On the role of ribosomal proteins in stress resistance and fitness of *Listeria monocytogenes*

a laboratory evolution approach

Propositions

- Switching between stress resistance and fitness in *Listeria* monocytogenes is possible through ribosomal mutations. (this thesis)
- Lower fitness in stress resistant *rpsU* variants is not caused by SigB activation. (this thesis)
- 3. The finding that certain British birds adapt their beaks to birdfeeders (Bosse et al. (2017) SCIENCE Vol 358, pp. 365-368), indicates that fondness for birds can have unexpected side effects.
- 4. Trying to solve the antibiotic resistance crisis with new antibiotics is a dead-end road.
- 5. A programming language should be offered as a language in high school.
- 6. The use of gloves by operators in food stalls is a food safety risk.

Propositions belonging to the thesis, entitled

On the role of ribosomal proteins in stress resistance and fitness of *Listeria monocytogenes*: a laboratory evolution approach

Jeroen Koomen Wageningen, 18 January 2022

On the role of ribosomal proteins in stress resistance and fitness of *Listeria monocytogenes*

a laboratory evolution approach

Jeroen Koomen

Thesis committee

Promotors

Prof. Dr Tjakko Abee Personal chair at the Laboratory of Food Microbiology Wageningen University & Research

Dr Heidy M.W. den Besten Associate professor, Laboratory of Food Microbiology Wageningen University & Research

Co-promotor

Prof. Dr Marcel H. Zwietering Professor of Food Microbiology Wageningen University & Research

Other members

Prof. Dr M. Kleerebezem, Wageningen University & Research Dr I.L. Bergval, National Institute for Public Health and the Environment, Bilthoven Prof. Dr C. O'Byrne - National University of Ireland, Galway, Ireland Dr M.N. Nierop Groot, Wageningen University & Research

This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences).

On the role of ribosomal proteins in stress resistance and fitness of *Listeria monocytogenes*

a laboratory evolution approach

Jeroen Koomen

Thesis

submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 18 January 2022 at 1:30 p.m. in the Aula

Jeroen Koomen

On the role of ribosomal proteins in stress resistance and fitness of Listeria monocytogenes *a laboratory evolution approach* 180 pages

PhD thesis, Wageningen University, Wageningen, the Netherlands (2022) With references, with summary in English

ISBN 978-94-6447-029-1 DOI 10.18174/557306

Table of contents

Chapter 1	General introduction and outline of the thesis	7
Chapter 2	Determination of spontaneous mutation rates in <i>Listeria monocytogenes</i> food isolates identified a hypermutator strain with an insertion in DNA mismatch repair protein MutS	23
Chapter 3	Gene profiling-based phenotyping for identification of cellular parameters that contribute to fitness, stress-tolerance and virulence of <i>Listeria monocytogenes</i> variants	41
Chapter 4	Amino acid substitutions in ribosomal protein RpsU enable switching between high fitness and multiple-stress resistance in <i>Listeria monocytogenes</i>	83
Chapter 5	Ribosomal mutations enable a switch between high fitness and high stress resistance in <i>Listeria monocytogenes</i>	111
Chapter 6	General discussion	143
	Summary	165
	Acknowledgements	171
	Publications	175
	Training activities	177

1

General introduction and outline of the thesis

Parts of this introduction were previously published as: Impact of pathogen population heterogeneity and stress-resistant variants on food safety. Abee, T., Koomen, J., Metselaar, K.I., Zwietering, M.H., Den Besten, H.M.W., 2016. Annu. Rev. Food Sci. Technol. 7, 439–456. doi:10.1146/annurev-food-041715-033128

General introduction and outline of the thesis

The production of healthy, nutritious, tasty, and safe foods requires efficient strategies to control foodborne pathogens along the food chain. Recent research developments include the implementation of genomics, transcriptomics, and proteomics, that may transform approaches to the detection, prevention, and treatment of foodborne pathogens (Bergholz et al., 2014). These omics-based techniques are already used as research tools to unravel the survival strategies of notorious foodborne pathogens such as Listeria monocytogenes (Arcari et al., 2020; Begley and Hill, 2015; Harrand et al., 2020; Radoshevich and Cossart, 2018). L. monocytogenes is a robust, ubiquitously present foodborne human pathogen and the causative agent of listeriosis (Toledo-Arana et al., 2009). It is well known that microbial variability ensures survival and persistence of pathogens in changing environments. L. monocytogenes is capable of growing and surviving in a wide range of adverse conditions such as low temperature, low pH, and low aw (NicAogáin and O'Byrne, 2016), and has served as a model in a large number of studies that addressed the impact of strain diversity and the role of population heterogeneity in adaptive stress response and survival capacity (Karatzas et al., 2005; Koomen et al., 2018; Metselaar et al., 2013; Van Boeijen et al., 2010; van der Veen and Abee, 2011a; Vanlint et al., 2012). The dynamic response of microorganisms to (changing) environmental conditions depends on the behaviour of individual cells within the population, and this can affect the efficiency of conventional control measures like heat inactivation procedures, and that of nonthermal processes such as high hydrostatic pressure (HHP) treatments. Enhanced survival of resistant subpopulations is reflected in a higher fraction of surviving cells. These resistant subpopulations include so-called persister cells that are more resistant than the majority of cells.

Population heterogeneity and stress resistance

The term persistence is used in this thesis to describe the long-term survival of pathogens in specific environments, including processing plants (Carpentier and Cerf, 2011; Ferreira et al., 2014). Over the past 15 to 20 years, increasing evidence suggests that the persistence of foodborne pathogens such as *L. monocytogenes* in food processing plants for years or even decades is an important factor in the transmission of foodborne pathogens. In addition, *L. monocytogenes* persistence in other food-associated environments (e.g., farms and retail establishments) may also contribute to food contamination and transmission of the pathogen to humans (Ferreira et al., 2014).

Population heterogeneity is an important component of the survival strategy of a microbial population. The long-term success of the population depends on the robustness and fitness of the individual cells (Ryall et al., 2012). Obviously, optimization and validation of (novel) processing strategies is required, and detailed insight into inactivation kinetics is essential, requiring both information about strain heterogeneity (Van Boeijen et al., 2011; 2008; Zwietering et al., 2021), and strain-environment interaction (Chen et al., 2020; Harrand et al., 2019). When a population is uniform, the individual cells within the population have a similar probability per unit of time to be inactivated, and therefore the corresponding inactivation curve follows an exponential decline. When the inactivation curve is plotted on a logarithmic scale, this results in linear inactivation. Inactivation curves can deviate from linearity, and shoulders and tails in inactivation curvatures have been reported (Metselaar et al., 2013; Van Boeijen et al., 2008; Cerf, 1977). Various explanations have been proposed for observed shoulders in an inactivation curve. A shoulder curvature might be caused by organisms being present in clumps, and the length of the shoulder coincides with the time all but one cell in a clump have been killed (Cerf, 1977). Alternately, the shoulder period has been explained by the presence of a critical cellular component that needs to be destroyed before inactivation ensues (Geeraerd et al., 2000) (and references therein). Tailing has been observed for many pathogens upon exposure to different lethal stresses; here, the initial exponential inactivation is followed by a slower decrease. Tailing of inactivation curves has been attributed to heterogeneity in a microbial population with respect to variation in sensitivity of the single cells toward lethal stress. The reduced sensitivity can be attributed to both genotypic and phenotypic diversity, as the enhanced survival of persister cells can be a consequence of a transient phenotypic switch as well as of inheritable mutations (see, e.g., Avery, 2006; Balaban et al., 2004; Van Boeijen et al., 2010; Veening et al., 2008). Previous studies reported the isolation of stable stress-resistant variants derived from L. monocytogenes strains EGDe, LO28, and ScottA (see, e.g., Karatzas and Bennik, 2002; Metselaar et al., 2013; 2015; Rajkovic et al., 2009; Van Boeijen et al., 2011; 2008). The difference between transient and stable stress-resistant variants is summarized in Figure 1.1, together with the method used to isolate these variants.

Figure 1.1: Schematic representation of the stress-resistant variant isolation strategy. (a) Upon exposure to stress, a sensitive wild-type (WT) fraction (SF) and a stress-resistant fraction (RF) can be identified, the latter composed of persister-type WT cells (green) and resistant variants (blue and orange). (b) Approximately 100 colonies are randomly selected from the tail and stored in the freezer. (c) Stress exposure of cultures derived from the approximately 100 stocks enable the identification and quantification of the number of stable stress-resistant variants (SRVs; represented by SRV1 and SRV2) that show enhanced survival compared to WT. (d) Subsequent comparative genome analysis allows for identification of mutations in the SRVs (adopted from Abee et al. 2016).

Mutations drive heterogeneity in bacterial populations

Mutational events are among the main drivers of heterogeneity in bacteria, and are the socalled fuel for adaptation. As such, mutations stand at the origin of the previously described *L. monocytogenes ctsR* and *rpsU* variants (e.g. Metselaar et al., 2013; Van Boeijen et al., 2008). Mutational events, including point mutations, insertions, and deletions, are caused by errors during copying of DNA, and occur spontaneously over time. In addition, mutations can also be generated by the stress-induced activation of repair systems such as the SOSresponse that allows cells to read over specific types of DNA damage, at the expense of an increased risk of mutation (Schlacher and Goodman, 2007; van der Veen et al., 2010).

In a well-adapted system in a constant environment, where proteins are highly optimized to their function, most mutations will be deleterious (Elena and Lenski, 2003; Eyre-Walker and Keightley, 2007; Perfeito et al., 2007), and the rate at which mutations occur is expected to be kept low by population genetic forces (Drake et al., 1998). Especially in stressful environments, this mutation rate is of critical importance for the speed with which populations can adapt. Comparative studies using *L. monocytogenes* wild type(s) and targeted mutants have shown roles for the RecA controlled SOS response, and MutS/MutL

DNA damage repair proteins in maintaining a low mutation rate (Mérino et al., 2002; van der Veen and Abee, 2011b). Although so-called mutator strains with defects in DNA repair systems have been isolated from a number of foodborne pathogens including *Salmonella* spp. and *Staphylococcus aureus*, (Sheng et al., 2020; Wang et al., 2018; Wang et al., 2013) the isolation of mutator strains from *L. monocytogenes* from food or clinical samples has not been reported up to now.

The mechanism of stress resistance

Despite the fact that the presence of stable stress-resistant subpopulations has been clearly demonstrated, the mechanisms behind the increased stress resistance are still not fully understood. Mutations in the class III heat shock repressor *ctsR* were shown to be responsible for the increased HHP and/or heat-resistant phenotype for a selection of *L. monocytogenes* ScottA, EGDe, and LO28 variants (Karatzas et al., 2003; Van Boeijen et al., 2011; 2010). Sequence comparison of wild type (WT) and variants allowed identification of a large number of mutations in *ctsR*, such as single nucleotide polymorphisms, inserts, and deletions. Mutations in *ctsR* can lead to a defect in the repression of a number of chaperone encoding genes like *clpC*, which results in transcription of these stress response genes, with concomitant activation of stress defense, providing increased stress resistance.

Next to HHP and heat treatment, acid stress treatment also resulted in selection of acid stress-resistant variants of *L. monocytogenes* (Metselaar et al., 2015; 2013). Phenotypic characterization of 23 stable acid-stress resistant variants demonstrated that the variants could be clustered in three clusters and four individual variants. The variants showed multiple-stress resistance, with both unique and overlapping features related to stress resistance, growth, motility, biofilm formation, and virulence indicators. Subsequent whole-genome sequencing (WGS) of the variants revealed mutations in *rpsU* that encodes ribosomal protein S21 in those variants that were grouped in the largest phenotypic cluster (11 isolates), whereas mutations in *ctsR* (see above) were not found in any of the acid-stress resistant variants. In *L. monocytogenes, rpsU* is located between *rsmE* (a putative 16S rRNA methyltransferase) and *yqeY* (GatB/YqeY domain-containing protein). There is not much known about the specific function of ribosomal protein S21 in *L. monocytogenes* or about its role in stress resistance in general. Some work has been done in *Bacillus subtilis*, and a *B. subtilis rpsU* mutant showed unusual ribosome profiles, a reduced growth rate, and reduced motility (Akanuma et al., 2012; Takada et al., 2014). Notably, a role in cold

adaptation and cold stress response has been suggested for specific ribosomal proteins (Durack et al., 2013; Ivy et al., 2012). In other microorganisms, expression of S21 was suggested to be temperature-regulated (O'Connell and Thomashow, 2000; Sato et al., 1997). The data of Metselaar et al. (2015) also suggested that in *L. monocytogenes* S21 plays a role in growth at lower temperatures, because all *rpsU* variants show a severely reduced growth rate in BHI at 7°C compared to the wild type. This growth defect is still visible at 30°C but restored at 37°C (Metselaar et al., 2013).

Understanding how the genotype–environment interactions between strain characteristics such as diversity and fitness, and environmental parameters affects stress response and subsequent microbial survival, is useful for designing effective intervention strategies.

Stress response via SigB in Listeria monocytogenes

One of the primary stress-response systems in *L. monocytogenes* is Sigma factor B (SigB). SigB is the alternative transcription factor that controls the general stress response (GSR) (Liu et al., 2019; NicAogáin and O'Byrne, 2016). SigB activation by one type of stress is known to provide cross protection against other types of stress (Begley et al., 2002; Bergholz et al., 2012), providing an explanation for multiple stress resistance of cells in which SigB has been activated. Many SigB-dependent genes are differentially expressed under various growth conditions (Toledo-Arana et al., 2009), and environmental conditions play a major role in the activation of the SigB-mediated stress response (Shen et al., 2014). SigB activity is controlled both translationally and post translationally by the "stressosome" stress-signal sensing and integration hub. The structure of this hub has recently received attention from multiple research groups (Dessaux et al., 2020a; Guerreiro et al., 2020; Williams et al., 2019). Activation of SigB is controlled by the stressosome, a signal integration complex that relays a range of stress signals and activates the sigma B regulon (Dessaux et al., 2020b; Guldimann et al., 2016; NicAogáin and O'Byrne, 2016; Radoshevich and Cossart, 2018), see Figure 1.2. The exact mechanism by which the stressosome responds to signals is still under investigation, although recent work suggests that the adaptive stress response upon exposure to blue light involves the blue light sensor rsbL (Dorey et al., 2019).

Following perception of a stress signal, RsbT dissociates from RsbR and RsbS (T, R and S in the stressosome), after activation of its kinase activity (a). RsbT is released from the stressosome and binds to RsbU. The phosphatase activity of RbsU is activated and removes a phosphate (P) group from RbsV. The anti-sigma factor RsbW has a higher affinity for the now dephosphorylated RsbV than for SigB, resulting in release of SigB allowing it to bind to RNA polymerase and initiate transcription of SigB regulon members (b) (adapted from Dessaux et al., 2020b and Cabeen et al., 2017). In the in vitro stressosome model proposed by Williams et al. (2019), phosphorylation of RsbR and RsbS (Figure 1.2a) triggers a signaling cascade of RsbU, RsbV and RsbW (Figure 1.2b), resulting in the activation of SigB. A revision of this stressosome model was proposed by Dessaux et al. in 2020, where they suggested an additional role for paralogues of RsbR in attenuating the generation of active stressosome complexes upon the sensing of stress, possibly giving rise to environmental modulation of stressosome related activation of SigB.

Further work is required to elucidate the details of the underlying mechanisms of this SigBinvolved signalling cascade and the ribosome-induced modulation of *L. monocytogenes* fitness and stress resistance.

Outline of this thesis

Population heterogeneity appears to be an important aspect of *L. monocytogenes* survival and transmission, and mutations drive this heterogeneity in bacterial populations. To date, isolation of *L. monocytogenes* mutators strains from food has not been described. Therefore, in **chapter 2** we investigated the rate at which mutations occur for a set of 20 *Listeria monocytogenes* strains, and focus on a foodborne isolate that showed to be a mutator strain. We combined a whole genome sequencing approach with targeted mutations to assess the role of *mutS* in this mutator phenotype.

Two of the previously isolated multiple-stress resistant *rpsU* variants are described in more detail in **chapter 3**, where we investigated the phenotypic effects of a deletion, and a point mutation in *rpsU* in variants 14 and 15, respectively. We focus on the differences and overlap in the stress response of these two variants that harbour a different mutation, but share a largely overlapping phenotype.

From recent work on comparative whole genome sequencing analysis of *Listeria monocytogenes* food and clinical isolates, of which some isolates were isolated decades apart, we know that strains can persist in the food processing environment for many years, where strains are exposed to continuous selection pressures. The possibility of the presence of (stress resistant) *L. monocytogenes* cells in food processing environments for a prolonged period of time, in combination with selection on increased growth rate, raises the question of how the low-fitness, stress-resistant variants 14 and 15 will evolve over time. In **chapters 4 and 5** we explore this concept by using an experimental evolution protocol where we selected for increased fitness, defined as a higher maximum specific growth rate (μ_{max})

compared to the ancestor variant 15 or 14, respectively, while monitoring both fitness and stress-resistance of the evolved strains. Finally, in **chapter 6** the results of the work in this thesis are combined, the relevance and impact are discussed and recommendations for future research are presented. For an overview of all chapters, see Figure 1.3. Overall, the work presented in this thesis provides more insight into the adaptive stress behaviour of *L. monocytogenes* and increases our understanding how this notorious pathogen is able to grow and survive in changing environments.

Chapter 2: Determination of spontaneous mutation rates in *Listeria monocytogenes* food isolates identified a hypermutator strain with an insertion in DNA mismatch repair protein MutS.

Chapter 3: Gene profiling-based phenotyping for identification of cellular parameters that contribute to fitness, stresstolerance and virulence of *Listeria monocytogenes* variants.

Chapter 4: Amino acid substitutions in ribosomal protein RpsU enable switching between high fitness and multiple-stress resistance in *Listeria monocytogenes*.

Chapter 5: Low fitness and high stress resistance in a Listeria monocytogenes RpsU deletion mutant is reversed by single amino acid substitutions in ribosomal protein RpsB.

Figure 1.3: Schematic overview of the research presented in this thesis.

References

- Abee, T., Koomen, J., Metselaar, K.I., Zwietering, M.H., Den Besten, H.M.W., 2016. Impact of pathogen population heterogeneity and stress-resistant variants on food safety. Annu. Rev. Food Sci. Technol. 7, 439–456. doi:10.1146/annurev-food-041715-033128
- Akanuma, G., Nanamiya, H., Natori, Y., Yano, K., Suzuki, S., Omata, S., Ishizuka, M., Sekine,
 Y., Kawamura, F., 2012. Inactivation of ribosomal protein genes in *Bacillus subtilis* reveals importance of each ribosomal protein for cell proliferation and cell differentiation. J. Bacteriol. 194, 6282–6291. doi:10.1128/JB.01544-12
- Arcari, T., Feger, M.-L., Guerreiro, D.N., Wu, J., O'Byrne, C.P., 2020. Comparative review of the responses of *Listeria monocytogenes* and *Escherichia coli* to low pH stress. Genes. 11, 1330. doi:10.3390/genes11111330
- Avery, S.V., 2006. Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Micro. 4, 577–587. doi:10.1038/nrmicro1460
- Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L., Leibler, S., 2004. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625. doi:10.1126/science.1099390
- Begley, M., Gahan, C.G.M., Hill, C., 2002. Bile stress response in *Listeria monocytogenes* LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl. Environ. Microbiol. 68, 6005–6012. doi:10.1128/aem.68.12.6005-6012.2002
- Begley, M., Hill, C., 2015. Stress adaptation in foodborne pathogens. Annu. Rev. Food. Sci. Technol. 6, 191-210. http://dx.doi.org/10.1146/annurev-food-030713-092350.
- Ryall B., Eydallin, G., Ferenci, T., 2012. Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol. Mol. Biol. Rev. 76, 597–625. doi:10.1128/MMBR.05028-11
- Bergholz, T.M., Bowen, B., Wiedmann, M., Boor, K.J., 2012. *Listeria monocytogenes* shows temperature-dependent and -independent responses to salt stress, including responses that induce cross-protection against other stresses. Appl. Environ. Microbiol. 78, 2602–2612. doi:10.1128/AEM.07658-11
- Bergholz, T.M., Switt, A.I.M., Wiedmann, M., 2014. Omics approaches in food safety: fulfilling the promise? Trends Microbiol. 22, 275–281. doi:10.1016/j.tim.2014.01.006
- Cabeen, M.T., Russell, J.R., Paulsson, J., Losick, R., 2017. Use of a microfluidic platform to uncover basic features of energy and environmental stress responses in individual cells of *Bacillus subtilis*. PLOS Genet. 13, e1006901. doi:10.1371/journal.pgen.1006901
- Carpentier, B., Cerf, O., 2011. Review--Persistence of *Listeria monocytogenes* in food industry equipment and premises. Int. J. Food Microbiol. 145, 1–8. doi:10.1016/j.ijfoodmicro.2011.01.005
- **Cerf, O.**, 1977. Tailing of survival curves of bacterial spores. J. Appl. Bacteriol. 42, 1–19. doi:10.1111/j.1365-2672.1977.tb00665.x

- Chen, R., Skeens, J., Orsi, R.H., Wiedmann, M., Guariglia-Oropeza, V., 2020. Pre-growth conditions and strain diversity affect nisin treatment efficacy against *Listeria monocytogenes* on cold-smoked salmon. Int. J. Food Microbiol. 333, 108793. doi:10.1016/j.ijfoodmicro.2020.108793
- Dessaux, C., Guerreiro, D.N., Pucciarelli, M.G., O'Byrne, C.P., García-Del Portillo, F., 2020a. Impact of osmotic stress on the phosphorylation and subcellular location of *Listeria monocytogenes* stressosome proteins. Sci Rep 10, 20837–15. doi:10.1038/s41598-020-77738-z
- Dessaux, C., Guerreiro, D.N., Pucciarelli, M.G., O'Byrne, C.P., Portillo, F.G.-D., 2020b. Impact of osmotic stress on the phosphorylation and subcellular location of *Listeria monocytogenes* stressosome proteins. Sci Rep 1–15. doi:10.1038/s41598-020-77738-z
- **Dorey, A.L., Lee, B.-H., Rotter, B., O'Byrne, C.P.,** 2019. Blue light Sensing in *Listeria monocytogenes* is temperature-dependent and the transcriptional response to it is predominantly SigB-dependent. Front. Microbiol. 10, 2497. doi:10.3389/fmicb.2019.02497
- Drake, J.W., Charlesworth, B., Charlesworth, D., Crow, J.F., 1998. Rates of spontaneous mutation. Genetics 148, 1667–1686. doi:10.2307/2410123
- **Durack, J., Ross, T., Bowman, J.P.,** 2013. Characterisation of the transcriptomes of genetically diverse *Listeria monocytogenes* exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms. PLoS One 8, e73603. doi:10.1371/journal.pone.0073603
- Elena, S.F., Lenski, R.E., 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457–469. doi:10.1038/nrg1088
- Eyre-Walker, A., Keightley, P.D., 2007. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618. doi:10.1038/nrg2146
- Ferreira, V., Wiedmann, M., Teixeira, P., Stasiewicz, M.J., 2014. Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J Food Prot. 77, 150–170. doi:10.4315/0362-028X.JFP-13-150
- Geeraerd, A.H., Herremans, C.H., Van Impe, J.F., 2000. Structural model requirements to describe microbial inactivation during a mild heat treatment. Int. J. Food Microbiol. 59, 185–209. doi:10.1016/s0168-1605(00)00362-7
- **Guerreiro, D.N., Arcari, T., O'Byrne, C.P.,** 2020. The σB-mediated general stress response of *Listeria monocytogenes*: life and death decision making in a pathogen. Front. Microbiol. 11, 1505. doi:10.3389/fmicb.2020.01505
- Guldimann, C., Boor, K.J., Wiedmann, M., Guariglia-Oropeza, V., 2016. Resilience in the face of uncertainty: Sigma factor b fine-tunes gene expression to support homeostasis in Gram-positive bacteria. Appl. Environ. Microbiol. 82, 4456–4469. doi:10.1128/AEM.00714-16
- Harrand, A.S., Jagadeesan, B., Baert, L., Wiedmann, M., Orsi, R.H., Dudley, E.G., 2020. Evolution of *Listeria monocytogenes* in a food processing plant involves limited

single-nucleotide substitutions but considerable diversification by gain and loss of prophages. Appl. Environ. Microbiol. 86, 38. doi:10.1128/AEM.02493-19

- Harrand, A.S., Kovac, J., Carroll, L.M., Guariglia-Oropeza, V., Kent, D.J., Wiedmann, M., 2019. Assembly and characterization of a pathogen strain collection for produce safety applications: pre-growth conditions have a larger effect on peroxyacetic acid tolerance than strain diversity. Front. Microbiol. 10. doi:10.3389/fmicb.2019.01223
- Ivy, R.A., Wiedmann, M., Boor, K.J., 2012. Listeria monocytogenes grown at 7°C shows reduced acid survival and an altered transcriptional response to acid shock compared to *L. monocytogenes* grown at 37°C. Appl. Environ. Microbiol. 78, 3824– 3836. doi:10.1128/AEM.00051-12
- Karatzas, K.A.G., Bennik, M.H.J., 2002. Characterization of a *Listeria monocytogenes* Scott A isolate with high tolerance towards high hydrostatic pressure. Appl. Environ. Microbiol. 68, 3183–3189. doi:10.1128/AEM.68.7.3183-3189.2002
- Karatzas, K.A.G., Valdramidis, V.P., Wells-Bennik, M.H.J., 2005. Contingency locus in *ctsR* of *Listeria monocytogenes* Scott A: a strategy for occurrence of abundant piezotolerant isolates within clonal populations. Appl. Environ. Microbiol. 71, 8390–8396. doi:10.1128/AEM.71.12.8390-8396.2005
- Karatzas, K.A.G., Wouters, J.A., Gahan, C.G.M., Hill, C., Abee, T., Bennik, M.H.J., 2003. The CtsR regulator of *Listeria monocytogenes* contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence. Mol. Microbiol. 49, 1227–1238. doi:10.1046/j.1365-2958.2003.03636.x
- Koomen, J., Den Besten, H.M.W., Metselaar, K.I., Tempelaars, M.H., Wijnands, L.M., Zwietering, M.H., Abee, T., 2018. Gene profiling-based phenotyping for identification of cellular parameters that contribute to fitness, stress-tolerance and virulence of *Listeria monocytogenes* variants. Int. J. Food Microbiol. 283, 14–21. doi:10.1016/j.ijfoodmicro.2018.06.003
- Liu, Y., Orsi, R.H., Gaballa, A., Wiedmann, M., Boor, K.J., Guariglia-Oropeza, V., 2019. Systematic review of the *Listeria monocytogenes* σB regulon supports a role in stress response, virulence and metabolism. Future Microbiol. 14, 801–828. doi:10.2217/fmb-2019-0072
- Metselaar, K.I., Den Besten, H.M.W., Abee, T., Moezelaar, R., Zwietering, M.H., 2013. Isolation and quantification of highly acid resistant variants of *Listeria monocytogenes.* Int. J. Food Microbiol. 166, 508–514. doi:10.1016/j.ijfoodmicro.2013.08.011
- Metselaar, K.I., Den Besten, H.M.W., Boekhorst, J., van Hijum, S.A.F.T., Zwietering, M.H., Abee, T., 2015. Diversity of acid stress resistant variants of *Listeria monocytogenes* and the potential role of ribosomal protein S21 encoded by r*psU*. Front. Microbiol. 6, 422. doi:10.3389/fmicb.2015.00422
- Mérino, D., Poupet, H.R., Berche, P., Charbit, A., 2002. A hypermutator phenotype attenuates the virulence of *Listeria monocytogenes* in a mouse model. Mol. Microbiol. 44, 877–887. doi:10.1046/j.1365-2958.2002.02929.x

- NicAogáin, K., O'Byrne, C.P., 2016. The role of stress and stress adaptations in determining the fate of the bacterial pathogen *Listeria monocytogenes* in the food chain. Front. Microbiol. 7, 1962–16. doi:10.3389/fmicb.2016.01865
- **O'Connell, K.P., Thomashow, M.F.,** 2000. Transcriptional organization and regulation of a polycistronic cold shock operon in *Sinorhizobium meliloti* RM1021 encoding homologs of the *Escherichia coli* major cold shock gene *cspA* and ribosomal protein gene *rpsU*. Appl. Environ. Microbiol. 66, 392–400. doi:10.1128/aem.66.1.392-400.2000
- Perfeito, L., Fernandes, L., Mota, C., Gordo, I., 2007. Adaptive mutations in bacteria: high rate and small effects. Science 317, 813–815. doi:10.1126/science.1142284
- Radoshevich, L., Cossart, P., 2018. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 16, 32–46. doi:10.1038/nrmicro.2017.126
- Rajkovic, A., Smigic, N., Uyttendaele, M., Medic, H., de Zutter, L., Devlieghere, F., 2009. Resistance of *Listeria monocytogenes, Escherichia coli* O157:H7 and *Campylobacter jejuni* after exposure to repetitive cycles of mild bactericidal treatments. Food Microbiol. 26, 889–895. doi:10.1016/j.fm.2009.06.006
- Sato, N., Tachikawa, T., Wada, A., Tanaka, A., 1997. Temperature-dependent regulation of the ribosomal small-subunit protein S21 in the cyanobacterium *Anabaena* variabilis M3. J. Bacteriol. 179, 7063–7071. doi:10.1128/jb.179.22.7063-7071.1997
- Schlacher, K., Goodman, M.F., 2007. Lessons from 50 years of SOS DNA-damage-induced mutagenesis. Nat. Rev. Mol. Cell Biol. 8, 587–594. doi:10.1038/nrm2198
- Shen, Q., Soni, K.A., Nannapaneni, R., 2014. Influence of temperature on acid-stress adaptation in *Listeria monocytogenes*. Foodborne Pathog. Dis. 11, 43–49. doi:10.1089/fpd.2013.1611
- Sheng, H., Huang, J., Han, Z., Liu, M., Lü, Z., Zhang, Q., Zhang, J., Yang, J., Cui, S., Yang, B., 2020. Genes and Proteomes associated with increased mutation frequency and multidrug resistance of naturally occurring mismatch repair-deficient *Salmonella* hypermutators. Front. Microbiol. 11, 770. doi:10.3389/fmicb.2020.00770
- Takada, H., Morita, M., Shiwa, Y., Sugimoto, R., Suzuki, S., Kawamura, F., Yoshikawa, H., 2014. Cell motility and biofilm formation in *Bacillus subtilis* are affected by the ribosomal proteins, S11 and S21. Biosci. Biotechnol. Biochem. 78, 898–907. doi:10.1080/09168451.2014.915729
- Toledo-Arana, A., Dussurget, O., Nikitas, G., Sesto, N., Guet-Revillet, H., Balestrino, D., Loh, E., Gripenland, J., Tiensuu, T., Vaitkevicius, K., Barthelemy, M., Vergassola, M., Nahori, M.-A., Soubigou, G., Régnault, B., Coppée, J.-Y., Lecuit, M., Johansson, J., Cossart, P., 2009. The *Listeria* transcriptional landscape from saprophytism to virulence. Nature 459, 950–956. doi:10.1038/nature08080
- Van Boeijen, I.K.H., Chavaroche, A.A.E., Valderrama, W.B., Moezelaar, R., Zwietering, M.H., Abee, T., 2010. Population diversity of *Listeria monocytogenes* LO28: phenotypic and genotypic characterization of variants resistant to high hydrostatic pressure. Appl. Environ. Microbiol. 76, 2225–2233. doi:10.1128/AEM.02434-09
- Van Boeijen, I.K.H., Francke, C., Moezelaar, R., Abee, T., Zwietering, M.H., 2011. Isolation of highly heat-resistant *Listeria monocytogenes* variants by use of a kinetic

modeling-based sampling scheme. Appl. Environ. Microbiol. 77, 2617–2624. doi:10.1128/AEM.02617-10

- Van Boeijen, I.K.H., Moezelaar, R., Abee, T., Zwietering, M.H., 2008. Inactivation kinetics of three *Listeria monocytogenes* strains under high hydrostatic pressure. J. Food Prot. 71, 2007–2013. doi:10.4315/0362-028x-71.10.2007
- van der Veen, S., Abee, T., 2011a. Contribution of *Listeria monocytogenes* RecA to acid and bile survival and invasion of human intestinal Caco-2 cells. Int. J. Med. Microbiol. 301, 334–340. doi:10.1016/j.ijmm.2010.11.006
- van der Veen, S., Abee, T., 2011b. Generation of variants in *Listeria monocytogenes* continuous-flow biofilms is dependent on radical-induced DNA damage and RecAmediated repair. PLoS One 6, e28590–8. doi:10.1371/journal.pone.002859
- van der Veen, S., van Schalkwijk, S., Molenaar, D., de Vos, W.M., Abee, T., Wells-Bennik, M.H.J., 2010. The SOS response of *Listeria monocytogenes* is involved in stress resistance and mutagenesis. Microbiology 156, 374–384. doi:10.1099/mic.0.035196-0
- Vanlint, D., Rutten, N., Michiels, C.W., Aertsen, A., 2012. Emergence and stability of highpressure resistance in different food-borne pathogens. Appl. Environ. Microbiol. 78, 3234–3241. doi:10.1128/AEM.00030-12
- Veening, J.-W., Smits, W.K., Kuipers, O.P., 2008. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210. doi:10.1146/annurev.micro.62.081307.163002
- Wang, H., Xing, X., Wang, J., Pang, B., Liu, M., Larios-Valencia, J., Liu, T., Liu, G., Xie, S., Hao, G., Liu, Z., Kan, B., Zhu, J., 2018. Hypermutation-induced in vivo oxidative stress resistance enhances *Vibrio cholerae* host adaptation. PLoS Pathog. 14, e1007413. doi:10.1371/journal.ppat.1007413
- Wang, S., Wu, C., Shen, J., Wu, Y., Wang, Y., 2013. Hypermutable *Staphylococcus aureus* strains present at high frequency in subclinical bovine mastitis isolates are associated with the development of antibiotic resistance. Vet. Microbiol. 165, 410–415. doi:10.1016/j.vetmic.2013.04.009
- Williams, A.H., Redzej, A., Rolhion, N., Costa, T.R.D., Rifflet, A., Waksman, G., Cossart, P., 2019. The cryo-electron microscopy supramolecular structure of the bacterial stressosome unveils its mechanism of activation. Nat. Commun. 10, 3005–3010. doi:10.1038/s41467-019-10782-0
- Zwietering, M.H., Garre, A., Den Besten, H.M.W., 2021. Incorporating strain variability in the design of heat treatments: A stochastic approach and a kinetic approach. Food Res. Int. 139, 109973. doi:10.1016/j.foodres.2020.109973

2

Determination of spontaneous mutation rates in Listeria monocytogenes food isolates identified a hypermutator strain with an insertion in DNA mismatch repair protein MutS

Jeroen Koomen, Peter Schubert, Marcel H. Tempelaars, Tjakko Abee.

Abstract

Population heterogeneity is an important element of the survival strategy of the food pathogen *Listeria monocytogenes* to cope with environmental stresses and to survive during transmission to the human host. Most research in this field has focussed on the description of standing genetic variation i.e., the heterogeneity that is already present in a population, without investigating the rate at which populations can acquire new mutations. Here, we used a high-throughput version of the classical Luria-Delbrück fluctuation assay, to investigate the rate of spontaneous mutation in a set of 20 whole genome sequenced (WGS) *L. monocytogenes* food isolates. All strains, except one, had a mutation rate of between $4.6 \cdot 10^{-10}$ and $3.5 \cdot 10^{-9}$, while the strain FBR16 showed an approximately 100-fold to 1000-fold higher mutation rate of $2.9 \cdot 10^{-7}$ mutations per gene per generation. Subsequent WGS analysis of previously sequenced genomes revealed a 179 bp insertion in the DNA mismatch repair gene *mutS* gene of FBR16 as the cause of the mutator phenotype. The mutator phenotype was lost upon restoration of the *mutS* gene, confirming the insertion-induced reduction of MutS activity.

Introduction

Listeria monocytogenes is a ubiquitous food pathogen, that can cause listeriosis, a rare disease with high mortality rate (Toledo-Arana et al., 2009). It is a model species to describe transmission from the environment to the human host that relies on population heterogeneity, strain variability, and adaptive behaviour to cope with environmental stresses during this transmission (Abee et al., 2016). When a population of cells is exposed to stress, the inherent heterogeneity in a population can lead to the differential survival of a subset of cells, resulting in a tailing of the inactivation curve (Cerf, 1977). The role of population heterogeneity in the stress survival capacity of L. monocytogenes has been under intense study. Part of this heterogeneity is heritable, and stable multiple-stress resistant variants have been isolated from diverse strains such as EGDe, LO28, and ScottA after a single exposure to stress (Karatzas and Bennik, 2002; Metselaar et al., 2013; 2015; Rajkovic et al., 2009; Van Boeijen et al., 2011; 2008). However, most work on the diversity and heterogeneity of *L. monocytogenes* is done on standing genetic variation. Most authors have investigated the diversity and heterogeneity that is already present in populations of L. monocytogenes, giving very little attention to the fundamental process of mutagenesis that is underlying this variation, and the speed at which new mutations occur.

Mutations in bacteria are produced stochastically during replication of DNA, or after environmental insults that lead to DNA damage, requiring repair by genes involved in the SOS response (van der Veen et al., 2010). The SOS response includes the activation of a translesion polymerase that allows cells to read over damaged parts of the DNA, reviving stalled replication forks at the cost of an increase in mutation rate (van der Veen et al., 2010), see Maslowska et al. (2019) for a review. The generation of mutations is considered to be neutral with respect to their effect on fitness (Luria and Delbrück, 1943), i.e., cells produce both beneficial, neutral, and deleterious mutations. However, most cells are well adapted to their environment, and in stable environmental conditions, random mutations are more likely to be deleterious than beneficial (Elena and Lenski, 2003; Eyre-Walker and Keightley, 2007; Kimura, 1967; Perfeito et al., 2007). Therefore, there is a trade-off between mutations (which increase adaptability to novel environments), and an increase in genetic load (the negative effects of deleterious mutations). This trade-off is believed to be the cause of the low mutation rates in populations that are typically observed. The energy requirements needed for higher fidelity, and thus a lower mutation rate, are often seen as a barrier that prevent an even lower mutation rate. In addition, population genetic forces such as drift will limit selection on even lower mutation rates (Lynch et al., 2016). However, mutator strains, with mutation frequencies that are at least an order of magnitude above the species baseline, have been isolated and characterized for a range of bacterial species including foodborne pathogens (Prunier and Leclercq, 2005; Sniegowski et al., 1997). These mutator strains typically have mutations in DNA mismatch repair genes such as *mutS* (Imo1403) and *mutL* (Imo1404). In *L. monocytogenes, mutS* (Imo1403) and *mutL* are co-transcribed in an operon together with Imo1405 (glycerol uptake operon antiterminator regulatory protein), and deletion of *mutSL* results in a strong increase in mutations, including those leading to rifampicin resistance (Mérino et al., 2002).

Currently, studies on mutation rate in *L. monocytogenes* have used whole genome sequencing data of long-term studies in food processing facilities to infer mutation rate (Harrand et al., 2020) However, that method is impractical in situations where long term histories of strains are not available. Here, we use a high-throughput method based on the Luria-Delbrück fluctuation assay (Luria and Delbrück, 1943) to investigate the spontaneous mutation rate in 20 selected strains of *L. monocytogenes*, and we applied a whole genome approach to assess to role of *mutS* in a hypermutator foodborne isolate.

Materials and methods

Strains and growth conditions

A set of 20 strains of whole genome sequenced *L. monocytogenes* with different origins, and various histories of laboratory usage (Aryani et al., 2015) was used. Cells from -80°C stocks were grown at 30°C for 48 hours on brain heart infusion (BHI, Oxoid, Hampshire) agar (1.5 % [w/w], bacteriological agar no. 1 Oxoid, Hampshire) plates. A single colony was used to inoculate 10 ml of BHI broth in a 12 ml tube (Greiner) and incubated overnight (ON, 18 to 22 hours) at 30°C under continuous shaking at 160 rpm.

