (BU) Bodesheim et al. (2018)

NEE VPRM Flux, online 2014–2019 BU Mahadevan et al. (2008)

NEE CT-SAM-OCO2 Opt flux 2015–2017 TD, not used for other years (Opt) Koren (2020)

NEE CT-SAM-Flask Opt flux 2014–2017 TD, 2018 and 2019, 2008–2017 
average (Opt)

Koren (2020)

Rivers ORCHILEAK Flux 2014–2019 1980–2010 - Climatology Hastie et al. (2019)

Biomass 
burning

GFAS Emissions 2014–2019 Kaiser et al. (2012)

Fossil Fuels EDGAR 4.3.2 Emissions Annual 
mean

All sectors, aggregated Janssens-Maenhout et al. (2017)

https://doi.org/10.25925/20190812
https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_DUG.V9.pdf
https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_DUG.V9.pdf
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light-use-efficiency model driven by the Enhanced Vegetation Index 
(EVI) and Land Surface Water Index (LSWI), derived from sur-
face reflectance measured by the Moderate Resolution Imaging 
Spectroradiometer (MODIS), together with 2 m air temperature and 
shortwave radiation at the surface provided from the meteorological 
model (Mahadevan et al., 2008), in this case STILT. Two parameters per 
vegetation type (Jung et al., 2006) are calibrated based on eddy cova-
riance measurements from nine sites between 2001 and 2010, ob-
tained from the LBA-ECO repository (https://daac.ornl.gov/daacd​ata/
lba/carbon_dynam​ics/CD32_Brazil_Flux_Netwo​rk/data/, last access: 
19 October 2020). The FLUXCOM product is derived from up-scaling 
site-level data (FLUXNET, http://fluxn​et.fluxd​ata.org/ (last access: 29 
September 2020)) to global scales by using a set of predictors which 
are fed to a random forest regression (Bodesheim et al., 2018). The 
reader is referred to Bodesheim et al. (2018) and Jung et al. (2020) for 
more information on the predictors and the up-scaling methods.

We use river CO2 fluxes from the updated version (Hastie et al., 
2019) of the ORCHILEAK model (Lauerwald et al., 2017), which uses 
a high spatial resolution (100  m) wetland distribution map (Hess 
et al., 2015). We only add the river flux component to the bottom-up 
simulations, as for the top-down simulations the river signal should 
be captured by the assimilated observations (Kondo et al., 2020). 
To avoid double counting of fluxes from floodplains, which could be 
captured by VPRM and FLUXCOM during a low water stage, we only 
used the river CO2 evasion component from the ORCHILEAK model. 
The tracers that are not varied in Equations 1 and 2 (i.e., ocean, fires, 
fossil fuel) are always added to the simulated mole fraction of each 
STILT-model realization.

We also simulated the anthropogenic signal component using 
the annual mean emissions from EDGAR v4.3.2 (Janssens-Maenhout 
et al., 2017) reported for 2012; original gridded emissions (0.1° × 0.1° 
spatial resolution) from all fossil fuel sectors were aggregated into an 
emission field of a single tracer. Since anthropogenic emissions are of 
minor importance in our domain, we assumed constant annual emis-
sions in our simulations. For the contribution of biomass burning or 
fires, we use daily emissions from the Global Fire Assimilation System 
(GFAS) at 0.1° × 0.1° spatial resolution (Kaiser et al., 2012). Last but 
not least, we use optimized oceanic CO2 fluxes from CTE2020. It is 
worth mentioning that in CTE2020, different from previous releases, 
the ocean prior flux is taken from the Jena Carboscope system.

2.5.4  |  Input flux adjustments for STILT simulations

The input fluxes have been converted for use in STILT into units of 
μmol m−2 s−1. Furthermore, we have adjusted the weekly mean pos-
terior NEE fluxes of CTE2020, CT-SAM-OCO2, and CT-SAM-Flask 
to represent the original diurnal variability of its prior biosphere 
model (SiBCASA) before using them as input in STILT. Equation 3 
describes this adjustment, which projects the original 3-hourly 
deviations from the monthly average diurnal cycle back onto the 
weekly mean posterior flux. For CTE2020, equation 3 was used for 
each week (k) that fluxes are available, in which the deviation of the 

3-hourly ( j  =  1,..8) flux from the corresponding monthly (i) mean 
is added to the weekly posterior. For the CT-SAM-OCO2 and CT-
SAM-Flask, the prior and diurnal mean NEE in Equation 3 (1st and 
2nd term on the right-hand side) were replaced by its climatology for 
each month (i = 1–12), as their multi-annual record was smaller and 
included an ENSO extreme event. This adjustment was performed to 
convert monthly optimized NEE fluxes (CTE2020, CT-SAM-OCO2, 
and CT-SAM-Flask) to hourly resolution and thus couple them with 
the hourly footprints. This is important because the diurnal variabil-
ity in atmospheric transport has to be considered for more accu-
rate simulations. We consider that the adjustment is precise enough 
because the simulated diurnal cycle of CO2 at the tower resembles 
that of the other simulations which are originally provided as hourly 
fluxes. This is shown in Figure S4.

3  |  RESULTS

3.1  | ATTO atmospheric CO2 time series

The observed CO2 trend (Figure 2a) at ATTO for the 6-year record 
is 2.38 ppm year−1 (2.18–2.60 95% CI), which is very similar to the 
mean global CO2 growth rate of 2.49 ± 0.08 ppm year−1 reported 
by Dlugokencky and Tans (2020) for the same time period. From 
the monthly record, we can highlight the wet seasons of 2016 and 
2019 as two distinctive events of important inter-annual variability 
in which the footprint of the tower was likely a source of CO2 to the 
atmosphere. In the transition from wet to dry seasons, our measure-
ments reach a peak that is followed by a consistent decline through-
out the dry season. On average, this decline has an onset in July and 
August. We also note that the monthly variability is lower in the dry 
season than in the wet season, strengthening the consistency of the 
dry season decline.

The simulated background mole fractions (LBC-CScope) have a 
marked seasonality, reaching the highest values during the wet sea-
son, indicating that the air masses coming into our domain are en-
riched with CO2. This is in accordance with Figure 1, in which we 
showed that the surface influence during the wet season is oriented 
to the northeast, bringing air from the northern hemisphere. When 
subtracting the simulated background mole fractions from our mea-
surements, we can diagnose specifically the regional signal of CO2, 
defined as ΔCO2obs

 in Section 2.5.3. The seasonal cycle of ΔCO2obs
 

(Figure 2b) has an amplitude of 4.14  ppm (no bias correction) and 
4.11 ppm (bias-corrected) and two distinct periods in which the signal 
at ATTO is below the LBC tracer (<0 ppm). It is worth mentioning that 
ΔCO2obs

 contains information about the real fluxes in our domain, but 
it also has an atmospheric transport component, making it difficult to 
interpret it solely as a source (>0 ppm) or an uptake (<0 ppm) of CO2.