Selective medium

Rifampicin (Rif, Sigma-Aldrich GmbH, St. Luis MO, USA) was stored as stock solutions of 2 mg/ml or 64 mg/ml in DMSO and kept at 4°C. Stocks were used within 6 months as advised by stability studies by (Yu et al. 2011) and (Karlson and Ulrich, 1969). Rif-supplemented media were prepared by adding appropriate volumes of stock solution to the medium after cooling down to 55°C. Rif-supplemented broth was prepared on the day of use, and rif-supplemented agar plates were kept at 4°C for a maximum of 2 days. Agar plates for spotting (see below) were dried for up to an hour in a laminar-flow cabinet before use.

Fluctuation analysis

Fluctuation analysis was performed as described by (Pope et al., 2008; Rosche and Foster, 2000), also see Appendix 1. This version of the Luria-Delbrück fluctuation assay estimates the mutation rate using the number of mutants that have gained resistance to rifampicin. By determining the number of rifampicin resistant mutants in up to 48 parallel cultures per strain, we were able to estimate the number of mutational events that have led to the observed distribution of mutants (see Appendix 1).

Briefly, ON-cultures were serially diluted in BHI to approximately $5 \cdot 10^4$ cfu/ml, of which 200 μ l was transferred into 96-microwell plates resulting in approximately $1 \cdot 10^4$ cfu per well, and plates were incubated at 30°C for 17±2 hours.

The total viable counts (TVCs) of the parallel cultures just after inoculation of the wells (i.e. N_0) was estimated by spotting 4 aliquots of 20 μ l of appropriate dilutions onto BHI agar plates, and incubating at 30°C for 24 hours. To estimate the mean final cell density of the parallel cultures (i.e., N_{max}) TVC was determined by spot plating as described above. To quantify the number of rif-resistant (rifR) mutants in these cultures, an aliquot of 30 μ l of

all the parallel cultures was spotted on square Rif-BHI-agar plates using a multichannel pipet. The concentration of Rif was set at 2 μ g/ml, approximately four times the highest minimal inhibitory concentration (MIC) of WT strains, as suggested by Rosche and Foster, 2000. Plates were incubated at 30°C for 96 hours before enumeration of colonies. Jackpot cultures, containing an uncountably high number of mutants, were truncated, scored at 120 mutant colonies/spot, and used as the "Winsorization" parameter during later analysis in FLAN. Mutant colonies and the mean final number of the cells of the parallel cultures were used to calculate the mutation rate in the statistical programming language R, using the FLAN package version 0.8 (Mazoyer and Drouilhet, 2017), using mutestim() with parameters: model= "LD", method= "ML", plateff= 0.3, winsor=120.

The FBR16_mutS_repaired mutant (see below Construction of the FBR16_mutS_repaired mutant) was tested together with FBR16 WT, in 24 parallel wells filled with cultures of 100 μ l, and subsequent plating of the whole well content was done on a 9-cm diameter petri dish. This higher plating volume allows for higher resolution in the number of rifR colonies, and supported the more accurate estimation of mutation rates for these two strains.

Construction of the FBR16_mutS_repaired mutant

Mutant strain FBR16_mutS_repaired was constructed using the temperature sensitive suicide plasmid pAULA (Chakraborty et al., 1992). As the *mutS* gene from strain FBR12 was identical to that of FBR16, but without the insertion, we amplified *mutS* from genomic DNA of FBR12 using a KAPA HiFi Hotstart ReadyMix polymerase (KAPA Biosystems, USA), and primers MutSrepair_F: 5'-TGAAGAATTCGTAAGGGATGATGAGATAATGACAGA-3' and MutSrepair_R: 5'-ATGAGTCGACATCCCGCTTCTTCCACTAAAATA-3'. The resulting fragment was ligated in frame to the pAULA multiple cloning site via the EcoR1 and Sal1 restriction sites that were introduced to the fragments by the respective primers. The resulting plasmid was electroporated (2.5 kV, 25 μ F, 200 Ω), in a 0.2 cm cuvette using a BIO-RAD GenePulser, to cells of FBR16, and plated on BHI agar at 30°C with 5 μ g/ml erythromycin to select for transformants.

Two erythromycin resistant colonies were inoculated in separate tubes in BHI broth supplemented with 5 μ g/ml erythromycin and grown overnight at 42°C to select for plasmid integration. Selected strains resulting from a single cross-over integration event were grown overnight in BHI at 30°C to induce double crossover events and were subsequently plated at 30°C. Resulting colonies were plated on BHI with and without 5 μ g/ml erythromycin and incubated at 30°C. Colonies sensitive to erythromycin were selected. PCR with primers

MutS_F 5'-CGTCCGTTAATAGACCGAAAAA-3' and MutS_R 5'-AGCGGCCTTCTGGGAGCA-3' was used to confirm the ~200 bp difference between the mutS of FBR16 and FBR16_mutS_repaired. Subsequently, PCR and amplicon sequencing using the primers: MutS_seqCheck_F: 5'-CTGTGCACGAAGAAGATACGATT-3', and MutS_seqCheck_R: 5'-CAGCGGGAACAAAACAACC-3' confirmed the correct insertion of the FBR 12 *mutS* gene and deletion of the original FBR16 *mutS* gene that harboured the insertion.

In silico analysis of insertions in mutS

The *mutS* genes of the 20 strains were aligned locally by MAFFT (v7.419) (Rozewicki et al., 2019), and the alignment was visualized with the MSA viewer as implemented at www.ncbi.nlm.nih.gov/. To investigate the number of *mutS* sequences with insertions in WGS sequences deposited to online databases, we performed a blast search on www.ncbi.nlm.nih.gov/. Using *mutS* of *L. monocytogenes* EGDe as reference we queried the RefSeq Genome Database, limited to *Listeria monocytogenes* (taxid:1639). The output was downloaded as .txt and aligned locally with MAFFT. Sequences were manually compared in Mesquite 3.61 (Maddison and Maddison, 2019).

Results and discussion

Spontaneous mutation rate in 20 strains

We have used a high-throughput version of the Luria-Delbrück fluctuation assay on a set of 20 strains, that includes laboratory reference strains (e.g., EGDe, ScottA, and LO28), as well as food isolates, to determine the spontaneous mutation rate. Nineteen of the twenty strains showed mutation rates between $4.6 \cdot 10^{-10}$ and $3.5 \cdot 10^{-9}$ mutations per gene per generation. However, strain FBR16 showed a much higher mutation rate (Figure 2.1), pointing to a mutator strain phenotype. This strain was selected for more detailed genetic analysis and quantification of its mutation rate.

Figure 2.1: Mutation frequency of selected strains of Listeria monocytogenes as determined by the LD fluctuation assay. The value for FBR16 is an estimation, as the winsoriszation cutoff was reached in all tested parallel lines.

Insertion in *mutS* of FBR16

Alterations in conserved DNA mismatch repair genes such as *mutS* (Imo1403) and *mutL* (Imo1404) are known to increase mutation rates in several species, including *L. monocytogenes* (Mérino et al., 2002). Comparison of previously obtained whole genome sequences of the 20 strains revealed a 179 bp insertion in the *mutS* DNA repair gene of FBR16 (Figure 2.2a and 2.2b). Moreover, this insertion resulted in a premature stopcodon (TGA), 12 nucleotides from the start of the insertion (see Figure 2.2b), suggesting that the MutS protein in FBR16 will be truncated. In *L. monocytogenes, mutS* and *mutL* are transcribed in an operon together with the glycerol uptake operon antiterminator regulatory protein Imo1405 (Mérino et al., 2002), and truncation of *mutS* will have conceivable effects on both the functionality of MutS, and of MutL. Mérino et al. have determined the effect of a deletion of both *mutS* and *MutL* on the mutant fraction, as well as a 15-fold increase in homologous recombination in a $\Delta mutSL$ mutant. A large insertion in

mutS such as the one found in FBR16, appears to be rare, as we did not identify similar insertions in the 3553 whole genome sequences from RefSeq that were screened. Insertions such as the 179 bp insertion in *mutS* of FBR16 can only be restored by homologous recombination. Interestingly, the increased homologous recombination rate associated with non-functioning *mutSL* system (Mérino et al., 2002) might provide the possibility of a transient mutator phenotype.

Figure 2.2: Alignment of the mutS gene in 20 L. monocytogenes strains. (a) Alignment of DNA sequences of the mutS gene for the 20 strains of L. monocytogenes. Differences to the top sequence (AOPM3) are shown in red. The 179 bp insertion in FBR16 ranging from position 1284 to 1463 is shown as a red bar. (b) Partial alignment of the DNA sequence of mutS for the 20 strains of L. monocytogenes. Position is shown as base pairs from the start of the mutS gene. Only the first 27 bases of the 197 bp insertion of FBR16 are shown. The premature stopcodon (TGA) is shown in the black box.

Experiments by Mérino et al. in 2002 have shown that the combined deletion of *mutS* and *mutL* from *L. monocytogenes* EGD did not result in differences in fitness. However, virulence in a mouse model was attenuated for a $\Delta mutSL$ mutant, when compared to the EGD WT. On possible explanation for the decreased virulence may be the increased mutational load. The intracellular environment is stressful, which may lead to an increased mutation rate, which would be more deleterious for the mutator strain than for the WT. Whether fitness and virulence are affected by the *mutS* insertion in FBR16 remains to be elucidated by comparing FBR16 $\Delta mutSL$ and FBR16 in mutant studies.

In a well-adapted system, as most mutations will be deleterious (Elena and Lenski, 2003; Eyre-Walker and Keightley, 2007; Kimura, 1967; Perfeito et al., 2007), mutator strains are expected to be selected only in specific circumstances. For instance, after a recent environmental change, mutator strains may have an early advantage by generating mutations faster, leading to their establishment based on their increased adaptability (Desai and Fisher, 2011; Sniegowski et al., 2000). A second conceivable scenario in which a high mutation rate can be selected is when a mutator allele generates a beneficial mutation by chance. Then, positive selection for this adaptive property, and the linked mutator allele, allow the mutator allele to spread through the population as a consequence, a process that is known as second order selection (Gentile et al., 2011; Giraud et al., 2001; Woods et al., 2001). Although the *mutSL* operon has been studied in *L. monocytogenes* (Mérino et al., 2002), and has been found to influence salt sensitivity in transposon experiments (Gardan et al., 2003), to our knowledge, this is the first description of a mutator strain, generated by an insertion in *mutS* in a *L. monocytogenes* foodborne isolate.

In addition, over the 2583 bp length of the *mutS* gene, we found 331 SNPs in strain H7767 when compared to the EGDe reference genome (Figure 2.2a). The mutation rate of strain H7767 was in the order of magnitude of the other 18 strains, suggesting that the functionality of *mutS* in this strain is unchanged. This amount of sequence divergence is rare for a functional gene, and additional investigation into the distribution of SNPs in *mutS* in *L. monocytogenes* is warranted.

Mutation rate of the FBR16_MutS_repaired strain

As the 179 bp insertion in *mutS* of FBR16 was expected to disrupt protein function and increase the mutation rate, we replaced the *mutS* gene of FBR16 with the *mutS* gene of FBR12, which is identical to that of FBR16, except for the insertion, yielding the mutant

strain FBR16_mutS_repaired. PCR analysis confirmed the approximately 200 bp size difference between *mutS* of FBR16 and FBR16_mutS_repaired (data not shown). FBR16_mutS_repaired was tested in a fluctuation assay together with the original FBR16 as reference. Using an adapted protocol that included plating of higher volumes (see methods section), the mutation rate of FBR16 was estimated to be at $2.9 \cdot 10^{-7}$ per gene per generation (Figure 2.3), while the mutation rate of FBR16_mutS_repaired was estimated at $4.7 \cdot 10^{-9}$, and this was in the same range as the mutation rate of the other 19 strains (Figure 2.1), indicating that the insertion in *mutS* was responsible for the increased mutation rate in FBR16.

Figure 2.3: Mutation rate of Listeria monocytogenes FBR16 and FBR16_mutS_repaired. The mutation rate of FBR16, with its disrupted mutS, is $2.9 \cdot 10^{-7}$ per gene per generation, and that of FBR16_mutS_repaired is $4.7 \cdot 10^{-9}$ per gene per generation.

In conclusion, we have designed a high throughput protocol for the estimation of mutation rates in *L. monocytogenes*. Using this protocol, we demonstrated that the food isolate FBR16 is a mutator strain, and showed that the 179 bp insertion in the *mutS* gene was responsible for this increased mutation rate. Moreover, we show that large mutations in *mutS* are very rare, as we did not identify similar insertions among 3553 strains evaluated in an *in-silico* approach.

Appendix 1, fluctuation analysis

Spontaneous mutations can arise stochastically during cell replication, or after environmental insults that lead to DNA damage requiring repair by genes involved in the SOS response (van der Veen et al., 2010). Mutations occur at a certain rate that can be measured using the Luria-Delbrück fluctuation analysis (Luria and Delbruck 1964). It is however important to acknowledge that mutation rates are not simply the number of mutant cells in a population. The mutation rate represents the probability that a mutation in the rifampicin occurs during the lifetime of a cell (Rosche and Foster, 2000). After a mutational event, the mutant cells will propagate and grow to a certain fraction of the total population, represented by its frequency within that final population. One mutational event can therefore lead to very different mutation frequencies, while both cultures have the same mutation rate, see Figure A2.1a.

Therefore, the mutation rate is a far more reliable unit when investigating the occurrence of mutations than the frequency of mutants in a population (Rosche and Foster, 2000). To estimate a mutation rate, we grow several small liquid cultures (typically between 20-50 parallel cultures) from a diluted inoculum that is assumed not to contain any mutants. Then, after incubation we plate (a portion of) the parallel cultures on solid medium containing an antibiotic. The resistance against the antibiotic rifampicin as conferred by mutations in the *rpoB* gene is a selectable marker for mutant cells, as resistant mutants will be able to form colonies. The numbers of mutant colonies on the rifampicin-agar plates can be used together with the mean final number of cells in the parallel cultures to estimate the mutation rate that gave rise to this distribution of mutant cells over the cultures (Figure A2.1b). To estimate the mean final number of cells per strain, we plated three parallel cultures per strain on BHI-agar to estimate the total viable count. The number of mutant cells per parallel line, and the mean final number of cells were used to calculate the mutation rate with the R package FLAN (Mazoyer and Drouilhet, 2017).

Figure A2.1: Fluctuation analysis. (a) The same mutation rate can lead to a significant difference in mutant cells. (b) Multiple parallel cultures can be grown in a multiwell plate, and tested for mutant cells.

References

- Abee, T., Koomen, J., Metselaar, K.I., Zwietering, M.H., Den Besten, H.M.W., 2016. Impact of pathogen population heterogeneity and stress-resistant variants on food safety. Annu. Rev. Food Sci. Technol. 7, 439–456. doi:10.1146/annurev-food-041715-033128
- Aryani, D.C., Den Besten, H.M.W., Hazeleger, W.C., Zwietering, M.H., 2015. Quantifying variability on thermal resistance of *Listeria monocytogenes*. Int. J. Food Microbiol. 193, 130–138. doi:10.1016/j.ijfoodmicro.2014.10.021
- **Cerf, O.**, 1977. Tailing of survival curves of bacterial spores. J. Appl. Bacteriol. 42, 1–19. doi:10.1111/j.1365-2672.1977.tb00665.x
- Chakraborty, T., Leimeister-Wächter, M., Domann, E., Hartl, M., Goebel, W., Nichterlein, T., Notermans, S., 1992. Coordinate regulation of virulence genes in *Listeria monocytogenes* requires the product of the *prfA* gene. J. Bacteriol. 174, 568–574. doi:10.1128/jb.174.2.568-574.1992
- Desai, M.M., Fisher, D.S., 2011. The balance between mutators and nonmutators in asexual populations. Genetics 188, 997–1014. doi:10.1534/genetics.111.128116
- Elena, S.F., Lenski, R.E., 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457–469. doi:10.1038/nrg1088
- Eyre-Walker, A., Keightley, P.D., 2007. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618. doi:10.1038/nrg2146
- Gardan, R., Cossart, P., Labadie, J., European Listeria Genome Consortium, 2003. Identification of *Listeria monocytogenes* genes involved in salt and alkaline-pH tolerance. Appl. Environ. Microbiol. 69, 3137–3143. doi:10.1128/aem.69.6.3137-3143.2003
- Gentile, C.F., Yu, S.-C., Serrano, S.A., Gerrish, P.J., Sniegowski, P.D., 2011. Competition between high- and higher-mutating strains of *Escherichia coli*. Biol. Lett. 7, 422– 424. doi:10.1098/rsbl.2010.1036
- Giraud, A., Matic, I., Tenaillon, O., Clara, A., Radman, M., Fons, M., Taddei, F., 2001. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291, 2606–2608. doi:10.1126/science.1056421
- Harrand, A.S., Jagadeesan, B., Baert, L., Wiedmann, M., Orsi, R.H., Dudley, E.G., 2020. Evolution of *Listeria monocytogenes* in a food processing plant involves limited single-nucleotide substitutions but considerable diversification by gain and loss of prophages. Appl. Environ. Microbiol. 86, 38. doi:10.1128/AEM.02493-19
- Karatzas, K.A.G., Bennik, M.H.J., 2002. Characterization of a *Listeria monocytogenes* Scott A isolate with high tolerance towards high hydrostatic pressure. Appl. Environ. Microbiol. 68, 3183–3189. doi:10.1128/AEM.68.7.3183-3189.2002
- Karlson, A.G., Ulrich, J.A., 1969. Stability of rifampin in dimethylsulfoxide. Appl Microbiol 18, 692–693.
- Kimura, M., 1967. On the evolutionary adjustment of spontaneous mutation rates. Genet. Res. 9, 23–34. doi:10.1017/S0016672300010284

- Luria, S.E., Delbrück, M., 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511.
- Lynch, M., Ackerman, M.S., Gout, J.-F., Long, H., Sung, W., Thomas, W.K., Foster, P.L., 2016. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17, 704–714. doi:10.1038/nrg.2016.104
- Maddison, W. P., D.R. Maddison., 2019. Mesquite: a modular system for evolutionary analysis. Version 3.61 http://www.mesquiteproject.org.
- Maslowska, K.H., Dzbenska, K.M., Fijalkowska, I.J., 2019. The SOS system: A complex and tightly regulated response to DNA damage. Environmental and Molecular Mutagenesis 60, 368–384. doi:10.1002/em.22267
- Mazoyer, A., Drouilhet, R., R, S.D.T., 2017, flan: An R package for inference on mutation models. hal.archives-ouvertes.fr. doi:10.32614/RJ-2017-029
- Metselaar, K.I., Den Besten, H.M.W., Abee, T., Moezelaar, R., Zwietering, M.H., 2013. Isolation and quantification of highly acid resistant variants of *Listeria monocytogenes.* Int. J. Food Microbiol. 166, 508–514. doi:10.1016/j.ijfoodmicro.2013.08.011
- Metselaar, K.I., Den Besten, H.M.W., Boekhorst, J., van Hijum, S.A.F.T., Zwietering, M.H., Abee, T., 2015. Diversity of acid stress resistant variants of *Listeria monocytogenes* and the potential role of ribosomal protein S21 encoded by *rpsU*. Front. Microbiol. 6, 422. doi:10.3389/fmicb.2015.00422
- Mérino, D., Poupet, H.R., Berche, P., Charbit, A., 2002. A hypermutator phenotype attenuates the virulence of *Listeria monocytogenes* in a mouse model. Mol. Microbiol. 44, 877–887. doi:10.1046/j.1365-2958.2002.02929.x
- Perfeito, L., Fernandes, L., Mota, C., Gordo, I., 2007. Adaptive mutations in bacteria: high rate and small effects. Science 317, 813–815. doi:10.1126/science.1142284
- Pope, C.F., O'Sullivan, D.M., McHugh, T.D., Gillespie, S.H., 2008. A practical guide to measuring mutation rates in antibiotic resistance. Antimicrob. Agents Chemother. 52, 1209–1214. doi:10.1128/AAC.01152-07
- Prunier, A.L., Leclercq, R., 2005. Role of *mutS* and *mutL* genes in hypermutability and recombination in *Staphylococcus aureus*. J. Bacteriol. 187, 3455–3464. doi:10.1128/JB.187.10.3455-3464.2005
- Rajkovic, A., Smigic, N., Uyttendaele, M., Medic, H., de Zutter, L., Devlieghere, F., 2009. Resistance of *Listeria monocytogenes, Escherichia coli* O157:H7 and *Campylobacter jejuni* after exposure to repetitive cycles of mild bactericidal treatments. Food Microbiol. 26, 889–895. doi:10.1016/j.fm.2009.06.006
- Rosche, W.A., Foster, P.L., 2000. Determining mutation rates in bacterial populations. Methods. 20, 4–17. doi:10.1006/meth.1999.0901
- Rozewicki, J., Li, S., Amada, K.M., Standley, D.M., Katoh, K., 2019. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res. 14, 249. doi:10.1093/nar/gkz342
- Sniegowski, P.D., Gerrish, P.J., Johnson, T., Shaver, A., 2000. The evolution of mutation rates: separating causes from consequences. BioEssays 22, 1057–1066. doi:10.1002/1521-1878(200012)22:12<1057::AID-BIES3>3.0.CO;2-W

- Sniegowski, P.D., Gerrish, P.J., Lenski, R.E., 1997. Evolution of high mutation rates in experimental populations of *E. coli*. Nature 387, 703–705. doi:10.1038/42701
- Toledo-Arana, A., Dussurget, O., Nikitas, G., Sesto, N., Guet-Revillet, H., Balestrino, D., Loh, E., Gripenland, J., Tiensuu, T., Vaitkevicius, K., Barthelemy, M., Vergassola, M., Nahori, M.-A., Soubigou, G., Régnault, B., Coppée, J.-Y., Lecuit, M., Johansson, J., Cossart, P., 2009. The *Listeria* transcriptional landscape from saprophytism to virulence. Nature 459, 950–956. doi:10.1038/nature08080
- Van Boeijen, I.K.H., Francke, C., Moezelaar, R., Abee, T., Zwietering, M.H., 2011. Isolation of highly heat-resistant *Listeria monocytogenes* variants by use of a kinetic modeling-based sampling scheme. Appl. Environ. Microbiol. 77, 2617–2624. doi:10.1128/AEM.02617-10
- Van Boeijen, I.K.H., Moezelaar, R., Abee, T., Zwietering, M.H., 2008. Inactivation kinetics of three *Listeria monocytogenes* strains under high hydrostatic pressure. J. Food Prot. 71, 2007–2013. doi:10.4315/0362-028x-71.10.2007
- van der Veen, S., van Schalkwijk, S., Molenaar, D., de Vos, W.M., Abee, T., Wells-Bennik, M.H.J., 2010. The SOS response of *Listeria monocytogenes* is involved in stress resistance and mutagenesis. Microbiology 156, 374–384. doi:10.1099/mic.0.035196-0
- Woods, R.J., Barrick, J.E., Cooper, T.F., Shrestha, U., Kauth, M.R., Lenski, R.E., 2011. Second-order selection for evolvability in a large *Escherichia coli* population. Science 331, 1433–1436. doi:10.1126/science.1198914

3

Gene profiling-based phenotyping for identification of cellular parameters that contribute to fitness, stresstolerance and virulence of *Listeria monocytogenes* variants

Jeroen Koomen, Heidy M.W. den Besten, Karin I. Metselaar, Marcel H. Tempelaars, Lucas M. Wijnands, Marcel H. Zwietering, and Tjakko Abee.

Published in:

International Journal of Food Microbiology (2018) 283: p. 14-21.

Abstract

Microbial population heterogeneity allows for a differential microbial response to environmental stresses and can lead to the selection of stress resistant variants. In this study, we have used two different stress resistant variants of Listeria monocytogenes LO28 with mutations in the *rpsU* gene encoding ribosomal protein S21, to elucidate features that can contribute to fitness, stress-tolerance and host interaction using a comparative gene profiling and phenotyping approach. Transcriptome analysis showed that 116 genes were upregulated and 114 genes were downregulated in both rpsU variants. Upregulated genes included a major contribution of SigB-controlled genes such as intracellular acid resistanceassociated glutamate decarboxylase (GAD) (gad3), genes involved in compatible solute uptake (opuC), glycerol metabolism (glpF, glpK, glpD), and virulence (inIA, inIB). Downregulated genes in the two variants involved mainly genes involved in flagella synthesis and motility. Phenotyping results of the two rpsU variants matched the gene profiling data including enhanced freezing resistance conceivably linked to compatible solute accumulation, higher glycerol utilisation rates, and better adhesion to Caco 2 cells presumably linked to higher expression of internalins. Also, bright field and electron microscopy analysis confirmed reduced flagellation of the variants. The activation of SigBmediated stress defence offers an explanation for the multiple-stress resistant phenotype in *rpsU* variants.

Introduction

Listeria monocytogenes is a ubiguitous Gram-positive foodborne pathogen that can cause the rare but severe disease listeriosis (Toledo-Arana et al., 2009). Due to its ubiguitous nature, L. monocytogenes needs to be able to adapt to environmental stresses in its transition from the environment to the human gastro-intestinal tract. Population heterogeneity is an inherent feature of microorganisms and heterogeneity in stress response between individual cells of a population can result in survival of a small fraction of the population when subjected to (food-relevant) lethal stresses such as heat or low pH. This type of non-uniform killing leads to non-linear inactivation kinetics and tailing of the inactivation curve (Avery, 2006). Tailing leads to higher-than-expected number of cells surviving an inactivation treatment, which can be problematic for the accurate modelling of inactivation procedures. Moreover, non-homogeneous killing can lead to the selection of stress resistant variants from a population. The fraction of stress resistant cells in a population has been shown to be comprised of both cells that show a transient phenotypic resistance, and cells that show a stable genotypic resistance (Metselaar et al., 2013; Van Boeijen et al., 2011; Van Boeijen et al., 2008). Indeed, from the tail of the inactivation curve, stable stress resistant variants have been isolated for L. monocytogenes EGDe, LO28, and ScottA when exposed to either heat, low pH or high hydrostatic pressure (HHP) (Karatzas and Bennik, 2002; Metselaar et al., 2013; Metselaar et al., 2015; Van Boeijen et al., 2011; Van Boeijen et al., 2008). However, the specific mechanism of resistance in these stable stress resistant variants is still poorly understood. For variants selected by HHP treatment, a mutation in the class III heat shock repressor ctsR was shown to be responsible for the increased stress resistance in some of the variants (Van Boeijen et al., 2010). Interestingly, these HHP selected variants showed cross resistance to other stresses including heat and acid stress. In 2013, Metselaar et al. could isolate 23 stable stress resistant variants upon acid treatment. Although phenotypic characteristics such as heat and acid resistance and impaired growth rate were observed in both the HHP selected and the acid stress selected variants, a whole genome sequencing and Structural Variation (SV) analysis on the acid stress selected variants of L. monocytogenes LO28 revealed no mutations in the ctsR region in any of the 23 variants. The SV analysis revealed that 11 of the 23 acid stress selected variants that shared similar phenotypes all had a mutation in the rpsU gene locus. Our current study focuses on two of these rpsU variants, namely, variant 14, which has a deletion encompassing rpsU, yqeY and half of phoH, and variant 15 that carries a single

point mutation resulting in an amino acid substitution, changing an arginine into a proline. In previous work (Metselaar et al., 2015) RT-PCR analysis revealed significantly lower expression of the *rpsU* gene in variant 15, and as expected, no transcript in variant 14. For these variants, protection from lethal acid stress seems to be correlated (Metselaar et al., 2015) with increased activity of the glutamate decarboxylase (GAD) system (Cotter et al., 2001; Feehily and Karatzas, 2013; Karatzas et al., 2012), but complementary mechanisms contributing to the observed multiple stress-resistant phenotype of the variants are unknown. Therefore, in the current study we investigated the differential transcriptomic and phenotypic responses of *L. monocytogenes* LO28 variants 14 and 15 in comparison to the wild type to further characterize the variants and to elucidate features that can contribute to fitness, stress-tolerance, and virulence.

Materials and methods

Bacterial strains and culture conditions

Listeria monocytogenes LO28 wild type (WT) strain (Wageningen Food & Biobased Research, The Netherlands) and stress resistant variants 14 and 15 (Metselaar et al., 2013) were used in this study. All bacterial cultures were cultured as described elsewhere (Metselaar et al., 2013). Briefly, cells from -80°C stock were grown at 30°C for 48 hours on brain heart infusion (BHI, Oxoid, Hampshire) agar (1.5 % [w/w], bacteriological agar no. 1 Oxoid, Hampshire) plates. A single colony was then used to inoculate 20 ml of BHI broth in a 100 ml Erlenmeyer flask (Fisher, USA). After overnight (ON) culturing at 30°C under shaking at 160 rpm, (Innova 42; New Brunswick Scientific, Edison, NJ) 0.5% (v/v) inoculum was added to fresh BHI broth. Cells were grown under shaking at 160 rpm in BHI at 30°C until the late-exponential growth phase (OD₆₀₀ = 0.4-0.5).

RNA isolation, cDNA synthesis and labelling

RNA was isolated from late-exponentially growing cultures of the WT and variants 14 and 15. Cultures (20 ml) were centrifuged in 50 ml Falcon tubes for 1 min at room temperature (11.000 x g). Immediately after centrifugation the pellet was resuspended in 1 ml TRI reagent (Ambion) by vortexing, snap frozen in liquid nitrogen and stored at -80°C until use. RNA was extracted according to the RNAwiz (Ambion) protocol. Residual DNA was enzymatically removed using the TURBO DNA-free kit (Ambion) according to manufacturer's instructions. The quality of the extracted RNA was checked by using the Bioanalyzer (Agilent) with the Agilent RNA 6000 Nano kit, according to manufacturer's

instructions. RIN scores were between 8.5 and 10. Complementary DNA (cDNA) with aminoallyl-labelled dUTP (Ambion) was synthesized from RNA by using Superscript III reverse transcriptase (Invitrogen). Labelling and hybridization were performed as described elsewhere (Mols et al., 2013).

Microarray design and data analysis

A custom-made array design for *L. monocytogenes* LO28 was based on the 8 x 15K platform of Agilent Technologies (GEO accession number: GSE114672, on the GPL25009 platform) and the genome sequence of L. monocytogenes EGDe (NCBI accession number NC 003210.1). Two biological replicates of variant 14, and three biological replicates of variant 15 were used. Microarrays were scanned with an Agilent G2505C scanner. Image analysis and processing were performed with the Agilent Feature Extraction software (version 10.7.3.1). Transcriptome profiles were normalized using LOWESS normalization (Yang et al., 2002) as implemented in MicroPreP (van Hijum et al., 2003). The data were corrected for inter-slide differences based on total signal intensity per slide using Postprep (Yang et al., 2002) and median intensity of the different probes per gene was selected as the gene expression intensity. CyberT software was used to compare the different transcriptomes (Baldi and Long, 2001) resulting in gene expression ratios and false discovery rates (FDR) for each gene. The gene was considered significantly differentially expressed when FDR-adjusted P value was <0.05 and expression fold change was higher than 3 (log₂ ratio > 1.58 for upregulation, and < -1.58 for downregulation) (Hayrapetyan et al., 2015). FunRich version 2.1.2 (Pathan et al., 2015) was used for functional enrichment analysis.

Freeze-thaw resistance

100 µl of late exponential phase cultures of the WT strain and variants 14 and 15 were each transferred into 10 ml of fresh BHI and BHI supplemented with 100 µg/ml chloramphenicol as an inhibitor of protein synthesis. For each culture, 1.5 ml of inoculated BHI was transferred into a 2.0 ml Eppendorf tube, after which the Eppendorf tubes were collected in a water bath floater and placed in a tray containing a coolant mixture of 50% (v/v) glycerol (Fluca, Buchs) and deionized water pre-cooled to -20°C to ensure an even rate of freezing of the three cultures. After freezing for 2 h, all samples were thawed for 15 min in a water bath (Julabo JW II, Germany) set to 25°C. Appropriate dilutions of the first sample were prepared in Peptone Physiological Salt (PPS) solution, 0.1% w/v peptone, and 0.9% w/v NaCl (Tritium Microbiologie, The Netherlands) and spiral plated on BHI agar plates (Eddy Jet, IUL

Instruments) in duplicate. Samples for the second and third round of freezing and thawing were frozen again, after which the samples of the second round were thawed and plated. This process was repeated for the third round. Plates were counted after 3-4 days to allow recovery of the cells. Experiments were done with independent biological triplicates.

Glycerol consumption

100 ml cultures of the WT strain and variants 14 and 15 were grown in BHI medium in 500 ml Erlenmeyer flasks. Late-exponential phase cells were harvested by centrifuging 2 x 50 ml of cell suspension for 5 min at 2880 x g. Pellets were resuspended in phosphate buffered saline, pH 7.4 (PBS, KH₂PO₄ 1.06 mM; NaCl 155.17 mM; Na₂HPO₄-7H₂O 2.97 mM) (Gibco, Life Technologies, Scotland), and centrifuged again for 5 min at 2880 x q to remove all traces of BHI medium. The pellet was resuspended in 20 ml of nutrient broth (NB) (Oxoid, Hampshire) supplemented with 25 mM glycerol, 100 µg of chloramphenicol as an inhibitor of protein synthesis per ml and incubated in a 100 ml Erlenmeyer flask (Fisher, USA) at 30°C. A 1 ml sample was taken directly after resuspension in NB as time point zero, followed by sampling after 60, 120 and 180 minutes of incubation. Samples were centrifuged for 5 min at 17.000 x q to remove cells. The supernatant was filter sterilized using a 0.2 μ m syringe filter (Minisart NML, Sartorius Stedim Biotech GmbH, Germany). 0.5 ml of supernatant was deproteinized by the Carrez AB method. Briefly, 0.25 ml of cold Carrez A (42.20 g/l $K_4FE(CN)_{6.3}H_2O$) was added to 0.5 ml of sample. After thorough mixing with a MS 2 minishaker (IKA, Staufen, Germany) 0.25 ml of Carrez B (57.50 g/l ZnSO₄.7H₂O) was added, and the sample was centrifuged at 17.000 x g for 5 min. 10 μ l of supernatant was analysed using an Ultimate 3000 HPLC (Dionex, USA) equipped with a 300 x 7.8 mm Aminex HPX 87-H ion exclusion column (Biorad, USA), kept at 40°C with 0.05 M H_2SO_4 as eluent at a flow of 0.6 ml/min. Glycerol was detected by a Shodex R-101 refractive index detector (Shodex, USA). A standard curve was constructed by serial dilutions of glycerol in Milli-Q water (Millipore, USA). Peaks were annotated and integrated using Chromelion version 7.2 SR4 analysis software.

Differences in glycerol consumption between the WT and variants were evaluated by a Student t-test using Microsoft Excel. Differences were considered significantly different when p < 0.05.

Flagella imaging

Late-exponential phase cells of the WT strain and variants 14 and 15, grown at 30°C were

visualized using either the Ryu protocol (Kodaka et al., 1982; Ryu, 1937) or transmission electron microscopy (TEM). In the Ryu protocol, a wet mount of a cell suspension was made using a glass microscope slide with a coverslip. Then, a solution of one-part dye (saturated crystal violet in ethanol absolute) was added to 10 parts of mordant solution (aluminum potassium sulfate (AlKO₈S₂ \cdot 12 H₂O) 57 g/l; Phenol (C₆H₅OH) 25 g/l; Tannic Acid (C₇₆H₅₂O₄₆) 20 g/l). A drop of this dye-mordant solution was placed on the side of the coverslip, allowing the dye-mordant solution to enter the wet mount via capillary action. Images were taken at phase contrast settings using an Olympus BX 41 microscope with an Olympus UIS-2 PLAN-C 100x PH3 oil immersion lens coupled to an Olympus XC 30 digital camera via a 0.63x magnifier tube. Olympus CellB version 3.5 software running under Windows 7 (Microsoft, USA) was used for image acquisition. Contrast was enhanced over the entire image using ImageJ (version 1.5f National Institutes of Health, Maryland, USA). For TEM, cells were pelleted at 2880 x q and washed with phosphate buffered saline to remove traces of BHI and applied to copper TEM grids and stained with 2% uranyl acetate for 30s. The samples were visualized using a JEOL 1100, (Wageningen Electron Microscopy Centre, Wageningen University & Research, The Netherlands) operated at 100kV. Experiments were performed with independent biological triplicates.

Caco-2 adhesion and invasion assay

Caco-2 human intestine epithelial cells were obtained from the American Type Culture Collection (Caco-2, ATCC HTB-37) and cells at passage (41) were used for all experiments. Cells were routinely cultured in Tissue culture medium (TCM), containing Dulbecco's Modified Eagle's Medium (DMEM, Scotland) supplemented with 10% heat-inactivated fetal bovine serum (FBS, Integro, The Netherlands), 1% (200 mM) glutamine (Gibco), Non-Essential Amino Acids (10 mM/amino acid, Gibco) and 0.1% w/v gentamycin (50.0 mg/ml, Gibco) in 75 cm² flasks (Corning Incorporated, NY, USA).

The cells were grown to confluence in 12-well tissue culture plates (Corning Incorporated, NY, USA) following the procedure described previously (Oliveira et al., 2011) at 37°C in a humidified atmosphere of 95% air and 5% CO₂. 12-well plates were seeded in each well with $1.6 \cdot 10^5$ cells/ml. Medium was replaced every 2-3 days. Inoculated 12-well plates were incubated for 12-14 days at 37°C in a humidified atmosphere of 95% air and 5% CO₂ for full cell differentiation. Prior to all experiments, Caco-2 cells were washed three times with TCM without gentamycin and FBS pre-warmed to 37°C. An final inoculum concentration of 6.7 log cfu/ml was obtained by adding 40 µl of late exponential phase cells of *L. monocytogenes*

WT and variants 14 and 15 to the monolayers. After inoculation, the 12 well plates were centrifuged (Hettich Rotina 420R, with 4784A swing-out rotor, Hettich Benelux, The Netherlands) for 1 min at 175 x g to create a proximity between the Caco-2 and *L. monocytogenes* cells. The bacteria suspension was removed after one hour of incubation at 37°C in a humidified atmosphere of 95% air and 5% CO₂. Then, the Caco-2 monolayers were washed 3 times with 1 ml of pre-warmed PPS. To quantify the number of cells adhered and/or invaded to the Caco-2 cells, the Caco-2 cells were lysed with 1 ml of 1% v/v Triton-X100 (Sigma–Aldrich, Steinheim, Germany) in PPS and serially diluted in PPS. Appropriate dilutions were plated on BHI agar in duplicate, and colonies were enumerated after 2 days of incubation at 37°C. The ratio of percentage recovery (defined as number of cells (cfu/ml) attached and/or invaded divided by number of cells (cfu/ml) inoculated) in the variants over percentage recovery in the WT was reported. Two technical replicates were used with three wells per replicate.

Results

General transcriptome response of variants 14 and 15

Microarray analysis showed that gene expression was different between the WT and variants 14 and 15. The number of differentially expressed genes in variants 14 and 15 is shown in Figure 3.1. There was a clear overlap in the expression profiles of both variants, as 116 and 114 genes were upregulated and downregulated in both variants, respectively. To provide a more detailed insight into the transcriptomic responses of variants 14 and 15, the COG classes of the overlapping set of genes are shown in Figure 3.1c (for a complete list of genes in the overlapping set and their corresponding COG classes, see supplementary table S3.1 and S3.2). Notable shifts in expression in the variants were seen in COG classes related to metabolism and energy conversion (G: carbohydrate transport and metabolism, E: Amino acid transport and metabolism, C: Energy production and conversion), cell motility (N), signal transduction mechanisms (T), and transcription (K). Based on the previously described multiple-stress resistant phenotype of the *rpsU* variants, we first focused on parameters involved in stress response.

Figure 3.1: Differentially expressed genes in L. monocytogenes LO28 variants 14 and 15 compared to the wild type. Panel (a) represents genes that were upregulated in the variants compared to the wild type, panel (b) represents genes that were downregulated in the variants compared to the wild type. The dark grey shaded circle part represents genes only up- or downregulated in variant 14, the white circle part represents genes only up- or downregulated in variant 15. The light grey circle part represents the overlap in expression between the variants, with 116 and 114 genes up- and downregulated, respectively. (c) COG assignment of the number of upregulated (open bars) and downregulated genes (shaded bars) in both variants 14 and 15 compared to the wild type. Expression of individual genes is listed in tables S3.1 to S3.6.

General stress response

The alternative transcription factor SigB and its regulon are known to play a key role in general stress adaptation in *L. monocytogenes* (Guldimann et al., 2016, NicAogain and O'Byrne, 2016). The SigB regulon has been investigated in several studies using different methods, including DNA microarrays and RNAseq (Mujahid et al., 2013; Oliver et al., 2010; Ollinger et al., 2009; Raengpradub et al., 2008), see Guldimann et al., (2016) for a recent overview of SigB in relation to resilience. Here we used the SigB regulon described by Mujahid et al. in 2013 based on a gene expression dataset obtained by DNA microarrays and RNAseq, and compared the differential expression of these SigB-regulated genes in variants 14 and 15.

The transcriptome analysis of the variants showed that the majority (ca. 70%) of the SigB regulon, consisting in total of around 145 genes was upregulated. Additionally, the SigBcontrolled ctc gene encoding ribosomal protein L25 (previously referred to as general stress protein Ctc) (Gardan et al., 2003), was found to be higher expressed in the *rpsU* variants (Figure 3.2a/b, supplementary table S3.15). This pointed to an important role of the SigB regulon in acquired stress resistance of the variants, although the differential expression of the gene coding for the alternative transcription factor sigB (Sigma B, Imo0895) was significant (1.47 and 1.08 \log_2 fold change respectively for variant 14 and 15 with FDR <0.005), but just below the stringent cut-off that was used (i.e. $1.58 \log_2$ fold change). A selection of the SigB-regulated genes with known impact on L. monocytogenes stresstolerance and host interaction is presented in Figure 3.2c. The SigB-regulated *qad-D3* gene (Imo2434) (Kazmierczak et al., 2003) is responsible for intracellular conversion of glutamate into GABA (Feehily and Karatzas, 2013) and was upregulated in both variants (Figure 3.2c). Additionally, genes involved in the SigB and PrfA controlled arginine deiminase (ADI) system (Ryan et al., 2009) were upregulated (see supplementary table S3.8). Upregulation of these genes aligns with the previously reported increased acid resistance of these variants (Metselaar et al., 2015). In the genome of *L. monocytogenes* various SigB-controlled genes encoding compatible solute transporters have been identified (Sleator and Hill, 2010; Sleator et al., 2001), and genes encoding for the compatible solute transporter OpuC (encoded by the opuC operon) were among the highest upregulated genes in the variants (Figure 3.2c). Also, SigB-regulated genes involved in glycerol metabolism (represented by glpF/K/D, dhaK/L) were upregulated, pointing to a shift in metabolism compared to the WT, as well as SigB-regulated genes known to be involved in initial attachment to epithelium cells (represented by inlA in Figure 3.2c). Based on these observations a range of

experiments was designed to determine corresponding relevant phenotypes of the two variants.

Figure 3.2: Expression of representative SigB-regulated genes in L. monocytogenes variants compared to the wild type. (a) Regression of all genes that were significantly up- or downregulated in both variants 14 and 15. Genes shown in red are part of the SigB operon as described by Mujahid et al., 2013 (b) The heatmap displays relative expression of SigB-related genes in variants 14 and 15 compared to the wild type, and relative expression of these SigB-regulated genes as reported by Ollinger et al. 2009, Raengpradub et al. 2008 and Oliver et al. 2010. (c) Relative expression of selected SigB-regulated genes. The filled bars represent expression of genes in variant 15, the open bars represent expression of genes in variant 14. Expression of individual genes is listed in table S3.1 and S3.2

Freeze-thaw resistance

Listeria monocytogenes may be exposed to freezing-thawing stress in natural environments, as well as during storage and transport of foods. Compatible solutes are known to have a role in resistance to freezing-thawing stress (Sleator and Hill, 2010; Wemekamp-Kamphuis, Sleator, et al., 2004), and the observed upregulation of the SigB-regulated opuC operon in variants 14 and 15 conceivably results in higher intracellular concentrations of compatible solutes such as carnitine present in BHI leading to improved freezing-thawing resistance. Therefore, L. monocytogenes LO28 WT and variants 14 and 15 were exposed to consecutive cycles of freezing and thawing. Indeed, while the WT decreases up to 3 to 4 log cfu/ml after three rounds of freezing and thawing, the cell counts of both variants did not decline, indicating enhanced stress-tolerance (Figure 3.3). Experiments with chloramphenicol as inhibitor of protein synthesis showed a similar trend with slightly higher variation between the data points (data not shown) indicating that *de novo* protein synthesis was not required to sustain enhanced stress-tolerance of the variants. In addition to protection against freezing and thawing stress, compatible solutes are involved in osmoprotection. Therefore, L. monocytogenes LO28 WT and variants 14 and 15 were also exposed to a 24% w/v solution of NaCl in PPS for 16 hours, but no killing was observed for WT or variants 14 and 15 (data not shown).

Figure 3.3: Survival of L. monocytogenes LO28 wild type and variants after, 0 (equals the initial concentration), 1, 2, and 3 cycles of freezing and thawing. The wild type is represented by circles, variant 14 by squares, and variant 15 by triangles.

Glycerol metabolism

Increased expression of glycerol metabolism associated genes (Figure 3.4a and supplementary table S3.10) indicates an increased production of glycerol metabolic enzymes in the variants. Glycerol catabolism in *L. monocytogenes* is strongly linked to the expression of sigB (Abram et al., 2008), while simultaneous upregulation of prfA has been reported in glycerol grown cultures (Joseph et al., 2008). The transcriptome analysis showed that indeed *prfA* was upregulated in both variants as well as the SigB-regulated gene encoding the putative glycerol uptake facilitator protein $GlpF_1$ (Imo1539), while the second non SigB-regulated gene encoding the putative glycerol uptake facilitator protein GlpF₂ (Imo1167) was not differentially expressed. After facilitated diffusion of glycerol into the cell via $GlpF_1$, glycerol can be metabolized into dihydroxyacetone phosphate (DHA-P) via glycerol-3-phosphate (Figure 3.4a). The glycerol kinase gene (glpK, lmo1538) was upregulated in both variants and is suspected to catalyse the ATP-dependent phosphorylation of glycerol to yield glycerol-3-phosphate (Joseph et al., 2008). The *alpD* (Imo1293) gene coding for GlpD, which catalyzes the conversion of glycerol-3-phosphate into DHA-P was also upregulated in variants 14 and 15. Previous work on glycerol metabolism in Listeria innocua (Monniot et al., 2012) described the golD operon in L. innocua (lin0359-lin0369), and a homologous operon (golD) is present in L. monocytogenes (Imo0341-Imo0351). This *qol* operon is part of the second glycerol utilization pathway that depends on GolD for the conversion of glycerol into dihydroxyacetone (DHA). While the *golD* gene (Imo0344) was not upregulated in variants 14 and 15, the genes needed to perform the subsequent utilisation steps in this pathway (dhaK/L) were upregulated. Consequently, glycerol consumption was assessed in exponentially growing cells of L. monocytogenes LO28 WT and variants 14 and 15. Indeed, glycerol utilisation was increased in the variants compared to the WT after three hours of incubation in glycerol supplemented medium (Figure 3.4b). This pattern was observed while the cells were incubated with chloramphenicol, indicating that de novo protein synthesis did not contribute to this phenotype. Notably, the genes Imo0722 and Imo1381 encoding pyruvate oxidase and acylphosphatase, respectively, were also higher expressed (supplementary table S3.11). This points to downstream utilization of pyruvate generated from glycerol via acetyl phosphate leading to the production of acetate. HPLC analysis of samples obtained after 3 h incubation demonstrated that glycerol was indeed preferentially converted into acetate in the variants (data not shown).

Figure 3.4: Glycerol uptake and consumption in L. monocytogenes LO28 wild type and variants. (a) Glycerol is imported in the cell via GlpF and can be converted to glycerol-3 phosphate by GlpK or to dihydroxyacetone (DHA) by GolD, before entering glycolysis as dihydroxyacetone phosphate (DHA-P). Closed arrows represent upregulated genes in both variants 14 and 15 relative to the wild type, open arrows represent no differential expression in both variants. glpK is upregulated in variant 14, however expression in variant 15 falls just below the stringent cut-off used here (see table S10). (b) Glycerol usage by Listeria monocytogenes LO28 WT and variants. Late exponential cells were concentrated and incubated in nutrient broth supplemented with glycerol for 60, 120 and 180 minutes. Error bars indicate standard errors. * indicates significant difference over the same time point in the WT.

Motility

In our study, both flagella cluster 1 and putative flagella cluster 2 were downregulated in variants 14 and 15 (supplementary Figure S3.1 and supplementary Table S3.11), and therefore flagella staining was used to analyse the presence or absence of flagella in WT

and variants 14 and 15. Figure 3.5 shows the reduced presence of flagella (no flagella for 30 observed cells) in both variants, while flagella were clearly observed for approximately 50% of the cells in the WT strain.

Figure 3.5: Flagella imaging of L. monocytogenes LO28 WT and variants. Top row, L. monocytogenes flagella staining with crystal violet as described in Ryu et al. (1937). White arrows indicate flagella in WT. Bottom row, TEM image of L. monocytogenes cells. Scale bar indicates 500 nm.

Caco-2 attachment and invasion

After stomach passage and crossing of the intestinal barrier, *L. monocytogenes* induces internalisation by non-phagocytal host cells using the cell surface proteins internalin A (*inlA*) and B (*inlB*). The InlA protein mediates the infection of human enterocyte like cells lines such as Caco-2 via the human E-cadherin receptor (Bonazzi et al., 2009) while InlB is specific for the hepatocyte growth factor (HGF) receptor Met (Pizarro-Cerda et al., 2012). In vitro, expression of either *inlA* or *inlB* is sufficient for attachment to and internalization in non-phagocytic cells (Pizarro-Cerda et al., 2012). In variants 14 and 15, both *inlA* and *inlB* were upregulated (see Figure 3.2 and supplementary Table S3.14). Therefore, the attachment and invasion of *L. monocytogenes* LO28 WT strain and variants 14 and 15 during incubation with Caco-2 cells was determined. The recovery ratio in Caco-2 cells of both variants 14 and 15 was eight-fold higher in comparison to the WT (Figure 3.6), indicating that the variants performed better in attachment and/or invasion than the WT strain.

Figure 3.6: Recovery ratio of Listeria monocytogenes *LO28* wild type compared to variants 14 and 15 from Caco-2 cells. Recovery ratio is defined as N recovered (attached and invaded) over N inoculated. Wild type recovery ratio is set at 1. Error bars represent standard error of three technical replicates.

Discussion

Genotypic heterogeneity within a bacterial population may allow for elevated survival when a population of bacteria is subjected to food relevant stresses. In this study we focused on the transcriptomic behaviour of two multiple-stress resistant rpsU variants of L. monocytogenes LO28 that were previously isolated from a heterogeneous population. Notably, the transcriptomic response of variant 14, harbouring a large deletion that spans the ribosomal rpsU gene, as well as yqeY and half of phoH, was highly similar to the transcriptomic response of variant 15, harbouring a single point mutation in rpsU, that resulted in an amino acid change from arginine to proline. Despite the mutation in rpsU, and the strikingly lower expression of *rpsU* in variant 15 both variants apparently possessed functional ribosomes, and were highly stress resistant. Using a comparative gene-profiling and phenotyping approach, we now provided evidence that the multiple stress resistant phenotype could be explained by the activation of the SigB regulon. Both variants show an upregulation of about 70% of the 145 genes of the SigB regulon included in the analysis, although no mutations in sigB or its regulatory sequences were found (Metselaar et al., 2015). Whether additional factors are contributing to the observed multiple stress resistance phenotype of the variants remains to be elucidated.

One of the primary systems to overcome acid stress in *L. monocytogenes* is the partially SigB-regulated GAD system. This system exchanges extracellular glutamate for

Chapter 3

intracellularly produced gamma-aminobutyrate (GABA_i) under acidic conditions using the gadT1 and gadT2 antiporters. Intracellular glutamate is decarboxylated into GABA_i by gadD1, gadD2, or gadD3 while consuming a proton, thereby increasing the pH of the cytoplasm (Karatzas et al., 2010). As in previous work, (Metselaar et al., 2015), we did not find an elevated transcription of antiporter/decarboxylase pair *gadT1D1* or gad*T2D2* of the external GAD system. However, the SigB-regulated *gadD3* of the internal GAD system, operating without a glutamate/GABA antiporter was upregulated. GadD3 is hypothesised to play an important role in acid resistance by mediating the conversion of glutamate into GABA_i with concomitant consumption (removal) of protons in the cytoplasm (Karatzas et al., 2010; Wemekamp-Kamphuis, Wouters, et al., 2004), and indeed elevated accumulation of GABA_i has been previously found in variants 14 and 15 in response to acid stress (Metselaar et al., 2015).

In *L. monocytogenes*, transcription of genes involved in glycerol catabolism was shown to be SigB dependent (Abram et al., 2008). In variants 14 and 15, increased transcription of the SigB-regulated *GlpF*₁ (Imo1539) gene pointed to increased glycerol catabolism in variants 14 and 15. Indeed, during exponential growth in BHI we found upregulation of a specific set of genes in the variants involved in glycerol uptake: $glpF_1$ (Imo1539), $glpK_1$ (Im1538) and glpD (Imo1293) but not of $glpF_2$ (Imo1167) and $glpK_2$ (Imo1034). During growth, *L. monocytogenes* preferentially uses sugars that are taken up by the phosphoenol-pyruvate (PEP): phosphotransferase systems (PTS) such as glucose (Joseph et al., 2008). The main carbon source in BHI is glucose, and the presence of PTS sugars in the medium normally inhibits the catabolism of non-PTS carbon sources such as glycerol via carbon catabolite repression (CCR) (Gilbreth et al., 2004; Joseph et al., 2008; Milenbachs et al., 1997; Park and Kroll, 1993). However, our variants 14 and 15, when grown in BHI display a pattern of gene expression like WT cells of *L. monocytogenes* EGDe grown to OD₆₀₀ 0.5 in defined minimal medium with glycerol (Joseph et al., 2008) suggesting mitigation of catabolite repression.

Another study reported that cells grown in the presence of a non-PTS carbon source such as glycerol, show a high activity of *prfA* (Joseph and Goebel, 2007; Mertins et al., 2007) and experiments with $\Delta glpk$ and $\Delta glpD$ mutants indicated that components related to glycerol metabolism may modulate the transcription of *prfA*. Notably, glycerol has been reported as one of the main carbon sources for *L. monocytogenes* during cytosolic growth (Bruno and Freitag, 2010; Fuchs et al., 2012). Therefore, the observation that both *prfA* and the genes

57

for glycerol metabolism are constitutively expressed in the variants suggests that variants 14 and 15 are metabolically primed for replication in eukaryotic cells (Bruno and Freitag, 2010), conceivably affecting their virulence potential. Indeed, in variants 14 and 15, with upregulated *glpK* and *glpD*, we see upregulation of the PrfA/SigB-regulated *inlA* and *inlB*. InlA is essential for attachment and invasion of enterocytes and enterocyte cell lines such as Caco-2, while InlB mediates the attachment of *L. monocytogenes* to fibroblasts and hepatocytes. Although *L. monocytogenes* LO28 carries a premature stopcodon in *inlA*, truncating the InlA protein at 63 kDa as opposed to the 80 kDa InlA of epidemic strains, infection studies show that *L. monocytogenes* LO28 is still able to adhere to and invade Caco-2 cells (Olier et al., 2003). In variants 14 and 15, we observed an eight-fold increase over the WT in attachment and invasion to a Caco-2 cell line, indicating a higher potential for adhesion and invasion in the variants.

Both variants 14 and 15 showed a clear reduction in expression of motility associated genes, including flagellar biosynthesis genes (*fliN, fliP, fliQ, fliR, flhB, flhA, flhF*, and *flgG*) and motor control genes (*motA, motB*). In variants 14 and 15, there was no significant difference in expression of the motility gene repressor *mogR* over the wild type (see table S13). In line with the downregulation of the flagellar biosynthesis genes, the *gmrA* gene encoding the MogR-anti-repressor GmrA, was strongly downregulated in both variants (see table S13), conceivably allowing the MogR protein to repress expression of the flagella operon (Lebreton and Cossart, 2016). Whether the previously described SigB-activated long antisense RNA Anti0677 (Lebreton and Cossart, 2016; Schultze et al., 2014; Toledo-Arana et al., 2009) plays an additional role in the observed downregulation of motility genes in the flagella operon in the two *L. monocytogenes* variants remains to be elucidated.

Activation of a systemic stress defence response via SigB is energetically costly, and shutdown of the energy consuming flagella synthesis apparatus can reduce some of the energetic costs of SigB activation. Indeed, *rpsU* variants have been described to have reduced fitness relative to the WT, showing reduced growth rates at 7°C and 30°C (Metselaar et al., 2015). Notably, Metselaar et al. (2013) described growth rate differences that were a function of media pH for *rpsU* variants, suggesting that stress resistance and growth rate are growth condition dependent and mechanically linked. This could provide a clue to elucidate the correlation between the *rpsU* mutations and activation of the SigB regulon reported in the current paper. SigB activity is controlled both translationally and

Chapter 3

posttranslationally in *Listeria*, allowing the bacterial cells to rapidly respond to changes in environmental conditions. The posttranslational control of SigB activity involves a phosphorylation cascade that is highly conserved in species containing *sigB*, including *L*. *monocytogenes* (Ferreira et al., 2004) and is governed by the "stressosome", a signal relay hub that integrates multiple environmental (stress) signals to regulate SigB activity. A published overview of network motifs in *L. monocytogenes* (Guariglia-Oropeza et al., 2014) underlines the role of *sigB* as a central hub in the stress response of *L. monocytogenes*. In variants 14 and 15, we found strong upregulation of genes that were under the direct control of SigB (eg. *uspL*1-3, *inIAB*, *bsh*) in these regulatory networks, but not of genes that were co-regulated by other regulators. However, additional network effects remain to be elucidated.

In conclusion, the activation of SigB-mediated stress defence offers an explanation for the multiple-stress resistant phenotype observed in *rpsU* variants. Strikingly, our DNA microarray analysis showed that expression of upregulated or downregulated genes largely overlaps between variants 14 and 15, while variant 14 carries a deletion of the *rpsU* and *yqeY* gene, and a partial deletion of *phoH*, whereas variant 15 carries only an amino acid substitution in the *rpsU* gene which may affect functionality of the RpsU protein. The exact mechanism of SigB induction via *rpsU* and stressosome associated genes remains to be elucidated. Moreover, a better mechanistic understanding of *rpsU* associated multi-stress resistance will provide valuable insights into the generation of genotypic heterogeneity within bacterial populations.

Acknowledgments

The authors would like to thank Jos Boekhorst for assistance in normalization of the microarray data, Natalia Crespo for Figure 3.3a, and Maren Lanzl for assistance in Caco-2 experiments. We would also like to thank the Wageningen Electron Microscopy Centre for providing training on the JEOL 1100 TEM.

References

- Abram, F., Su, W.L., Wiedmann, M., Boor, K.J., Coote, P., Botting, C., Karatzas, K.A., O'Byrne, C.P., 2008. Proteomic analyses of a *Listeria monocytogenes* mutant lacking σB identify new components of the σB regulon and highlight a role for σB in the utilization of glycerol. Appl. Environ. Microbiol. 74, 594-604.
- Avery, S.V., 2006. Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol. 4, 577-587.
- Baldi, P., Long, A.D., 2001. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17, 509-519.
- **Bonazzi, M., Lecuit, M., Cossart, P.,** 2009. *Listeria monocytogenes* internalin and E-cadherin: from bench to bedside. Cold Spring Harbor Perspect. Biol. 1, a003087.
- Bruno, J.C., Jr., Freitag, N.E., 2010. Constitutive activation of PrfA tilts the balance of *Listeria* monocytogenes fitness towards life within the host versus environmental survival. PloS One 5, e15138.
- Cotter, P.D., Gahan, C.G., Hill, C., 2001. A glutamate decarboxylase system protects *Listeria* monocytogenes in gastric fluid. Mol. Microbiol. 40, 465-475.
- Feehily, C., Karatzas, K.A., 2013. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J. Appl. Microbiol. 114, 11-24.
- Ferreira, A., Gray, M., Wiedmann, M., Boor, K.J., 2004. Comparative genomic analysis of the sigB operon in *Listeria monocytogenes* and in other Gram-positive bacteria. Curr. Microbiol. 48, 39-46.
- Fuchs, T.M., Eisenreich, W., Kern, T., Dandekar, T., 2012. Toward a systemic understanding of *Listeria monocytogenes* metabolism during infection. Front. Microbiol. 3, 23.
- Gardan, R., Duche, O., Leroy-Setrin, S., Labadie, J., 2003. Role of *ctc* from *Listeria monocytogenes* in osmotolerance. Appl. Environ. Microbiol. 69, 154-161.
- Gilbreth, S.E., Benson, A.K., Hutkins, R.W., 2004. Catabolite repression and virulence gene expression in *Listeria monocytogenes*. Curr. Microbiol. 49, 95-98.
- Guariglia-Oropeza, V., Orsi, R.H., Yu, H., Boor, K.J., Wiedmann, M., Guldimann, C., 2014. Regulatory network features in *Listeria monocytogenes*-changing the way we talk. Front. Cell. Infect. Microbiol. 4, 14.
- **Guldimann, C., Boor, K.J., Wiedmann, M., Guariglia-Oropeza, V.,** 2016. Resilience in the face of uncertainty: sigma factor B fine-tunes gene expression to support homeostasis in Gram-positive bacteria. Appl. Environ. Microbiol. 82, 4456-4469.
- Hayrapetyan, H., Tempelaars, M., Nierop Groot, M., Abee, T., 2015. *Bacillus cereus* ATCC 14579 RpoN (Sigma 54) is a pleiotropic regulator of growth, carbohydrate metabolism, motility, biofilm formation and toxin production. PloS One 10, e0134872.
- Joseph, B., Goebel, W., 2007. Life of *Listeria monocytogenes* in the host cells' cytosol. Microbes Infect. 9, 1188-1195.

- Joseph, B., Mertins, S., Stoll, R., Schar, J., Umesha, K.R., Luo, Q., Muller-Altrock, S., Goebel,
 W., 2008. Glycerol metabolism and PrfA activity in *Listeria monocytogenes*. J. Bacteriol. 190, 5412-5430.
- Karatzas, K.A., Brennan, O., Heavin, S., Morrissey, J., O'Byrne, C.P., 2010. Intracellular accumulation of high levels of γ-aminobutyrate by *Listeria monocytogenes* 10403S in response to low pH: uncoupling of γ-aminobutyrate synthesis from efflux in a chemically defined medium. Appl. Environ. Microbiol. 76, 3529-3537.
- Karatzas, K.A.G., Suur, L., O'Byrne, C.P., 2012. Characterization of the intracellular glutamate decarboxylase system: analysis of its function, transcription, and role in the acid resistance of various strains of *Listeria monocytogenes*. Appl. Environ. Microbiol. 78, 3571-3579.
- Karatzas, K.A.G., Bennik, M.H.J., 2002. Characterization of a *Listeria monocytogenes* Scott A isolate with high tolerance towards high hydrostatic pressure. Appl. Environ. Microbiol. 68, 3183-3189.
- Kazmierczak, M.J., Mithoe, S.C., Boor, K.J., Wiedmann, M., 2003. *Listeria monocytogenes* oB regulates stress response and virulence functions. J. Bacteriol. 185, 5722-5734.
- Kodaka, H., Armfield, A.Y., Lombard, G.L., Dowell, V.R., Jr., 1982. Practical procedure for demonstrating bacterial flagella. J. Clin. Microbiol. 16, 948-952.
- Lebreton, A., Cossart, P., 2016. RNA- and protein-mediated control of *Listeria monocytogenes* virulence gene expression. RNA Biol. 14, 460-470.
- Mertins, S., Joseph, B., Goetz, M., Ecke, R., Seidel, G., Sprehe, M., Hillen, W., Goebel, W., Muller-Altrock, S., 2007. Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of *Listeria monocytogenes*. J. Bacteriol. 189, 473-490.
- Metselaar, K.I., Den Besten, H.M.W., Abee, T., Moezelaar, R., Zwietering, M.H., 2013. Isolation and quantification of highly acid resistant variants of *Listeria monocytogenes.* Int. J. Food Microbiol. 166, 508-514.
- Metselaar, K.I., Den Besten, H.M.W., Boekhorst, J., van Hijum, S.A., Zwietering, M.H., Abee, T., 2015. Diversity of acid stress resistant variants of *Listeria monocytogenes* and the potential role of ribosomal protein S21 encoded by *rpsU*. Front. Microbiol. 6, 422.
- Milenbachs, A.A., Brown, D.P., Moors, M., Youngman, P., 1997. Carbon-source regulation of virulence gene expression in *Listeria monocytogenes*. Mol. Microbiol. 23, 1075-1085.
- Mols, M., Mastwijk, H., Nierop Groot, M., Abee, T., 2013. Physiological and transcriptional response of *Bacillus cereus* treated with low-temperature nitrogen gas plasma. J. Appl. Microbiol. 115, 689-702.
- Monniot, C., Zebre, A.C., Ake, F.M., Deutscher, J., Milohanic, E., 2012. Novel listerial glycerol dehydrogenase- and phosphoenolpyruvate-dependent dihydroxyacetone kinase system connected to the pentose phosphate pathway. J. Bacteriol. 194, 4972-4982.

- **Mujahid, S., Orsi, R.H., Vangay, P., Boor, K.J., Wiedmann, M.,** 2013. Refinement of the *Listeria monocytogenes* σB regulon through quantitative proteomic analysis. Microbiol. 159, 1109-1119.
- NicAogain, K., O'Byrne, C.P., 2016. The role of stress and stress adaptations in determining the fate of the bacterial pathogen *Listeria monocytogenes* in the food chain. Front. Microbiol. 7, 1865.
- Olier, M., Pierre, F., Rousseaux, S., Lemaitre, J.P., Rousset, A., Piveteau, P., Guzzo, J., 2003. Expression of truncated internalin A is involved in impaired internalization of some *Listeria monocytogenes* isolates carried asymptomatically by humans. Infect. Immun. 71, 1217-1224.
- **Oliveira, M., Wijnands, L., Abadias, M., Aarts, H., Franz, E.,** 2011. Pathogenic potential of *Salmonella* Typhimurium DT104 following sequential passage through soil, packaged fresh-cut lettuce and a model gastrointestinal tract. Int. J. Food Microbiol. 148, 149-155.
- **Oliver, H.F., Orsi, R.H., Wiedmann, M., Boor, K.J.,** 2010. *Listeria monocytogenes* σB has a small core regulon and a conserved role in virulence but makes differential contributions to stress tolerance across a diverse collection of strains. Appl. Environ. Microbiol. 76, 4216-4232.
- Ollinger, J., Bowen, B., Wiedmann, M., Boor, K.J., Bergholz, T.M., 2009. *Listeria monocytogenes* oB modulates PrfA-mediated virulence factor expression. Infect. Immun. 77, 2113-2124.
- Park, S.F., Kroll, R.G., 1993. Expression of listeriolysin and phosphatidylinositol-specific phospholipase C is repressed by the plant-derived molecule cellobiose in *Listeria monocytogenes*. Mol. Microbiol. 8, 653-661.
- Pathan, M., Keerthikumar, S., Ang, C.S., Gangoda, L., Quek, C.Y., Williamson, N.A., Mouradov, D., Sieber, O.M., Simpson, R.J., Salim, A., Bacic, A., Hill, A.F., Stroud, D.A., Ryan, M.T., Agbinya, J.I., Mariadason, J.M., Burgess, A.W., Mathivanan, S., 2015. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics 15, 2597-2601.
- Pizarro-Cerda, J., Kuhbacher, A., Cossart, P., 2012. Entry of *Listeria monocytogenes* in mammalian epithelial cells: an updated view. Cold Spring Harb. Perspect. Med. 2, a010009.
- **Raengpradub, S., Wiedmann, M., Boor, K.J.,** 2008. Comparative analysis of the σBdependent stress responses in *Listeria monocytogenes* and *Listeria innocua* strains exposed to selected stress conditions. Appl. Environ. Microbiol. 74, 158-171.
- Ryan, S., Begley, M., Gahan, C.G., Hill, C., 2009. Molecular characterization of the arginine deiminase system in *Listeria monocytogenes*: regulation and role in acid tolerance. Environ. Microbiol. 11, 432-445.
- **Ryu, E.,** 1937. A simple method of staining bacterial flagella. Kitasato Arch Exp Med. 14, 218-219.
- Schultze, T., Izar, B., Qing, X., Mannala, G.K., Hain, T., 2014. Current status of antisense RNA-mediated gene regulation in *Listeria monocytogenes*. Front. Cell. Infect. Microbiol. 4, 135.

- Sleator, R.D., Hill, C., 2010. Compatible solutes: the key to *Listeria's* success as a versatile gastrointestinal pathogen? Gut Pathogens 2, 20.
- Sleator, R.D., Wouters, J., Gahan, C.G., Abee, T., Hill, C., 2001. Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of *Listeria monocytogenes*. Appl. Environ. Microbiol. 67, 2692-2698.
- Toledo-Arana, A., Dussurget, O., Nikitas, G., Sesto, N., Guet-Revillet, H., Balestrino, D., Loh, E., Gripenland, J., Tiensuu, T., Vaitkevicius, K., Barthelemy, M., Vergassola, M., Nahori, M.A., Soubigou, G., Regnault, B., Coppee, J.Y., Lecuit, M., Johansson, J., Cossart, P., 2009. The *Listeria* transcriptional landscape from saprophytism to virulence. Nature 459, 950-956.
- Van Boeijen, I.K., Chavaroche, A.A., Valderrama, W.B., Moezelaar, R., Zwietering, M.H., Abee, T., 2010. Population diversity of *Listeria monocytogenes* LO28: phenotypic and genotypic characterization of variants resistant to high hydrostatic pressure. Appl. Environ. Microbiol. 76, 2225-2233.
- Van Boeijen, I.K., Francke, C., Moezelaar, R., Abee, T., Zwietering, M.H., 2011. Isolation of highly heat-resistant *Listeria monocytogenes* variants by use of a kinetic modelingbased sampling scheme. Appl. Environ. Microbiol. 77, 2617-2624.
- Van Boeijen, I.K., Moezelaar, R., Abee, T., Zwietering, M.H., 2008. Inactivation kinetics of three *Listeria monocytogenes* strains under high hydrostatic pressure. J. Food Prot. 71, 2007-2013.
- van Hijum, S.A., Garcia de la Nava, J., Trelles, O., Kok, J., Kuipers, O.P., 2003. MicroPreP: a cDNA microarray data pre-processing framework. Appl. Bioinformatics 2, 241-244.
- Wemekamp-Kamphuis, H.H., Sleator, R.D., Wouters, J.A., Hill, C., Abee, T., 2004. Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of *Listeria monocytogenes* at low temperatures. Appl. Environ. Microbiol. 70, 2912-2918.
- Wemekamp-Kamphuis, H.H., Wouters, J.A., de Leeuw, P.P., Hain, T., Chakraborty, T., Abee, T., 2004. Identification of sigma factor σB-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in *Listeria monocytogenes* EGD-e. Appl. Environ. Microbiol. 70, 3457-3466.
- Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J., Speed, T.P., 2002. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, e15.

1038	30	600	COG class	COG de sociation	Dradiet	variant 14	5	variant 15	5
		00110	00000000			1062 Internation		1062 Iona citaribe	
LO28_2671	mo1988	leu B	С	Energy production and conversion	3-isopropylmalate dehydrogenase	2.63 0	.0007	2.12 (0.0018
LO28_0878	mo1651		n <	Defense mechanisms	ABC transporter	2.04 0	.0000	1.85	0.0000
1028 2350	mo0265		m (Amino acid transport and metabolism	Acetylorn ithine deacetyl ase	3.17 0	.0037	3.03	0.0009
	lmo0134		R	General prediction only	Acetyltransferase, GNAT family	4.10 0	.0000	3.84 (7.0000
LO28_2005	mo0602		~	Transcription	Acetyltransferase, GNAT family	5.58 0	.0000	5.45 (3.0000
LO28_0517	mo1293	glpD	0 0	Energy production and conversion	Aerobic glycerol-3-phosphate dehydrogenase	2.38 0	.0000	2.39 (0.0000
LO28_2843	mo2157	sepA	" ,C	Amino acid transport and metabolism	Argining deiminase	3.52 0	.0000	3 03	0.0000
LO28 2917	lmo2230		r	Signal transduction mechanisms	Arsenate reductase	5.84 0	.0000	6.04	1.0000
LO28_2028	mo0579		S	No functional prediction	Bacterial seryl-tRNA synth etase related	2.24 0	.0000	2.31 (1.0000
LO28_1554	lmo2573		С	Energy production and conversion	Bifunctional protein: zinc-containing alcoholdehydrogenase	3.99 0	.0000	3.84 (0.0000
LO28_2468	mo1694		סבי	General prediction only	Cell division inhibitor Slr1223 (YtcH in EC)	5.08 0	.0000	4.90	0.0000
1028 2750	mo2067		≤ "	Cell wall/membrane/envelope biogenesis	Cholovizive hydrolase	4.47 0	.0000	4.07	1.0000
LO28_2918	mo2231		P	Inorganic ion transport and metabolism	Cobalt-zinc-cad mium resistance protein	5.59 0	.0000	5.31 (1.0000
LO28_2017	lmo0590		R	General prediction only	DAK2 do main protein	3.38 0	.0000	2.89 (0.0000
LO28_1553	mo2572		, T	Coenzyme transport and metabolism	Dihydrofolate reductase	4.52 0	.0000	4.15 (0.0000
	mo1602		70 7	General prediction only	General stress protein	2.53 0	.0000	3.02	1.0000
LO28_1079	mo2748		R	General prediction only	General stress protein	5.39 0	.0000	5.58 (0.0000
LO28_2860	mo2174		н —	Signal transduction mechanisms	GGDEF domain protein	2.23 0	.0000	1.84 (0.0001
LO28_1411	lmo2434		m (Amino acid transport and metabolism	Glutamate decarboxylase	2.85 0	.0000	2.41 (3.0000
LO28_0656	lmo1433		С	Energy production and conversion	Glutathione reductase	4.68 0	.0000	4.67 (3.0000 L
LO28_0765	mo1539		ຊ ດ	Carbohydrate transport and metabolism	Giycerol uptake facilitator protein	2.57 0	00001	1.95 (0.0012 .
LO28_0644	mo1421		m 3	Amino acid transport and metabolism	Glycine betaine ABC transport system	3.68 0	.0000	3.96 ().0000
LO28_2016	lmo0591		S	No functional prediction	Hypothetical protein	3.29 0	.0000	2.74 (0.0000
LO28_2011	mo0596		No COG		Hypothetical protein	6.31 0	.0000	5.86 (0.0000
LO28_1208	mo0019		S	No functional prediction	Hypothetical protein	5.29 0	00004	4.79 (0.0001
LO28 2818	mo2132		T	Signal transduction mechanisms	nypotrieucal protein Hypothetical protein	2.34 0	.0262	0.11 1.94 (1.0200
LO28_1979	lmo0628		No COG		Hypothetical protein	4.16 0	.0001	3.93 (0.0000
LO28_1610	lmo2387		No COG		Hypothetical protein	3.56 0	.0000	3.39 (0.0000
1038 0 655	mo1/00				Hypothetical protein	3.15 0		5.49	
LO28_0655	Imo1432 Imo0589		S S	No functional prediction	Hypothetical protein Hypothetical protein	3.93 0	.0000	2.43 3.03 (3.0000
LO28_1440	lmo2463		R	General prediction only	Hypothetical protein	3.96 0	.0000	3.40 (0.0000
LO28_1959	Imo0647		No COG		Hypothetical protein	3.42 0	.0000	3.33	0.0000
LO28 0992	lmo2671		No COG	ואס ומוורנוסוופו לו במורכוסוו	Hypothetical protein	1.96 0	.0000	1.67 (1.0000
LO28_0301	mo1140		S	No functional prediction	Hypothetical protein	3.68 0	0012	3.23 (0.0004
LO28_1414	mo2437		סבי	General prediction only	Hypothetical protein	2.57 0	.0001	2.44 (0.0000
1038 1333	mon1 33		<i>~ v</i>	No functional prediction	Hypothetical protein	2.97 0	.0000	3.12	1 0000
LO28_2341	lmo0274		-	Signal transduction mechanisms	Hypothetical protein	2.07 0	.0000	2.36 ().0000
LO28_1551	lmo2570		S	No functional prediction	Hypothetical protein	4.41 0	.0000	3.30 (3.0000
LO28_2167	lmo0445		No COG		Hypothetical protein	3.84 0	.0000	3.88	0.0000
LO28_0114	mo0937		No COG		Hypothetical protein	2.56 0	0001	2.75 (0.0000
LO28_1952	lmo0654		No COG		Hypothetical protein	2.26 0	.0001	2.50 (1.0000
LO28_2956	lmo2269		No COG		Hypothetical protein	4.76 0	.0000	4.33 (0.0000

Supplementary material

Table 53.1 (1 of 3): Expression of genes upregulated in both L. monocytogenes LO28 variant 14 and variant 15 compared to the wild type. Values in bold are considered significant