As ΔCO2obs
 is the object of study in this paper, we have assessed 

its uncertainty by obtaining a range between an independent LBC 
estimate and a bias-corrected version of the LBC-CScope. The first 

(3)NEEpost3hk, j
=

(

NEEprior3hk, j
− DiurnalMeanNEEprior3hi, j

)

+ NEEpostWeeklyk

https://daac.ornl.gov/daacdata/lba/carbon_dynamics/CD32_Brazil_Flux_Network/data/
https://daac.ornl.gov/daacdata/lba/carbon_dynamics/CD32_Brazil_Flux_Network/data/
http://fluxnet.fluxdata.org/
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was calculated by taking the measurements at the background sta-
tions ASC and RPB and interpolating a new LBC based on the lati-
tude of the STILT particles once they exit our domain. To account 
for the minor biases of the LBC-CScope at the background stations, 
we have bias-corrected the LBC-CScope, the magnitude of this cor-
rection is shown in Figure 2a by the dashed blue line. The min-max 
range of these two ΔCO2obs

 estimates is lower than the inter-annual 
monthly standard deviation of the ΔCO2obs

, which strengthens the 
robustness of this quantity. For the rest of this study, we will use the 
bias-corrected ΔCO2obs

.

3.1.1  |  Drivers of seasonal variability

ΔCO2obs
 is affected by local (eddy covariance scale) and non-local 

scales (concentration footprint scale). At the local scale, we con-
front the ΔCO2obs−bio

 with the EC-NEE in Figure 3a. The ΔCO2obs−bio
 

was calculated using the bias-corrected ΔCO2obs
 and subtracting the 

simulated contribution of rivers, fires, fossil fuel, and ocean. The 
phase of the seasonality of ΔCO2obs−bio

 differs from that of EC-NEE, 
mainly in January, February and March and in October, November, 
and December. From April to July, EC-NEE exhibits an increasing 
source that can influence the increasing pattern in ΔCO2obs−bio

. The 
dry season decline in ΔCO2obs−bio

 can be partly attributed to a de-
crease in EC-NEE which is triggered mainly by a reduction in Reco 
from May to August and a gradual increase in GPP after August 
(Figure 3b). The effect of atmospheric transport is also important 
here. For example, the height of the PBL is a variable that affects 
the measured CO2  mole fractions at the tower. The PBL height 
tends to be deeper during the dry season (1300–1500 m) than in 
the wet season (1100–1200  m), which means that the volume in 

which CO2 mole fractions are diluted is larger, causing more nega-
tive ΔCO2obs−bio

. This example illustrates how the seasonal effects 
of the footprint and the PBL height can influence ΔCO2obs−bio

. The 
observed phase differences indicate that ΔCO2obs−bio

 can decouple 
from the local EC-NEE in some months of the year, suggesting that 
the seasonality in ΔCO2obs−bio

 is controlled by overlapping effects of 
local and non-local drivers.

One of the most important non-local drivers of ΔCO2obs−bio
 is the 

heterogeneity of NEE across the seasonally changing footprint area. 
The amplitude of the seasonal cycle of EC-NEE in Amazonia varies 
along the precipitation gradient (Saleska et al., 2009). Locations with 
a higher mean annual precipitation (MAP) (>2500 mm yr−1), like K34 
(2.61°S, 60.21°W) have a smaller seasonal cycle amplitude, whereas 
drier sites (2000–2200 mm yr−1) further east in the Tapajós National 
Forest (K67 and K83) display a more pronounced seasonal cycle 
(Saleska et al., 2009). EC-NEE at ATTO (2.14°S, 58.99°W) shows in-
teresting patterns as it falls between the range mentioned above, 
with a MAP of 2382 mm yr−1 and a seasonal EC-NEE range of ap-
proximately 60 g C m−2 month−1 (600 kg C ha−1 month−1). Thus, we 
observed a seasonal variability with a midyear source peak, differ-
ent from the sustained net uptake throughout the year reported for 
K34 by Restrepo-Coupe et al. (2017). ATTO is located about 140 km 
northeast of K34: the sites are relatively close, yet exhibit different 
MAP and seasonal EC-NEE patterns. ATTO EC-NEE is more similar 
to that measured at the Tapajós National forest in having a dry sea-
son decline, reaching neutrality in September and October (Saleska 
et al., 2003; Goulden et al., 2004; Baker et al., 2008; Hayek et al., 
2018), but it differs in that the wet season shows on average a weak 
source, which after March increases toward a seasonal peak in May. 
Interestingly, the ATTO EC-NEE seasonality has a similar phase to 
the Caxiuana (CAX) site (Restrepo-Coupe et al., 2017). Following the 

F IGURE  2 Monthly time series of the ATTO CO2 measurements together with the simulated background concentrations without bias 
correction (continuous blue line) and with bias correction (dashed blue line) (a). The observed mole fractions at ATTO (measurement height 
79 m) are shown in a thicker black line in (a) and the error bar represents ±1 σ. The thin black line represents the linear trend fitted using 
the Theil-Sen slope. In (b) the seasonal cycle of the regional signal (ΔCO2obs

) is shown. The grey shading represents the min-max range given 
by the spread of the independent ΔCO2obs

, calculated using the interpolation between ASC and RPB, and the bias-corrected ΔCO2obs
. To 

aggregate to monthly averages, we selected only daytime values (i.e., 13:00–17:00 LT) to ensure well-mixed conditions in the PBL. The 
dry and wet seasons in (b) are the climatological seasons calculated with the TRMM dataset described in Section 2.1
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classification in Saleska et al. (2009), the EC-NEE amplitude at ATTO 
falls close to the sites where Reco is the most important factor.

From the ΔCO2obs−bio
 perspective, Reco can be important from 

March to July, when EC-NEE and ΔCO2obs−bio
 are in phase. Further in-

spection of the local processes at ATTO indicates that Reco correlates 
significantly with EC-NEE (r = 0.55, p-value < 0.01). Furthermore, 
river CO2 evasion (Figure 3d) could also contribute to ΔCO2obs

, mainly 
from April to July, with a peak contribution of 1.7 ppm in May and 
June. Simulated aquatic CO2 signals are in phase with water levels 
as shown by the Equivalent Water Height anomalies. We consider 
this timing realistic, as CO2 evasion from rivers and floodplains is 
enhanced at high water stages (Richey et al., 2002; Amaral et al., 
2020), due to larger inundation areas and an increased water depth 
that leads to more respiration in the water column (Devol et al., 
1995; Forsberg et al., 2017). Considering that the tower's STILT foot-
print during MJJ covers the main branch of the Amazon River (see 

Figure 1), we believe aquatic signals play an important role when 
interpreting the seasonal cycle of CO2 measurements at ATTO.