Table S3.1 co	ntinued (2 of	Expres	ssion of ger	nes upregulated in both L. monocytogenes LO28 variant 14 an	id variant 15 compared to the wild type. Values in bold are considered significant				
L028	Imo	Gene	COG class	COG description	Product	log ₂ fold change	FDR	log ₂ fold change	FDR
LO28 2179	Imo0433	inIA	Nn COG		Internalin A (I PXTG motif)	3.64	0.0000	3.70 0	0000
	lmo0434	in IB S	0,	No functional prediction	Internalin B (GW modules)	1.85	0.0029	2.15 0	.0001
LO28_2352	Imo0263	inH S		No functional prediction	Internalia. Illo apotoia /I BYTC motifil mode / Okomolog	6.21	0.0000	6.18 0	.0000
LO28_1978	lmo0629	~		Secondary metabolites biosynthesis, transport and catabolisr	m Isochorismatase	4.73	0.0001	4.65 0	.0000
LO28_1737	lmo0211 4	ctc J		Translation, ribosomal structure and biogenesis	LSU ribosomal protein L25p	2.47	0.0000	1.84 0	.0000
LO28_1958	lmo0648	-	-0	Inorganic ion transport and metabolism	Magnesium and cobalt transport protein CorA	2.82	0.0000	2.60 0	.0000
LO28_0174	mo0995		5 63	Carbohyd rate transport and metabolism	Membrane protein	2.80	0.0005	2.21 0	.0004
LO28_0486	Imo1261 Imo2484	0 -		No functional prediction	Membrane protein Membrane protein	2.88 2.12	0.0016	2.31 0	0000
LO28_2294	lmo0321		No COG		Membrane protein	4.07	0.0000	3.39 0	.0000
LO28_0922	lmo2602	(0	0,	No functional prediction	Mg(2 +) transport ATPase protein C	3.39	0.0000	2.94 0	.0000
LO28_0133	lmo0956	~	G	Carbohydrate transport and metabolism	N-acetylglucosamine-6-phosphate deacetylase	1.78	0.0000	1.89 0	.0000
LO28_2054	Imo0554		0.0	Energy production and conversion	NADH-dependent butanol dehydrogenase A	3.56	0.0000	3.10 0	.0000
1028_1552	Imo25/1	<u>.</u>	0 0	Secondary metabolites biosynthesis, transport and catabolisr	m Nicotinamidase Non-specific DNA-binding protein Das /ron-binding/erritin-like antioxidant protein	4.15		3.92 0	0000
LO28_0651	Imo1428	opuCA E	m	Amino acid transport and metabolism	Osmotically activated L-camitine/choline ABCtransporter, ATP-binding protein OpuCA	6.31	0.0000	6.04 0	.0000
LO28_0650	Imo1427	ориСВ Е	m	Amino acid transport and metabolism	Osmotically activated L-carnitine/choline ABCtransporter, permease protein OpuCB	6.48	0.0000	6.37 0	.0000
LO28_0648	Imo1425	opuCD E		Amino acid transport and metabolism	Osmotically activated L-camitine/choline ABCtransporter, permease protein OpuCD	6.49	0.0000	6.22 0	.0000
LO28_0649	Imo1426 d	opucc n	< <	Cell wall/membrane/envelope biogenesis Cell wall/membrane/envelope biogenesis	Oxidoredu ctase vibF	5.50 3.36	0.0000	3.36 0	0000
LO28_1935	lmo0669		-	Lipid metabolism	Oxidoreductase, short-chain dehydrogenase/reductase family	5.74	0.0000	5.78 0	.0000
LO28_0598	mo1375		m	Amino acid transport and metabolism	PeptidaseT	2.08	0.0000	2.14 0	.0000
1028_1424	Imo2496	- 4	00	No runctional prediction	Phage intection protein	1.89	0.0000	1./1 0	0/8/
LO28_1472	lmo2494		0	Inorganic ion transport and metabolism	Phosp hate transport system regulatory proteinPhoU	3.89	0.0001	4.15 0	.0000
LO28_1028	mo2696	~	6)	Carbohyd rate transport and metabolism	$Phosphoenolpyruvate-dihydroxyace to nephosphot ransferase, {\sf ADP-bindingsubunitDhal}$	4.86	0.0000	4.81 0	.0000
LO28_1027	mo2695	• •	, ₍₁)	Carbohydrate transport and metabolism	Phosphoenol pyruvate-dihydroxyacetonephosphotransferase, subunit DhaK Bhomboenol pyruvate-dihydroxyacetonephosphotransferase, subunit DhaM	4.80	0.0000	4.58 0	0000
1028 2892	lmo2205	~ (5) 4	Carbohyd rate transport and metabolism	Eniosphoeliycerate mutase	2.12	0.0000	2.34 0	.0000
LO28_2027	lmo0580	-		General prediction only	Phospholipase/carboxylesterase family protein	1.94	0.0000	2.02 0	.0000
LO28_1370	lmo1798	-	No COG		Poly (glycerol-phosphate)al pha-glucosyltransferase	2.08	0.0324	2.00 0	.0146
LO28_2207	Imo0405		,	Inorganic ion transport and metabolism	Probable low-affinity inorganic phosphatetransporter	2.38	0.0000	2.01 0	.0000
LO28_1819	lmo0783	0.0	67 6	Carbohydrate transport and metabolism Carbohydrate transport and metabolism	PTS system, mannose-specific IIA component / PTS system, mannose-specific IIB component PTS system, mannose-specific IIB component	4.94 5.01	0.0000	4.43 0 4.37 0	.0000
LO28_1820	lmo0782	~	6)	Carbohydrate transport and metabolism	PTS system, mannose-specific IIC component	4.85	0.0000	3.94 0	.0000
LO28_1821	lmo0781		· G)	Carbohydrate transport and metabolism	PTS system, mannose-specific IID component	4.55	0.0000	3.97 0	.0000
LO28_0464	Imo1241		. 0	No functional prediction	Putative exported protein	2.63	0.0049	2.25 0	.0029
1028 0056	1mo0880		< °	. No in fictional prediction Cell wall/membrane/envelope biogenesis	Putative exported protein Putative eeptidogivcan bound protein (LPXTGmotifiLmo0880 homolog	3.17	0.0024	3.40 0	.0002
LO28_0893	lmo1666	-	No COG		Putative peptidoglycan bound protein (LPXTGmotif) Lmo1666 homolog	2.49	0.0000	2.64 0	.0000
LO28_2770	Imo2085		2	Cell wall/membrane/envelope biogen esis	Putative peptidoglycan bound protein (LPXTGmotif) Lmo2085 homolog	5.03	0.0000	4.48 0	.0000
LO38_1066	Imo2/35		n G	Carbonydrate transport and metabolism	Putative sucrose phosphory lase	2.14	0.0366	1.72 0	0355
LO28 0995	lmo2674	~ -	6) 1	Carbohydrate transport and metabolism	Ribose 5 -phosphate isomerase B	2.79	0.0000	2.46 0	.0000
LO28_1489	lmo2511	_		Translation, ribosomal structure and biogenesis	Ribosomal subunit interface protein	1.84	0.0000	1.88 0	.0000
LO28_2176	lmo0436	-	Ŷ	Transcription	Rrf2 family transcriptional regulator, group III	1.84	0.0019	2.03 0	.0003
LO28_1808	Imo0794		1.20	General prediction only	Rrf2-linked NADH-flavin reductase	3.58	0.0000	3.76 0	.0000
1038 3613	Imo10555			Signal transduction mechanisms	Serine/threonine protein phosphatase	2.84	0.0001	2.77 0	0000
LO28 2173	Imo0439			General prediction only	Silderophore/Surfactin synthetase relatedbrotein	5.71	0.0000	5.41 0	.0000
LO28_0090	lmo0913	~	0	Energy production and conversion	Succinate-semialdehyde dehydrogenase [NAD (P)+]	2.02	0.0242	1.86 0	.0092
LO28_2084	lmo0524	-	0	Inorganic ion transport and metabolism	Sulfate permease	1.84	0.0000	1.95 0	.0000

						:		
0.0000	-4.06	0.0000	4.43	Flagellar basal-body rod protein FlgC	Cell motility	z	100711 flaC	LO28 1892 In
0.0000	-4.78	0.0000	-4.96	Flagellar basal-body rod protein FlgB	Cell motility	z	100710 <i>figB</i>	LO28_1893 In
0.0000	-4.52	0.0000	4.70	Flagellar basal-body rod modification protein FlgD	Cell motility	z	100696 <i>flgD</i>	LO28_1907 In
0.0000	-4.46	0.0000	-4.66	Flagellar assembly protein FliH		No COG	100715 <i>fiiH</i>	LO28_1888 In
0.0119	-1.75	0.0386	-1.81	Iranscriptional activator of LmoU3.27 homolog	Iranscription	~	100326	LO28_2289 In
0.0000	-2.33	0.0000	-2.00			Nocoo		1020 2202
0,0000	3 60	0.0000	2 00			Nococ		1030 0454
0 0000	-2.76		-2 91	Hypothetical rootein		Nocoa		
0.0000	-3.47	0.0000	-3.80	Hypothetical protein		No COG		LO28 0448
0.0028	-2.22	0.0024	-2.40	Hypothetical protein		No COG	102309	LO28_0421 In
0.0012	-1.82	0.0000	-3.06	Hypothetical protein		No COG		LO28_0408
0.0000	-3.23	0.0000	-3.66	Hypothetical protein		No COG		LO28_0449
0.0003	O	0.0000	-1.90					LO20 0414
EUUU U	-1 58		-1 90	Hypothetical protein		Norog		- 012
0.0000	-6.12	0.0000	-7.00	Hypothetical protein		No COG	101700	LO28 2462 In
0.0000	-5.03	0.0000	-5.79	Hypothetical protein		No COG	100708	LO28_1894 In
0.0003	-1.60	T000.0	-2.07	Hypothetical protein		NOCOG	100834	L028_0008 IL
0.0000		0.0000	1				1000014	LOF0_TOTO
	7 04		- A A A	Hypothetical protein		Norog	109004	1 0 2 1 0 0 In
0.0000	-5.37	0.0000	-6.10	Hypothetical protein		No COG	100704	LO28 1899 Ir
0.0001	-2.08	0.0004	-2.34	Hypothetical protein		No COG		LO28_0452
0.0000	-5.64	0.0000	-6.00	Hypothetical protein		No COG	100701	LO28_1902 In
0.0000		0.0000	0.00				100004	LO70_122
0 0000	-5 84		40 Y	Hypothetical rotein		Norog	100684	1 078 1919 h
0.0000	-5.02	0.0000	-5.43	Hypothetical protein		No COG	100702	LO28 1901 Ir
0.0000	-4.75	0.0000	4.93	Hypothetical protein		No COG	100687	LO28_1916 Ir
0.0000	-2.51	0.0000	-2.25	Hypothetical protein	No functional prediction	S	100724	LO28_1879 In
0.01/3	-2.33	0.0004	-2.30	nypotnetical protein		NOCOG	102201	LUZ0_1040
0.0000	2 1 2	0.0000						
0.0000	-3.20	0.0000	-2.73	Hypothetical protein		NoCOG		1028 2791
0.0000	-2.67	0.0000	-3.44	Hypothetical protein		No COG	100718	LO28_1885 In
0.0000	-3.09	0.0000	-2.30	Ferrous iron transport protein B	Inorganic ion transport and metabolism	P	102105	LO28_2790 Ir
0.0000	-4.24	0.0000	4.89	Dolicho i-pho spinate mann osyitransterase in lipid-linked oligosaccharide synthesis cluster	Ceil Wall/memorane/envelope plogenesis	M	100688	LI STET_8701
0.0000	-0.00	0.0000	4.12		Signar transuccion mechanisms	: -	IUUUJI CIEI	
0,0000		0,0000	C 1 3	Chompeterie room internet and the champer constant in the financial mean operation of the V		+ :	SODED 1 Show	1010 000
0.0000	-4.97	0.0000	-5.16	Chemotaxis protein methyltransferase CheR	Cell motility	z	100683	LO28 1920 In
0.0000	-5.26	0.0000	5.55	Chemotaxis protein CheV	Cell motility	z	100689	LO28_1914 In
0.0000	-3.65	0.0000	-3.58	Bacteri ophage		No COG		LO28_0446
0.0001	-2.69	0.0003	-2.83	Aspartate aminotransferase	Amino acid transport and metabolism	m	102252	LO28_2940 In
0.0001	-5.29	0.0012	4.83	Argininosuccinate synthase	Amino acid transport and metabolism		102U9U argo	LUZ8_2//5
0.0007		0.0047	1.00	A similar state with sec	Amino acid transport and metabolism	n r	102000 araC	
	- A - 7	0 00.47	2 2 2 2		Amino acid transport and metabolism	n 1	102001 araH	1038 2776 1
0.0000	-1.89	0.0000	-1.75	Aminopeptidase	Amino acid transport and metabolism	m	101603	LO28 0829 In
0.0000	-2.04	0.0000	-1.68	Amino acid permease family protein	Amino acid transport and metabolism	m	102469	L028_1446 In
0.0000	-3.60	0.0001	-3.87	Amino acid ABC transporter, ATP-bindingprotein	Amino acid transport and metabolism	m	102251	LO28_2939 In
0.0000	-4.16	0.0001	4.01	Amino acid ABC transporter, aminoacid-binding/permease protein	Amino acid transport and metabolism	m	102250 arpJ	LO28_2938 In
FDR	log ₂ fold change	FDR	1g ₂ fold change	Product	COG description	COG class	lmo Gene	LO28
15	variant	4	variant 1					
				ind variant 15 compared to the wild type. Values in bold are considered significant	ed genes in both <i>L. monocytogenes</i> LO28 variant 14 a	downregulated	t): Expression of (Table S3.2 (1 of 3
0,0000	3.40	0.0000	3.22	Ycellike family protein	No functional prediction	s	mo0796	LO28 1806
0.0000	2.45	0.0000	2.30	Virulence regulatory factor PrfA/Transcriptional regulator, CrP/Fnr family	Signal transduction mechanisms	-	mo0200 prfA	LO28 1748
0.0009	3.01	0.0040	3.10	Universal stress protein family	Signal transduction mechanisms	-	mo0515	LO28_2093
0.0000	7.11	0.0002	7.06	Universal stress protein family	Signal transduction mechanisms	٦	mo2673	LO28_0994
0.0000	2.33	0.0000	2.22	Universal stress protein family	Signal transduction mechanisms	-	mo1580	LO28_0806
0.0000	4.87	0.0000	4.92	Uncharacterized protein, homolog of <i>B.subtilis yhgC</i>		No COG	mo2213	LO28_2900
0.0001	1.77	0.0001	1.83	Transcriptional regulator, MerR family	Transcription	~	mo1788	LO28_1360
0.0000	2.38	0.0000	2.29	Iranscriptional regulator, GntR family	Iranscription	~	mo0649	192/
0.0000	2.48	0.0000	2.74	Transcriptional regulator, AraC tamily		No COG	mo2672	LO28_063
0.0000	3.75	0.0000	4.07	Tagatose 1, 6-diphosphate aldolase	Carbohyd rate transport and metabolism	6	mo0539	LO28_2069
e FDR	log ₂ told chang	FDR	og ₂ told change	Product	s COG description	e COG class	lmo Gen	LO28
15	variant	14	variant 1	-1				

Table 33.1 continued (3 of 3): Expression of genes upregulated in both L. monocytogenes LO28 variant 14 and variant 15 compared to the wild type. Values in bold are considered significant

Table 53.2 ci	Dutinued (2 o	of 3): Exp	ression of do	wnregulated genes in both L. monocytogenes LO28 variant 14 and	variant 15 compared to the wild type. Values in bold are considered significant			•	
LO28	lmo	Gene	COG class	COG description	Product	log ₂ fold change	FDR	log ₂ fold change	FDR
LO28_1921	lmo0682	figG	z	Cell motility Fla	gel lar basal-body rod protein FlgG	-6.03	0.0000	-6.37	0.0000
LO28_1923	mo0680	fihA	z	Cell motility Fla	igel ar biosynthesis protein FlhA	-5.31	0.0000	-4.83	0.0000
LO28_1924	Imo0679	fihB	zz	Cell motility Fla	gellar biosynthesis protein FlhB	4.49	0.0000	-4.65	0.0000
LO28 1927	Imo0676	fliP	zz	Cell motility Fla	iger of prosynchesis protein Filip	-2.91	0.0000	-2.93	0.0000
LO28_1926	lmo0677	fiiQ	z	Cell motility Fla	agel lar biosynthesis protein FliQ	-2.99	0.0000	-3.04	0.0000
LO28_1925	lmo0678	fliR	z	Cell motility Fla	gellar biosynthesis protein FliR	-3.12	0.0000	-2.85	0.0000
LO28_1895	Imo0708	12 F	No COG	Fla	agel ar biosynthesis protein FIIS	5.38	0.0000	-4.86 E 30	0.0000
	Imo0205	JIGE	zz	Cell motility Fig	and ar hook-acconisted anatein Elek	5 50 50		-5-20	0.0000
LO28 1897	Imo0706	fiqL	z	Cell motility Fla	igel ar hook-associated protein FigL	5.53	0.0000	-4.85	0.0000
LO28_1896	lmo0707	fiiD	z	Cell motility Fla	agellar hook-associated protein FliD	-5.33	0.0000	-4.57	0.0000
LO28_1891	lmo0712	fiiE	z	Cell motility Fla	igellar hook-basal body complex protein FliE	-5.37	0.0000	-4.89	0.0000
LO28_1918	lmo0685	motA	z	Cell motility Fla	igellar motor rotation protein MotA	-5.92	0.0000	-5.71	0.0000
LO28_1917		motB	z	Cell motility Fla	gellar motor rotation protein MotB	-5.33	0.0000	-5.06	0.0000
LO28_1889	Imo0500	#ind #iid	zz	Cell motility Fla	gellar motor switch protein FIIG	4.69	0.0000	-4,45	0.0000
LO28_1903	lmo0700		z	Cell motility Fla	igel ar motor switch protein FIIN	-5.66	0.0000	-5.29	0.0000
LO28_1905	lmo0698		z	Cell motility Fla	gellar motor switch protein FliN	-5.64	0.0000	-5.35	0.0000
LO28_1910	Imo0693		z	Cell motility Fla	igellar motor switch protein FliN	-5.91	0.0000	-5.40	0.0000
1028_1880	Imo05/5	a iii	zz	Fig.	agellar Motor Switch protein Filv	-2.53	0.0000	-2.29	0.0000
LO28_1913	lmo0690	flaA	z	Cell motility Fla	agel lin protein FlaA	-6.70	0.0000	-6.27	0.0000
LO28_1887	lmo0716	fiii	z	Cell motility Fla	gellum-specific ATP synthase Flil	-4.44	0.0000	-3.99	0.0000
LO28_2260	mo0355		C 2000	Energy production and conversion Fur	marate reductase flavoprotein subunit	-2.02	0.0005	-2.23	0.0000
LO28_0410				H4 D	bothetical protein	-3.04	0.0001	-2.97	0.0000
LO28_0413			No COG	HVI	pothetical protein	-2.29	0.0000	-2.41	0.0028
LO28_0416			No COG	HM	pothetical protein	-2.31	0.0006	-2.34	0.0001
LO28_0418	lmo 2312		S	No functional prediction Hyp	pothetical protein	-2.29	0.0001	-2.13	0.0000
LO28_0419			No COG	HM M	pothetical protein	-2.41	0.0071	-2.24	0.0080
LO28_0451			No COG	HW	pothetical protein	-5.96	0.0000	-4.10	0.0000
LO28_1908	lmo0695		No COG	Hy	pothetical protein	-4.08	0.0000	-3.98	0.0000
LO28_2034	lmo0573		R	General prediction only Hyp	poxanthine/guanine permease PbuG 13582 protein	-2.39	0.0070	-2.98	0.0004
LO28_0426			No COG	Lin	12592 protein	-2.44	0.0001	-1.88	0.0003
LO28_2810	lmo 2124		G	Carbohydrate transport and metabolism Ma	altose/maltodextrin ABC transporter, permeaseprotein MalF	-2.74	0.0008	-3.35	0.0000
LO28_2809	Imo 2123		ົດ	Carbohydrate transport and metabolism Ma	altose/maltod extrin ABC transporter, permeaseprotein MalG	-2.66	0.0007	-2.78	0.0001
LO28 2530	Imo 1848		ъ с	Inorganic ion transport and metabolism Ma	ancese ABC transporter, inner membranepermease protein SitD	-1.59	0.0000	-2.24	0.0000
LO28_2529	lmo 1847		P	Inorganic ion transport and metabolism Ma	anganese ABC transporter, peri plasmic-bindingprotein SitA	-2.21	0.0000	-2.33	0.0000
LO28_1880	Imo0723		z	Cell motility Me	ethyl-accepting chemotaxis protein	-1.96	0.0000	-2.07	0.0000
1028_2463	Imo 1846		< z	Cell motility Me	etnyl-accepting chemotaxis protein Ilti antimiorohial extrusion protein/Na(4)/drug antinorter_MATE family of efflux numns	-1 70	0.0000	-2 48	0.0000
LO28_0817	lmo 1591	arg C	т.	Amino acid transport and metabolism N-a	acetyl-gamma-glutamyl-phosphate reductase	-3.63	0.0008	-4.57	0.0000
LO28_0959	lmo 2638		C	Energy production and conversion NA	ADH dehydrogenase in clusterwith putative pheromone precursor	-1.64	0.0001	-1.92	0.0000
LO28_0138	Imo0961		0	Posttranslational modification, protein turnover, chaperones Pep	ptidase, U3 2 family large subunit [C1]	-2.08	0.0000	-2.41	0.0000
	nacnoull			Posttranslational modification, protein turnover, chaperones Pep	ptidase, US 2 ramity small subunit [UL]	-1.80		-1.88	
1028 0450					age majortaji protein	-3.41	0.0000	-3.19	0.0000
LO28_0455			No COG	Pha	age minor structural protein, N-terminal region domain protein	-3.83	0.0000	-3.66	0.0000
LO28_0442			No COG	Pha	age portal (connector) protein	-3.04	0.0000	-2.23	0.0000

						variant 14		variant 1
L028	Imo	Gene	COG class	COG description	Product	log ₂ fold change	FDR	log ₂ fold change
LO28_0425			No COG		Phage protein	-1.71	0.0030	-1.82
LO28_0447			No COG		Phage protein	-3.59	0.0000	-3.39
LO28_0437			No COG		Phage regulatory protein	-1.65	0.0199	-1.70
LO28_0453			R	General prediction only	Phage tail length tape-measure protein	-2.86	0.0000	-2.39
LO28_0443			0	Posttranslational modification, protein turnover, chaperones	Prophage Clp protease-like protein	-3.40	0.0000	-3.14
LO28_0456			No COG		Protein gp23 [Bacteriophage A118]	-4.07	0.0000	-3.13
LO28_1015	lmo2683		G	Carbohydrate transport and metabolism	PTS system, cellobiose-specific IIB component	-1.91	0.0004	-2.02
LO28_1016	lmo2684		G	Carbohydrate transport and metabolism	PTS system, cellobiose-specific IIC component	-1.78	0.0001	-1.84
LO28_2684	lmo2001		G	Carbohydrate transport and metabolism	PTS system, mannose-specific IIC component	-3.28	0.0127	-2.98
LO28_0480	lmo1255		6	Carbohydrate transport and metabolism	PTS system, trehalose-specific IIB component/PTS system, trehalose-specific IIC component	-1.71	0.0000	-1.99
LO28_2787	mo2102		т	Coenzyme transport and metabolism	Pyridoxine biosynthesis glutamineamido transferase, glutaminase subunit	-1.95	0.0000	-2.13
LO28_0629	lmo1406	pfiB	C	Energy production and conversion	Pyruvate formate-lyase	-1.64	0.0000	-1.92
LO28_2598	mo1917	pflA	C	Energy production and conversion	Pyruvate formate-lyase	-1.92	0.0064	-1.80
LO28_0630	lmo1407	pfiC	0	Posttranslational modification, protein turnover, chaperones 1	Pyruvate formate-lyase activating enzyme	-2.44	0.0000	-3.04
LO28_0963	mo2642		R	General prediction only 1	Serine/threonine protein phosphatase familyprotein	-1.61	0.0000	-1.75
LO28_1911	lmo0692	cheA	z	Cell motility :	Signal transduction histidine kinase CheA	-5.79	0.0000	-5.23
LO28_1886	mo0717		Ζ	Cell wall/membrane/envelope biogenesis	Soluble lytic murein transglycosylase precursor	-3.99	0.0000	-3.78
LO28_0693		rps∪	-	Translation, ribosomal structure and biogenesis	SSU ribosomal protein S21p	-7.37	0.0000	-2.15
LO28_0073	mo0897		P	Inorganic ion transport and metabolism	Sulfate permease	-1.79	0.0000	-1.94
LO28_0692	lmo1468		S	No functional prediction	Transamidase GatB domain protein	-5.65	0.0000	-2.53
LO28_2318	mo0297		~	Transcription	Transcriptional antiterminator of lichenanoperon, BglG family	-2.01	0.0037	-2.10
LO28_1900	lmo0703		No COG		UDP-N-acetylenolpyruvoylglucosamine reductase	-5.66	0.0000	-5.23

Table S3.3: Ex	pression ofg	enes that w	ere only upregulated in <i>L. monocytogenes</i> LO28 variant 14 compared to the wild type. Values in bol	d are considered significa	ant
LO28	Imo	Gene	Product	\log_2 fold change	FDR
LO28_0088	lmo0911		Hypothetical protein	1.62	0.0000
LO28_0338	lmo1177		Ethanolamine utilization polyhedral-body-like protein EutL	2.09	0.0219
LO28_0764	lmo1538	glpK	Glycerol kinase	2.06	0.0003
LO28_0877	lmo1650		CcdC protein	1.68	0.0001
LO28_1225	lmo0036		Putrescine carbamoyltransferase	1.75	0.0037
LO28_1226	lmo0037		Agmatine/putrescine antiporter, associated with agmatine catabolism	1.59	0.0060
LO28_1228	lmo0039		Carbamate kinase	1.92	0.0022
LO28_1335	lmo0146		Hypothetical protein	1.69	0.0253
LO28_1361	lmo1789		Flavodoxin-like fold domain protein	1.64	0.0000
LO28_1362	lmo1790		Metallo-beta-lactamase family protein	1.65	0.0003
LO28_1463	lmo2485		PspC domain protein, truncated	1.82	0.0015
LO28_1569	lmo2587		Hypothetical protein	1.73	0.0001
LO28_1783	lmo0819		Hypothetical protein	1.85	0.0001
LO28_1841	lmo0761		Nitrilotriacetate monooxygenase component B	2.14	0.0052
LO28_1842	lmo0760		Carboxylesterase	1.68	0.0000
LO28_1870	lmo0732		Internalin-like protein (LPXTG motif) Lmo0732 homolog	2.07	0.0072
LO28_1946	lmo0660		Mobile element protein	2.27	0.0001
LO28_2015	lmo0592		Hypothetical protein	1.81	0.0000
LO28_2041	lmo0566	hisB	Imidazoleglycerol-phosphate dehydratase	1.69	0.0048
LO28_2044	lmo0563	hisF	Imidazole glycerol phosphate synthase cyclasesubunit	1.63	0.0007
LO28_2045	lmo0562	hisl	Phosphoribosyl-AMP cyclohydrolase	1.81	0.0057
LO28_2053	lmo0555		Di/tripeptide permease DtpT	2.03	0.0000
LO28_2390	lmo1772	purC	Phosphoribosylam in oimid azole-succinocarbox a midesynth ase	1.68	0.0002
LO28_2395	lmo1767	purM	Phosphoribosylformylglycinamidine cyclo-ligase	1.58	0.0001
LO28_2396	lmo1766	purN	Phosphoribosylglycinamide formyltransferase	1.69	0.0003
LO28_2397	lmo1765	purH	IMP cyclohydrol ase /Phosphoribosylaminoimidazolecarboxamide formyltransferase	1.64	0.0000
LO28_2564	lmo1883		Chitinase	2.40	0.0405
LO28_2667	lmo1984	ilvB	Acetolactate synthase large subunit	1.66	0.0089
LO28_2669	lmo1986	ilvC	Ketol-acid reductoisomerase	1.63	0.0405
LO28_2670	lmo1987	leuA	2-isopropyImalate synthase	1.87	0.0212
LO28_2672	lmo1989	leuC	3-isopropyImalate dehydratase large subunit	1.74	0.0152
LO28_2844	lmo2158		Hypothetical protein	1.64	0.0041
LO28_2878	lmo2191	spxA	Arsenate reductase family protein	1.66	0.0000

Gene profiling-based phenotyping
			•	variant 1	5
LO28	Imo	Gene	Product	log ₂ fold change	FDR
LO28 0309	lmo1148		Cobalamin synthase	4.03	0.0140
LO28_1592	lmo2369		General stress protein 13	1.83	0.0000
LO28_0516	lmo1292		Glycerophosphoryl diester phosphodiesterase	1.68	0.0002
LO28_1811	lmo0791		Hypothetical protein	2.19	0.0000
LO28_0081	lmo0904		Hypothetical protein	1.66	0.0001
LO28_0441			Hypothetical protein	1.66	0.0000
LO28_0077	lmo0900		Hypothetical protein	1.63	0.0007
LO28_0013	lmo0839		Multidrug-efflux transporter, major facilitator superfamily (MFS)	1.69	0.0152
LO28_1591	lmo2368		MutT/nudix family protein	1.83	0.0000
LO28_0848	lmo1622		NAD(P)HX dehydratase	1.63	0.0000
LO28_0080	lmo0903		OsmC/Ohr family protein	1.75	0.0011
LO28_1105	lmo2772		PTS system, beta-glucoside-specific component	1.61	0.0486
LO28_2864	lmo2178		Putative peptidoglycan bound protein (LPXTGmotif) Lmo2178 homolog	1.64	0.0386
LO28_2323	lmo0292		Serine protease, DegP/HtrA, do-like	1.80	0.0000
LO28_2001	lmo0606		Transcriptional regulator, MarR family	1.64	0.0000
LO28_2082	lmo0526		Transcriptional regulator, MerR family	1.66	0.0155
LO28_2290	lmo0325		Transcriptional regulator, MutR family	1.70	0.0000
LO28_0631	lmo1408		Transcriptional regulator, PadR family	1.72	0.0035
LO28_0211	lmo1032		Transketolase, N-terminal section	1.99	0.0044
LO28_1168	lmo2836		Zinc-type alcohol dehydrogenase YcjQ	1.80	0.0386
	4			variant 14	
LO28	Imo	Gene	Product	\log_2 fold change	FDR
LO28_0432			DNA polymerase B region	-2.06	0.0003
LO28_0459		lysA	Endolysin, L-alanyl-D-glutamate peptidase [Bacteriophage A118]	-1.73	0.0045
LO28_1871			Hypothetical protein	-8.69	0.0000
LO28_0351			Hypothetical protein	-4.27	0.0055
LO28_1549	lmo2568		Hypothetical protein	-2.74	0.0085
LO28_0462			Hypothetical protein	-2.12	0.0026
LO28_0436			Hypothetical protein	-1.76	0.0048
	-		Hypothetical protein	-1.68	0.0006
	111101341		Late competence protein comoo, Flouv/920 Dhana anatain	-3./1	0.0043
LO28 1098	lmo2765		PTS system, cellobiose-specific IIA component	-2.10	0.0172
LO28_1116	lmo2783		PTS system, cellobiose-specific IIC component	-1.87	0.0003
LO28_0986	lmo2665		PTS system, galactitol-specific IIC component	-1.60	0.0007
LO28_0009	lmo0835		Putative peptidoglycan bound protein (LPXTGmotif) Lmo0835 homolog	-1.96	0.0018
LO28_2686	lmo2003		Transcriptional regulator, GntR family	-1.88	0.0353
LO28_1787	lmo0815		Transcriptional regulator, MarR family	-1.96	0.0000

Table S3.4: Expression of genes that were only upregulated in L. monocytogenes LO28 variant 15 compared to the wild type. Values in bold are considered significant

0 640	2 58	2440 0	0.03			Tri acanhacahata isamatasa		lmo0346	LO28 2269
1.037	0.09	1.0483	0.15			Ribose 5-phosphate isomerase B		lmo0345	LO28_2270
0.149	0.66	0.5284	0.37			Transaldolase		lmo0343	LO28_2272
0.971	-0.06	0.1637	0.84			Transketolase		lmo0342	LO28_2273
0.252	-0.34	0.1942	-0.44			L-lactate dehydrogenase	Idh	lmo0210	LO28_1738
0.00	5.58	0.0000	5.39			General stress protein 26		lmo2748	LO28_1079
0.00	2.93	0.0000	3.17			Low temperature requirement C protein	ItrC	lmo2398	LO28_1374
0.00	4.87	0.0000	4.92			Uncharacterized protein, homolog of B.subtilis yhgC		lmo2213	LO28_2900
0.00	1.58	0.0041	1.64			Hypothetical protein		lmo2158	LO28_2844
0.00	1.81	0.0033	1.76			Short chain dehydrogenase		lmo1830	LO28_2512
0.00	3.02	0.0000	2.53			General stress protein		lmo1602	LO28_0828
0.00	1.86	0.0242	2.02			Succinate-semiald ehyde dehydrogenase [NAD(P)+]		lmo0913	LO28_0090
0.00	3.40	0.0000	3.22			Ycel like family protein		lmo0796	LO28_1806
0.00	3.76	0.0000	3.58			Rrf2-linked NADH-flavin reductase		lmo0794	LO28_1808
0.00	4.37	0.0000	5.01			PTS system, mannose-specific IIB component		lmo0783	LO28_1819
0.00	6.31	0.0000	6.32			Pyruvate oxidase [ubiquinone, cytochrome]		lmo0722	LO28_1881
0.00	2.50	0.0001	2.26			Hypothetical protein		lmo0654	LO28_1952
0.0	3.10	0.0000	3.56			NADH-dependent butanol dehydrogenase A		lmo0554	LO28_2054
0.0	3.75	0.0000	4.07			Tagat ose 1,6-di phosp hat e aldo lase		lmo0539	LO28_2069
0.0	3.84	0.0000	4.10			Acetyltransferase, GNAT family		lmo0134	LO28_1323
ge FI	log ₂ fold chan	ge FDR	log ₂ fold chan			Product	Gene	Imo	L028
Sant	ısidered sign ifi	- bold are con	he wild type. Values in:	U.UU27	-1.64 1 both variant 14 and	xantrine permease anes that are part of the SinB operon as described by Mujahid et al., 2013, it	84 ession of ge	of 4): expr	LU28_2565 Table S3.7 (1
				F (0 0	1 6 1		0	120210	- 0,00 ,000
				0.0000	-1.92	Trehalose-6-phosphate hydrolase	54	lmo12	LO28 0479
				0.0000	-2.12	Putative regulator of the mannose operon, ManO	66	lmo00	LO28_1288
				0.0000	-1.89	PTS system, mannose-specific IID component	86	lmo00	LO28_1287
				0.0000	-1.96	PTS system, mannose-specific IIC component	97	lmo00	LO28_1286
				0.0156	-1.75	PTS system, lactose/cellobiose specific IIBsubunit	50	lmo26	LO28_0971
				0.0012	-2.15	PTS system, fructose-specific IIB component	27	lmo04	LO28_2186
				0.0005	-1.92	PTS system, beta-glucoside-specific II A component	85	lmo26	LO28_1017
				0.0318	-2.09	Probableglutamate/gamma-aminobutyrateantiporter	62	lmo23	LO28_1623
				0.0000	-1.61	Methionine ABC transporter permease protein	83	lmo02	LO28_2332
				0.0222	-3.70	Hypothetical protein			LO28_2236
				0.0005	-2.59	Hypothetical protein	30	lmo14	LO28_0653
				0.0000	-2.27	Hypothetical protein	50	lmo04	LO28_2161
				0.0002	-2.25	Hypothetical protein			LO28_0954
				0.0000	-2.15	Hypothetical protein			LO28_0423
				0.0000	-1.88	Hypothetical protein	10	lmo23	LO28_0420
				0.0008	-1.63	Hypothetical protein			LO28_0434
				0.0004	-1.60	Drug resistance transporter, EmrB/QacA family	19	lmo05	LO28_2089
				0.0000	-1.64	DedA protein	142 dedA	lmo00	LO28_1231
				0.0002	-1.65	Cytochrome d ubiquinol oxidase subunit II	'17 cydB	lmo27	LO28_1048

Table S3.7 continued (2 of 4): ex	pression of genes that are part of the SigB operon as described by Mujahid et al., 2013, in both variant 14 and variant 15 comparec	to the wild typ	e. Values in l	pold are conside	red significant
LO28 Imo Gene	Product	log ₂ fold chan	ge FDR	log ₂ fold chang	e FDR
LO28 2268 lmo0347	Phosphoenolovruvate-dihvdroxvacetonephosphotransferase. ADP-binding subunit DhaL	1.10	0.0969	0.29	0.2029
	Phosphoenolpyruvate-dihydroxyacetonephosphotransferase, dihydroxyacetonebinding subunit DhaK	0.21	0.7673	0.20	0.2838
LO28_2206 Imo0406	Possible glyoxylase family protein (Lactoyl glutathione lyase)	1.07	0.0054	1.24	0.0002
LO28_2084 Imo0524	Sulfate per mease	1.84	0.0000	1.95	0.0000
LO28_2028 Imo0579	Bacterial servi-tRNA synthetase related	2.24	0.0000	2.31	0.0000
LO28_2027 Imo0580	Phospholipase/carboxylesterase family protein	1.94	0.0000	2.02	0.0000
LO28_2017 Imo0590	DAK2 domain protein	3.38	0.0000	2.89	0.0000
LO28 0072 Imo0896 rsbX	Magnesium and coolar, transport protein corve	2.02 1.54	0.0025	0.85	0.0206
LO28_0133 lmo0956	N-acety/glucosamine-6-phosphate deacety/ase	1.78	0.0000	1.89	0.0000
LO28_0134 Imo0957	Glucosamine-6-phosp hate deaminase	1.25	0.0000	1.19	0.0000
LO28_01/4 IM00995	Membrane protein Membrane protein	2.80	0.0005	2.21	0.0004
LO28 0599 Imo1376	en hosphoel uconate dehvdrogenase, decarboxylating	0.10	0.7951	0.13	0.5666
LO28_0610 lmo1388 tcsA	Unspecified monosaccharide ABC transportsystem, substrate-binding component / CD4+ Tcell-stimulating antigen, lipoprotein	-0.05	0.8039	-0.20	0.3716
LO28_0655 lmo1432	Hypothetical protein	2.60	0.0000	2.43	0.0000
LO28_0831 mo1605_murc	Universal stress protein family LIDP-N-acetylmuramatealanine lioace	2.22	0.0000	2.33	0.0000
LO28_0862 lmo1636	ABC transporter, ATP-binding protein	0.46	0.1937	0.29	0.3035
LO28_0893 Imo1666	Putative peptidoglycan bound protein (LPXTGmotif) Lmo1666 homolog	2.49	0.0000	2.64	0.0000
LO28_2611 Imo1930	Heptaprenyl dip hosphate synthase component II	0.22	0.5759	0.10	0.6885
LO28_2614 lmo1933 <i>folE</i>	GTP cyclohydrolase1	0.00	1.0566	-0.04	1.0323
1028 2855 1mo2041 mraw	rk NA small subunit metnyitransferase H Hynothatical protein	1 03	0.1/35	1 08	0.0602
LO28_2878 Imo2191 spxA	Arsenate reductase family protein	1.66	0.0000	1.32	0.0000
LO28_1609 lmo2386	membrane protein	1.43	0.0037	1.13	0.0003
1028_1519 1mo2389 a/v4	NAUH denydrogen ase Seri ne hwfro xwnet hvl transferace	0.97	0.0005	0.96	0.0002
LO28_1311 lmo0122	Phage tail fiber	0.49	0.3229	0.36	0.3000
LO28_1322 lmo0133	Hypothetical protein	2.41	0.0003	2.25	0.0001
LO28_2341 Imo0274	Hypothetical protein Both a lunarida po	2.07	0.0000	2.36	0.0000
LO28_2207 Imo0405	Probable low-affinity inorganic phosphatetransporter	2.38	0.0000	2.01	0.0000
LO28_2179 lmo0433 inlA	Internalin A (LPXTG motif)	3.64	0.0000	3.70	0.0000
LO28_2178 IM00434 INIB	Internalin B (GW modules) Siderophore/Surfart in sonthetase related notein	1.85	0.0029	5.41	0.0001
LO28_0644 lmo1421	Glycine betaine ABC transport system, ATP-binding protein OpuAA	3.68	0.0000	3.96	0.0000
LO28_2548 lmo1866	ATP/GTP-binding protein, SA1392 homolog	-0.07	0.8389	-0.19	0.4394
1028 1553 Imo2572	iranscriptional regulator, ontx lanniy Dihvdrofolate reductase	-1.88	0.0353	4.15	0.0000
LO28_1064 lmo2733	PTS system, fructose-specific IIB component	1.39	0.1769	0.56	0.3743
LO28_2214 lmo0398	PTS system, fructose-specific IIABC component	-1.17	0.0779	-1.00	0.0916
LO28_2213 ImoU399	PTS system, ifuctose-specific filsc component No Whidenum cofactor biosynthesis protein MoaC	0.24	0.5287	-0.04	0.8653
LO28_0572 lmo1349	Glycine dehydrogenase [decarboxylating](glycine cleavage system P1 protein)	1.24	0.0005	1.18	0.0001
LO28_0645 lmo1422	Glycine betaine ABC transport system, permeaseprotein OpuAB / Glycine betaine ABC transport system	3.60	0.0000	3.64	0.0000
L028_2730 Imo2047 rpmF	LSU ribosomal protein L32 p	-0.61	0.0951	-0.52	0.0945
LO28_0765 IM01539	Giyderol uptake facilitator protein Transaldolase	2.57	0.0001	-0 16	0.0012
LO28_1029 lmo2697	Phosphoenolpyruvate-dihydroxyacetonephosphotransferase, subunit DhaW; DHA-specific IIA component	3.52	0.0001	3.21	0.0000
LO28_1028 lmo2696	Phosphoenolpyruvate-dihydroxyacetonephosphotransferase, ADP-binding subunit DhaL	4.86	0.0000	4.81	0.0000