GPP was found to be negatively correlated with EC-NEE but 
not significantly (r = −0.14, p-value = 0.21). Therefore, the offset 
of photosynthesis by Reco suggests that the first is less important 
for ΔCO2obs−bio

 at the local scale. Nevertheless, the local processes 
controlling GPP during the dry and wet seasons are worth high-
lighting here. The gradual rise in GPP during the dry season is 
driven by increasing light availability and a younger age distribu-
tion of leaves in the canopy (Figure 3c). Note that PAR increases 
simultaneously with a decline in the old class of leaf area index 
(LAI) and the increment of the mature and young LAI classes. Such 
leaf demography dynamics are similar to what Wu et al. (2016) 
showed for other sites in Amazonia, and consistent with the dry 
season green-up reported by several in-situ (Restrepo-Coupe 
et al., 2013; Lopes et al., 2016) and regional (Huete et al., 2006; 

F IGURE  3 Mean seasonal cycle of the 
observed CO2 regional signal ΔCO2obs

 and 
ΔCO2obs−bio

, together with monthly box-
and-whisker plots of the eddy-covariance-
derived NEE (EC-NEE) flux are shown in 
(a). Note that the EC-NEE includes the 
storage flux and the means are shown 
as triangles connected by a dotted 
line. Averaged seasonal cycles of Gross 
Primary Productivity (GPP) and ecosystem 
respiration (Reco) (b) and of Photosynthetic 
Active Radiation (PAR) together with the 
age classes of Leaf Area Index (LAI) (c). 
In (d) the monthly mean precipitation 
from the TRMM dataset (1998–2019), 
the STILT-simulated averaged seasonal 
signal of CO2 [ppm] evasion from rivers 
(see Table 2 to see input fluxes used in 
STILT) and the EquivalentWater Height 
anomalies from the Gravity Recovery and 
Climate Experiment (GRACE) are shown 
(all available at: https://grace.jpl.nasa.gov/
data-analy​sis-tool/. Last access: February 
02, 2021). The area over which the 
GRACE data were integrated is marked 
with a purple square in the small inset on 
the lower right of (d). The markers in (a) 
and (b) are shifted to improve visibility 
and all the error bars represent the 
monthly standard deviation. The shaded 
areas in the background highlight the wet 
(February–June) and dry (July–November) 
seasons. The dry and wet seasons are 
the climatological seasons calculated 
with the TRMM dataset described in 
Section 2.1

https://grace.jpl.nasa.gov/data-analysis-tool/
https://grace.jpl.nasa.gov/data-analysis-tool/
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Doughty et al., 2019), studies. Moreover, Wu et al. (2016) demon-
strated that mature leaves are the most light-use efficient with the 
highest photosynthetic capacity (mol CO2  mol−1 photon−1) of all 
leaf age classes. Thus, the seasonal shift in LAI age classes pro-
duces a younger age composition of the canopy relative to the wet 
season, which on average has a higher photosynthetic capacity per 
leaf area (Wu et al., 2016; Albert et al., 2018). In addition, reduced 
GEP (interpreted here as GPP) for June and July was reported by 
Restrepo-Coupe et al. (2013) and Wu et al. (2016) for equatorial 
sites (e.g., Tapajós National Forest (K67), Cuieras Reserve (K34), 
and Caxiuana National Forest (CAX)).

3.1.2  |  Drivers of inter-annual variability

Although our CO2 time series is rather short for inferring inter-
annual patterns, we present the response of ΔCO2obs

 and ΔCO2obs−bio
 

to the 2015–2016 El Niño-induced drought (Figure 4a). Interestingly, 
the standardized anomalies of ΔCO2obs

 and ΔCO2obs−bio
 follow the same 

pattern, suggesting that the inter-annual variability is controlled by 
the vegetation signal and that contributions of rivers, fires, fossil 
fuels, and ocean are negligible at this scale. For this reason, in the 

rest of this Section, we refer to ΔCO2obs
 only, but the findings apply 

equally to ΔCO2obs−bio
.

The >+1σ anomaly of ΔCO2obs
 in MJJ coincides with the onset 

of the El Niño, which started in June of 2015, with values above 1 
according to the Multivariate El Niño Index (MEI) (Figure 4b). In the 
dry season of the same year (ASO), we observe a −1σ anomaly, illus-
trating a variable response of ΔCO2obs

 to El Niño in 2015. In contrast, 
in 2016, our observations reveal two >+1.5σ anomalies, centered in 
the wet and dry seasons. Note that El Niño lasted until May in 2016, 
but the effects in ΔCO2obs

 seemed to persist well into the dry season 
of 2016.

It is interesting to note that the local EC-NEE (Figure 4a) anom-
aly is not always in phase with that of ΔCO2obs

. In 2015, the EC-NEE 
anomaly was in opposite sign to that of ΔCO2obs

 during MJJ and ASO, 
while in 2016 they followed similar patterns. Such differences in 
phase between EC-NEE and ΔCO2obs

 anomalies suggest that in 2015 
the effects of El Niño at the EC-NEE scale were apparent only after 
ASO, whereas in the ΔCO2obs

 record it was already evident in MJJ. 
Therefore, the 2015 anomalies appear to be driven by a non-local 
(i.e., larger than the EC-NEE footprint) response to the El Niño. In 
contrast, the contribution to the positive anomalies in 2016 appears 
to be both at the local and non-local scales.