Table S3.7 (

			יכשיטו עי קעויט זווע שי דורשקט סטיוט אבערושכע עין זווקטווע כי שי, בע גען וו שטוו ייייווע בי יווע אוויייין בי א	reaction of the second second	4 A	1 theirev	en signincam
L028	Imo	Gene	Product	log ₂ fold chang	e FDR	log ₂ fold change	FDR
L028 1027 In	102695		Phosphoenolpyruvate-dihydroxyacetonephosphotransferase, dihydroxyacetonebinding subunit DhaK	4.80	0.0000	4.58	0.0000
LO28_0987 In	102666		PTS system, galactitol-specific IIB component (EC 2.7.1.69)	-0.80	0.0593	-0.66	0.0774
LO28_1299 In	100110		Esterase/lipase	-0.52	0.3411	-0.39	0.4548
1028 0827 In	101/30		ix-Averyi-2-3 tucosarinine Abclut anisport system, sugar-onironng protein General direct protein	2.48	0.0000	0.00 2.79	0.0000
LO28_2892 In	102205		Phosphoglycerate mutase	2.12	0.0000	2.34	0.0000
LO28_0651 In	101428	opuCA	Osmotically activated L-carnitine/choline ABCtransporter, ATP-binding protein OpuCA	6.31	0.0000	6.04	0.0000
LO28_0649 In	101426	opuCC	Osmotically activated L-camitine/choline ABCtransporter, substrate-binding protein OpuCC	6.50	0.0000	6.28	0.0000
LO28_1783 In	100819 100265		Hypothetical protein Acetviornithine deacetvlase	1.85 3.17	0.0001	1.47 3.03	0.0001
LO28_1584 In	100169		Glucose uptake protein	4.63	0.0000	4.32	0.0000
LO28_1585 In	100170		Putative exported protein	3.94	0.0000	3.71	0.0000
LO28_2352 In	100263	in IH	Internalin H (LPXTG motif)	6.21	0.0000	6.18	0.0000
LO28_2294 In	100321		Wemprane protein Hynothetical protein	3.84		3.39	
LO28_2093 In	100515		Universal stress protein family	3.10	0.0040	3.01	0.0009
LO28_2053 In	100555		Di/tri peptide permease DtpT	2.03	0.0000	1.55	0.0004
LO28_2014 In	100593		Formate/nitrite transporter family protein	-0.75	0.1123	-1.23	0.0034
LO28_2005 In	100602		Acetyltransferase, GNAT family	5.58	0.0000	5.45	0.0000
LO28_1997 In	100610		Internalin-like protein (LPXTG motif)Lmo0610 homolog	4.84	0.0000	5.05	0.0000
LO28_1978 In	100629		Hypothetical protein Isochorismatase (EC 3.3.2.1)	4.10 4.73	0.0001	3.93 4.65	0.0000
LO28_1951 In	100655		Serine/threonine protein phosphatase	2.84	0.0001	2.77	0.0000
LO28_1935 In	100669		Oxidoreductase, short-chaindehyd rogenase/reductase family	5.74	0.0000	5.78	0.0000
LO28 1821 In	100781		nypotrietical protein PTS system, mannose-specific IID component	4.55	0.0000	4.95 3.97	0.0000
LO28_1820 In	100782		PTS system, mannose-specific IIC component	4.85	0.0000	3.94	0.0000
LO28_1818 In	100784		PTS system, mannose-specific IIA component / PTS system, mannose-specific IIB component	4.94	0.0000	4.43	0.0000
LO28_0088 In	100880		Putative peptidogiycan bound protein (LFX I omotir)Lmou880 nomolog Hypothetical protein	3.1 / 1.62	0.00024	3.40	0.0000
LO28_0114 In	100937		Hypothetical protein	2.56	0.0001	2.75	0.0000
LO28_0130 In	100953		Hypothetical protein Hypothetical protein	0,46 6,88	0.3404	0.72	0.0516
LO28_0301 In	101140		Hypothetical protein	3.68	0.0012	3.23	0.0004
LO28_0464 In	101241		Putative exported protein	2.63	0.0049	2.25	0.0029
LO28_0519 In	101295		RNA-binding protein Hfq Pentidace T	1.47	0.0000	1.34 2.14	0.0000
LO28 0648 In	101425	opuCD	Osmotically activated L-carnitine/choline ABCtransporter, permease protein OpuCD	6.49	0.0000	6.22	0.0000
LO28_0656 In	101433		Glutathione reductase	4.68	0.0000	4.67	0.0000
LO28_0752 In	101526		Hypothetical protein Call division protein 544	2.97	0.0000	3.12	0.0000
LO28_2468 In	101694		Cell division inhibitor SIr1 223 (YfcH in EC), contains epimerase/dehydratase	5.08	0.0000	4.90	0.0000
LO28_2464 In	101698		Ribosomal-protein-S5p-alanineacetyl transferase	0.35	0.3974	0.56	0.0602
LO28_2564 In	101883		Chitinase Cholodalucing hydrologo	2.40	0.0405	1.44	0.0980
LO28_2770 In	102085		Putative peptidoglycan bound protein (LPXTGmotif)Lmo2085 homolog	5.03	0.0000	4.48	0.0000
LO28_2816 In	102130		Amino acid permease	-0.87	0.2052	-1.45	0.0105
LO28_2818 In	102132		Hypothetical protein	2.34	0.0262	1.94	0.0200
LO28_2843 In	102157 .	sep A	Alkyi sultatase (EC 3.1.6) Arcenate reductace	5.84	0.0000	5.06	0.0000
LO28_2918 In	102231		Cobalt-zinc-cadmium resistance protein	5.59	0.0000	5.31	0.0000
LO28_2956 In	102269		Hypothetical protein	4.76	0.0000	4.33	0.0000

		variant 1	4	variant 15	-
LO28 Imo	Gene Product	log ₂ fold change	FDR	\log_2 fold change	FDR
LO28_1610 lmo2387	Hypothetical protein	3.56	0.0000	3.39 (0.0000
LO28_1614 lmo2391	Oxidoreductase ylbE	3.36	0.0000	3.36 (0.0000
LO28_1622 lmo2434	Glutamate decarboxylase	-1.51	0.1807	-0.67 (0.2576
LO28_1431 lmo2454	Lin2548 protein	0.66	0.1342	0.57 (0.1378
LO28_1440 lmo2463	Hypothetical protein	3.96	0.0000	3.40 (0.0000
LO28_1462 lmo2484	Membrane protein	2.12	0.0016	1.60 (0.0009
LO28_1463 lmo2485	PspC domain protein, truncated	1.82	0.0015	1.50 (0.0010
LO28_1472 lmo2494	Phosphate transport system regulatory proteinPhoU	3.89	0.0001	4.15 (0.0000
LO28_1551 lmo2570	Hypothetical protein	4.41	0.0000	3.30 (0.0000
LO28_1552 lmo2571	Nicotinamidase	4.15	0.0000	3.92 (0.0000
LO28_1554 lmo2573	Bifunctional protein: zinc-containing alcoholdehydrogenase; quinone oxidoreductase; similar to arginate lyase	3.99	0.0000	3.84 (0.0000
LO28_0922 lmo2602	Mg(2+) transport ATPase protein C	3.39	0.0000	2.94 (0.0000
LO28_0923 lmo2603	acetamidase/formamidase family protein	2.64	0.0015	2.55 (0.0003
LO28_0991 lmo2670	Hypothetical protein	1.57	0.0088	1.26 (0.0191
LO28_0992 lmo2671	Hypothetical protein	1.96	0.0000	1.67 (0.0000
LO28_0993 lmo2672	Transcriptional regulator, AraC family	2.74	0.0000	2.48 (0.0000
LO28_0994 lmo2673	Universal stress protein family	7.06	0.0002	7.11 (0.0000
LO28_0995 lmo2674	Ribose 5-phosphate isomerase B	2.79	0.0000	2.46 (0.0000
LO28_1055 lmo2724	PhnB protein; putative DNA binding3-demethylubiquinone-9 3-methyltransferase domain protein	0.91	0.0642	0.79 (0.0553
LO28_1208 Imo0019	Hypothetical protein	5.29	0.0004	4.79 (0.0001
	Argining deiminase	4.15	0.0000	3.93 (0.0000

Table S3.8: Expre	ession of gene	s associated	with the ADI system in L. monocytogenes LO28 variant 14 and 15 over the wild type	. Values in bold are con	isidered si	gnificant	
				variant 14		variant	15
LO28	Imo	Gene	Product	log ₂ fold change	FDR	log ₂ fold change	FDR
LO28_1226	lmo0037	arcD	Agmatine/putrescine antiporter, associated with agmatine catabolism	1.59	0.0060	0.84	0.1096
LO28_1232	lmo0043	arcA	Arginine deiminase	4.15	0.0000	3.93	0.0000
LO28_1228	lmo0039	arcC	Carbamate kinase	1.92	0.0022	1.57	0.0067
LO28 1225	lmo0036	arcB	Putrescine carbamoyltransferase	1.75	0.0037	0.89	0.1284
I							
Table S3.9: Expre	ession of gene	s associated	with the GAD system in L. monocytogenes LO28 variant 14 and 15 over the wild type	2. Values in bold are co	nsidered s	ignificant	
				variant 14		variant	15
L028	Imo	Gene	Product	log ₂ fold change	FDR	log ₂ fold change	FDR
LO28_1622	lmo2363	gadD2	Glutamate decarboxylase	-1.51	0.1807	-0.67	0.2576
LO28_1411	lmo2434	gadD3	Glutamate decarboxylase	2.85	0.0000	2.41	0.0000
LO28_2165	lmo0447	gadD1	Glutamate decarboxylase	-0.09	0.9550	0.58	0.2419
LO28_2164	lmo0448	gadT1	Probable glutamate/gamma-aminobutyrateantiporter	-1.71	0.5505	-1.16	0.8712
LO28_1623	lmo2362	gadT2	Probable glutamate/gamma-aminobutyrateantiporter	-0.91	0.8055	-2.09	0.0318
Table S3.10: Express	ion ofgenes asso	ciated with glyc	erol metabolism in <i>Listeria monocytogene</i> s LO28 variant 14 and 15 compared to the wild type. Values in bol	d are considered significant			
				V	ariant 14	varia	1nt 15
LO28 In	io Gene		Product	log ₂ fold c	hange	FDR log ₂ fold char	ige FDR
LO28_0765 Imo15	39 glpF1	Glycerol uptak	e facilitator protein	2.5	0	.0001 1.95	0.0012
	Lor giptz	Giverol Uptak	e racilitator protein	.		.3227 0.67	0.2381
LO28_0764 Imo15	134 gipK1	Glycerol Rinase	e Ince kinace TMN953	-0-2	3. 0.0	.0003 1.34 4643 0.62	0.0049
	395 dhaK	Phosphoenolp	yruvate-dihydroxyacetonephosphotransferase, dihydroxyacetonebinding subunit DhaK	4.8	ö	.0000 4.58	0.0000
LO28_1028 Imo26	596 dhaL	Phosphoenolp	yruvate-dihydroxyacetonephosphotransferase, ADP-binding subunit DhaL	4.8	6 0	.0000 4.81	0.0000
LO28_0517 lmo12	293 glpD	Aerobic glycer	ol-3-phosphate dehydrogenase	2.3	0	.0000 2.39	0.0000
LO28_2271 Imo03	344 golD	3-oxoacyl-[acy	I-carrier protein] reductase	0.0	0	.9325 0.67	0.3981
LO28_1881 Imo07	722	Pyruvate oxida	sse [ubiquinone, cytochrome]	6.3	- i	.0000 6.31	0.0000
1010_0000 III01	10.1		soaras prisapristaas		i		0.0000

				variant 14	4	variant 15	
L028	lmo	Gene	Product	log ₂ fold change	FDR	log ₂ fold change	FDR
28_0765 1	mo1539	glpF1	Glycerol uptake facilitator protein	2.57	0.0001	1.95	0.0012
28_0328 h	mo1167	glpF2	Glycerol uptake facilitator protein	0.72	0.3227	0.67	0.2381
28_0764 h	mo1538	glpK1	Glycerol kinase	2.06	0.0003	1.34	0.0049
28_0213 h	mo1034	glpK2	Unknown pentose kinase TM0952	-0.63	0.4643	0.62	0.9826
28_1027 h	mo2695	dhaK	${\tt Phosphoenolpyruvate-dihydroxyacetonephosphotransferase, dihydroxyacetonebinding subunit DhaKing and the state of the $	4.80	0.0000	4.58	0.0000
28_1028 h	mo2696	dhaL	${\tt Phosphoenolpyruvate-dihydroxyacetonephosphotransferase, {\tt ADP-binding subunit Dhallow} and {\tt AD$	4.86	0.0000	4.81	0.0000
28_0517 h	mo1293	glpD	Aerobic glycerol-3-phosphate dehydrogenase	2.38	0.0000	2.39	0.0000
28_2271 1	mo0344	golD	3-oxoacyl-[acyl-carrier protein] reductase	0.06	0.9325	0.67	0.3981
1881 1	mo0722		Pyruvate oxidase [ubiquinone, cytochrome]	6.32	0.0000	6.31	0.0000
28 0603 h	mo1381		Predicted nucleoside phosphatase	1.11	0.0004	1.25	0.0000

			יריים וופצרום סליבי סודד וודרוסרבים וויסווסרל ניסקרורים. רכבס אמרמונרדב מונירדב מנויד בי ניס נוור אוויה נללהי אמומר	variant 1	14	variant 1	ч
LO28	Imo	Gene	Product	log ₂ fold change	FDR	log ₂ fold change	FDR
000		dini.	Flama Harman American Marka a makain Flim	5	0 0000	20	0 000
0767_9701		NIT	ridgeniar motor switch protein rink	-2.53	0.0000	67.7-	0.0000
LO28_1927	lmo0676	fliP	Flagellar biosynthesis protein Flip	-2.91	0.0000	-2.93	0.0000
LO28_1926	lmo0677	fiiQ	Flagellar biosynthesis protein FliQ	-2.99	0.0000	-3.04	0.0000
LO28_1925	lmo0678	fiiR	Flagellar biosynthesis protein FliR	-3.12	0.0000	-2.85	0.0000
LO28_1924	lmo0679	flhВ	Flagellar biosynthesis protein FlhB	-4.49	0.0000	-4.65	0.0000
LO28_1923	lmo0680	flhA	Flagellar biosynthesis protein FlhA	-5.31	0.0000	-4.83	0.0000
LO28_1922	lmo0681	flhF	Flagellar biosynthesis protein FlhF	-5.57	0.0000	-4.91	0.0000
LO28_1921	lmo0682	flgG	Flagellar basal-body rod protein FlgG	-6.03	0.0000	-6.37	0.0000
LO28_1920	lmo0683	cheR	Chemotaxis protein methyltransferase CheR	-5.16	0.0000	-4.97	0.0000
LO28_1919	lmo0684		Hypothetical protein	-6.06	0.0000	-5.84	0.0000
LO28_1918	lmo0685	motA	Flagellar motor rotation protein MotA	-5.92	0.0000	-5.71	0.0000
LO28_1917	lmo0686	motB	Flagellar motor rotation protein MotB	-5.33	0.0000	-5.06	0.000
LO28_1916	lmo0687		Hypothetical protein	-4.93	0.0000	-4.75	0.000
LO28_1915	lmo0688	gmaR	Dolichol-ohooohate mannosyltransferase in lipid-linked oligosaccharide synthesis cluster	-4.89	0000	-4.24	0.000
LO28_1914	lmo0689	cheV			0.0000		
Table S3.12: Ex	pression of gen	les of pred	Chemotaxis protein CheV	-5.55	0.0000	-5.26	0.000
			Chemotaxis protein CheV chemotaxis protein CheV tred flagella operon 2 in <i>Listeria monocytogenes</i> LO28 variant 14 and 15 compared to the wild type. Values i	-5.55 in bold are considered	0.0000 significant	-5.26	0.000
LO28	lmo	Gene	Chemotaxis protein CheV Chemotaxis protein CheV ted flagella operon 2 in <i>Listeria monocytogenes</i> LO28 variant 14 and 15 compared to the wild type. Values	-5.55 in bold are considered variant 1	0.0000 significant	-5.26 variant 15	0.000
LO28_1912	lmo0691		Chemotaxis protein CheV chemotaxis protein CheV cted flagella operon 2 in <i>Listeria monocytogenes</i> LO28 variant 14 and 15 compared to the wild type. Values cted flagella operon 2 in <i>Listeria</i> monocytogenes LO28 variant 14 and 15 compared to the wild type. Values	-5.55 in bold are considered variant 14 log, fold change	significant FDR	-5.26 -yariant 15 og ₂ fold change	6.000
LO28_1911	lmo0692	cheY	Chemotaxis protein CheV ted flagella operon 2 in <i>Listeria monocytogenes</i> LO28 variant 14 and 15 compared to the wild type. Values Product Chemotaxis regulator - transmits chemoreceptorsignals to flagellar motor components CheV	-5.55 in bold are considered variant 14 log, fold change -6.12	0.00000	-5.26 variant 15 og fold change -5.53	0.0000
LO28_1910	lmo0693	cheY cheA	Chemotaxis protein CheV ted flagella operon 2 in <i>Listeria monocytogene</i> s LO28 variant 14 and 15 compared to the wild type. Valuesi Product Chemotaxis regulator - transmits chemoreceptorsignals to flagellar motor components CheY Signal transduction histidine kinase CheA	-5.55 in bold are considered variant <u>11</u> log ₂ fold change -6.12 -5.79	0.0000 5 5 6 1 1 1 1 1 1 1 1	-5.26 variant 15 og, fold change -5.23	0.0000 0.0000
LO28_1909	lmo0694	cheY cheA fliY	Chemotaxis protein CheV tted flagella operon 2 in <i>Listeria monocytogene</i> s LO28 variant 14 and 15 compared to the wild type. Values i Product Chemotaxis regulator - transmits chemoreceptorsignals to flagellar motor components CheV Signal transduction histidine kinase CheA Flagellar motor switch protein FIN	-5.55 in bold are considered variant <u>11</u> log ₂ fold change -5.79 -5.91	0.0000 FDR 0.0000 0.0000 0.0000	-5.26 -5.26 variant 15 og_fold change -5.23 -5.23 -5.40	0.0000 0.0000 0.0000
LO28_1908	lmo0695	cheY cheA fliY	Chemotaxis protein CheV ted flagella operon 2 in <i>Listeria monocytogenes</i> LO28 variant 14 and 15 compared to the wild type. Values i Product Chemotaxis regulator - transmits chemoreceptorsignals to flagellar motor components CheV Signal transduction histidine kinase CheA Flagellar motor switch protein FliN Hypothetical protein	-5.55 in bold are considered variant 1/ log, fold change -5.79 -5.91 -4.49	0.0000 FDR 0.0000 0.0000 0.0000 0.0000	-5.26 -5.26 -5.26 -5.23 -5.23 -5.40 -4.04	0.0000 0.0000 0.0000 0.0000
LO28_1907	lmo0696	cheY cheA fliY fliK	Chemotaxis protein CheV ted flagella operon 2 in <i>Listeria monocytogenes</i> 1028 variant 14 and 15 compared to the wild type. Valuesi Product Chemotaxis regulator - transmits chemoreceptorsignals to flagellar motor components CheY Signal transduction histidine kinase CheA Flagellar motor switch protein FliN Hypothetical protein Hypothetical protein	-5.55 in bold are considered variant 14 log, fold change -5.79 -5.79 -5.91 -4.08	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	5.26 5.26 0 <u>8</u> fold change -5.23 -5.23 -5.23 -5.23 -5.23 -5.23 -5.23	0.0000 0.0000 0.0000 0.0000 0.0000
LO28_1906	lmo0697	cheY cheA fliY fliK flgD	Chemotaxis protein CheV ted flagella operon 2 in <i>Listeria monocytogene</i> s LO28 variant 14 and 15 compared to the wild type. Valuesi Product Chemotaxis regulator - transmits chemoreceptor signals to flagellar motor components CheY Signal transduction histidine kinase CheA Flagellar motor switch protein FliN Hypothetical protein Hypothetical protein Flagellar basel-body rod modification protein FlgD	-5.55 in bold are considered variant 14 log, fold change -5.79 -5.91 -4.49 -4.08		-5.26 -5.26 -5.23 -5.23 -5.23 -5.23 -5.24 -3.98 -4.52	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LO28_1905	lmo0698	cheY cheA fliY flgD flgE	Chemotaxis protein CheV tted flagella operon 2 in <i>Listeria monocytogene</i> s LO28 variant 14 and 15 compared to the wild type. Valuesi Product Chemotaxis regulator - transmits chemoreceptorsignals to flagelllar motor components CheV Signal transduction histidine kinase CheA Flagellar motor switch protein FIIN Hypothetical protein Flagellar basal-body rod modification protein FIgD Flagellar hock protein FIgE	-5.55 in bold are considered variant 14 log, fold change 5.79 5.91 4.49 4.49 4.70 5.74	0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	5.26 5.26 <u>5.26</u> 5.23 -5.23 -5.23 -5.23 -5.40 -4.04 -3.98 -3.52	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LO28_1903		cheY cheA fliY flgD flgE fliN	Chemotaxis protein CheV ted flagella operon 2 in <i>Listeria monocytogenes</i> LO28 variant 14 and 15 compared to the wild type. Values i Product Chemotaxis regulator - transmits chemoreceptorsignals to flagellar motor components CheV Signal transduction histidine kinase CheA Flagellar motor switch protein FliN Hypothetical protein Hypothetical protein Flagellar hook protein FlgE Flagellar hook protein FlgE Flagellar motor switch protein FliN Flagellar hook protein FlgE	-5.55 in bold are considered variant 14 log_ fold change -5.79 -5.91 -4.49 -4.49 -4.48 -5.64	0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	5.26 5.17 5.161d change 5.53 5.53 -5.40 -4.04 -3.98 -5.23 -5.23 -5.23 -5.35	0.0000 00
	lmo0700	cheY cheA fliY flgD flgE fliN cheC	Chemotaxis protein CheV ted flagella operon 2 in <i>Listeria monocytogenes</i> LO28 variant 14 and 15 compared to the wild type. Valuesi Product Product Chemotaxis regulator - transmits chemoreceptorsignals to flagellar motor components CheV Signal transduction histidine kinase CheA Flagellar motor switch protein FliN Hypothetical protein Hypothetical protein FliP Flagellar hook protein FliP Flagellar notor switch protein FliN Flagellar motor switch protein FliN Flagellar motor switch protein FliN Flagellar motor switch protein FliN Flagellar motor switch protein FliN	-5.55 in bold are considered variant 14 log, fold change -5.79 -5.79 -5.91 -4.49 -4.08 -4.70 -5.64	significant FDR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	-5.26 -5.26 -5.53 -5.23 -5.40 -3.98 -4.04 -3.98 -5.20 -5.23 -5.25 -5.25	0.0000 00
7.061_87.01	lmo0700 lmo0701	cheY cheA fliY fliK flgD flgE fliN cheC	Chemotaxis protein CheV rted flagella operon 2 in <i>Listeria monocytogene</i> s LO28 variant 14 and 15 compared to the wild type. Valuesi Product Chemotaxis regulator - transmits chemoreceptorsignals to flagellar motor components CheY Signal transduction histidine Kinase CheA Flagellar motor switch protein FliN Hypothetical protein Flagellar baal-body rod modification protein FlgD Flagellar notor switch protein FliN Flagellar motor switch protein FliN Flagellar motor switch protein FliN Flagellar motor switch protein FliN Hypothetical protein FliN	-5.55 in bold are considered variant 11 log, fold change 5.79 5.79 5.79 4.49 4.70 4.70 5.44 5.64 5.64 5.64	significant	-5.26 <u>98, fold change</u> -5.23 -5.23 -5.20 -5.20 -5.20 -5.20 -5.20 -5.20 -5.20 -5.20 -5.20	0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0

Table S3.13: Ex	pression of sel	lected mot	lity regulatory genes in <i>Listeria monocytogenes</i> LO28 variant 14 and 15 compared to the wild type. Values i	n bold are considered s	ignificant		
				variant 14	-	variant 15	
LO28	Imo	Gene	Product	log ₂ fold change	FDR	\log_2 fold change	FDR
LO28_1929	lmo0674	mogR	Motility gene repressor MogR	0.93	0.0472	0.96	0.0184
LO28_1913	lmo0690	flaA	Flagellin protein FlaA	-6.70	0.0000	-6.27	0.0000
LO28_1920	lmo0683	cheR	Chemotaxis protein methyltransferase CheR	-5.16	0.0000	-4.97	0.0000
LO28_0677	lmo1454	rpoD	RNA polymerase sigma factor RpoD	0.35	0.2354	0.40	0.1392
LO28_1494	lmo2515	degU	Transcriptional regulator DegU, LuxR family	0.78	0.0012	0.92	0.0000
				variant 1	4	variant 1	Ű
LO28	lmo	Gene	Product	log ₂ fold change	FDR	log ₂ fold change	FDR
LO28_1744	lmo0204	actA	Actin-assembly inducing protein ActA precursor	0.05	0.9791	0.26	0.7970
LO28_1743	lmo0205	plcB	Broad-substrate range phospholipase C (EC3.1.4.3)	-0.59	0.8742	-1.45	0.2211
LO28_2179	lmo0433	InIA	Internalin A (LPXTG motif)	3.64	0.0000	3.70	0.0000
LO28_2178	lmo0434	InIB	Internalin B (GW modules)	1.85	0.0029	2.15	0.0001
LO28_1358	lmo1786	InIC	Internalin C	0.23	1.0391	-1.63	0.3974
LO28_1747	lmo0201	plcA	Phosphatidylinositol-specific phospholipase C(EC 4.6.1.13)	-0.39	0.9871	-0.22	0.7330

				LT 111010A		A 110110	
L028	Imo	Gene	Product	log ₂ fold change	FDR	log ₂ fold change	FDR
LO28_1744	lmo0204	actA	Actin-assembly inducing protein ActA precursor	0.05	0.9791	0.26	0.7970
LO28_1743	lmo0205	plcB	Broad-substrate range phospholipase C (EC3.1.4.3)	-0.59	0.8742	-1.45	0.2211
LO28_2179	lmo0433	InIA	Internalin A (LPXTG motif)	3.64	0.0000	3.70	0.0000
LO28_2178	lmo0434	InIB	Internalin B (GW modules)	1.85	0.0029	2.15	0.0001
LO28_1358	lmo1786	InIC	Internalin C	0.23	1.0391	-1.63	0.3974
LO28_1747	lmo0201	plcA	Phosphatidylinositol-specific phospholipase C(EC 4.6.1.13)	-0.39	0.9871	-0.22	0.7330
LO28_0012	lmo0837	hpt	Sugar phosphate transporter	-0.98	0.6702	0.88	0.2103
LO28_1746	lmo0202	hly	Thiol-activated cytolysin	-0.49	0.7944	0.12	0.6724
LO28_1748	lmo0200	prfA	Virulence regulatory factor PrfA /Transcriptional regulator, CrP/Fnr family	2.30	0.0000	2.45	0.0000
LO28_1745	lmo0203	mpl	Zinc metalloproteinase precursor (EC3.4.24.29)	-0.12	0.8774	0.43	0.4801

Table S3.15: Expression of ribosomal genes in Listeria monocytogenes LO28 variant 14 and 15 compared to the wild type. Values in bold are co	onsidered significant
--	-----------------------

				variant 14		variant 15	
LO28	Gene	Protein	Product	log ₂ fold change	FDR	log ₂ fold change	FDR
LO28_2366	rpIA	L1	LSU ribosomal protein L1p (L10Ae)	-0.31	0.5337	-0.70	0.0244
LO28_0949	rpIB	L2	LSU ribosomal protein L2p (L8e)	0.46	0.4249	0.18	0.5679
LO28_0952	rpIC	L3	LSU ribosomal protein L3p (L3e)	0.52	0.3427	0.33	0.2843
LO28_0951	rpID	L4	LSU ribosomal protein L4p (L1e)	0.49	0.5712	0.39	0.2376
LO28_0940	rplE	L5	LSU ribosomal protein L5p (L11e)	0.07	0.9497	-0.17	0.8789
LO28_0937	rplF	L6	LSU ribosomal protein L6p (L9e)	0.10	0.9386	-0.09	1.0152
LO28_1242	rpll	L9	LSU ribosomal protein L9p	0.27	0.3371	0.18	0.4800
LO28_2365	rplJ	L10	LSU ribosomal protein L10p (P0)	-0.37	0.7040	-0.40	0.5256
LO28_2367	rplK	L11	LSU ribosomal protein L11p (L12e)	-0.10	0.9071	-0.45	0.0767
LO28_2364	rpIL	L7/L12	LSU ribosomal protein L7/L12 (P1/P2)	-0.66	0.1507	-0.77	0.0304
LO28_0917	rpIM	L13	LSU ribosomal protein L13p (L13Ae)	-0.03	1.0214	0.14	0.5986
LO28_0942	rpIN	L14	LSU ribosomal protein L14p (L23e)	0.09	1.0466	-0.03	1.0488
LO28_0933	rpIO	L15	LSU ribosomal protein L15p (L27Ae)	0.11	0.8750	-0.13	0.8798
LO28_0945	rpIP	L16	LSU ribosomal protein L16p (L10e)	0.36	0.4350	-0.03	1.0095
LO28_0925	rplQ	L17	LSU ribosomal protein L17p	-0.53	0.2495	-0.77	0.0325
LO28_0936	rpIR	L18	LSU ribosomal protein L18p (L5e)	-0.07	1.0343	-0.13	1.0176
LO28_1359	rpIS	L19	LSU ribosomal protein L19p	-0.14	0.6553	0.21	0.6003
LO28_1354	rpIT	L20	LSU ribosomal protein L20p	0.33	0.2948	0.23	0.3477
LO28_0768	rpIU	L21	LSU ribosomal protein L21p	-0.03	1.0319	0.11	0.8626
LO28_0947	rpIV	L22	LSU ribosomal protein L22p (L17e)	0.37	0.5493	0.05	0.8604
LO28_0950	rplW	L23	LSU ribosomal protein L23p (L23Ae)	0.60	0.2523	0.38	0.2589
LO28_0941	rplX	L24	LSU ribosomal protein L24p (L26e)	0.18	0.8382	0.01	0.9288
LO28_1737	ctc	L25	LSU ribosomal protein L25p	2.47	0.0000	1.84	0.0000
LO28_0766	rpmA	L27	LSU ribosomal protein L27p	-0.21	0.7267	-0.25	0.5329
LO28_2498	rpmB	L28	LSU ribosomal protein L28p	0.01	0.9614	-0.30	0.4226
LO28_0944	rpmC	L29	LSU ribosomal protein L29p (L35e)	0.20	0.7945	-0.17	0.8103
LO28_0934	rpmD	L30	LSU ribosomal protein L30p (L7e)	0.12	0.8760	-0.05	1.0408
LO28_1529	rpmE	L31	LSU ribosomal protein L31p	-0.26	0.2877	0.05	1.0322
LO28_2122	rpmF	L32	LSU ribosomal protein L32p	1.01	0.0141	0.77	0.0302
LO28_1187	rpmH	L34	LSU ribosomal protein L34p	-0.09	0.9268	0.15	0.6130
LO28_1355	rpmI	L35	LSU ribosomal protein L35p	0.29	0.3122	0.79	0.0092
LO28_0929	rpmJ	L36	LSU ribosomal protein L36p	0.15	0.8194	0.13	0.7839
LO28_2620	rpsA	S1	SSU ribosomal protein S1p	-1.43	0.0000	-1.13	0.0000
LO28_0885	rpsB	S2	SSU ribosomal protein S2p (SAe)	0.41	0.1899	0.92	0.0025
LO28_0946	rpsC	S3	SSU ribosomal protein S3p (S3e)	0.20	0.7866	0.03	0.8843
LO28_0822	rpsD	S4	SSU ribosomal protein S4p (S9e)	0.10	0.8303	0.07	0.9749
LO28_0935	rpsE	S5	SSU ribosomal protein S5p (S2e)	-0.06	0.9728	-0.07	1.0043
LO28_1233	rpsF	S6	SSU ribosomal protein S6p	0.28	0.5503	0.36	0.5432
LO28_0976	rpsG	S7	SSU ribosomal protein S7p (S5e)	0.20	0.8589	0.21	0.7099
LO28_0938	rpsH	S8	SSU ribosomal protein S8p (S15Ae)	0.07	1.0146	-0.07	0.9305
LO28_0916	rpsl	S9	SSU ribosomal protein S9p (S16e)	-0.22	0.4486	-0.38	0.0831
LO28_0953	rpsJ	S10	SSU ribosomal protein S10p (S20e)	0.52	0.2582	0.29	0.3533
LO28_0927	rpsK	S11	SSU ribosomal protein S11p (S14e)	-0.31	0.6779	-0.37	0.4710
LO28_0977	rpsL	S12	SSU ribosomal protein S12p (S23e)	0.14	0.8648	0.09	0.8041
LO28_0928	rpsM	S13	SSU ribosomal protein S13p (S18e)	-0.02	1.0566	-0.05	1.0450
LO28_0939	rpsN	S14	SSU ribosomal protein S14p (S29e)	0.12	0.9255	-0.08	0.9136
LO28_0554	rpsO	S15	SSU ribosomal protein S15p (S13e)	-0.02	0.9434	-0.32	0.5679
LO28_1369	rpsP	S16	SSU ribosomal protein S16p	-0.10	0.8401	-0.41	0.1309
LO28_0943	rpsQ	S17	SSU ribosomal protein S17p (S11e)	0.12	0.9926	-0.06	0.9753
LO28_1235	rpsR	S18	SSU ribosomal protein S18p	-0.39	0.0825	-0.19	0.3845
LO28_0948	rpsS	S19	SSU ribosomal protein S19p (S15e)	0.54	0.2667	0.11	0.7184
LO28_0704	rpsT	S20	SSU ribosomal protein S20p	-0.21	0.6236	-0.19	0.3512
LO28_0693	rpsU	S21	SSU ribosomal protein S21p	-7.37	0.0000	-2.15	0.0000

Figure S3.1: expression of motility associated genes in Listeria monocytogenes LO28 variants 14 and 15. Predicted flagellar transcription unit 1 and 2, based on Listeria monocytogenes 10403S (retrieved from Biocyc.org on 12/4/2017).

□ variant 14 □ variant 15

4

Amino acid substitutions in ribosomal protein RpsU enable switching between high fitness and multiplestress resistance in *Listeria monocytogenes*

Jeroen Koomen, Linda Huijboom, Xuchuan Ma, Marcel H. Tempelaars, Sjef Boeren, Marcel H. Zwietering, Heidy M.W. den Besten, and Tjakko Abee

Published in:

International Journal of Food Microbiology (2021) 351, 109269.

Abstract

Microbial population heterogeneity contributes to differences in stress response between individual cells in a population, and can lead to the selection of genetically stable variants with increased stress resistance. We previously provided evidence that the multiple-stress resistant Listeria monocytogenes LO28 variant 15, carries a point mutation in the rpsU gene, resulting in an arginine-proline substitution in ribosomal protein RpsU (RpsU^{17Arg-Pro}). Here, we investigated the trade-off between general stress sigma factor SigB-mediated stress resistance and fitness in variant 15 using experimental evolution. By selecting for higher fitness in two parallel evolving cultures, we identified two evolved variants: 15EV1 and 15EV2. Whole genome sequencing and SNP analysis showed that both parallel lines mutated in the same codon in *rpsU* as the original mutation resulting in RpsU^{17Pro-His} (15EV1) and RpsU^{17Pro-Thr} (15EV2). Using a combined phenotyping and proteomics approach, we assessed the resistance of the evolved variants to both heat and acid stress, and found that in both lines reversion to WT-like fitness also resulted in WT-like stress sensitivity. Proteome analysis of L. monocytogenes LO28 WT, variant 15, 15EV1, and 15EV2 revealed high level expression of SigB regulon members only in variant 15, whereas protein profiles of both evolved variants were highly similar to that of the LO28 WT. Experiments with constructed RpsU^{17Arg-Pro} mutants in *L. monocytogenes* LO28 and EGDe, and RpsU^{17Arg-His} and RpsU^{17Arg-Thr} in LO28, confirmed that single amino acid substitutions in RpsU enable switching between multiple-stress resistant and high fitness states in *L. monocytogenes*.

Introduction

Listeria monocytogenes is a foodborne pathogen that is ubiquitously present in the environment, and can cause the rare but severe disease listeriosis (Radoshevich and Cossart, 2018; Lecuit, 2007; Vázquez-Boland et al., 2001). *L. monocytogenes* is considered a robust organism, since it can adapt to and survive a wide range of stress conditions such as low pH, low temperature and low water activity (a_w) (NicAogáin and O'Byrne, 2016). The inherent heterogeneity of microbial populations is one of the factors that contribute to the ubiquitous nature of *L. monocytogenes* supporting its capacity to cope with environmental stresses during its transmission from the environment to the human gastro-intestinal tract. Notably, differences in stress response between individual cells of a population can lead to survival of a small fraction of the population when the population is subjected to lethal stresses such as heat or low pH, leading to tailing of the inactivation treatment, either as transiently resistant subpopulations, or as genetically stable variants with increased stress resistance (Gollan et al., 2019; Karatzas et al., 2005; Metselaar et al., 2013; Van Boeijen et al., 2008).

Previously, Metselaar et al. (2015) combined phenotypic clustering of a collection of stable stress resistant L. monocytogenes variants, based on reduced growth rate and increased resistance against acid, heat, high hydrostatic pressure (HHP), and benzalkonium chloride, with a whole genome sequencing and Structural Variation (SV) analysis. This analysis showed that 11 of the 23 selected variants with a shared phenotype had a mutation in the ribosomal rpsU gene locus encoding S30 ribosomal protein RpsU (small ribosomal protein 21) (Metselaar et al., 2015). Subsequent work focused on two of the variants; variant 14, with a large deletion that spans the whole *rpsU* gene, as well as *yqeY* and half of *phoH*; and variant 15, with a single point mutation in *rpsU* that resulted in an amino acid substitution from arginine to proline in the RpsU protein, RpsU^{17Arg-Pro} (Koomen et al., 2018). Comparative analysis of gene expression profiles and phenotypes of *L. monocytogenes* LO28 wildtype (WT) and multiple-stress resistant variants 14 and 15, revealed upregulation of 116 genes with a major contribution of genes controlled by the alternative stress sigma factor SigB (Koomen et al., 2018). Activation of SigB is controlled by the so-called stressosome, a cytoplasmic complex that relays a range of stress signals and activates the sigma B regulon providing multiple-stress resistance (Guldimann et al., 2016; NicAogáin and O'Byrne, 2016; Radoshevich and Cossart, 2018). Next to stress defence activation, the multiple-stress resistant *L. monocytogenes* variants 14 and 15 had increased glycerol metabolic capacity and reduced expression of flagella (Koomen et al., 2018). Modelling and validation of the ecological behaviour of *L. monocytogenes* WT and stress resistant variants 14 and 15 led to the hypothesis that multiple stress resistance could contribute to performance and persistence in the food chain, which, in combination with the conceivable higher survival of acidic conditions in the stomach, could result in a higher exposure and risk of disease (Abee et al., 2016; Metselaar et al., 2016). An additional factor contributing to increased risk following the initial selection of multiple stress resistant variants (Abee et al., 2016) could be the subsequent selection of other variants that originate from the ancestor variant and have increased fitness and loss of the stress resistant phenotype.