F IGURE  4 Standardized anomalies of ΔCO2obs−bio
, ΔCO2obs

, and EC-NEE (a) averaged over 3-month periods, calculated against the 2014–
2019 period, centered on the wet (FMA) and dry (ASO) seasons, with transition periods in between (MJJ and NDJ). The error bars denote 
the standard deviation for each season, calculated before aggregating to the seasonal mean. Thus, it shows the internal variation of each 
season for each year. In (b) the bi-monthly Multivariate El Niño index shows the strength of the El Niño event as measured by five different 
variables and aggregated in one index (data obtained from: https://psl.noaa.gov/enso/mei/; accessed on June 10, 2020), with values higher 
than 0.5 corresponding to a strong El Niño event. In the last panels, we show monthly standardized anomalies of air temperature at 81, 26, 
and 4 m and soil temperature at 20 and 40 cm (c), soil moisture at 10, 40, and 100 cm in (d), and precipitation (e). Soil moisture, air, and soil 
temperature were measured at the ATTO site. Precipitation is taken from the TRMM dataset (1998–2019)

https://psl.noaa.gov/enso/mei/
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The variable response of the ΔCO2obs
 anomalies in 2015 is marked 

by an erratic behavior, showing opposing signs in MJJ (+) and ASO (−). 
The MJJ event is driven by an above average value in July, whereas 
that in ASO is pulled down by a negative value in September and 
October (not shown). Our eddy covariance data suggest that the 
ΔCO2obs

 positive anomaly in July cannot be attributed to a local 
source of carbon, as the EC-NEE (see Figure S5) for 2015 was within 
the seasonal variability of the 2014–2019 record. The negative 
anomaly in ASO cannot be explain by local factors either. A reduc-
tion in the observed CO2  mole fractions due to a deeper bound-
ary layer height, a 15% increase with respect to 2014 as shown by 
Carneiro and Fisch (2020), is likely but non-local factors are yet to be 
studied. Interestingly, the GPP reductions in 2015 reported in Koren 
et al. (2018) and van Schaik et al. (2018) for the region that overlaps 
with our MJJ footprint (i.e., Region B in that study) have an onset in 
October, failing to explain our July observation and indicating that 
the effect of the extreme heat and drought had a late onset at ATTO.

The positive anomaly in ΔCO2obs
 during the dry season of 

2016 has local and non-local contributions. Locally, a source of car-
bon in our EC-NEE record, driven by a higher than normal Reco (Figure 
S5), can explain the ΔCO2obs

 2016-ASO anomaly. Non-local drivers of 
this anomaly are attributed to a drought legacy effect (Kannenberg 
et al., 2020) that has been already characterized by Koren (2020) 
using atmospheric inverse modeling and remote sensing. Koren 
(2020) reported basin-wide positive anomalies in top-down-NEE 
and reductions in remote sensing proxies for GPP in the dry season 
of 2016. Persistent soil moisture depletion following the 2015–2016 
El Niño was put forward as a potential mechanism driving this leg-
acy drought. A contributing factor to this 2016-dry-season anomaly, 
based on the results by Wu et al. (2016) and Gonçalves et al. (2020), 
is that drought in 2015 caused some trees (approximately 15%) to 
undergo an anomalous leaf flush in March 2016 (see Figure S6). This 
precocious flush altered the normal leaf age distribution over the 
following months such that the abundance of photosynthetically ef-
ficient mature-stage leaves (2–6 months of age) was spread out over 
a longer period.

The meteorological effects of El Niño at local scale were mea-
sured later in 2015. Positive anomalies in air temperature within 
and above the canopy together with soil temperature (Figure 4c) 
reached values close to +2σ from November of 2015 to February 
of 2016. The negative soil moisture anomalies in the last 4 months 
of 2015 were driven by the negative precipitation anomalies during 
the same time (Figure 4d,e). The soil moisture anomalies at 40 cm 
and 100 cm bounced back to values higher than −1σ in March 2016. 
However, even when precipitation returned to close-to-climatology 
values in February and March 2016, soil moisture at 10 cm depth 
did not fully recover until late 2016. This pattern shows a fast re-
covery in deep soil moisture compared to a persistent (<−1σ) soil 
moisture anomaly at 10 cm depth. The re-wetting of deeper layers, 
together with a still high soil temperature anomaly at 20 and 40 cm 
depth, could have reactivated heterotrophic respiration leading to 
above-average soil respiration rates during the wet season of 2016 
(see Figure S5).

The ΔCO2obs
 anomalies in the transition months of NDJ in 2018 

and 2019 occurred in the absence of a large-scale climate-driven 
phenomenon. Based on the EC-NEE response, it seems that both 
ΔCO2obs

 anomalies are due to non-local signals. During the 2018-
NDJ event, all meteorological variables (air temperature, soil mois-
ture and temperature, and precipitation) were within the 1σ range. 
To interpret the signals in 2019, it is worth mentioning two aspects. 
First, the 2019-NDJ average contains values only for November and 
December, as January data were not yet available at the time of writ-
ing. Second, the year 2019 was characterized by widespread fires 
driven by deforestation which began early in the year (Barlow et al., 
2020). Thus, we suggest that the 2019-NDJ positive anomaly could 
have a contribution from fires, but the magnitude could be reduced 
when the January average is included.

3.2  |  STILT tagged tracer simulations

3.2.1  |  Simulated CO2 and spatial distribution at 
seasonal scale

At the ATTO site, a clear seasonal variation of the footprint through-
out the year (Figure 5a) can be observed, consistent with the large-
scale atmospheric circulation of the intertropical convergence zone 
(ITCZ) previously described in Andreae et al. (2012) and Pöhlker et al. 
(2019). The seasonal atmospheric circulation affects the mole frac-
tions measured at ATTO by varying the areas of near- and far-field 
influence of the surface fluxes and also the origin of the background 
air masses. In general, during the wet season, ATTO is located to the 
north of the ITCZ and is under the influence of the air coming from 
the Northern Hemisphere (NH), whereas during the dry season, the 
station is located south of the ITCZ, and thus the long-range trans-
port is from the Southern Hemisphere (SH) (Andreae et al., 2015). 
It is worth highlighting that during MJJ and ASO the main branch 
of the Amazon River is well covered by the 50th and 75th footprint 
percentiles.

The different NEE fluxes used as inputs in STILT show large spa-
tial variability among them (Figure 5b–d). While CTE2020 and CT-
SAM-Flask follow a similar spatial pattern, CT-SAM-OCO2 tends to 
predict a larger source of carbon to the atmosphere in MJJ. When 
comparing the bottom-up fluxes (Figure 5e–f) to those resulting 
from atmospheric inversions, it is clear that the former shows a 
stronger sink, which is particularly visible in the FLUXCOM data. 
The main differences between FLUXCOM and VPRM are the source 
regions in NDJ and ASO, more pronounced in FLUXCOM than in 
VPRM. Despite the aforementioned differences, in the core of the 
dry season (ASO), all products are consistent (with varying extent 
and magnitude) in the source regions in northeastern Brazil, in the 
states of Ceará, Pernambuco, Bahía, Piauí and Tocantins (see Figure 
S7 for the names and locations of the northeastern states of Brazil).

We find that none of the simulations accurately capture the am-
plitude of ΔCO2obs

. Only in the case of FLUXCOM, does the shape 
of the seasonal cycle show a decline in the dry season and a wet 
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to dry season increase similar to the pattern observerd at ATTO. 
The latter increase is also better predicted if the original product 
is augmented with additional fluvial fluxes (compare both panels in 
Figure 6). However, FLUXCOM-driven mole fractions predicted by 
our model are constantly lower than our measurements by 5 ppm, 
indicating a strong and persistent uptake of CO2 (negative NEE) as 
shown in Figure 5. Such a strong sink was expected, as this product 
was previously found to have a too strong tropical carbon sink, due 
to a mixture of systematic biases in the eddy-covariance data used 
in upscaling, and the lack of site history effects on NEE (Jung et al., 
2020). ΔCO2sim

 based on VPRM, CTE2020, CT-SAM-Flask, and CT-
SAM-OCO2 fluxes show a very different seasonal cycle than ΔCO2obs

,  
showing an earlier and more rapid drop to a minimum in July. In 
terms of the amplitude of the seasonal cycle, VPRM predicts the 
largest with 5.94  ppm, followed by CTE2020 with 5.88  ppm, CT-
SAM-OCO2 with 5.07  ppm, CT-SAM-Flask with 4.94  ppm, and fi-
nally FLUXCOM with 3.21 ppm. The last two are the closest to the 
observed ΔCO2obs

 of 4.14 ppm.
The accuracy of the VPRM simulations was worse than expected 

considering that the model parameters were calibrated using eddy co-
variance measurements at several sites within Amazonia (Mahadevan 
et al., 2008). We find that the dry season increase in VPRM-ΔCO2sim

 
could be triggered by increasing simulated Reco associated with in-
creasing temperature. VPRM represents Reco as a linear function of 
temperature and does not include the effects of moisture (Mahadevan 
et al., 2008). Furthermore, the decrease in VPRM-ΔCO2sim

 from May 
to July, which anticipates that of ΔCO2obs

 by a month, could also be 

associated with the lack of moisture effects in Reco. Note that the eddy 
covariance Reco is higher than GPP from May to June in Figure 3b, sug-
gesting an overall source of carbon to the atmosphere.

3.2.2  |  Simulated inter-annual variability and tracer 
contribution

In general, the observed inter-annual variability is not well captured 
by our STILT simulations (Figure 7a). In particular for the 2015 and 
2016 anomalies associated with El Niño, the simulations show either 
an anticipation of the anomaly (i.e., 2015-NDJ) or output a signal 
with an opposite sign (i.e., 2016-ASO). Despite the spread between 
models in 2014-MJJ, 2015-MJJ, and 2018-FMA, it is worth high-
lighting the general agreement between them, not only in 2015-NDJ 
and 2016-ASO, but also in 2017-ASO, 2018-ASO, 2019-ASO, and 
2019-NDJ. The latter indicates that the disagreement between sim-
ulations is largest in the first part of the year, in which the influence 
of river CO2 is predicted to be highest.

The influence of rivers, fires, fossil fuel emissions, and ocean 
fluxes on the simulated CO2 signal is very small compared to that of 
NEE (Figure 7b–e). Note that the simulated NEE contribution in gen-
eral tends to show a sink of CO2, mainly in the transition from wet to 
dry seasons, in contrast to ΔCO2obs

 and ΔCO2bio
. For the ΔCO2bio

 , the 
signal from rivers, fires, fossil fuels, and ocean was subtracted, which 
did not change the seasonal pattern when compared to ΔCO2obs

 . 
Rivers contribute with 1 to 2 ppm depending on the month of the 

F IGURE  5 Seasonally averaged 
concentration footprint (row a) for the 
inlet level of 80 m. These footprints were 
calculated with the output of hourly 
simulations of the STILT model covering 
the 2014–2019 time period. The first 
column in row (a) shows the regional 
context of the footprints and highlights 
the area shown in the rest of the panels. 
The ATTO site is indicated with red 
marker. In the rest of the panels, the 
location of the research site is indicated 
by the intersection of the parallel and 
meridian lines. NEE fluxes are shown in 
rows b–f
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year. Note that the spatial resolution of the gridded flux for rivers is 
coarse (1° × 1°) and we have used a monthly climatology from Hastie 
et al. (2019) in STILT; thus, the variable magnitude from year to year 
in the river tracer is mainly due to atmospheric transport. Fires and 
anthropogenic emissions (fossil fuels in equations 1 and 2) add up to 
a contribution ranging from 0.2 to 0.4 ppm, concentrated in the dry 
season. The ocean is the least significant tracer component, contrib-
uting less than 0.1 ppm to the regional signal, reaching the highest 
values during NDJ. These simulations highlight the relevance of CO2 
evasion at the ATTO site.

When evaluating the model performance at a monthly scale, the 
CT-SAM-OCO2 simulation was the best, with an RMSE of 4.15 ppm. 
Note that the CT-SAM-OCO2 simulations were performed only for 
3 years (i.e., 2015–2017). The VPRM and the CT-SAM-Flask followed 
with RMSE values of 4.21 ppm and 4.63 ppm, respectively. CTE2020 
and FLUXCOM had higher RMSE values with 4.96 ppm and 5.6 ppm. 
These RMSE scores are indicative of regional fluxes not covered by 
our footprints or the LBC, or from differences in vertical transport 
between the STILT model used for the footprints relative to the 
TM5 model (used in CarbonTracker).

4  | DISCUSSION

4.1  | Decomposing the �CO2obs
 signal

We showed that ΔCO2obs
 is controlled by local and non-local fac-

tors. The phase match/mismatch at seasonal and inter-annual scales 
between EC-NEE and ΔCO2obs

 was described as an indicator of the 
different spatial extents driving ΔCO2obs

. Among the local factors 
analyzed was EC-NEE, which was partitioned into GPP and Reco to 
better understand the underlying processes contributing to the local 
net flux. GPP and Reco presented a considerable seasonal variation, 
mainly characterized by a Reco-dominated wet season and a late dry 
season increase in both GPP and Reco. Seasonally, we found that EC-
NEE was mainly controlled by Reco. However, it is worth mentioning 
that when leaving 2015 and 2016 out of our analysis, we see a clear 

sink in the EC-NEE during the dry season. In contrast, focusing only 
on 2015 and 2016, we observe a suppression of GPP during the dry 
season and EC-NEE shows a sustained source as Reco is always larger 
than GPP. Therefore, seasonally, we observed a larger role of Reco 
and a clear effect of the 2015–2016 El Niño in GPP, Reco, EC-NEE, 
and ΔCO2obs