In the current study, we addressed this issue and subjected *L. monocytogenes* LO28 variant 15, with its single point mutation in *rpsU*, resulting in RpsU^{17Arg-Pro}, to an experimental evolution regime where we selected for higher fitness, defined as an increased maximum specific growth rate (μ_{max}), when compared to the ancestor variant 15. Subsequent genotyping and phenotyping of evolved variants has provided insights in *L. monocytogenes* switching between high fitness-low stress resistance, and low fitness-high stress resistance.

Materials and methods

Bacterial strains and culture conditions

For genotypic, proteomic and phenotypic analysis, *L. monocytogenes* LO28 wild type (WT) strain (Wageningen Food & Biobased Research, The Netherlands), stress resistant ancestor variant 15 (Koomen et al., 2018; Metselaar et al., 2013), and evolved variants (this study) were used. All bacterial cultures were grown as described elsewhere (Metselaar et al., 2013). Briefly, cells from -80°C stocks were grown at 30°C for 48 hours on brain heart infusion (BHI, Oxoid, Ltd., Basingstoke, England) agar (1.5 % [w/w], bacteriological agar no. 1 Oxoid) plates. A single colony was used to inoculate 20 ml of BHI broth in a 100 ml Erlenmeyer flask. After overnight (ON, 18-22 hours) culturing at 30°C under shaking at 160 rpm, (Innova 42, New Brunswick Scientific, Edison, NJ) 0.5% (v/v) inoculum was added to fresh BHI broth. Cells were grown under shaking at 160 rpm in BHI at 30°C until the late-exponential growth phase (OD₆₀₀ = 0.4-0.5).

Experimental Evolution

Experimental evolution was performed by inoculating two parallel lines with 1% (v/v) of ON culture of L. monocytogenes LO28 variant 15, in 20 ml BHI in 100 ml Erlenmeyer flasks, resulting in approximately $1 \cdot 10^{7.5}$ cfu/ml. The cultures were incubated for 24 hours at 20°C under continuous shaking at 160 rpm (Innova 42). For each parallel line, 28 consecutive transfers were made using 24 hours-cultures and 1% (v/v) inoculum to inoculate fresh BHI. Each transfer allowed for a 2-log increase (~6.65 generations), and for 28 transfers this vields in total around 200 generations. From every second transfer, a 700 μL culture sample was taken, mixed with glycerol (Sigma-Aldrich, the Netherlands, 25% v/v final concentration), flash frozen in liquid nitrogen, and stored at -80°C, resulting in 14 stocks. These stocks were revived by streaking on BHI agar plates, and a single colony was used to inoculate 20 ml of BHI broth in a 100 ml Erlenmeyer flask. After ON culturing at 30°C under shaking at 160 rpm, (Innova 42) the culture was diluted 100,000 times in fresh BHI broth, and 200 μ l of culture was inoculated in duplicate in wells of a honeycomb plate. The plate was incubated in a Bioscreen C (Oy Growth Curves AB Ltd, Helsinki, Finland) at 30°C and the respective growth curves were determined by measuring OD₆₀₀ over time, using biological triplicates. The starting stocks, and the first stocks where a clear shift to WT-like growth was observed, i.e., stock number 8 for 15EV1 (after 16 daily transfers) and number 9 for 15EV2 (after 18 daily transfers), were streaked on BHI agar, and respective single colonies were selected to prepare -80°C stocks of 15EV1 and 15EV2 and the ancestor variant 15. These stocks were used for whole genome sequencing and subsequent phenotyping experiments.

Estimation of μ_{max}

The maximum specific growth rate μ_{max} was determined for the two evolved strains (15EV1 and 15EV2), variant 15 and the LO28 WT strain. For that, ON cultures were diluted 1000 times in peptone physiological salt solution (PPS, Tritium Microbiologie B.V., the Netherlands), after which they were diluted another 100 times in BHI broth, resulting in a concentration of ~ 4·10⁴ cfu/ml, which was confirmed by plating on BHI agar. The μ_{max} was estimated using the 2-fold dilution method, as described previously by (Biesta-Peters et al., 2010), which is based on the time-to-detection (TTD) of serially diluted cultures. Briefly, for each strain tested, a two-fold dilution series was made in duplicate from the first well to the fifth well, by mixing 200 μ L of bacterial culture and 200 μ L of fresh BHI in honeycomb plates. The plates were incubated in a Bioscreen C (Oy Growth Curves AB Ltd) at 30 °C with continuous shaking. The TTD was defined as the time at which a well reaches an OD₆₀₀ value of 0.2. Data processing and estimation of the TTD was done in Microsoft Excel (Redmond, Washington, USA). The μ_{max} was calculated as the negative reciprocal slope of the linear regression between TTD and the natural logarithm of the initial bacterial concentration of the five wells for each culture, where μ_{max} equals ln(2)/generation time (i.e., $\mu_{max} = 1$ represents a generation (doubling) time of approximately 0.7 h, or 42 minutes). Three biologically independent experiments were performed to estimate the mean and standard deviation of μ_{max} .

Inactivation kinetics at low pH

Acid inactivation experiments were performed as described previously (Metselaar et al., 2013). Briefly, 100 ml of late-exponential phase culture was pelleted for 5 minutes at 2,880 x g in a fixed-angle rotor (5804 R, Eppendorf). Pellets were washed in 10 ml BHI broth and pelleted again at 5 min at 2,880 x g. The pellet was resuspended in 1 ml PPS that was prewarmed to 37°C and adjusted to pH 3.0 using 10 M of HCl, and placed in a 100 ml Erlenmeyer flask in a shaking water bath at 37°C. At different time intervals, samples were taken, decimally diluted in BHI broth and plated on BHI agar using an Eddy Jet spiral plater (Eddy Jet, IUL S.A.) Plates were incubated at 30°C for 4-6 days to allow for full recovery of damaged cells. Combined data of at least three biologically independent experiments were used for analysis

Inactivation kinetics at high temperature

Heat inactivation experiments were performed as described before (Metselaar et al., 2015). Briefly, 400 μ L of late-exponential phase culture was added to 40 ml of fresh BHI broth that was pre-heated to 55°C ± 0.3°C. A separate Erlenmeyer with BHI at room temperature was used to determine the initial microbial concentration. Samples were taken after various timepoints and decimally diluted in PPS. Appropriate dilutions were plated on BHI agar using an Eddy Jet spiral plater (Eddy Jet, IUL S.A.) in duplicate. Combined data of at least 3 biologically independent experiments were used for analysis.

Proteomic analysis

Cultures of the LO28 WT, variant 15 and evolved 15EV1 and 15EV2 were grown as described in 2.1. For proteomic analysis, 2 ml of sample with OD_{600} of 0.4-0.5 was flash frozen in liquid nitrogen and stored until further use. Samples were thawed on ice and pelleted at 17,000 x *g*. Pellets were washed twice with 100 mM Tris (pH 8) to remove traces of BHI. Pellets were

resuspended in 100 µL of 100 mM Tris (pH 8) and were sonicated three times for 30 seconds on ice to lyse the cells. Samples were prepared according to the filter assisted sample preparation protocol (FASP) (Wiśniewski et al., 2009) with the following steps: reduction with 15 mM dithiothreitol, alkylation with 20 mM acrylamide, and digestion with sequencing grade trypsin overnight. Each prepared peptide sample was analyzed by injecting (18 μL) into a nanoLC-MS/MS (Thermo nLC1000 connected to an LTQ-Orbitrap XL) as described previously (Lu et al., 2011; Wendrich et al., 2017). nLC-MSMS system quality was checked with PTXQC (Bielow et al., 2016) using the MaxQuant result files. LCMS data with all MS/MS spectra were analyzed with the MaxQuant quantitative proteomics software package (Cox et al., 2014) as described before (Smaczniak et al., 2012; Wendrich et al., 2017). A protein database with the protein sequences of L. monocytogenes LO28 (accession: PRJNA664298) was downloaded from NCBI (www.ncbi.nlm.nih.gov). Filtering and further bioinformatics and statistical analysis of the MaxQuant ProteinGroups file was performed with Perseus (Tyanova et al., 2016). Reverse hits and contaminants were filtered out. Protein groups were filtered to contain minimally two peptides for protein identification of which at least one is unique and at least one is unmodified. Also, each comparison (WT versus variants) required at least three valid values in either WT or variant. Data visualization was performed using the statistical programming language R (version 3.6.0). Significant up- or downregulation was defined as a change in abundance relative to the WT of at least 10 times (1 log), with a corrected P value (-log₁₀ P value) above 2.

Whole genome sequencing and SNP analysis

Genomic DNA of *L. monocytogenes* LO28 WT strain for PacBio sequencing was isolated using the DNeasy Blood and tissue kit (Qiagen, Hilden, Germany). Two times 2 ml of overnight culture was pelleted at 17,000 x g. The pellets were washed with 1 ml PPS and resuspended in 1 ml lysis buffer (20 mM Tris-HCl, 2 mM EDTA, 1.2% (w/v) Triton X-100, 20 mg/ml lysozyme, pH 8.0). The suspension was incubated at 37°C for one hour under gentle shaking in an Eppendorf Thermomixer 5436 (Eppendorf AG, Hamburg, Germany). Subsequently 10 μ l of RNAse 20 mg/ml (Qiagen, Hilden, Germany) was added and incubated for 5 minutes at room temperature, after which 62.5 μ l proteinase K and 500 μ l AL buffer (provided by the manufacturer) were added. After incubation at 56°C for one hour under gentle shaking, 500 μ L absolute ethanol was added. The suspension was transferred to a spin column provided by the kit and incubated for 10 minutes to allow for maximal binding of DNA. The columns were centrifuged for one minute at 6,000 x g. The filters were subsequently washed two times with 500 μ L of buffer AW1 (provided by the manufacturer) at 6,000 x g, and two times with 500 μ L of buffer AW2 (provided by the manufacturer). To remove any trace of buffer the columns were centrifuged at 17,000 x g for 3 minutes. Subsequently, 53 μ L of AE buffer was added to the centre of the column and incubated for 10 minutes before centrifugation at 6,000 x g. Samples were stored at 4°C until sequencing.

PacBio sequencing was performed by Eurofins GATC (Eurofins GATC Biotech GmbH. Germany) using a PacBio RS II system (Pacific Biosystems) resulting in 80,017 reads prefiltering, with a N50 of 16970 bp. Read correction, trimming, and de-novo assembly were performed in Canu V1.8 (Koren et al., 2017) running on a 2018 MacBook Pro under MacOS Mojave Version 10.14.3. Overhangs were trimmed using Circlator (Hunt et al., 2015) resulting in a 2975254 bp linear genome with *dnaA* as the first gene. Error correction was done using Pilon version 1.123 with Illumina reads obtained previously (Metselaar et al., 2015). The resulting sequence and raw reads were submitted to GenBank and the sequence read archive respectively (at www.ncbi.nlm.nih.gov) with accession: PRJNA664298.

Strains used and Evolved variants 15EV1 and 15EV2 obtained in the evolution experiment were grown in 9 ml BHI tubes (Oxoid) for 18 ± 2 hours at 37°C. In total 1.8 ml of the culture was centrifuged for 5 minutes at 13,000 rpm to obtain a cell pellet. After removal of the supernatant the cell pellet was resuspended and stored in 450 µL DNA/RNA Shield (Zymo Research) at 4°C until DNA extraction. The DNA was extracted by BaseClear (Leiden, the Netherlands) and paired-end 2 × 150bp short-reads were generated using a Nextera XT library preparation (Illumina). The paired-end reads were sequenced on a NovaSeq 6000 system (Illumina). Raw reads were trimmed and de novo assembled using CLC Genomics Workbench v 10.0 (Qiagen, Hilden, Germany). SNP analysis of evolved variants against the LO28 WT reference was performed using SNIPPY 3.2 (Seemann, T 2015) and Pilon using the "--changes" argument (Walker et al., 2014)

Mutant construction

Mutants (see Table 4.1) were constructed using the temperature sensitive suicide plasmid pAULA (Chakraborty et al., 1992). The *rpsU* gene from either variant 15, 15EV1, or 15EV2 was amplified from gDNA by KAPA HiFi Hotstart ReadyMix (KAPA Biosystems, USA), using the primers listed in Supplementary Table S4.1. The resulting fragments were ligated in frame to the pAULA multiple cloning site via EcoR1 and Sal1 restriction that were introduced to the fragments by the respective primers.

The resulting plasmid was electroporated (2.5 kV, 25 μ F, 200 Ω), in a 0.2 cm cuvette using a BIO-RAD GenePulser, to the appropriate *L. monocytogenes* cells, and plated on BHI agar at 30°C with 5 μ g/ml erythromycin to select for transformants.

Two erythromycin resistant colonies per construct were inoculated in separate tubes in BHI broth supplemented with 5 μ g/ml erythromycin and grown overnight at 42°C to select for plasmid integration. Selected strains resulting from a single cross-over integration event were grown overnight in BHI at 30°C to induce double crossover events and were subsequently plated at 30°C. Resulting colonies were replica plated on BHI with and without 5 μ g/ml erythromycin and incubated at 30°C. Colonies sensitive to erythromycin were selected. PCR using the primers listed in Supplementary Table S4.1 and DNA sequencing (BaseClear B.V. Leiden, The Netherlands) of erythromycin sensitive colonies confirmed the correct point mutation in the respective genes and the lack of additional mutations in the targeted region.

Table 4.1:	Constructed	L.	monocytogenes	mutants

Strain	Mutation introduced
LO28 WT	RpsU ^{Arg17Pro}
LO28 WT	RpsU ^{Arg17His}
LO28 WT	RpsU ^{Arg17The}
EGDe WT	RpsU ^{Arg17Pro}

Statistical testing

Hypothesis testing was performed in the statistical programming language R (version 3.6.0) using the t.test() and var.test() functions.

Results

Growth kinetics of evolved variants

The experimental evolution regime resulted in the selection of two evolved variants, Evolved 1 and Evolved 2 (15EV1 and 15EV2, respectively). The growth kinetics of evolved variants 15EV1 and 15EV2 were assessed (Figure 4.1a) and showed that the experimental evolution regime had successfully selected for evolved variants after 16 and 18 daily transfers (~105 and ~120 generations), that showed increased μ_{max} when compared to variant 15 (Figure 4.1a). The μ_{max} of both evolved strains was significantly higher than that

of variant 15 whereas the μ_{max} of 15EV1 was even not significantly different from the μ_{max} of the LO28 WT strain, while strain 15EV2 had a slightly lower μ_{max} (Figure 4.1b).

Figure 4.1: Growth performance of L. monocytogenes LO28 WT, variant 15, 15EV1, and 15EV2 (a) growth curves for LO28 WT (squares), variant 15 (diamonds), 15EV1 (circles), and 15EV2 (triangles), (b) Maximum specific growth rates (μ_{max}) for L. monocytogenes LO28 WT, variant 15, 15EV1, and 15EV2. Different capital letters show statistically significant differences.

Multiple-stress resistance of evolved variants

Since the evolved variants 15EV1 and 15EV2 showed increased fitness, we compared their resistance to heat stress (55°C) and acid stress (pH 3.0) to that of variant 15 (Figure 4.2). In the heat stress experiments (Figure 4.2a), variant 15 started with approximately 6.8 log cfu/ml, and showed little inactivation after 20 minutes of exposure, with a concentration of around 6 log cfu/ml. In contrast, after 20 minutes of exposure the concentrations of both evolved variants 15EV1 and 15EV2 decreased and were not significantly different from the LO28 WT strain with concentrations of around 2.5 log cfu/ml (p > 0.05). For acid stress experiments (Figure 4.2b), variant 15 again only showed a small (< 1 log cfu/ml) decrease in cell counts after 20 minutes, while both evolved variants and also the LO28 WT strain showed over 5 log cfu/ml reduction after 20 minutes. These data indicate that both evolved variants 15EV1 and 15EV2 have lost their resistance to heat stress and acid stress when compared to variant 15.

Figure 4.2: Survival of L. monocytogenes LO28 WT, variant 15, 15EV1, and 15EV2 after exposure to heat (55°C) (a) or acid stress (pH 3.0) (b). The wild type is represented by squares, variant 15 by diamonds, and variants 15EV1 and 15EV2, are represented by circles and triangles respectively.

Proteomic analysis of variant 15, 15EV1, and 15EV2

Comparative gene profiling analysis of *L. monocytogenes* LO28 WT and variant 15, previously showed upregulation of 116 genes with a major contribution of general stress sigma factor SigB dependent regulon members in late-exponential phase cells grown in non-stressed conditions in BHI (Koomen et al., 2018).

Here, we investigated the proteomes of late-exponential phase cells of *L. monocytogenes* LO28 WT, variant 15 and evolved variants 15EV1 and 15EV2 (Figure 4.3). Presenting the data compared to the WT, shows significant differences for variant 15 (Figure 4.3), in line with previously reported differences in gene expression profiles and phenotypes (Koomen et al., 2018). Notably, our proteomics analysis revealed that out of the 29 proteins annotated as belonging to the SigB regulon in this sample, 21 were higher expressed in variant 15 compared to LO28 WT, (Figure 4.3). These include stress resistance proteins such as OpuCA (Imo1428), OpuCC (Imo1426), and SepA (Imo2157) (Kazmierczak et al., 2003; Milohanic et al., 2003). For a full list, see supplementary Table S4.2. In accordance with gene expression data, and the non-motile phenotype of variant 15 (Koomen et al., 2018), proteomics data show a significant reduced expression of motility and chemotaxis associated proteins such as MotA (Imo0685), MotB (Imo0686), CheA (Imo0692), and chemotaxis response regulator CheY (Imo0691). As anticipated, the proteomic profiles for 15EV1 and 15EV2 were more similar to that of the WT, and we found seven and twenty proteins expressed above the

stringent threshold in 15EV1 and 15EV2, respectively (see supplementary Table S4.2 and S4.3). None of the genes that are upregulated in 15EV1 are part of the sigB regulon. Four of the upregulated proteins in 15EV2 were part of the SigB regulon, namely, succinate semialdehyde dehydrogenase (Imo0913), hypothetical protein Imo2748, opuCA (Imo1428), and the pyruvate oxidase Imo0722. The low relative abundance of SigB upregulated proteins matches the WT-like phenotypes of 15EV1 and 15EV2, including the higher fitness and loss of acid and heat stress resistance.

Figure 4.3: Volcano plot of significantly differentially abundant proteins of L. monocytogenes variant 15, 15EV1, and 15EV2 compared to the wild type. The $-\log_{10}$ (Benjamini–Hochberg corrected P value) is plotted against the \log_{10} (fold change (FC): variant over WT). Horizontal dotted line represents the cutoff for $-\log_{10}$ (P), vertical dotted lines represent \log_{10} (fold change) cutoff. Red dots represent genes regulated by sigB, blue dots represent genes involved in the formation and regulation of flagella. The expression of individual proteins is listed in supplementary Tables S4.2 – S4.4.

Whole genome sequencing of 15EV1 and 15EV2

Previous whole genome sequencing and Structural Variation (SV) analysis of L. monocytogenes LO28 WT and variant 15 revealed a Single Nucleotide Polymorphism (SNP) in the rpsU gene, coding for 30S ribosomal protein S21 (Metselaar et al., 2015). This SNP led to an arginine to proline substitution in the RpsU protein (denoted here as RpsU^{17Arg-Pro}). Strikingly, whole genome sequencing and Structural Variation (SV) analysis of L. monocytogenes evolved variants 15EV1 and 15EV2 revealed a single SNP in the same codon of the rpsU gene, while no other SNPs were identified. In the rpsU gene of 15EV1 the Cytosine in position 50 mutated to Adenine, while in 15EV2 the Cytosine in position 49 mutated into Adenine, (see Table 4.2) resulting in amino acid changes from Proline (codon, CCT) to Histidine (codon, CAT) in 15EV1 (RpsU^{17Pro-His}), and Threonine (codon, ACT) in 15EV2 (RpsU^{17Pro-Thr}) (Figure 4.4 a/b). Since amino acid substitutions can disrupt protein structure, potentially altering protein stability or function, we analysed the protein sequences of WT and variants using the online tool CFSSP (Ashok Kumar, 2013) Again, the protein structure of RpsU in WT and the evolved variants appeared similar, while an extra proline-associated turn was predicted in variant 15 (see Supplementary Figure S4.1). The putative prolineinduced turn may disrupt the RpsU^{17Arg-Pro} protein structure as proline has been described as a helix breaker (Chou and Fasman, 1974), which might result in loss of functionality and/or exclusion from the 30S ribosome in variant 15.

Variant	Position	Strand	NT	AA	Locus tag	Product
15	1521940	-	50G>C	17R>P	IEJ01_07680	30S ribosomal protein S21
15EV1	1521940	-	50C>A	17P>H	IEJ01_07680	30S ribosomal protein S21
15EV2	1521939	-	49C>A	17P>T	IEJ01_07680	30S ribosomal protein S21

Table 4.2: Mutations in L. monocytogenes variants found by WGS and SNP analysis

Figure 4.4: Sequence alignment of rpsU (top) and amino acid sequence of RpsU in L. monocytogenes LO28 WT and variant 15 and 15EV1 and 15EV2. The upper alignment represents the nucleotide sequence of the region where mutations were found. The black line indicates the start codon of the rpsU gene. The lower alignment represents the amino acid sequence of the complete RpsU protein and the effect of the mutations on the amino acid sequence. Amino acids predicted to cause turns in the tertiary protein structure are shaded red, and amino acids at position 17 are boxed, including the extra turn in variant 15 caused by proline (P).

Fitness and stress resistance of constructed mutants

To confirm the arginine to proline substitution at position 17 in *rpsU* as the mutation underlying the multiple-stress resistant phenotype of variant 15, we introduced RpsU^{17Arg-Pro} into a *L. monocytogenes* LO28 WT background. Additionally, we also introduced the two SNP's that were selected by experimental evolution in 15EV1 and 15EV2, namely, RpsU^{17Arg-His} and RpsU^{17Arg-Thr}. Analysis of growth performance showed that the μ_{max} as proxy for fitness of the constructed RpsU^{17Arg-Pro} mutant was similar to that of variant 15, and that of the constructed RpsU^{17Arg-His} and RpsU^{17Arg-His} and RpsU^{17Arg-Thr} mutants was similar to that of the corresponding evolved variants 15EV1 and 15EV2, respectively (Table S4). Subsequently, we tested the response of late exponential phase cells of the constructed mutants to heat (55°C) stress (Figure 4.5a) and acid (pH 3.0) stress (Figure 4.5b). As expected, the LO28 WT strain with the introduced RpsU^{17Arg-Pro} substitution showed significant (p < 0.05) higher heat and acid resistance after 10 minutes of treatment than the LO28 WT strains with the introduced RpsU^{17Arg-Thr} substitutions. These results confirmed that only the RpsU^{17Arg-Pro} substitution results in the multiple-stress resistant phenotype typical of variant

15, while RpsU amino acid substitutions mimicking variants 15EV1 and 15EV2 results in WT like fitness and stress sensitive phenotypes.

Figure 4.5: Survival of L. monocytogenes LO28 WT, and constructed mutants, during heat (55°C) (a) or acid (pH 3.0) (b) stress. LO28 WT is represented by squares, LO28 with RpsU^{17Arg-}^{Pro} is represented by triangles, LO28 with RpsU^{17Arg-Thr}, is represented by circles, and LO28 with RpsU^{Arg17His} by diamonds.

To test whether RpsU, with a proline at position 17, could induce phenotypic switching in other L. monocytogenes strains, we also introduced the RpsU^{17Arg-Pro} mutation into L. monocytogenes EGDe, which is one of the best studied strains of L. monocytogenes including its stress survival capacity (Becavin et al., 2014). Analysis of the growth performance of EGDe WT and its RpsU^{17Arg-Pro} mutant at 30 °C showed reduced fitness for the latter one, reflected in a lower μ_{max} (0.86 h⁻¹ ± standard deviation 0.01 h⁻¹) compared to that of EGDe WT (1.10 h^{-1} ± standard deviation 0.02 h^{-1}) (Figure 4.6). A comparative analysis previously showed that EGDe has a higher resistance to heat stress than LO28 (Aryani et al., 2015), and this was also reflected in the inactivation data shown in Figure 4.7, where heat inactivation at 55°C resulted in a decrease of about 2.5 log cfu/ml in 20 minutes for the EGDe WT (Figure 4.7a). As expected, higher stress resistance was observed for the EGDe strain carrying the RpsU^{17Arg-Pro} mutation, with stable cell counts maintained during the treatment time (Figure 4.7a). We observed a similar trend when both strains were exposed to acid stress, with enhanced acid stress survival for the RpsU^{17Arg-Pro} EGDe mutant strain (Figure 4.7b). The combination of all results provides evidence that sequential mutations in rpsU resulting in RpsU^{17Arg-Pro} and subsequently RpsU^{17Pro-His} or RpsU^{17Pro-Thr}, enable a switch between low fitness/high stress resistance and high fitness-low stress resistance phenotypes in *L. monocytogenes*.

Figure 4.6: Maximum specific growth rates (μ_{max}) for L. monocytogenes EGDe, and EGDe $RpsU^{17Arg-Pro}$. * indicates significant difference.

Figure 4.7: Survival of L. monocytogenes EGDe wild type, and EGDe RpsU^{17Arg-Pro}, after exposure to heat (55 °C) (a) or acid (pH 3.0) stress (b). The EGDe WT is represented by circles, EGDe RpsU^{17Arg-Pro} by triangles.

Discussion

Previous genotyping and phenotyping studies showed that the multiple-stress resistance of L. monocytogenes LO28 variant 15 with RpsU^{17Arg-Pro} was linked to induction of the SigB regulon, and was correlated with reduced fitness (Koomen et al. 2018). Here, we have used experimental evolution to select for mutations in variant 15 that increased fitness. The two evolved lines fixed two different mutations, leading to two different amino acid substitutions both at position 17 in RpsU, namely, RpsU^{17Pro-His} (15EV1) and RpsU^{17Pro-Thr} (15EV2) resulting in reversion to WT-like fitness (Figure 4.1) and stress resistance (Figure 4.2). The experimental evolution regime had successfully selected for evolved variants after 16 and 18 daily transfers (~105 and ~120 generations). We modelled the kinetics of the WT and variant 15 ancestor based on the μ_{max} reported by Metselaar et al. (2016) for the growing conditions that were used during experimental evolution. We used a 3-phase model based on Buchanan et al. 1997, with a logN_{max} of 9.5 log cfu/ml, and took into account the Jameson effect (Jameson, 1962), that addresses growth suppression by the dominant strain in a multi strain population when the dominant strain reaches its stationary phase. We then estimated that after 6 rounds (~ 40 generations) one EV15 cell (with initial fraction $1\cdot 10^{-7.5}$) could have reached the same population density as the variant 15 strain, which is in line with the successful outcome of the experimental evolution experiment.

Random insertion of a proline residue is known to disrupt protein structure, potentially altering the stability or function of the protein (Chou and Fasman, 1974). Combined with data obtained with the constructed RpsU^{17Arg-Pro}, RpsU^{17Arg-His}, and RpsU^{17Arg-Thr} mutants, we provided evidence that replacing the putative disruptive proline at position 17 in *L. monocytogenes* variant 15 with amino acids that do not have such strong disruptive effects, i.e., threonine or histidine, can restore WT-like functioning of the RpsU protein with an arginine at position 17. Although both evolved lines fixed a compensatory mutation, they did not fix the same mutation, and we did not find a reversion to the original RpsU^{17Arg}. Based on the slight difference in μ_{max} and proteomic profile between 15EV1 and 15EV2, we hypothesize that the RpsU^{17Arg-His} mutation is slightly more efficient in restoring the WT phenotype than RpsU^{17Arg-Thr}.

The previously described variant 14 with a complete deletion of *rpsU* and variant 15 have highly comparable phenotypical behaviour (Koomen et al., 2018; Metselaar et al., 2015), which indicates that RpsU is not essential for growth, and that RpsU^{17Arg-Pro} in variant 15 either lost its functionality, or is not (efficiently) incorporated into the 30S ribosome that

together with the 50S ribosome constitutes the 70S ribosome. Notably, the additional introduction in the current study of the RpsU^{17Arg-Pro} mutation in the well-studied *L. monocytogenes* EGDe strain, also resulted in a phenotypic switch from high fitness-low stress resistance to low fitness-high stress resistance (see Figure 4.6 and 4.7), providing evidence that the observed changes in behaviour are strain independent and caused by a single arginine-proline substitution at position 17 in RpsU. Moreover, studies in *Bacillus subtilis*, a closely related firmicute, have also shown that RpsU was not essential for growth, but that deletion of the protein leads to altered phenotypes including loss of motility and a reduced growth rate (Akanuma et al., 2012).

Induction of multiple-stress resistance in *L. monocytogenes* by SigB is tightly controlled by the so-called stressosome, a protein complex that acts as a signal relay hub integrating multiple environmental (stress) signals (Guariglia-Oropeza et al., 2014; Impens et al., 2017). Activation of a large fraction of the SigB regulon during non-stress growth conditions in LO28 variant 15 and in LO28 carrying the RpsU^{17Arg-Pro} mutations points to an (in)direct interaction between the 70S ribosome and the stress signalling cascade. How the presumed loss of function of the 30S RpsU^{17Arg-Pro} variant protein affects functioning of the 70S ribosome resulting in reduced fitness and activation of the SigB regulon remains to be elucidated.

Previous studies describing performance of multiple-stress resistant variants in a model food chain considered the trade-off between increased stress resistance and lower fitness (Abee et al., 2016; Metselaar et al., 2015). The information that selection of multiple-stress resistant variants following a single lethal stress exposure, could be followed by subsequent evolution of variants with increased fitness and loss of the stress resistant phenotype, may point to an additional layer of complexity that can be included in these scenario analyses. Notably, translation of these population dynamics that are based on the generation and performance of *L. monocytogenes* variants following single-nucleotide substitutions (SNPs) to ecology along the food chain and more specifically (over)representation in persistent strains, is currently not supported by analysis of WGS data. Recently, Harrand et al. (2020) studied the evolution of *L. monocytogenes* persistence in a food processing plant over multiple years and genotyping of isolates showed limited single-nucleotide substitutions (SNPs), and a more prominent role in strain diversification by gain and loss of prophages. Further studies are required to determine whether the observed lack of (over)representation of SNPs in RpsU, and specifically those resulting in RpsU^{17Arg-Pro}, in

sequenced *L. monocytogenes* isolates is caused by reduced fitness affecting performance of stress resistant variants in *L. monocytogenes* enrichments from food and food processing samples according to the ISO 11290-1:2017 method.

The experimental evolution setup used in the current study, combined with genotyping and phenotyping of the two evolved variants, and the construction of targeted mutants in *L. monocytogenes* LO28 and EGDe, provides evidence that single amino acid substitutions in RpsU enable *L. monocytogenes* to switch between high fitness-low stress resistance and low fitness-high stress resistance. The exact mechanism of SigB induction following RpsU^{17Arg-Pro} substitution or RpsU deletion (Metselaar et al. 2015; Koomen et al. 2018) and the impact on 70S ribosome function and the stressosome-mediated signalling cascade is currently under investigation in our group. Ultimately, a better understanding of the processes involved will add to a further insight into factors contributing to strain diversity and population heterogeneity in *L. monocytogenes* stress sensing and survival capacity and its transmission in the food chain.

Acknowledgments

The authors would like to thank Angela van Hoek of the Dutch National Institute for Public Health and the Environment (RIVM) for assistance with sequencing the evolved variants, and Birgitte H. Kallipolitis for discussing the optimal settings for electroporation of *L. monocytogenes*

References

- Abee, T., Koomen, J., Metselaar, K.I., Zwietering, M.H., Den Besten, H.M.W., 2016. Impact of pathogen population heterogeneity and stress-resistant variants on food safety. Annu. Rev. Food Sci. Technol. 7, 439–456. doi:10.1146/annurev-food-041715-033128
- Akanuma, G., Nanamiya, H., Natori, Y., Yano, K., Suzuki, S., Omata, S., Ishizuka, M., Sekine,
 Y., Kawamura, F., 2012. Inactivation of ribosomal protein genes in *Bacillus subtilis* reveals importance of each ribosomal protein for cell proliferation and cell differentiation. J. Bacteriol. 194, 6282–6291. doi:10.1128/JB.01544-12
- Aryani, D.C., Den Besten, H.M.W., Hazeleger, W.C., Zwietering, M.H., 2015. Quantifying variability on thermal resistance of *Listeria monocytogenes*. Int. J. Food Microbiol. 193, 130–138. doi:10.1016/j.ijfoodmicro.2014.10.021
- Ashok Kumar, T., 2013, CFSSP: Chou and Fasman secondary structure prediction server. Wide Spectrum 1, 15-19.
- Becavin, C., Bouchier, C., Lechat, P., Archambaud, C., Creno, S., Gouin, E., Wu, Z., Kuhbacher, A., Brisse, S., Pucciarelli, M.G., Garcia-del Portillo, F., Hain, T., Portnoy, D.A., Chakraborty, T., Lecuit, M., Pizarro-Cerda, J., Moszer, I., Bierne, H., Cossart, P., 2014. Comparison of widely used *Listeria monocytogenes* strains EGD, 10403S, and EGD-e highlights genomic differences underlying variations in pathogenicity. mBio 5(2):e00969-14. doi:10.1128/mBio.00969-14.
- Bielow, C., Mastrobuoni, G., Kempa, S., 2016. Proteomics quality control: quality control software for MaxQuant results. J. Proteome Res. 15, 777–787. doi:10.1021/acs.jproteome.5b00780
- Biesta-Peters, E.G., Reij, M.W., Joosten, H., Gorris, L.G.M., Zwietering, M.H., 2010. Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of *Bacillus cereus*. Appl. Environ. Microbiol. 76, 1399–1405. doi:10.1128/AEM.02336-09
- Buchanan, R.L., Whiting, R.C., Damert, W.C., 1997. When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol. 14, 313-326, doi:10.1006/fmic.1997.0125
- Chakraborty, T., Leimeister-Wächter, M., Domann, E., Hartl, M., Goebel, W., Nichterlein, T., Notermans, S., 1992. Coordinate regulation of virulence genes in *Listeria monocytogenes* requires the product of the *prfA* gene. J. Bacteriol. 174, 568–574. doi:10.1128/jb.174.2.568-574.1992
- Chou, P.Y., Fasman, G.D., 1974. Prediction of protein conformation. Biochemistry 13, 222– 245. doi:10.1021/bi00699a002
- Cox, J., Hein, M.Y., Luber, C.A., Paron, I., Nagaraj, N., Mann, M., 2014. Accurate proteomewide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526. doi:10.1074/mcp.M113.031591

- Gollan, B., Grabe, G., Michaux, C., Helaine, S., 2019. Bacterial persisters and infection: past, present, and progressing. Annu. Rev. Microbiol. 73, 359–385. doi:10.1146/annurev-micro-020518-115650
- Guariglia-Oropeza, V., Orsi, R.H., Yu, H., Boor, K.J., Wiedmann, M., Guldimann, C., 2014. Regulatory network features in *Listeria monocytogenes*-changing the way we talk. Front. Cell. Infect. Microbiol. 4, 14. doi:10.3389/fcimb.2014.00014
- Guldimann, C., Boor, K.J., Wiedmann, M., Guariglia-Oropeza, V., 2016. Resilience in the face of uncertainty: Sigma factor b fine-tunes gene expression to support homeostasis in Gram-positive bacteria. Appl. Environ. Microbiol. 82, 4456–4469. doi:10.1128/AEM.00714-16
- Hunt, M., Silva, N.D., Otto, T.D., Parkhill, J., Keane, J.A., Harris, S.R., 2015. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol. 16, 294. doi:10.1186/s13059-015-0849-0
- Impens, F., Rolhion, N., Radoshevich, L., Bécavin, C., Duval, M., Mellin, J., del Portillo, F.G., Pucciarelli, M.G., Williams, A.H., Cossart, P., 2017. N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in *Listeria monocytogenes*. Nat. Microbiol. 2, 1–13. doi:10.1038/nmicrobiol.2017.5
- Jameson, J., 1962 A discussion of the dynamics of *Salmonella* enrichment. J Hyg (Lond). 60, 193-207 doi: 10.1017/s0022172400039462
- Karatzas, K.A.G., Valdramidis, V.P., Wells-Bennik, M.H.J., 2005. Contingency locus in *ctsR* of *Listeria monocytogenes* Scott A: a strategy for occurrence of abundant piezotolerant isolates within clonal populations. Appl. Environ. Microbiol. 71, 8390–8396. doi:10.1128/AEM.71.12.8390-8396.2005
- Kazmierczak, M.J., Mithoe, S.C., Boor, K.J., Wiedmann, M., 2003. Listeria monocytogenes sigma B regulates stress response and virulence functions. J. Bacteriol. 185, 5722– 5734. doi:10.1128/jb.185.19.5722-5734.2003
- Koomen, J., Den Besten, H.M.W., Metselaar, K.I., Tempelaars, M.H., Wijnands, L.M., Zwietering, M.H., Abee, T., 2018. Gene profiling-based phenotyping for identification of cellular parameters that contribute to fitness, stress-tolerance and virulence of *Listeria monocytogenes* variants. Int. J. Food Microbiol. 283, 14–21. doi:10.1016/j.ijfoodmicro.2018.06.003
- Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., Phillippy, A.M., 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736. doi:10.1101/gr.215087.116
- Lecuit, M., 2007. Human listeriosis and animal models. Microbes Infect. 9, 1216–1225. doi:10.1016/j.micinf.2007.05.009
- Lu, J., Boeren, S., de Vries, S.C., van Valenberg, H.J.F., Vervoort, J., Hettinga, K., 2011. Filter-aided sample preparation with dimethyl labeling to identify and quantify milk fat globule membrane proteins. J. Proteome 75, 34–43. doi:10.1016/j.jprot.2011.07.031
- Metselaar, K.I., Den Besten, H.M.W., Abee, T., Moezelaar, R., Zwietering, M.H., 2013. Isolation and quantification of highly acid resistant variants of Listeria

monocytogenes. Int. J. Food Microbiol. 166, 508–514. doi:10.1016/j.ijfoodmicro.2013.08.011

- Metselaar, K.I., Den Besten, H.M.W., Boekhorst, J., van Hijum, S.A.F.T., Zwietering, M.H., Abee, T., 2015. Diversity of acid stress resistant variants of *Listeria monocytogenes* and the potential role of ribosomal protein S21 encoded by *rpsU*. Front. Microbiol. 6, 422. doi:10.3389/fmicb.2015.00422
- Metselaar, K.I., Abee, T., Zwietering, M.H., Den Besten, H.M.W., 2016. Modeling and validation of the ecological behavior of wild-type *Listeria monocytogenes* and stress-resistant variants. Appl. Environ. Microbiol. 82, 5389–5401. doi:10.1128/AEM.00442-16
- Milohanic, E., Glaser, P., Coppée, J.-Y., Frangeul, L., Vega, Y., Vázquez-Boland, J.A., Kunst,
 F., Cossart, P., Buchrieser, C., 2003. Transcriptome analysis of *Listeria* monocytogenes identifies three groups of genes differently regulated by PrfA. Mol. Microbiol. 47, 1613–1625. doi:10.1046/j.1365-2958.2003.03413.x
- NicAogáin, K., O'Byrne, C.P., 2016. The role of stress and stress adaptations in determining the fate of the bacterial pathogen *Listeria monocytogenes* in the food chain. Front. Microbiol. 7, 1865. doi:10.3389/fmicb.2016.01865
- Radoshevich, L., Cossart, P., 2018. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 16, 32–46. doi:10.1038/nrmicro.2017.126
- Seemann, T., 2015. Snippy: fast bacterial variant calling from NGS reads. https://github.com/tseemann/snippy
- Smaczniak, C., Immink, R.G.H., Muiño, J.M., Blanvillain, R., Busscher, M., Busscher-Lange, J., Dinh, Q.D.P., Liu, S., Westphal, A.H., Boeren, S., Parcy, F., Xu, L., Carles, C.C., Angenent, G.C., Kaufmann, K., 2012. Characterization of MADS-domain transcription factor complexes in *Arabidopsis* flower development. Proc. Natl. Acad. Sci. U.S.A. 109, 1560–1565. doi:10.1073/pnas.1112871109
- Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann, M., Cox, J., 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740. doi:10.1038/nmeth.3901
- Van Boeijen, I.K.H., Moezelaar, R., Abee, T., Zwietering, M.H., 2008. Inactivation kinetics of three *Listeria monocytogenes* strains under high hydrostatic pressure. J. Food Prot. 71, 2007–2013. doi:10.4315/0362-028x-71.10.2007
- Vázquez-Boland, J.A., Kuhn, M., Berche, P., Chakraborty, T., Domínguez-Bernal, G., Goebel, W., González-Zorn, B., Wehland, J., Kreft, J., 2001. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584–640. doi:10.1128/CMR.14.3.584-640.2001
- Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., Wortman, J., Young, S.K., Earl, A.M., 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963. doi:10.1371/journal.pone.0112963
- Wendrich, J.R., Boeren, S., Möller, B.K., Weijers, D., De Rybel, B., 2017. In Vivo identification of plant protein complexes using IP-MS/MS. Methods Mol. Biol. 1497, 147–158. doi:10.1007/978-1-4939-6469-7_14