 (see Figure 8).
At a more regional scale, the effects of the 2015–2016 El Niño-

induced drought in Amazonia have been studied from multiple per-
spectives. The immediate effects of the drought (namely occurring 
in 2015 and 2016) caused reductions in GPP (Liu et al., 2017; van 
Schaik et al., 2018) (in line with our local measurements) and sun-
induced fluorescence (SiF) (Koren et al., 2018; Castro et al., 2020). 
The study of Castro et al. (2020), which described the effect of the 
2015–2016-El Niño event on SiF across the Amazon basin, sheds 
light on the variable response of vegetation to drought. At the re-
gional scale, they found a widespread reduction in SiF, yet at the 
eco-region scale where ATTO is located, SiF reductions were com-
paratively less. However, Doughty et al. (2021) found positive anom-
alies in SiF and GPP at the Amazon basin scale and at the grid cell 
in which ATTO is located. Therefore, the debate about the sign of 
the anomaly in 2015 remains open. The effects of the 2015–2016 
El Niño drought caused long-term impacts on vegetation, Wigneron 
et al. (2020) found that the aboveground carbon stocks did not 
recover until 2017. Furthermore, top-down studies of previous 
droughts (Gatti et al., 2014; van der Laan-Luijkx et al., 2015) have 
shown that the Amazon carbon budget can turn from almost neutral 
in a wet year (i.e., 2011), into a source during drought (i.e., 2010). 
A reduction in biospheric uptake and an increase in CO2 fire emis-
sions were suggested as the main causes for the regional response 
in 2010, which was well captured by widespread aircraft measure-
ments of CO2 concentrations over the basin. Given these previous 
findings, local/non-local GPP reductions, long-term vegetation ef-
fects and fire emissions are factors that can in principle influence 
ΔCO2obs

, in addition to the role of Reco and river signals, which were 
presented in our results. However, for the present study, we found 
that even during the 2015–2016-El Niño the fire contribution to the 
local measurements was very small (see Figure 7), yet we do not rule 

F IGURE  6 Mean seasonal cycle of the regional signal for each of the simulated (ΔCO2sim
) and observed (ΔCO2obs

) mole fractions of CO2 
On the left panel, the simulations using bottom-up NEE fluxes (i.e., VPRM and FLUXCOM) include the river signals. On the right panel, river 
signals are not included in the bottom-up NEE fluxes, shown with a dashed line. The error bar in the observations represents ±1 σ. For the 
simulated and observed mole fractions, we selected only daytime values (i.e., 13:00–17:00 LT) to ensure well-mixed conditions in the PBL. 
The dry and wet seasons are the climatological seasons calculated with the TRMM dataset described in Section 2.1
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out that this can be more important in the future, with a possible 
expansion of the agricultural frontier within the ΔCO2obs

 footprint.
The differential response of vegetation within the seasonally 

changing footprint is an important non-local driver of ΔCO2obs
 that 

is worth discussing further. We have already mentioned the findings 
of Castro et al. (2020) in which they showed substantial variability 
of SiF at the eco-region scale. However, within the ATTO eco-region 
the SiF reductions were not as large as those regionally, which is in 
contrast to the effect of the 2015–2016-El Niño on GPP at ATTO, 
which showed a notable reduction in 2015 (see Figure S5). This ap-
parent discrepancy remains to be studied further; however, some 
plausible hypotheses are a nonlinear behavior between SiF and GPP 
caused by extreme heat and drought (Martini, D. 2021 personal com-
munication) in 2015 or that the GPP reduction observed at ATTO 
was a local phenomenon within the eco-region used in Castro et al. 
(2020). Nevertheless, Doughty et al. (2021) showed a linear relation-
ship of GPP and SiF at different spatial scales, so the discrepancy 

of our eddy tower GPP with both SiF studies remains to be studied 
further.

Now, shifting to a more seasonal perspective, sites at the 
Tapajós National Forest (K67 and K83) and Caxiuanã (CAX) show 
a dry-season increase in GPP, which is driven by leaf age and not 
by seasonal LAI (Wu et al., 2016). It is interesting that at ATTO we 
observe this dry-season GPP increase on the mean seasonality, yet 
the amplitude of EC-NEE is different at all sites, being larger at the 
Tapajós sites followed by ATTO, CAX, and K34 (Saleska et al., 2009). 
At the sites with larger EC-NEE amplitude, the role of Reco modu-
lating the EC-NEE is more important, which, in turn, is determined 
by the annual average rainfall as shown by Saleska et al. (2009). A 
further example of regional heterogeneity is given by the study of 
Restrepo-Coupe et al. (2013), in which they showed that sites where 
the dry season is very long or the soil is shallow, GPP does not in-
crease during the dry season. This is the case for Rondônia, which 
has a long dry season similar to the Tapajós sites but with a shallow 

F IGURE  7 Standardized anomalies of ΔCO2obs
 and the simulated tracers in STILT (a) averaged over 3-month periods, calculated against 

the 2014–2019 period and centered on the wet (FMA) and dry (ASO) seasons, with transition periods in between (MJJ and NDJ). The error 
bars denote the standard deviation for each season, calculated before aggregating to the seasonal mean. Thus, it shows the internal variation 
of each season for each year. Note that CT-SAM-OCO2 is not shown here since we did not have enough simulated years to calculate an 
anomaly. The climatological standard deviation used for the standardization is shown in Figure S8. The monthly contribution of simulated 
NEE, ΔCO2obs

 and ΔCO2bio
 is shown in (b). ΔCO2bio

 = ΔCO2obs
 - (river; ff; fires; ocean). In (c), (d), and (e), the contribution of rivers, oceans, fires, 

and fossil fuels are shown. Note the different scales on the y-axis
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rocky soil, while Tapajós has deep soil which buffers the water avail-
able to plants (Nepstad et al., 2007).

The seasonal patterns of Reco can be grouped into water-limited 
and oxygen-limited sites (Saleska et al., 2009). Water-limited sites, like 
the one in the Tapajós National forest (Saleska et al., 2003; Hutyra 
et al., 2007), exhibit dry season declines of Reco as a result of an in-
hibited heterotrophic respiration due to a long dry season length that 
leads to the desiccation of decomposition sources near the surface 
(Saleska et al., 2003). The soil component of Reco at oxygen-limited 
sites is inhibited with increasing soil moisture content, which is the 
case for K34 (Chambers et al., 2004). Our results suggest that the Reco 
at ATTO follows an oxygen-limited regime with a MAP of 2383 mm 
yr−1 despite having a relatively long dry season length (3 months, see 
Table 1). Note that when including 2015 and 2016 in our analysis, Reco 
does not show an increase in October, being suppressed during the 
dry season (see Figure 8). Therefore, the response of Reco to distur-
bance at ATTO is in contrast to what was reported by Davidson et al. 
(2004) after a rainfall exclusion experiment for another site located 
on clay-dominated soil, where no significant effect was found.

One of the novelties of our study is the use of results from the 
recently developed model (ORCHILEAK) for aquatic CO2 evasion in 
Amazonia (Hastie et al., 2019) as an input in our atmospheric trans-
port simulations. We have shown that the seasonal peak of ΔCO2obs

 
in June and July is influenced by a net carbon source driven by Reco 
and the CO2 evaded from rivers. The aquatic signal peaks in May 
and June (Figure 3), just when the ΔCO2obs

 footprint covers the main 
branch of the Amazon River, including its delta (see MJJ in Figures 
1 and 5). Therefore, we suggest that the ΔCO2obs

 maximum in June 
has a larger contribution of CO2 from rivers, while in July Reco could 
be more relevant in the ΔCO2obs

. We furthermore highlight that by 
adding aquatic CO2 signals to FLUXCOM-ΔCO2sim

: The shape of the 
seasonal cycle is closer to that of ΔCO2obs

, indicating that aquatic 
CO2 evasion is important to correctly represent the seasonal cycle 
of CO2 mole fractions at ATTO.

A full error propagation from the river flux fields to our simu-
lated tracer is out of the scope of this study. However, we provide an 

estimate for the relative error of about 35% for the river flux fields, 
which scales linearly to our simulated river signals. This estimate was 
based on Hastie et al. (2019), specifically the annual CO2 evasion of 
746 (526–998) Tg C per year. It is important to note that this rel-
ative error has to be interpreted with caution, as our atmospheric 
transport model (STILT) has a higher spatial resolution and the foot-
prints do not cover the entire basin as the ORCHILEAK model does. 
This model represents an important advance in coupling the terres-
trial carbon cycle with the lateral forest-river continuum, though 
the additional sources of uncertainty can be highlighted here. In 
ORCHILEAK, the carbon sources of the CO2 degassed from aquatic 
surfaces are attributed to (1) dissolved organic carbon (DOC) and 
dissolved CO2 transported laterally from the upland soil and (2) de-
composition of submerged organic carbon and litter and respiration 
of submerged roots in wetlands and rivers (see Lauerwald et al. 
(2017) and Lauerwald et al. (2020)). Lateral transport from upland 
soil (1) is important for small streams (Johnson et al., 2006, 2007), 
which are lacking in ORCHILEAK. In addition, the lack of aquatic 
plants in ORCHILEAK introduces uncertainty in (2). Including small 
streams and aquatic plants in ORCHILEAK would enable the model 
to better simulate CO2 evasion from aquatic habitats.

4.2  |  Fluxes are the major source of error in STILT 
simulations

Our study is the first to use the CO2 ATTO record to independently 
evaluate optimized and non-optimized gridded NEE fluxes when 
transported in the atmosphere. From this evaluation, we highlight 
two main important findings. The first is that none of the simula-
tions, including the ones using optimized fluxes, accurately repro-
duce the seasonal cycle of the observed signal (ΔCO2obs

), which 
represents the regional flux and atmospheric transport influence. 
ΔCO2obs

 is almost always lower than the background inflow, indicat-
ing a sustained regional sink of CO2. The second is the importance of 
river CO2 signals at ATTO when interpreting the CO2 measurements 

F IGURE  8 Regional CO2 signal (ΔCO2obs
 ) and EC-NEE averaged over non-ENSO years (2014, 2017–2019) (a) and ENSO years 2015–2016 

(b). In (c) and (d), the same time periods are shown but for GPP and Reco
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and simulated biospheric signals. We showed that the phase of the 
seasonal cycle is better captured by FLUXCOM only when adding 
river signals (Figure 6), and that the amplitude of the seasonal cycle 
is overestimated by 0.8–1.8 ppm (CT-SAM-Flask and VPRM).

We attribute the incapability of our system to accurately sim-
ulate ΔCO2obs

 mainly to errors in the input fluxes, which fail to cap-
ture the seasonal variability of NEE in the footprint area. Dynamic 
vegetation models are known to have difficulties simulating the 
seasonality of carbon fluxes in the equatorial (5°S–5°N) band of 
Amazonia (Verbeeck et al., 2011; Restrepo-Coupe et al., 2017), but 
here we show that even when NEE of a process-based model (such 
as SiBCASA) is optimized with different data streams (using surface 
CO2 observations CTE2020, additional aircraft profiles within the 
Amazonia CT-SAM-Flask and, satellite columns CT-SAM-OCO2), it 
does not capture the seasonality of ΔCO2obs

 sampled at ATTO. This 
finding is similar to that of Molina et al. (2015), in showing the dif-
ficulties of reproducing the seasonal cycle of NEE after an atmo-
spheric inversion, but we further show the remaining challenges of a 
denser observational network, which could either be aircraft profiles 
(e.g., CT-SAM-Flask) within Amazonia or satellite columns (e.g., CT-
SAM-OCO2). A still limited observational coverage, even with the 
aircraft network and the OCO2 columns, is perhaps one of the main 
remaining challenges.

The mismatch between the optimized fluxes and ΔCO2obs
 at inter-

annual scale could be related to an incorrect seasonality in the prior 
NEE flux (i.e., NEE before optimization), but also to the frequency 
and spatial distribution of observations used in the assimilation. For 
CTE2020, CT-SAM-Flask, and CT-SAM-OCO2, the same prior model 
is used (i.e., SiBCASA), but different data streams are assimilated. 
Tests indicate that the use of the same NEE prior leads to a sim-
ilar shape of the seasonal cycle in the posterior NEE (not shown) 
and thus the ΔCO2sim

 in this study, regardless of the data assimilated 
for the optimization. Furthermore, the effects of temperature, soil 
moisture, and precipitation anomalies in the underlying prior bio-
sphere models (in particular for VPRM and SiBCASA) could produce 
inaccurate vegetation NEE responses in terms of timing and/or sign. 
This could result in NEE fluxes with either an early too strong source 
(i.e., 2015-NDJ) or the opposite in sign in the same month possibly 
due to an enhanced uptake (i.e., 2016-ASO).