Wiśniewski, J.R., Zougman, A., Nagaraj, N., Mann, M., 2009. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362. doi:10.1038/nmeth.1322

Supplementary material

Table S4.1: Primers used in construction of *rpsU* mutants

EcoR1 and Sall sites are indicated in bold			
Direction	Gene	Sequence	
Forward	rpsU	5' -GAAG GAATTC CCAGAGAAGGCGAGGATAGTG- 3'	
Reverse	rpsU	5'- TGGT GTCGAC TCAGCTTTGCCCTTTACTTTAG- '3	

Table S4.2: Proteins above or below the cutoff in Listeria monocytogenes LO28 variant 15 over wild type

Protein IDs	Protein product	Gene	Locus tag	Regulon	Product -log ₁₀ P		log ratio
IEJ01 03515	NP 464216.1		lmo0689	flagella 1	chemotaxis protein CheV	5.82	-3.22
IEJ01 03510	NP 464215.1	-	lmo0688	flagella 1	hypothetical protein Imo0688	7.02	-3.17
IEJ01 04515	NP 464416.1	rsbS	lmo0890	-	negative regulation of sigma-B activity	7.01	-2.96
IEJ01 03525	NP 464218.1	cheY	lmo0691	flagella 2	chemotaxis response regulator CheY	6.49	-2.85
IEJ01 03530	NP 464219.1	cheA	lmo0692	flagella 2	two-component sensor histidine kinase CheA	5.58	-2.82
IEJ01 03590	NP 464231.1	-	lmo0704		hypothetical protein Imo0704	6.94	-2.74
IEJ01 03490	NP 464211.1	-	lmo0684	flagella 1	hypothetical protein Imo0684	4.12	-2.74
IEJ01 03495	NP 464212.1	motA	lmo0685	flagella 1	flagellar motor protein MotA	5.16	-2.66
IE101 08960	NP 465224.1	-	lmo1699		chemotaxis protein	5.98	-2.61
IEJ01 01825	NP 463884.1	-	lmo0354		fatty-acidCoA ligase	7.83	-2.60
IEJ01 11125	NP 465650.1	-	lmo2126		maltogenic amylase	5.79	-2.60
IEJ01 05170	NP 464540.1	abuB	lmo1015		glycine/betaine ABC transporter permease	4.61	-2.43
IEI01_03500	NP 464213.1	motB	lmo0686	flagella 1	flagellar motor rotation MotB	5.66	-2.35
IEJ01 00255	NP 463584.1	-	lmo0051		response regulator	5.95	-2.27
IEJ01 03635	NP 464240.1	fliF	lmo0713		flagellar MS-ring protein FliF	7.96	-2.23
IEJ01 14350	NP 466238.1	, cvdC	lmo2716		ABC transporter	5.01	-2.21
IEI01 04805	NP 464468.1	fri	lmo0943	-	non-heme iron-binding ferritin	4.44	-2.20
IEI01_03565	NP 464226.1	fliM	lmo0699		flagellar motor switch protein FliM	5.89	-2.16
IEI01_03645	NP 464242.1	fliH	lmo0715	-	flagellar assembly protein H	4.61	-2.10
IEI01 07370	NP 464932.1	nfIC	lmo1407	-	pyruvate-formate lyase activating enzyme	8.61	-2.02
IEI01 10065	NP 465440.1	-	lmo1916	-	peptidase	4.47	-1.79
IEJ01 07680	NP 464994.1	røsU	lmo1469		30S ribosomal protein S21	2.11	-1.34
IEI01_04655	NP 464439 1		lmo0913	SigB	succinate semialdebyde debydrogenase	9 1 9	3.98
IEI01_07475	NP 464953 1	onuCA	Imo1428	SigB	glycine/betaine ABC transporter ATP-binding protein	4.88	3 34
IEI01_03680	NP 464249 1	-	Imo0722	SigB	pyruvate oxidase	8 75	3 25
IEI01_09635	NP 465355 1	-	Imo1830	SigB	short-chain debydrogenase	5.13	3 22
IEI01 14510	NP 466270.1	-	lmo2748	SigB	hypothetical protein Imo2748	3.92	3.22
IEI01 11305	NP 465681.1	senA	lmo2157	SigB	hypothetical protein Imo2157	3.99	3.19
IEI01 11585	NP 465737.1	-	lmo2213	SigB	hypothetical protein Imo2213	4.27	3.16
IEI01 07465	NP 464951.1	opuCC	lmo1426	SigB	glycine/betaine ABC transporter substrate-binding protein	5.43	3.07
IEJ01 00670	NP 463667.1	-	lmo0134	SigB	hypothetical protein Imo0134	5.30	2.76
IEI01 12965	NP 465986.1	-	lmo2463	SigB	multidrug transporter	6.70	2.68
IEI01 02335	NP 463983.1	-	lmo0454		hypothetical protein Imo0454	4.74	2.54
IEI01 03105	NP 464135.1	-	lmo0608	-	ABC transporter ATP-binding protein	6.16	2.54
IEJ01 07445	NP 464947.1	-	lmo1422	SigB	glycine/betaine ABC transporter permease	6.59	2.50
IEJ01 04045	NP 464323.1	-	lmo0796	SigB	hypothetical protein Imo0796	8.22	2.49
IEJ01 01390	NP 463796.1	-	lmo0265	SigB	succinvl-diaminopimelate desuccinvlase	5.00	2.41
IEJ01 03985	NP 464311.1	-	lmo0784	SigB	PTS mannose transporter subunit IIB	4.70	2.39
IEJ01 03395	NP 464192.1	-	lmo0665		hypothetical protein Imo0665	5.60	2.37
IEJ01 04155	NP 464345.1	-	lmo0818		cation-transporting ATPase	5.40	2.35
IEJ01 08935	NP 465219.1	-	lmo1694	SigB	CDP-abequose synthase	5.61	2.34
IEI01 13525	NP 466096.1	-	lmo2573	SigB	zinc-binding dehydrogenase	6.02	2.31
IEJ01 02115	NP 463940.1	-	lmo0411		phosphoenolpyruvate synthase	7.49	2.30
IEJ01 02960	NP 464107.1	-	lmo0579	SigB	hypothetical protein Imo0579	6.43	2.26
IEJ01 01435	NP 463805.1	-	lmo0274	SigB	hypothetical protein Imo0274	6.38	2.07
IEJ01 02640	NP 464043.1	-	Imo0515	SigB	hypothetical protein Imo0515	4.89	1.99
IEJ01 08000	NP 465057.1	ruvB	lmo1532		Holliday junction DNA helicase RuvB	4.85	1.91
IEJ01 03340	NP 464181.1	-	lmo0654	SigB	hypothetical protein Imo0654	3.71	1.88
IEJ01 12755	NP 465944.1	-	lmo2421	-	two-component sensor histidine kinase	5.57	1.88
IEJ01 03865	NP 464287.1	-	lmo0760	-	hypothetical protein Imo0760	3.17	1.63
IEJ01 02760	NP_464067.1	-	lmo0539	SigB	tagatose 1,6-diphosphate aldolase	3.42	1.48
Table S4.3: Proteins above or below the cutoff in Listeria monocytogenes LO28 variant 15EV1 over wild type

Protein IDs	Protein product	Gene	Locus tag	Regulon	Product	-log ₁₀ P value	log ratio
IEJ01_08375	NP_465131.1	-	lmo1606	sigB	DNA translocase	5.97	-2.25
IEJ01_14350	NP_466238.1	cydC	lmo2716	-	ABC transporter	5.01	-2.21
IEJ01_06615	NP_464782.1	-	lmo1257	-	hypothetical protein Imo1257	10.09	2.74
IEJ01_09215	NP_465274.1	-	lmo1749	-	shikimate kinase	5.39	2.02
IEJ01_06660	NP_464791.1	-	lmo1266	-	hypothetical protein Imo1266	6.10	1.98
IEJ01_01400	NP_463798.1	-	lmo0267	-	hypothetical protein Imo0267	6.93	1.81
IEJ01_08250	NP_465107.1	-	lmo1582	-	hypothetical protein Imo1582	3.61	1.77
IEJ01_13180	NP_466028.1	spl	lmo2505	-	peptidoglycan lytic protein P45	6.70	1.70
IEJ01_14455	NP_466259.1	-	lmo2737	-	Lacl family transcriptional regulator	6.92	1.44
IEJ01 03915	NP 464297.1	-	lmo0770	-	Lacl family transcriptional regulator	5.16	1.43

Table S4.4: Proteins above or below the cutoff in Listeria monocytogenes LO28 variant 15EV2 over wild type

Protein IDs	Protein product	Gene	Locus tag	Regulon	Product	- log P-value	log ratio
IEJ01_04915	NP_464490.1	-	lmo0965	-	hypothetical protein Imo0965	6.02	-1.81
IEJ01_06615	NP_464782.1	-	lmo1257	-	hypothetical protein Imo1257	4.59	2.61
IEJ01_02935	NP_464102.1	-	lmo0574	-	beta-glucosidase	5.61	2.43
IEJ01_04655	NP_464439.1	-	lmo0913	SigB	succinate semialdehyde dehydrogenase	6.65	2.30
IEJ01_14510	NP_466270.1	-	lmo2748	SigB	hypothetical protein Imo2748	5.21	2.19
IEJ01_04155	NP_464345.1	-	lmo0818	-	cation-transporting ATPase	6.48	2.18
IEJ01_09625	NP_465353.1	-	lmo1828	-	hypothetical protein Imo1828	4.72	2.06
IEJ01_03445	NP_464202.1	-	lmo0675	flagella_1	hypothetical protein Imo0675	7.53	2.05
IEJ01_07475	NP_464953.1	opuCA	lmo1428	SigB	glycine/betaine ABC transporter ATP-binding protein	5.50	2.02
IEJ01_03615	NP_464236.1	-	lmo0709	-	hypothetical protein Imo0709	4.02	1.98
IEJ01_08250	NP_465107.1	-	lmo1582	-	hypothetical protein Imo1582	4.82	1.96
IEJ01_07170	NP_464893.1	recN	lmo1368	-	DNA repair protein	5.24	1.92
IEJ01_09235	NP_465278.1	-	lmo1753	-	lipid kinase	7.33	1.91
IEJ01_03680	NP_464249.1	-	lmo0722	SigB	pyruvate oxidase	4.95	1.86
IEJ01_07825	NP_465023.1	-	lmo1498	-	O-methyltransferase	5.29	1.84
IEJ01_06660	NP_464791.1	-	lmo1266	-	hypothetical protein Imo1266	8.12	1.84
IEJ01_12275	NP_465867.1	-	lmo2344	-	hypothetical protein Imo2344	4.27	1.82
IEJ01_08705	NP_465197.1	menE	lmo1672	-	O-succinylbenzoic acidCoA ligase	4.83	1.79
IEJ01_00260	NP_463585.1	-	lmo0052	-	hypothetical protein Imo0052	3.83	1.72
IEJ01_07925	NP_465042.1	-	lmo1517	-	nitrogen regulatory PII protein	4.13	1.61
IEJ01_03865	NP_464287.1	-	lmo0760	-	hypothetical protein Imo0760	4.53	1.14

Table S4.5: Maximum growth rates of Listeria monocytogenes LO28 WT, variants and constructed mutants.

Strain	Maximum growth rate	SD	
LO28 WT	1.07	0.01	
LO28 Variant 15	0.78	0.05	
LO28 15EV1	1.04	0.03	
LO28 15EV2	0.92	0.03	
LO28 RpsUArg17Pro	0.82	0.03	
LO28 RpsUArg17His	1.03	0.03	
LO28 RpsUArg17Thr	0.96	0.03	
EGDe WT	1.1	0.02	
EGDe RpsUArg17Pro	0.86	0.01	

Figure S4.1: Predicted turn in *Listeria monocytogenes* LO28 RpsU. Secondary structure of the RpsU protein as predicted by the Chou and Fasman secondary structure prediction server (http://www.biogem.org/tool/chou-fasman/). The turn predicted by insertion of a proline residue at position 17 is shown in blue.

5

Ribosomal mutations enable a switch between high fitness and high stress resistance in *Listeria monocytogenes*

Jeroen Koomen, Xuchuan Ma, Alberto Bombelli, Marcel H. Tempelaars, Sjef Boeren, Marcel H. Zwietering, Heidy M.W. den Besten, and Tjakko Abee

Abstract

Multiple stress resistant variants of Listeria monocytogenes with mutations in rpsU encoding ribosomal protein RpsU have previously been isolated after a single exposure to acid stress. These variants, including L. monocytogenes LO28 variant 14 with a complete deletion of the rpsU gene, showed upregulation of the general stress sigma factor Sigma Bmediated stress resistance, and had a lower maximum specific growth rate than the LO28 WT, signifying a trade-off between stress resistance and fitness. In the current work we have subjected variant 14 to an experimental evolution regime, selecting for higher fitness in two parallel evolving cultures. This resulted in two evolved variants with WT-like fitness: 14EV1 and 14EV2. Comparative analysis of growth performance, acid and heat stress resistance, in combination with proteomics and RNA-sequencing, indicated that in both lines reversion to WT-like fitness also resulted in WT-like stress sensitivity, due to lack of Sigma B-activated stress defence. Notably, genotyping of 14EV1 and 14EV2 provided evidence for unique point-mutations in the ribosomal rpsB gene causing amino acid substitutions at the same position in RpsB, resulting in RpsB^{22Arg-His} and RpsB^{22Arg-Ser}, respectively. Combined with data obtained with constructed RpsB^{22Arg-His} and RpsB^{22Arg-Ser} mutants in the variant 14 background, we provide evidence that loss of function of RpsU resulting in the multiple stress resistant and reduced fitness phenotype, can be reversed by single point mutations in rpsB leading to arginine substitutions in RpsB at position 22 into histidine or serine, resulting in WT-like high fitness and low stress resistance phenotype. This demonstrates the impact of genetic changes in *L. monocytogenes'* ribosomes on fitness and stress resistance.

Introduction

Listeria monocytogenes is a foodborne pathogen that can cause the infrequent but deadly disease listeriosis (Toledo-Arana et al., 2009). L. monocytogenes is generally considered to be a robust microorganism, capable of growing in and surviving a wide range of adverse conditions such as low pH, low temperature and low a_w (NicAogáin and O'Byrne, 2016). Microbial populations are innately heterogenous, which contributes to the spread of L. monocytogenes in different environmental niches, from soil to man (Abee et al., 2016; Maury et al., 2016). When a population of cells is exposed to stress, population heterogeneity can lead to the differential survival of a subset of cells, resulting in tailing of the inactivation curve. Previously, Metselaar et al. (2015) described stress resistant L. monocytogenes variants, acquired after a single exposure to acid stress, with a mutation in the ribosomal rpsU gene, encoding small ribosomal protein 21. Additional genotypic and phenotypic studies focussed on variant 14 with a deletion that covers the entire rpsU gene, as well as yqeY and half of phoH; and on variant 15 that harbours a point mutation in rpsU resulting in an amino acid substitution from arginine to proline in the RpsU protein, RpsU^{17Arg-Pro} (Koomen et al., 2018). Gene expression data of *L. monocytogenes* LO28 wildtype (WT) and multiple-stress resistant variants 14 and 15 revealed an upregulation of 116 genes (Koomen et al., 2018), including a large fraction of genes controlled by the alternative stress sigma factor SigB, which are known to be involved in providing multiplestress resistance (Liu et al., 2019).

In a follow-up study (Koomen et al., 2021), we subjected *L. monocytogenes* LO28 variant 15, with its single RpsU^{17Arg-Pro} point mutation, to an experimental evolution protocol where we selected for increased fitness, defined as a higher maximum specific growth rate (μ_{max}) compared to variant 15. Both evolved variants fixed mutations in *rpsU* (resulting in RpsU^{17Pro-His} and RpsU^{17Pro-Thr}), and reverted back to WT-like high maximum specific growth rate and relative low stress resistance. The potentially disruptive effect of random insertion of a proline residue is known to alter the stability or function of proteins (Chou and Fasman, 1974). Consequently, we hypothesized that replacing the putative disruptive proline at position 17 in *L. monocytogenes* variant 15 with amino acids that do not have such strong disruptive effects, i.e., threonine or histidine, can restore WT-like functioning of the RpsU protein with originally an arginine at position 17. This was confirmed by targeted mutants in *L. monocytogenes* LO28 and type strain EGDe, showing that single amino acid substitutions in RpsU enabled *L. monocytogenes* to switch between high fitness-low stress

resistance and low fitness-high stress resistance.

This raised the follow-up question whether and how variant 14 could switch between low fitness-high stress resistance and high fitness-low stress resistance, since the whole *rpsU* gene is deleted and thus the known route to WT-like fitness and stress sensitivity via a single point mutation in *rpsU* is effectively blocked. Therefore, in the current study we subjected variant 14 to an experimental evolution regime and used a complementary genotypic, proteomic and phenotypic approach to evaluate how ribosomal mutations in *L. monocytogenes* enable a switch between fitness and stress resistance.

Materials and methods

Bacterial strains and culture conditions

Listeria monocytogenes LO28 wild type (WT) from the strain collection of Wageningen Food & Biobased Research, The Netherlands, and stress resistant ancestor variant 14 (Koomen et al., 2018; Metselaar et al., 2013), and evolved variants (this study) were used for all genotypic, proteomic and phenotypic analyses. All cultures were grown as described elsewhere (Metselaar et al., 2013). In brief, cells from -80°C stocks were incubated at 30°C for 48 hours on brain heart infusion (BHI, Oxoid, Hampshire), supplemented with agar (1.5 % [w/w], bacteriological agar no. 1 Oxoid, Hampshire). A single colony was used for inoculation of 20 ml of BHI broth in a 100 ml Erlenmeyer flask (Fisher, USA). After overnight (ON, 18-22 hours) growth at 30°C under shaking at 160 rpm, (Innova 42, New Brunswick Scientific, Edison, NJ) 0.5% (v/v) inoculum was added to fresh BHI broth. Cells were grown under constant shaking at 160 rpm in BHI at 30°C until the late-exponential growth phase $(OD_{600} = 0.4-0.5)$.

Experimental evolution

Experimental evolution was performed as described in Koomen et al. (2021). Briefly, we inoculated two parallel lines with 1% (v/v) of ON culture of *L. monocytogenes* LO28 variant 14 in 20 ml BHI broth in 100 ml Erlenmeyer flasks. The cultures were then incubated for 24 hours at 20°C with continuous shaking at 160 rpm (Innova 42, New Brunswick Scientific, Edison, NJ). For each parallel line, 44 consecutive transfers were made from 24 hours-cultures, where 1% (v/v) inoculum was used to inoculate fresh BHI, resulting in about 290 generations for each of the two evolution lines. From every second transfer, a 700 μ l culture sample was taken, mixed with glycerol (Sigma, 25% v/v final concentration), flash frozen in liquid nitrogen, and stored at -80°C, resulting in 22 stocks for both evolution lines. These

stocks were revived by streaking on BHI-agar plates, from which a single colony was used to inoculate 20 ml of BHI broth in a 100 ml Erlenmeyer flask. After ON culturing at 30°C with shaking at 160 rpm, the culture was diluted 100,000 times in fresh BHI broth, and 200 μ l of culture was inoculated in duplicate in wells of a honeycomb plate. The plate was incubated in a Bioscreen C (Oy growth Curves AB Ltd, Helsinki, Finland) at 30°C and the respective growth curves were determined by measuring OD₆₀₀ over time. All growth experiments were performed with biologically independent triplicates. Stock number 14 of the first evolution line and stock number 22 of the second evolution line were streaked on BHI agar, and respective single colonies were selected to prepare -80°C stocks of 14EV1 and 14EV2.

Estimation of μ_{max}

The maximum specific growth rate μ_{max} (h⁻¹) was determined at 30°C for the two evolved strains (14EV1 and 14EV2), variant 14 and the *Listeria monocytogenes* LO28 WT, following the procedure as described previously by (Biesta-Peters et al., 2010), and Koomen et al. (2021). This method is based on the time-to-detection (TTD) of five serially diluted cultures of which the initial bacterial concentration is known. In this setup μ_{max} equals ln(2)/generation time (i.e., $\mu_{max} = 1$ represents a generation (doubling) time of approximately 0.7 h, or 42 minutes). Three biologically independent experiments were performed to estimate the mean and standard deviation of μ_{max} .

Inactivation kinetics at low pH

Acid inactivation experiments were performed as described previously (Metselaar et al., 2013). Briefly, 100 ml of late-exponential phase culture was pelleted in a fixed-angle rotor (5804 R, Eppendorf) for 5 minutes at 2,880 x g. Pellets were washed using 10 ml BHI broth, and pelleted again at 5 min at 2,880 x g. The pellet was resuspended in 1 ml PPS that was pre-warmed to 37°C and adjusted to pH 3.0 using 10 M of HCl, and placed in a 100 ml Erlenmeyer flask in a shaking water bath at 37°C. At appropriate time intervals, samples were taken, decimally diluted in BHI broth and plated on BHI agar using an Eddy Jet spiral plater (Eddy Jet, IUL S.A.) Plates were incubated at 30°C for 4 to 6 days for full recovery of damaged cells. Data of at least three biologically independent experiments were used for analysis.

Inactivation kinetics at high temperature

Heat inactivation experiments were performed as described before (Metselaar et al., 2015). Briefly, 400 μ l of late-exponential phase culture was added to 40 ml of fresh BHI broth that was pre-heated to 55°C ± 0.3°C. For the determination of the initial microbial concentration, a separate Erlenmeyer with BHI at room temperature was used. Samples were taken after various timepoints, and were decimally diluted in Peptone Physiological Salt (PPS). Appropriate dilutions were plated on BHI agar using an Eddy Jet spiral plater and incubated at 30°C for 4-6 days. Combined data of at least three biologically independent experiments were used for analysis.

Proteomic analysis

Proteomic analysis was performed on late-exponentially growing cells (OD₆₀₀ between 0.4-0.5) of variant 14 and evolved variants 14EV1 and 14EV2 as described before (Koomen et al., 2021). Briefly, 2 ml of late-exponentially growing cells (OD_{600} of 0.4-0.5) cultures of the LO28 WT, variant 14 and evolved 14EV1 and 14EV2 were flash frozen in liquid nitrogen and stored. Samples were, thawed on ice, pelleted at $17,000 \times q$, and subsequently washed twice with 100 mM Tris (pH 8). Resuspended pellets were sonicated and samples were prepared according to the filter assisted sample preparation protocol (FASP) (Wiśniewski et al., 2009). Each prepared peptide sample was analysed by injecting (18 μ l) into a nanoLC-MS/MS (Thermo nLC1000 connected to an LTQ-Orbitrap XL) as described previously (Lu et al., 2011; Wendrich et al., 2017). nLC-MSMS system quality was checked with PTXQC (Bielow et al., 2016) using the MaxQuant result files. LCMS data with all MS/MS spectra were analysed with the MaxQuant quantitative proteomics software package (Cox et al., 2014) as described before (Smaczniak et al., 2012; Wendrich et al., 2017). Filtering and further bioinformatics and statistical analysis of the MaxQuant ProteinGroups file was performed with Perseus. Proteins were considered Differentially Expressed (DE) if the log₁₀ transformed ratio of variant over WT (log_{10} ratio) was below -1 or above 1, with a negative log₁₀ transformed Benjamini–Hochberg corrected P value (-log₁₀ P value) above 2. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaíno et al., 2016) partner repository with the dataset identifier PXD022732.

SNP analysis of evolved variants

Ancestor variant 14 and evolved variants 14EV1 and 14EV2 obtained in the evolution experiment were sequenced using Illumina chemistry as described before (Koomen et al., 2021). Briefly, cells were pelleted, and resuspended in 450 µl DNA/RNA Shield (Zymo Research) at 4°C until DNA extraction. The DNA was extracted by BaseClear (Leiden, the Netherlands) and paired-end 2 × 150bp short-reads were generated using a Nextera XT library preparation (Illumina). A NovaSeq 6000 system (Illumina) was used to generate paired-end reads. Raw reads were trimmed and de novo assembled using CLC Genomics Workbench v 10.0 (Qiagen, Hilden, Germany). SNIPPY 3.2 (Seemann, T 2015), and Pilon using the "--changes" argument (Walker et al., 2014) were used for SNP analysis of evolved variants against the LO28 WT as reference.

Mutant construction

Mutant strains 14RpsB^{22Arg-His} and 14RpsB^{22Arg-Ser} were constructed in the variant 14 genetic background using the temperature sensitive suicide plasmid pAULA (Chakraborty et al., 1992). The *rpsB* gene from either variant 14EV1 or 14EV2 was amplified from genomic DNA by KAPA HiFi Hotstart ReadyMix (KAPA Biosystems, USA), using the primers listed in Supplementary Table S5.1. The resulting fragments were ligated in frame to the pAULA multiple cloning site via EcoR1 and Sal1 restriction that were introduced to the fragments by the respective primers. The resulting plasmid was electroporated (2.5 kV, 25 μ F, 200 Ω), in a 0.2 cm cuvette using a BIO-RAD GenePulser, to the appropriate *L. monocytogenes* cells, and plated on BHI agar at 30°C with 5 μ g/ml erythromycin to select for transformants.

Two erythromycin resistant colonies per construct were inoculated in separate tubes in BHI broth supplemented with 5 μ g/ml erythromycin and grown overnight at 42°C to select for plasmid integration. Selected strains resulting from a single cross-over integration event were grown overnight in BHI at 30°C to induce double crossover events and were subsequently plated at 30°C. Resulting colonies were replica plated on BHI with and without 5 μ g/ml erythromycin and incubated at 30°C. Colonies sensitive to erythromycin were selected. PCR using the primers listed in Supplementary Table S5.1 and subsequent DNA sequencing of the products (BaseClear B.V. Leiden, The Netherlands) of erythromycin sensitive colonies confirmed the correct point mutation in the respective genes and the lack of additional mutations in the targeted region.

RNA-sequencing

Total RNA was isolated from late-exponentially growing cells (OD₆₀₀ between 0.4-0.5) of variant 14 and evolved variants 14EV1 and 14EV2. Briefly, 100 ml of late-exponential phase culture was pelleted for 1 min at room temperature (RT) at 11,000 $\times q$ in a fixed-angle rotor (5804 R. Eppendorf). The pellet was resuspended in TRI-reagent (Ambion) in a beat-beater tube (lysing agent A) by vortexing and tubes were snap frozen in liquid nitrogen until use. Cells were disrupted using a beat-beater (MP Fast Prep-24, MP Biomedicals GmbH, Eschwege, Germany) set at 6 m/s for 4 times 20 seconds with two minutes of intermittent air cooling per cycle. Twenty percent of the starting volume of chloroform was added, mixed and incubated at RT for 10 min. Subsequently, samples were centrifuged at 17,000 x q and 4°C for 15 min. The upper aqueous phase (approximately 700 µl) was transferred to an RNase free Eppendorf tube, where 600 µl of isopropanol was added, mixed and incubated at RT for 10 min. Next, the samples were centrifuged at 17,000 x q and 4°C for 15 min. The pellet was washed with 700 µl of ice-cold 75% ethanol, after which the pellet was centrifuged again at 17,000 x q for 5 min at 4°C. The pellet was resuspended in 90 μ l of nuclease-free water and incubated at 60°C for 2 minutes to finalize RNA isolation. RNA integrity was checked using gel electrophoresis, after which the RNA was stored by adding 0.1 volume of 3M sodium acetate at pH 5.2 with 2.5 volumes of ethanol absolute, and kept at -80° C. Before shipping the samples were centrifuges at 13,000 x q and 4°C for 10 minutes, and the supernatant was removed. The pellet was washed with 80% ethanol, and centrifuged again at 13,000 x q and 4°C for 10 minutes. After removal of the supernatant and air drying, the RNA was dissolved in 90 μ l of nuclease-free water, and shipped on dry ice. Ribo-Zero rRNA depletion, and the generation of paired-end reads using a MiSeq system was done by BaseClear B.V. (Leiden, The Netherlands). QC and read mapping against the LO28 reference genome (NCBI accession: PRJNA664298) was performed via in-house methods, by BaseClear. Counting of reads was done by htseq-count (version 0.11.1) (Anders et al., 2015). Differential expression (DE) analysis was performed using the DEseq2 package (version 1.24.0) in the statistical programming language R (version 3.6.0). Genes were considered DE if log₂ Fold Change (log₂FC) was below -1.58 or above 1.58, with a Benjamini-Hochberg corrected P value below 0.01.

Statistical testing

Hypothesis testing, comparing respective μ_{max} and log microbial counts, was performed in the statistical programming language R (version 3.6.0) using the t.test() and var.test() functions.

Results

Growth kinetics of evolved variants

The experimental evolution regime was set up using two parallel cultures of *L.* monocytogenes LO28 variant 14. After 28 and 44 daily transfers, implicating ~186 and ~292 generations, respectively, this regime resulted in the selection of two evolved variants, 14EV1 and 14EV2, that showed different growth kinetics compared to the ancestor variant 14 (Figure 5.1a). The μ_{max} of both evolved variants was significantly higher than that of variant 14, but just significantly lower than the μ_{max} of the original LO28 WT strain (Figure 5.1b). This indicated that the fitness of the evolved variants was increased compared to the ancestor variant 14 and almost similar to that of the WT strain.

Figure 5.1: Growth performance of L. monocytogenes LO28 WT, variant 14, 14EV1, and 14EV2 (a) growth curves for LO28 WT (squares), variant 14 (diamonds), 14EV1 (circles), and 14EV2 (triangles), (b) Maximum specific growth rates (μ_{max}) for L. monocytogenes LO28 WT, variant 14, 14EV1, and 14EV2. Different capital letters show statistically significant differences.

Multiple-stress resistance of evolved variants

Since the evolved variants 14EV1 and 14EV2 showed increased fitness, we compared their heat and acid stress resistance to that of variant 14 (Figure 5.2). In the heat stress experiments (Figure 5.2a), variant 14 started with approximately 6.8 log cfu/ml, and showed little inactivation after 20 minutes of exposure, with a concentration of around 6 log cfu/ml. In contrast, after 20 minutes of exposure the concentrations of both evolved variants 14EV1 and 14EV2 decreased and were not significantly different from the LO28 WT strain with concentrations of around 2.5 log cfu/ml. For acid stress experiments (Figure 5.2b), variant 14 again only showed a small (< 1.0 log cfu/ml) decrease in cell counts after 20 minutes, while both evolved variants and also the LO28 WT strain showed more than 5 log cfu/ml reduction after 20 minutes. These data indicated that both evolved variants 14EV1 and 14EV2 lost their high resistance to heat stress and acid stress when compared to variant 14.

Figure 5.2: Survival of L. monocytogenes LO28 WT, variant 14, 14EV1, and 14EV2 after exposure to heat (55°C) (a) or acid stress (pH 3.0) (b). The wild type is represented by squares, variant 14 by diamonds, and variants 14EV1 and 14EV2, are represented by circles and triangles respectively.

Proteomic analysis of WT and variants 14, 14EV1, and 14EV2

Comparative analysis of proteomes of late-exponential phase cells of *L. monocytogenes* LO28 WT, variant 14 and evolved variants 14EV1 and 14EV2 showed significant differences for variant 14 compared to WT, and evolved (Figure 5.3). The proteomics analysis revealed that 28 proteins were significantly higher expressed in variant 14 compared to LO28 WT, of which 27 proteins belonged to the SigB regulon (Figure 5.3). Upregulated proteins included the general stress marker Ctc (Imo0211) (Ferreira et al., 2004; Kazmierczak et al., 2003;

Oliver et al., 2010; Raengpradub et al., 2008), and subunits of the known OpuC glycine betaine osmolyte transporter, OpuCA (Imo1428) and OpuCC (Imo1426). SigB (Imo0895) itself was upregulated, but did not pass the stringent cut-off values applied to the proteomics data (>1 or <-1 log_{10} FC, with adjusted $-log_{10}(P) < 2$). See supplementary Table S5.2-S5.4 for a full overview.

Comparative proteome analysis identified in total 16 proteins that were downregulated in variant 14 compared to the WT. In line with previously obtained gene expression data and the non-motile phenotype of variant 14 (Koomen et al., 2018), 7 of these 16 downregulated proteins are involved in motility and chemotaxis, such as MotA (Imo0685), MotB (Imo0686), CheA (Imo0692), and chemotaxis response regulators CheY (Imo0691), and CheV (Imo0689). Notably, RsbS (Imo0890), one of the main components of the stressosome "signal integration hub" (Guerreiro et al., 2020) was approximately 67-fold downregulated (log_{10} FC -1.83, adjusted -log(P) > 2) in variant 14 compared to the WT, 14EV1 and 14EV2 (see supplementary Table S5.7).

These results indicated that in line with the return to WT-like growth kinetics of 14EV1 and 14EV2, the proteomic profiles of the two evolved variants were highly similar to that of the WT. Only four and five proteins were differentially expressed in 14EV1 and 14EV2 compared to the WT, respectively, including one protein that is part of the SigB regulon, Imo0110; lipase) (see Figure 5.3, and supplementary Tables S5.3-S5.4).

Figure 5.3: Volcano plot of significantly differentially abundant proteins of L. monocytogenes variant 14, 14EV1, and 14EV2 compared to the wild type. The $-\log_{10}$ (Benjamini–Hochberg corrected P value) is plotted against the \log_{10} FC (fold change: Variant over WT). Horizontal dotted line represents the cutoff for $-\log_{10}$ (P), vertical dotted lines represent \log_{10} (fold change) cutoff. Red dots indicate proteins regulated by SigB; blue dots indicate proteins involved in motility. The expression of individual proteins is listed in Tables S1 - S3.

RNAseq data were line with the observed differences in proteomes of ancestor variant 14 compared to that of the WT, 14EV1 and 14EV2. Due to the higher sensitivity of our RNA-seq approach, we found 106 genes belonging to the SigB regulon as significantly upregulated in variant 14 when compared to the WT (supplementary Table S5.5-S5.7). This is in line with the 70% upregulation of the SigB regulon we reported previously based on DNA-micro array data (Koomen et al., 2018). The upregulated genes included of all *opuCABCD* genes, (Imo1425-1428), glutamate decarboxylase (Imo2434), and *spxA* (ArsC family transcriptional regulator (Imo2191). Other genes considered upregulated in the RNA-seq analyses included the virulence regulator *prfA* (Imo0200), and *inlA* (Imo0433) and *inlB* (Imo0434) that encode internalin A and B involved in human epithelial cell adhesion. Genes *sigB* and *rsbX*, (serine

phosphatase; indirect negative regulation of sigma B dependent gene expression) were upregulated in variant 14, but not in WT and in 14EV1 and 14EV2 (see supplementary Table S5.8 for an overview of differentially expressed genes in the stressosome). In addition, for variant 14, both RNA-seq and proteome analysis indicate (slight) upregulation of anti-anti sigma factor *rsbV* (Imo0893) and *rsbX* (Imo0896) (see Supplementary Tables S7 and S8). Notably, the RNAseq analyses did not show a significant difference in expression of *rsbS* between the four strains. This suggests that the observed low RsbS level in variant 14 is due to posttranslational regulation (supplementary Table S5.8).

Whole genome sequencing of 14EV1 and 14EV2

Since variant 14 lacks the *rpsU* gene, single or multiple compensatory mutations could be expected in 14EV1 and 14EV2. Strikingly, whole genome sequencing of 14EV1 and 14EV2 revealed that both evolved lines only fixed a single nonsynonymous mutation. Both evolved variants fixed this mutation in another ribosomal protein, ribosomal protein S2 (RpsB). In the *rpsB* gene of line 14EV1, the Guanine on position 65 mutated to Adenine (codon CGT to CAT), leading to an amino acid change from Arginine to Histidine on position 22 of RpsB (RpsB^{22Arg-His}), while in 14EV2, the Cytosine on position 64 (codon CGT to AGT) mutated into Adenine, resulting in a substitution from Arginine to Serine in codon 22 resulting in RpsB^{22Arg-His}. Proteomic analysis revealed no significant shifts in the levels of RpsB in variant 14 compared to WT, and also no significant shifts were observed in the levels of RpsB^{22Arg-His} and RpsB^{22Arg-Ser} in the evolved variants compared to the WT. Combining these results suggests that short term evolution experiments selecting for enhanced fitness, resulted in the isolation of 14EVs with mutations in *rpsB* to compensate for reduced fitness resulting from the loss of *rpsU*.

Fitness and stress resistance of constructed mutants

To assess the effect of the substitutions that were selected during experimental evolution, we introduced RpsB^{22Arg-His} and RpsB^{22Arg-Ser} into the variant 14 genetic background. We measured μ_{max} as a proxy for fitness, and found that both constructed mutants of variant 14 had indeed a maximum specific growth rate that was significantly higher than that of variant 14. With that of variant 14 carrying the RpsB^{22Arg-His} mutation significantly lower than that of LO28 WT (P <0.001), while that of variant 14 carrying RpsB^{22Arg-Ser} was not significantly different from the LO28 WT (Figure 5.4). Subsequently, we tested the stress response of these constructed mutants, by exposure to heat (55°C, Figure 5.5a), and acid

stress (pH 3, Figure 5.5b). As expected, both constructed mutants were significantly less resistant to heat and acid stress after 20 minutes of exposure compared to variant 14 (P < 0.05), although their resistance was still higher than LO28 WT at this timepoint.

Figure 5.4: Maximum specific growth rates (μ_{max}) for L. monocytogenes LO28 WT, variant 14, and constructed mutants. Different capital letters show statistically significant differences.

Figure 5.5: Survival of L. monocytogenes LO28 WT, and constructed mutants, during heat $(55^{\circ}C)$ (a) or acid (pH 3.0) (b) stress. LO28 WT is represented by squares, variant 14 is represented by circles, mutant of variant 14 with RpsB^{22Arg-His} is represented by triangles, mutant of variant 14 with RpsB^{22Arg-Ser} is represented by diamonds.