This study is the first time that the FLUXCOM NEE product has 
been evaluated using atmospheric transport to obtain CO2  mole 
fractions at a particular site in the tropics. Interestingly, we found 
similar inter-annual patterns in ΔCO2sim

 to those using the optimized 
fluxes, but not with the observations. Jung et al. (2020) found a con-
sistency in NEE anomalies between FLUXCOM and atmospheric in-
versions at global scales, and here we show that this finding holds at 
regional scales when using FLUXCOM in simulations of atmospheric 
CO2. According to Jung et al. (2020), the reasons for the global con-
sistency between FLUXCOM and atmospheric inversions are as 
follows: (1) a spatial compensation of processes that are not well rep-
resented by the underlying model formulations and (2) the tendency 
of such models to be more sensitive to temperature signals, which 
are more important at larger spatial scales, as discussed in detail by 

Jung et al. (2017). Here we suggest that the spatial scale of our anal-
ysis can still suffer from the weaknesses listed above. In particular, 
note that the temperature sensitivity can be spotted by comparing 
Figures 4a and 7a; the bottom-up and top-down simulations con-
verge in a 2σ anomaly in 2015-NDJ, coinciding with temperature 
anomalies of similar magnitude.

Inter-annual drought-induced impacts on vegetation in Amazonia 
can include shifting carbon allocation from the canopy to fine roots 
following drought (Doughty et al., 2014), reduced growth due to 
water stress and warm temperatures (Clark et al., 2010), prioritiz-
ing growth at the expense of maintenance and defence (Doughty 
et al., 2015), and increased tree mortality (da Costa et al., 2010; 
Wang et al., 2012) together with reduced vegetation productivity 
(Feldpausch et al., 2016). In addition to the mechanisms listed above, 
the implementation of the different seasonal phenological stages (as 
shown in Figure 3 but also by Restrepo-Coupe et al. (2013), Lopes 
et al. (2016) and Wu et al. (2016)) needs to be improved in dynamic 
vegetation models as well as in process-based biosphere models, to 
produce more accurate NEE and thus ΔCO2sim

 estimates. Improving 
the sensitivity of tropical vegetation in dynamic vegetation models 
to water availability could also reduce the disagreement between 
top-down and bottom-up estimates for the global carbon budget 
(Bastos et al., 2020).

Atmospheric transport uncertainties are also a source of errors 
in our simulations, mainly associated with the model's capability to 
resolve moist (deep) convection (Betts et al., 2009), vertical mixing 
within the boundary layer (Gerbig et al., 2008), and advection (i.e., 
wind speed and wind direction) correctly. The seasonality of con-
vection in STILT shows more activity during the wet season (FMA) 
over the footprint area, consistent with the timing of convective 
events reported by Horel et al. (1989). Therefore, the probability 
of a particle being captured by an updraft or downdraft is higher 
during the wet season. We are aware that errors in representing 
deep convection could lead to a potential bias in the turnover time 
of the air between the mid and upper troposphere and the bound-
ary layer. We acknowledge this limitation, but if present, such a bias 
is more likely to occur in the wet season. STILT is as good as the 
driving meteorological fields and their ability to capture convective 
events. Convection is a sub-grid process that can impact the ability 
of Eulerian models to reproduce tracer transport at the mesoscale 
in Amazonia (Beck et al., 2013) and it can also be triggered by small-
scale processes (Burleyson et al., 2016), which present difficulties 
for their representation in atmospheric transport models. Thus, 
using higher spatial resolution driving fields, such as ERA5 (C3S, 
2017), is expected to improve the model's representation of convec-
tion, as shown specifically for Lagrangian models by Hoffmann et al. 
(2019). To reduce vertical mixing errors, we filter both the STILT sim-
ulations and the observations, so as to obtain only afternoon values 
(13:00–17:00 LT) (see in Figure S4 the convergence of simulated and 
observed CO2 in the afternoon).

Moreover, to evaluate advection errors at the receptor height 
(80  m), we compared local wind speed and direction measured at 
ATTO with the simulated quantities. We found a small bias in wind 
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speed (−0.08  m s−1) and a moderate bias in wind direction (−39°). 
However, when evaluating directly the errors of the driving mete-
orological winds using three afternoon (14:00 LT) radiosondes at 
ATTO, we found that they decrease with height (Figure S9). This in-
dicates that as the particle trajectories reach higher elevations, the 
error tends to decrease; the particle height after 2 days of back tra-
jectory was on average 1400 m. A study using a Lagrangian model 
to evaluate the role of the Amazon Basin moisture in the hydrolog-
ical cycle (Drumond et al., 2014) supports the orientation of the 
footprints shown here. Drumond et al. (2014) show that moisture 
sources in Amazonia during the austral summer are coming from the 
tropical North Atlantic Ocean, which is in line with our footprints for 
NDJ and FMA. Overall, given these findings, we conclude that the 
errors in fluxes are much larger than those in transport.

5  |  CONCLUSIONS AND OUTLOOK

In this study, we presented and analysed the first 6 years of the CO2 
record from the Amazon Tall Tower Observatory. Using a Lagrangian 
atmospheric transport model, we evaluated how well we could re-
produce the observed CO2 concentrations at ATTO. By combining 
atmospheric transport from STILT with a set of different NEE flux 
products, we found that the inversion results were not able to con-
strain the seasonal variability of ΔCO2obs

 in the footprint of the tower 
and very likely at the regional scale. It seems that the optimized prod-
ucts cannot adjust the prior seasonal cycle of NEE regardless of the 
data stream assimilated. Furthermore, we have presented evidence 
of the importance of river CO2 evasion for getting the shape (but 
not the magnitude) of the seasonal cycle when using the FLUXCOM 
product, mainly capturing the increase in ΔCO2obs

 from May to July. 
We have further shown that the main controls of ΔCO2obs

 at seasonal 
and inter-annual scales result from the combined effect of local and 
non-local drivers, which can be inferred by the phase difference in 
EC-NEE and ΔCO2obs

.
This is not the first study to highlight the underlying processes 

that should be better represented in biosphere models, but it is 
the first evaluation of bottom-up and top-down NEE fluxes using 
an independent station with a long-term and continuous record in 
Amazonia. We therefore highlight the potential of the ATTO sta-
tion, and the upcoming 325 m continuous record, as an independent 
validation site for atmospheric transport of CO2 and for regional 
inversion estimates, which we are currently working on. Equally 
important are the seasonal patterns of carbon exchange, ecosys-
tem respiration, and leaf phenology that we have presented here, 
which add to the current body of literature (Saleska et al., 2003; 
von Randow et al., 2004; Hutyra et al., 2007; Baker et al., 2008; 
Restrepo-Coupe et al., 2013; Lopes et al., 2016; Wu et al., 2016) and 
provide in-situ information for constraining the heterogeneity of 
these processes in Amazonia. These findings are of utmost impor-
tance for regional carbon budget assessments, like the RECCAP2 
initiative (https://clima​te.esa.int/en/proje​cts/recca​p-2/). By guiding 
the choice of prior fluxes to estimates with better NEE seasonality, 

improved posterior flux distributions and thus, regional carbon bud-
gets, can be attained.
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