Discussion

Previously, we described multiple stress resistance in L. monocytogenes LO28 variants 14 and 15 after a single exposure to acid stress (Koomen et al., 2018). We linked stress resistance in variants 14 and 15 with a complete gene deletion, or point mutation in rpsU respectively, to induction of the SigB regulon, and showed the correlation between increased stress resistance and reduced fitness. By using experimental evolution to select for increased fitness in variant 15 in two parallel lines, we were previously able to show that this trade-off was reversible (although not fully) via point mutations in RpsU at the same location of the initial mutation: RpsU^{17Pro-His} and RpsU^{17Pro-Thr}, respectively (Koomen et al., 2021). Here, we applied a similar experimental evolution approach using *L. monocytogenes* LO28 variant 14, that has a complete deletion of *RpsU*, and by selecting for higher fitness in two parallel lines, we were able to select two evolved variants of variant 14 (14EV1, and 14EV2). Both evolved variants had higher fitness, lower stress resistance, severely reduced induction of SigB regulon members compared to variant 14, and fixed a single nonsynonymous mutation in the ribosomal S2 gene (rpsB, Imo1658). Our RNA analysis indicated that both sigB, and rsbX were actively transcribed in variant 14. RsbX is a SigB regulated feedback phosphatase (Xia et al., 2016) and is thought to reset the stressosome after induction, to prevent a positive feedback loop in the absence of a stress signal. In the current stressosome model (Williams et al., 2019), the phosphatase activator RsbT is released from the stressosome after phosphorylation of RsbS, and acts on the signaling cascade of RsbU, RsbV, RsbW, ending in the activation of SigB. The strong downregulation of RsbS in variant 14 suggests activation of the stressosome via the absence of RsbS. Moreover, in our whole genome sequencing of the evolved strains, we did not find (additional) mutations that resulted in premature stop codons within the genes of the *sigB* operon that positively regulate SigB activity, as previously described (Guerreiro et al., 2020a). These authors showed that such mutations leading to the loss of SigB function confer a competitive advantage manifested in an increased growth rate under conditions of sublethal heat stress, at 42°C, but not in non-stressed conditions.

The fact that in our study *L. monocytogenes* evolved variants with higher fitness originate from slow growing, multiple stress resistant variant 14 under non-stressed conditions, while no mutation(s) were found within genes of the SigB operon, suggests that the apparent activation of SigB regulon in variant 14 and loss of SigB regulon activation in EV1 and EV2, originates from alterations in ribosome functioning.

One of the stresses that can induce SigB and its operon, is nutrient stress. In addition, nutritional stress can indirectly effect ribosome functioning through uncharged tRNA's, leading to the stringent response via RelA (Taylor et al., 2002). Notably, we find significant upregulation of genes involved in metabolism of branched chain amino acids (BCAA) in variant 14. Although *relA* (Imo1523) is not differentially expressed in our RNA-seq or proteomics, activation of the indicated pathway may point to an interplay between the mutations in the *rpsU* and *rpsB* genes affecting ribosome functioning, linked to apparent stringency, and a stress signal leading to *sigB* activation. Nutrient stress-induced activation has been described for *L. monocytogenes*, but how the *L. monocytogenes* stressosome responds to metabolic stress is currently unknown (Guerreiro et al., 2020; Williams et al., 2019).

When assessing fitness and stress resistance of the constructed mutants (variant 14 RpsB^{Arg22His} and variant 14 RpsB^{Arg22Ser}), we found that WT stress sensitivity was not fully restored in the constructed mutants. Although no additional mutations were found in the sequenced genome, we cannot exclude the possibility of factors that are not detectable via Illumina DNA-sequencing to play a role, such as for example DNA methylation, that was

126

previously shown to affect translation initiation and elongation in *L. monocytogenes* (Wang et al. 2020), and modulation of protein functionality by (de)phosphorylation reactions including Rsb proteins constituting the stressosome, that orchestrates signal input for the activation of SigB (Guerreiro et al., 2020; Williams et al., 2019).

The role of individual small (S30) and large (S50) subunit ribosomal proteins in L. monocytogenes has not been studied, but due to high conservation of S70 ribosome functioning, possible effects of rpsU and rpsB mutations can be discussed based on structural and functional data in well studied bacteria, including Escherichia coli. In E. coli, ribosomal protein S21 (RpsU) is part of the so-called ribosomal platform, together with S6, S11, S15, and S18 (Held et al. 1970), that functions in the initial steps of the translation process. Ribosomal protein S2 (RpsB) and the adjacent S1 (RpsA) are connected to the platform region of the 30S ribosome, and are crucial in translation initiation (Duval et al., 2013; Marzi et al., 2007) and translation efficiency, which can vary over two orders of magnitude. (Espah Borujeni et al., 2014). The correct binding of RpsB to the 30S subunit is critical for the association of RpsA to the platform region and a fully competent 30S ribosome. This could indicate that partial reversion of the trade-off between growth and stress resistance in V14EV1 and V14EV2, carrying a compensatory mutation in RpsB, has a positive effect on binding of RpsA to the pre-initiation complex. Thereby enhancing translation efficiency, this presumably results in increased fitness and reduced triggering of the Sigma B stress response reflected in the WT-like phenotype of evolved variants. Whether the significant downregulation of the RsbS level in variant 14 versus WT and evolved variants is coupled with altered functioning of the S70 ribosome and stressosomemediated SigB activation remains to be elucidated.

Here, we show that the apparent trade-off between increased stress resistance and lower fitness that has been described before in *L. monocytogenes* LO28 RpsU deletion mutant variant 14 and Rpsu^{17Arg-Pro} mutant variant 15 (Abee et al., 2016; Koomen et al., 2018; Metselaar et al., 2015) can be reversed by compensatory mutations in *rpsB* and *rpsU*, respectively (Figure 5.6). Studies in yeast and higher eukaryotes have indicated that ribosomes may provide an additional layer of finetuning in protein expression in response to environmental factors (Gerst, 2018) However, the possibility of a dynamic ribosome, with shifts in ribosome composition and/or functionality of ribosomal proteins, via phosphorylation as a function of the environment, has mainly received attention in

eukaryotes (Genuth and Barna, 2018). The results presented the current study suggest that the 70S ribosome is involved in a signaling cascade to the stressosome. Alternatively, stressosome independent means of signal transduction cannot be excluded, as previous publications showed that even in the absence of RsbV, some SigB activation can occur under some growth conditions (Brigulla et al., 2003; Utratna et al., 2014). Further work is required to elucidate in more detail the underlying mechanisms of this signaling cascade and the components involved in S70 ribosome-induced modulation of *L. monocytogenes* fitness and stress resistance.

Figure 5.6: Ribosomal mutations enable a switch between high fitness and multiple-stress resistance.

References

- Abee, T., Koomen, J., Metselaar, K.I., Zwietering, M.H., Den Besten, H.M.W., 2016. Impact of pathogen population heterogeneity and stress-resistant variants on food safety. Annu. Rev. Food Sci. Technol. 7, 439–456. doi:10.1146/annurev-food-041715-033128
- Anders, S., Pyl, P., Huber, W., 2015 HTSeq A Python framework to work with highthroughput sequencing data. Bioinformatics,;31(2):166-169. doi: 10.1093/bioinformatics/btu638
- Bielow, C., Mastrobuoni, G., Kempa, S., 2016. Proteomics quality control: quality control software for MaxQuant results. J. Proteome Res. 15, 777–787. doi:10.1021/acs.jproteome.5b00780
- Biesta-Peters, E.G., Reij, M.W., Joosten, H., Gorris, L.G.M., Zwietering, M.H., 2010. Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of *Bacillus cereus*. Appl. Environ. Microbiol. 76, 1399–1405. doi:10.1128/AEM.02336-09
- Brigulla, M., Hoffmann, T., Krisp, A., Völker, A., Bremer, E., Völker, U., 2003. Chill induction of the SigB-dependent general stress response in *Bacillus subtilis* and its contribution to low-temperature adaptation. J. Bacteriol. 185, 4305–4314. doi:10.1128/jb.185.15.4305-4314.2003
- Chakraborty, T., Leimeister-Wächter, M., Domann, E., Hartl, M., Goebel, W., Nichterlein, T., Notermans, S., 1992. Coordinate regulation of virulence genes in *Listeria monocytogenes* requires the product of the prfA gene. J. Bacteriol. 174, 568–574. doi:10.1128/jb.174.2.568-574.1992
- Chou, P.Y., Fasman, G.D., 1974. Prediction of protein conformation. Biochemistry 13, 222–245. doi:10.1021/bi00699a002
- Cox, J., Hein, M.Y., Luber, C.A., Paron, I., Nagaraj, N., Mann, M., 2014. Accurate proteomewide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526. doi:10.1074/mcp.M113.031591
- Duval, M., Korepanov, A., Fuchsbauer, O., Fechter, P., Haller, A., Fabbretti, A., Choulier, L., Micura, R., Klaholz, B.P., Romby, P., Springer, M., Marzi, S., 2013. Escherichia coli ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation. PLoS. Biol. 11, e1001731. doi:10.1371/journal.pbio.1001731
- **Espah Borujeni, A., Channarasappa, A.S., Salis, H.M.,** 2014. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res. 42, 2646–2659. doi:10.1093/nar/gkt1139
- Ferreira, A., Gray, M., Wiedmann, M., Boor, K.J., 2004. Comparative genomic analysis of the sigB operon in *Listeria monocytogenes* and in other Gram-positive bacteria. Curr. Microbiol. 48, 39–46. doi:10.1007/s00284-003-4020-x

- Genuth, N.R., Barna, M., 2018. The discovery of ribosome heterogeneity and its implications for gene regulation and organismal life. Mol. Cell 71, 364–374. doi:10.1016/j.molcel.2018.07.018
- Gerst, J.E., 2018. Pimp my ribosome: Ribosomal protein paralogs specify translational control. Trends Genet. 34, 832–845. doi:10.1016/j.tig.2018.08.004
- **Guerreiro, D.N., Arcari, T., O'Byrne, C.P.,** 2020. The σB-mediated general stress response of *Listeria monocytogenes*: life and death decision making in a pathogen. Front. Microbiol. 11, 1505. doi:10.3389/fmicb.2020.01505
- Kazmierczak, M.J., Mithoe, S.C., Boor, K.J., Wiedmann, M., 2003. Listeria monocytogenes sigma B regulates stress response and virulence functions. J. Bacteriol. 185, 5722– 5734. doi:10.1128/jb.185.19.5722-5734.2003
- Koomen, J., Den Besten, H.M.W., Metselaar, K.I., Tempelaars, M.H., Wijnands, L.M., Zwietering, M.H., Abee, T., 2018. Gene profiling-based phenotyping for identification of cellular parameters that contribute to fitness, stress-tolerance and virulence of *Listeria monocytogenes* variants. Int. J. Food Microbiol. 283, 14–21. doi:10.1016/j.ijfoodmicro.2018.06.003
- Koomen, J., Huijboom, L., Ma, X., Tempelaars, M.H., Boeren, S., Zwietering, M.H., Den Besten, H.M.W., Abee, T., 2021. Amino acid substitutions in ribosomal protein RpsU enable switching between high fitness and multiple-stress resistance in *Listeria monocytogenes*. Int. J. Food Microbiol. 351, 109269. doi:10.1016/j.ijfoodmicro.2021.109269
- Liu, Y., Orsi, R.H., Gaballa, A., Wiedmann, M., Boor, K.J., Guariglia-Oropeza, V., 2019. Systematic review of the *Listeria monocytogenes* σB regulon supports a role in stress response, virulence and metabolism. Future Microbiol. 14, 801–828. doi:10.2217/fmb-2019-0072
- Lu, J., Boeren, S., de Vries, S.C., van Valenberg, H.J.F., Vervoort, J., Hettinga, K., 2011. Filter-aided sample preparation with dimethyl labeling to identify and quantify milk fat globule membrane proteins. J. Proteomics 75, 34–43. doi:10.1016/j.jprot.2011.07.031
- Marzi, S., Myasnikov, A.G., Serganov, A., Ehresmann, C., Romby, P., Yusupov, M., Klaholz,
 B.P., 2007. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 130, 1019–1031. doi:10.1016/j.cell.2007.07.008
- Maury, M.M., Tsai, Y.-H., Charlier, C., Touchon, M., Chenal-Francisque, V., Leclercq, A., Criscuolo, A., Gaultier, C., Roussel, S., Brisabois, A., Disson, O., Rocha, E.P.C., Brisse, S., Lecuit, M., 2016. Uncovering *Listeria monocytogenes* hypervirulence by harnessing its biodiversity. Nature Genet. 2016 48:3 48, 308–313. doi:10.1038/ng.3501
- Metselaar, K.I., Den Besten, H.M.W., Abee, T., Moezelaar, R., Zwietering, M.H., 2013. Isolation and quantification of highly acid resistant variants of *Listeria monocytogenes*. Int. J. Food Microbiol. 166, 508–514. doi:10.1016/j.ijfoodmicro.2013.08.011
- Metselaar, K.I., Den Besten, H.M.W., Boekhorst, J., van Hijum, S.A.F.T., Zwietering, M.H., Abee, T., 2015. Diversity of acid stress resistant variants of *Listeria monocytogenes*

and the potential role of ribosomal protein S21 encoded by *rpsU*. Front. Microbiol. 6, 422. doi:10.3389/fmicb.2015.00422

- NicAogáin, K., O'Byrne, C.P., 2016. The role of stress and stress adaptations in determining the fate of the bacterial pathogen *Listeria monocytogenes* in the food chain. Front. Microbiol. 7, 1865. doi:10.3389/fmicb.2016.01865
- Oliver, H.F., Orsi, R.H., Wiedmann, M., Boor, K.J., 2010. *Listeria monocytogenes* sigB has a small core regulon and a conserved role in virulence but makes differential contributions to stress tolerance across a diverse collection of strains. Appl. Environ. Microbiol. 76, 4216–4232. doi:10.1128/AEM.00031-10
- Raengpradub, S., Wiedmann, M., Boor, K.J., 2008. Comparative analysis of the σBdependent stress responses in *Listeria monocytogenes* and *Listeria innocua* strains exposed to selected stress conditions. Appl. Environ. Microbiol. 74, 158–171. doi:10.1128/AEM.00951-07
- Smaczniak, C., Immink, R.G.H., Muiño, J.M., Blanvillain, R., Busscher, M., Busscher-Lange, J., Dinh, Q.D.P., Liu, S., Westphal, A.H., Boeren, S., Parcy, F., Xu, L., Carles, C.C., Angenent, G.C., Kaufmann, K., 2012. Characterization of MADS-domain transcription factor complexes in *Arabidopsis* flower development. Proc. Natl. Acad. Sci. U.S.A. 109, 1560–1565. doi:10.1073/pnas.1112871109
- Taylor, C.M., Beresford, M., Epton, H.A.S., Sigee, D.C., Shama, G., Andrew, P.W., Roberts,
 I.S., 2002. Listeria monocytogenes relA and hpt mutants are impaired in surfaceattached growth and virulence. J. Bacteriol. 184, 621–628. doi:10.1128/JB.184.3.621-628.2002
- Toledo-Arana, A., Dussurget, O., Nikitas, G., Sesto, N., Guet-Revillet, H., Balestrino, D., Loh, E., Gripenland, J., Tiensuu, T., Vaitkevicius, K., Barthelemy, M., Vergassola, M., Nahori, M.-A., Soubigou, G., Régnault, B., Coppée, J.-Y., Lecuit, M., Johansson, J., Cossart, P., 2009. The *Listeria* transcriptional landscape from saprophytism to virulence. Nature 459, 950–956. doi:10.1038/nature08080
- **Utratna, M., Cosgrave, E., Baustian, C., Ceredig, R.H., O'Byrne, C.P.,** 2014. Effects of growth phase and temperature on σ B activity within a *Listeria monocytogenes* population: evidence for RsbV-independent activation of σ B at refrigeration temperatures. Biomed Res. Int. 2014, 1–11. doi:10.1155/2014/641647
- Vizcaíno, J.A., Csordas, A., Del-Toro, N., Dianes, J.A., Griss, J., Lavidas, I., Mayer, G., Perez-Riverol, Y., Reisinger, F., Ternent, T., Xu, Q.-W., Wang, R., Hermjakob, H., 2016. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, 11033. doi:10.1093/nar/gkw880
- Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., Wortman, J., Young, S.K., Earl, A.M., 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963. doi:10.1371/journal.pone.0112963
- Wendrich, J.R., Boeren, S., Möller, B.K., Weijers, D., De Rybel, B., 2017. In vivo identification of plant protein complexes using IP-MS/MS. Methods Mol. Biol. 1497, 147–158. doi:10.1007/978-1-4939-6469-7_14

- Williams, A.H., Redzej, A., Rolhion, N., Costa, T.R.D., Rifflet, A., Waksman, G., Cossart, P., 2019. The cryo-electron microscopy supramolecular structure of the bacterial stressosome unveils its mechanism of activation. Nat. Commun. 10, 1–10. doi:10.1038/s41467-019-10782-0
- Wiśniewski, J.R., Zougman, A., Nagaraj, N., Mann, M., 2009. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362. doi:10.1038/nmeth.1322
- Xia, Y., Xin, Y., Li, X., Fang, W., Björkroth, J., 2016. To modulate survival under secondary stress conditions, *Listeria monocytogenes* 10403S employs RsbX to downregulate σB activity in the poststress recovery stage or stationary phase. Appl. Environ. Microbiol. 82, 1126–1135. doi:10.1128/AEM.03218-15

Supplementary material

Table S5.1: Primers used in construction of *rpsB* mutants

EcoR1 and Sall sites are indicated in bold

Direction	Gene	Sequence
Forward	rpsB	5'- TTAT GAATTC TTATGACAAGAGCGAGAGCACCAA- 3'
Reverse	rpsB	5'- ACTT GTCGAC TAGCGTCAGCCATTTTAGCAGTTA- '3

Table S5.2: Proteins above or below the cutoff in Listeria monocytogenes LO28 variant 14 over wild type

LO28 ID	Protein product	Locus tag EGDe	Locus	Product	-log ₁₀ P value	\log_{10} ratio
IEJ01 07680	NP 464994.1	lmo1469	rɒsU	30S ribosomal protein S21	4,74	-2.63
IEJ01 03685	NP 464250.1	lmo0723	-	metyl-accepting chemotaxis protein	3.12	-2.06
IEI01 07675	NP 464993.1	lmo1468	-	hypothetical protein Imo1468	4.70	-1.98
IEI01 03515	NP 464216.1	lmo0689	CheV	chemotaxis protein CheV	4.66	-1.90
IFI01_03520	NP 464217 1	lmo0690	flaA	flagellin	5.09	-1.90
IEI01 04515	NP 464416.1	lmo0890	rsbS	negative regulation of sigma-B activity	8.09	-1.83
IFI01 04895	NP 464486 1	lmo0961	-	protease	4.81	-1 71
IFI01_03490	NP 464211 1	lmo0684	-	hypothetical protein Imo0684	3 40	-1.60
IEI01_03525	NP 464218.1	lmo0691	cheY	chemotaxis response regulator CheY	5.02	-1.50
IEI01 04890	NP 464485.1	Imo0960	-	protease	4.81	-1.45
IEI01_03495	NP 464212 1	Imo0685	MotA	flagellar motor protein MotA	3.99	-1 42
IEI01 13505	NP 466092 1	Imo2569	-	nentide ABC transporter substrate-binding protein	4 32	-1.36
IEI01 11125	NP 465650 1	lmo2126	-	maltogenic amylase	3 28	-1.26
IEI01_03530	NP 464219 1	Imo0692	cheA	two-component sensor histidine kinase CheA	2.83	-1 19
IEI01_03640	NP 464241 1	Imo0714	fliG	flagellar motor switch protein FliG	3.00	-1 12
IEJ01_03500	NP_464213.1	lmo0686	motB	flagellar motor rotation MotB	4.15	-1.08
IEJ01 04655	NP 464439.1	lmo0913	-	succinate semialdehyde dehydrogenase	8.69	2.95
IEJ01 03415	NP 464196.1	lmo0669	-	oxidoreductase	7.70	2.69
IEJ01 11305	NP 465681.1	lmo2157	sepA	hypothetical protein Imo2157	7.16	2.31
IEJ01 03680	NP 464249.1	lmo0722	-	pyruvate oxidase	8.29	2.26
IEJ01 07475	NP 464953.1	lmo1428	opuCA	glycine/betaine ABC transporter ATP-binding protein	5.27	2.26
IEJ01_14510	NP_466270.1	lmo2748	-	hypothetical protein lmo2748	5.56	2.20
IEJ01_11585	NP_465737.1	lmo2213	-	hypothetical protein Imo2213	5.30	2.11
IEJ01_09635	NP_465355.1	lmo1830	-	short-chain dehydrogenase	4.94	2.11
IEJ01_03340	NP_464181.1	lmo0654	-	hypothetical protein Imo0654	4.29	2.04
IEJ01_07970	NP_465051.1	lmo1526	-	hypothetical protein Imo1526	4.74	1.99
IEJ01_11545	NP_465729.1	lmo2205	-	phosphoglyceromutase	3.88	1.94
IEJ01_07465	NP_464951.1	lmo1426	opuCC	glycine/betaine ABC transporter substrate-binding protein	7.90	1.94
IEJ01_12965	NP_465986.1	lmo2463	-	multidrug transporter	5.60	1.79
IEJ01_12600	NP_465914.1	lmo2391	-	hypothetical protein lmo2391	3.12	1.69
IEJ01_02760	NP_464067.1	lmo0539	-	tagatose 1,6-diphosphate aldolase	3.04	1.67
IEJ01 08935	NP 465219.1	lmo1694	-	CDP-abequose synthase	5.10	1.62
IEJ01 00670	NP 463667.1	lmo0134	-	hypothetical protein Imo0134	6.90	1.57
IEJ01 01390	NP 463796.1	lmo0265	-	succinyl-diaminopimelate desuccinylase	6.45	1.48
IEJ01 02960	NP 464107.1	lmo0579	-	hypothetical protein Imo0579	3.53	1.41
IEJ01 00550	NP 463643.1	lmo0110	-	lipase	4.78	1.33
IEJ01_13525	NP_466096.1	lmo2573	-	zinc-binding dehydrogenase	3.92	1.25
IEJ01_07445	NP_464947.1	lmo1422	-	glycine/betaine ABC transporter permease	5.29	1.24
IEJ01_03985	NP_464311.1	lmo0784	-	PTS mannose transporter subunit IIB	5.77	1.21
IEJ01_00215	NP_463576.1	lmo0043	-	arginine deiminase	4.64	1.21
IEJ01_02640	NP_464043.1	lmo0515	-	hypothetical protein Imo0515	4.59	1.08
IEJ01_08600	NP_465176.1	lmo1651	-	ABC transporter ATP-binding protein	6.16	1.07
IEJ01_01435	NP_463805.1	lmo0274	-	hypothetical protein Imo0274	6.94	1.07
IEJ01_01045	NP_463742.1	lmo0211	ctc	50S ribosomal protein L25	4.73	1.03

Table S5.3: Proteins above or below the cutoff in Listeria monocytogenes	LO28 14EV1 over wild type
--	---------------------------

LO28 ID	Protein product	Locus tag	Locus	Product	-log ₁₀ P value	log_{10} ratio
IEJ01_00550	NP_463643.1	lmo0110	-	lipase	5.48	1.11
IEJ01_07680	NP_464994.1	lmo1469	rpsU	30S ribosomal protein S21	4.74	-2.63
IEJ01_07675	NP_464993.1	lmo1468	-	hypothetical protein Imo1468	4.70	-1.98
IEJ01_12355	NP_465883.1	lmo2360	-	transmembrane protein	2.55	-1.07

Table S5.4: Proteins above or below the cutoff in Listeria monocytogenes LO28 14EV1 over wild type

LO28 ID	Protein product	Locus tag	Locus	Product	-log ₁₀ P value	$e \log_{10} ratio$
IEJ01_06620	NP_464783.1	lmo1258	-	hypothetical protein Imo1258	6.51	1.49
IEJ01_00550	NP_463643.1	lmo0110	-	lipase	5.92	1.03
IEJ01_07680	NP_464994.1	lmo1469	rpsU	30S ribosomal protein S21	4.74	-2.63
IEJ01_07675	NP_464993.1	lmo1468	-	hypothetical protein Imo1468	4.70	-1.98
IEJ01_11125	NP_465650.1	lmo2126	-	maltogenic amylase	3.28	-1.26

Variant 14

Table S5.5 (1 of 6): Differentially expressed genes in variant 14 when compared to Listeria monocytogenes LO28 WT

LO28 ID	Protein product	Locus tag	Locus	Product	Padj	log ₂ fold change
IEJ01_04465	NP_464406.1	lmo0880	-	wall associated protein precursor	0.000	9.70
IEJ01_05065	NP_464519.1	lmo0994	-	hypothetical protein Imo0994	0.000	8.59
IEJ01_04655	NP_464439.1	lmo0913	-	succinate semialdehyde dehydrogenase	0.000	8.58
IEJ01_01380	NP_463794.1	lmo0263	inlH	internalin H	0.000	7.58
IEJ01_03045	NP_464124.1	lmo0596	-	hypothetical protein Imo0596	0.000	7.54
IEJ01_05070	NP_464520.1	lmo0995	-	hypothetical protein Imo0995	0.000	7.50
IEJ01_03420	NP_464197.1	lmo0670	-	hypothetical protein Imo0670	0.000	7.44
IEJ01_11865	NP_465793.2	lmo2269	-	hypothetical protein Imo2269	0.000	7.41
IEJ01_01390	NP_463796.1	lmo0265	-	succinyl-diaminopimelate desuccinylase	0.000	7.37
IEJ01_00665	NP_463666.1	lmo0133	-	hypothetical protein Imo0133	0.000	7.24
IEJ01_03415	NP_464196.1	lmo0669	-	oxidoreductase	0.000	7.23
IEJ01_14510	NP_466270.1	lmo2748	-	hypothetical protein Imo2748	0.000	7.20
IEJ01_07460	NP_464950.1	lmo1425	opuCD	glycine/betaine ABC transporter permease	0.000	7.16
IEJ01_07465	NP_464951.1	lmo1426	opuCC	glycine/betaine ABC transporter substrate-binding protein	0.000	7.04
IEJ01_11670	NP_465754.1	lmo2230	-	arsenate reductase	0.000	6.95
IEJ01_11585	NP_465737.1	lmo2213	-	hypothetical protein Imo2213	0.000	6.92
IEJ01_03075	NP_464129.1	lmo0602	-	transcripitonal regulator	0.000	6.86
IEJ01_09635	NP_465355.1	lmo1830	-	short-chain dehydrogenase	0.000	6.77
IEJ01_11305	NP_465681.1	lmo2157	sepA	hypothetical protein Imo2157	0.000	6.67
IEJ01_08935	NP_465219.1	lmo1694	-	CDP-abequose synthase	0.000	6.67
IEJ01_07475	NP_464953.1	lmo1428	opuCA	glycine/betaine ABC transporter ATP-binding protein	0.000	6.57
IEJ01_07470	NP_464952.1	lmo1427	opuCB	glycine/betaine ABC transporter permease	0.000	6.52
IEJ01_00095	NP_463552.1	lmo0019	-	hypothetical protein Imo0019	0.000	6.49
IEJ01_14255	NP_466219.1	lmo2697	-	PTS mannose transporter subunit IIA	0.000	6.43
IEJ01_11310	NP_465682.1	lmo2158	-	hypothetical protein Imo2158	0.000	6.36
IEJ01_14065	NP_466195.1	lmo2673	-	hypothetical protein Imo2673	0.000	6.28
IEJ01_04775	NP_464462.1	lmo0937	-	hypothetical protein Imo0937	0.000	6.19
IEJ01_03205	NP_464155.1	lmo0628	-	hypothetical protein Imo0628	0.000	6.18
IEJ01_00670	NP_463667.1	lmo0134	-	hypothetical protein Imo0134	0.000	6.01
IEJ01_10915	NP_465609.1	lmo2085	-	peptidoglycan binding protein	0.000	5.90
IEJ01_14250	NP_466218.1	lmo2696	-	dihydroxyacetone kinase	0.000	5.86
IEJ01 06525	NP 464766.1	lmo1241	-	hypothetical protein Imo1241	0.000	5.81
IEJ01 03680	NP 464249.1	lmo0722	-	pyruvate oxidase	0.000	5.71
IEJ01 04855	NP 464478.1	lmo0953	-	hypothetical protein Imo0953	0.000	5.66
IEJ01 01670	NP 463851.1	lmo0321	-	hypothetical protein Imo0321	0.000	5.57
IEJ01 02255	NP 463968.1	lmo0439	-	hypothetical protein Imo0439	0.000	5.48
IEJ01 02640	NP_464043.1	lmo0515	-	hypothetical protein Imo0515	0.000	5.45
IEJ01_13525	NP_466096.1	lmo2573	-	zinc-binding dehydrogenase	0.000	5.31

						Variant 14
LO28 ID	Protein product	Locus tag	Locus	Product	Padj	log ₂ fold change
IEJ01_10820	NP_465591.1	lmo2067	-	bile acid hydrolase	0.000	5.30
IEJ01 03975	NP 464309.1	lmo0782	-	PTS mannose transporter subunit IIC	0.000	5.20
IEJ01 02250	NP 463967.1	lmo0438	-	hypothetical protein Imo0438	0.000	5.20
IEI01 12600	NP 465914 1	lmo2391	-	hypothetical protein Imo2391	0.000	5.18
IEI01_05700	NP 464665 1	Imo1140		hypothetical protein Imo1140	0.000	5.16
IEI01_03070	NP 464208 1	Imo0791	_	BTS mapping transporter subunit IID	0.000	5.08
IEJ01_03370	NP_404308.1	Imo260E	-	dibudromasetona kinase subunit Dhak	0.000	4.07
IEJ01_14245	NP_400217.1	lm e 2571	-		0.000	4.97
IEJ01_13515	NP_466094.1	11102571	-	hicounamidase	0.000	4.91
IEJ01_13510	NP_466093.1	Imo2570	-	nypotnetical protein imo2570	0.000	4.86
IEJ01_04035	NP_464321.1	Imo0794	-	hypothetical protein Imo0794	0.000	4.83
IEJ01_03115	NP_464137.1	Imo0610	-	internalin	0.000	4.68
IEJ01_12820	NP_465957.1	lmo2434	-	glutamate decarboxylase	0.000	4.67
IEJ01_13520	NP_466095.1	lmo2572	-	dihydrofolate reductase subunit A	0.000	4.66
IEJ01_02285	NP_463974.1	lmo0445	-	transcripitonal regulator	0.000	4.63
IEJ01_13710	NP_466125.1	lmo2602	-	hypothetical protein Imo2602	0.000	4.62
IEJ01_03980	NP_464310.1	lmo0783	-	PTS mannose transporter subunit IIB	0.000	4.60
IEJ01_02760	NP_464067.1	lmo0539	-	tagatose 1,6-diphosphate aldolase	0.000	4.58
IEJ01_11180	NP_465656.1	lmo2132	-	hypothetical protein Imo2132	0.000	4.52
IEJ01 07970	NP 465051.1	lmo1526	-	hypothetical protein Imo1526	0.000	4.43
IEJ01 12580	NP 465910.1	lmo2387	-	hypothetical protein Imo2387	0.000	4.38
IE101 00845	NP 463702.1	Imo0169	-	glucose transporter	0.000	4.36
IEI01_03985	NP 4643111	Imo0784	-	PTS mannose transporter subunit IIB	0.000	4 34
IEI01_00215	NP 462576 1	Imo0043	_	arginine deiminase	0.000	1.31
IEJ01_00215	NP_403570.1	Imo1421	-	alginine denninase	0.000	4.22
IEJ01_07440	NP_404940.1	11101421	-	internetin A	0.000	4.12
IEJ01_02225	NP_403902.1	11100433	IIIIA	Internalin A	0.000	4.01
IEJ01_116/5	NP_465755.1	Im02231	-	nypotnetical protein imozzal	0.000	3.88
IEJ01_03010	NP_464117.1	Imo0589	-	hypothetical protein Imo0589	0.000	3.87
IEJ01_13130	NP_466018.1	lmo2495	-	phosphate ABC transporter ATP-binding protein	0.000	3.86
IEJ01_07445	NP_464947.1	lmo1422	-	glycine/betaine ABC transporter permease	0.000	3.85
IEJ01_00125	NP_463558.1	lmo0025	-	phosphoheptose isomerase	0.000	3.78
IEJ01_12640	NP_465921.1	lmo2398	ltrC	hypothetical protein Imo2398	0.000	3.77
IEJ01_07500	NP_464958.1	lmo1433	-	glutathione reductase	0.000	3.77
IEJ01_04645	NP_464437.1	lmo0911	-	hypothetical protein Imo0911	0.000	3.75
IEJ01_12965	NP_465986.1	lmo2463	-	multidrug transporter	0.000	3.72
IEJ01_13080	NP 466008.1	lmo2485	-	hypothetical protein Imo2485	0.000	3.70
IEJ01 11870	NP 465794.1	lmo2270	comK'	competence protein ComK	0.000	3.67
IEJ01 03340	NP 464181.1	lmo0654	-	hypothetical protein Imo0654	0.000	3.67
IE101 04045	NP 464323.1	Imo0796	-	hypothetical protein Imo0796	0.000	3.66
IEI01_03345	NP 464182 1	Imo0655	-	nhosnhonrotein nhosnhatase	0.000	3 63
IEI01 14390	NP 466246 1	Imo2724		hypothetical protein Imo2724	0.000	3.63
IEI01_02835	ND 464092 1	Imo0554	_	NADH-dependent butanol debydrogenase	0.000	3.50
IEJ01_02835	NP_404082.1	Imc0405	-	nadir-dependent batanor denydrogenase	0.000	3.55
IEJ01_02090	NP_405955.1	IIII00405	-	prospriate transporter	0.000	3.30
IEJ01_12925	NP_465977.1	11102454	-	hypothetical protein imoz454	0.000	3.53
IEJ01_03310	NP_464175.1	Im00648	-	nypotnetical protein imou648	0.000	3.49
IEJ01_13/15	NP_466126.1	Imo2603	-	hypothetical protein Imo2603	0.000	3.47
IEJ01_06635	NP_464786.1	lmo1261	-	hypothetical protein Imo1261	0.000	3.28
IEJ01_03015	NP_464118.1	lmo0590	-	hypothetical protein Imo0590	0.000	3.27
IEJ01_03020	NP_464119.1	lmo0591	-	hypothetical protein Imo0591	0.000	3.18
IEJ01_12335	NP_465879.1	lmo2356	-	hypothetical protein Imo2356	0.000	3.15
IEJ01_13125	NP_466017.1	lmo2494	-	PhoU family transcriptional regulator	0.000	3.15
IEJ01_08035	NP_465064.1	lmo1539	-	glycerol transporter	0.000	3.09
IEJ01_01675	NP_463852.1	lmo0322	-	hypothetical protein Imo0322	0.000	3.07
IEJ01_09895	NP_465407.1	lmo1883	-	chitinase	0.000	3.06
IEJ01_03305	NP_464174.1	lmo0647	-	hypothetical protein Imo0647	0.000	3.04
IEJ01 11545	NP 465729.1	lmo2205	-	phosphoglyceromutase	0.000	3.01
IEJ01 14060	NP 466194.1	lmo2672		AraC family transcriptional regulator	0.000	2,92
IEI01_00850	NP 463703.1	Imo0170	-	hypothetical protein Imo0170	0.000	2.79
IFI01 01045	NP 463742 1	Imo()211	ctc	50S ribosomal protein 125	0.000	2 74
IEI01 13150	NP 466022 1	Imo2400	-	nhosnhate ABC transporter substrate-binding protein	0.000	2.74
IEI01 12255	ND 465992 1	Imo2260	_	transmembrane protein	0.000	2.71
IF101_15322	INF_403003.1	11102500	-	canoniemorane protein	0.000	2.70

Table S5.5 continued (2 of 6): Differentially expressed genes in variant 14 when compared to Listeria monocytogenes LO28 WT

						Variant 14
LO28 ID	Protein product	Locus tag	Locus	Product	Padj	log ₂ fold change
IEJ01 08350	NP 465126.1	lmo1601	-	general stress protein	0.000	2.69
IEJ01 09480	NP 465324.1	lmo1799	-	peptidoglycan binding protein	0.000	2.69
IE101 10430	NP 465513.1	lmo1989	leuC	isopropylmalate isomerase large subunit	0.000	2.68
IEI01 10440	NP 465515.1	lmo1991	ilvA	threonine dehydratase	0.000	2.66
IEI01 12360	NP_465884_1	lmo2361	-	hypothetical protein Imo2361	0.000	2.60
IEI01_03210	NP 464156 1	Imo0629	-	hypothetical protein Imo2552	0.000	2.63
IEI01_00210	NP 465514.1	Imo1990	lauD	isopropylmalate isomerase small subunit	0.000	2.03
IEI01_09255	NP_405514.1	Imo1602	ieub	hypothetical protein Imo1602	0.000	2.02
IEJ01_08333	NP_405127.1	11101002	-	hypothetical protein into1002	0.000	2.59
IEJ01_08240	NP_405105.1	101580	-	hypothetical protein imo1580	0.000	2.50
IEJ01_111/5	NP_465655.1	Im02131	-	nypotnetical protein imo2131	0.000	2.53
IEJ01_06805	NP_464820.1	Im01295	-	nost ractor-1 protein	0.000	2.51
IEJ01_10425	NP_465512.1	Imo1988	IeuB	3-isopropylmalate dehydrogenase	0.000	2.48
IEJ01_01435	NP_463805.1	Imo0274	-	hypothetical protein Imo0274	0.000	2.44
IEJ01_12575	NP_465909.1	lmo2386	-	hypothetical protein Imo2386	0.000	2.43
IEJ01_11390	NP_465698.1	lmo2174	-	hypothetical protein Imo2174	0.000	2.41
IEJ01_10420	NP_465511.1	lmo1987	leuA	2-isopropylmalate synthase	0.000	2.40
IEJ01_01695	NP_463856.1	lmo0326	-	transcriptional regulator	0.003	2.38
IEJ01_00725	WP_015084540.1	NA	NA	NA	0.002	2.38
IEJ01_13075	NP_466007.1	lmo2484	-	hypothetical protein Imo2484	0.000	2.36
IEJ01_08030	NP_465063.1	lmo1538	glpK	glycerol kinase	0.000	2.34
IEJ01 04805	NP 464468.1	lmo0943	fri	non-heme iron-binding ferritin	0.000	2.32
IEJ01 07210	NP 464900.1	lmo1375	-	aminotripeptidase	0.000	2.32
IEI01 12835	NP 465960.1	lmo2437	-	hypothetical protein Imo2437	0.000	2.31
IEI01 09435	NP 465315.1	lmo1790	-	hypothetical protein Imo1790	0.000	2.30
IFI01 02840	NP 464083 1	Imo0555	-	di-tripentide transporter	0.000	2 29
IEI01_02685	NP 464052.1	Imo0524	-	sulfate transporter	0.000	2.23
IEI01_02600	NP 465176 1	Imo1651	-	ABC transporter ATP-binding protein	0.000	2.26
IEI01_02215	NP 464176 1	Imo0649	_	transcriptional regulator	0.000	2.20
IEJ01_00425	NP_404170.1	Imo1799	-	transcriptional regulator	0.000	2.15
101_03425	NP_403313.1	11101788	-	internalia D	0.000	2.13
101_02230	NP_405905.1	11100434	IIIID	niterinanin b	0.000	2.12
IEJ01_08675	NP_405191.1	11101666	-	peptidogrycan-iniked protein	0.000	2.12
IEJ01_02960	NP_464107.1	Imo0579	-	nypotnetical protein imous/9	0.000	2.10
IEJ01_02965	NP_464108.1	Imo0580	-	nypotnetical protein imouseu	0.000	2.07
IEJ01_10400	NP_465507.1	Im01983	IIVD	dinydroxy-acid denydratase	0.000	2.06
IEJ01_10415	NP_465510.1	Imo1986	INC	ketol-acid reductoisomerase	0.000	2.05
IEJ01_14050	NP_466192.1	Imo2670	-	hypothetical protein Imo2670	0.000	2.05
IEJ01_10410	NP_465509.1	lmo1985	ilvH	acetolactate synthase small subunit	0.000	2.05
IEJ01_11475	NP_465715.1	lmo2191	spxA	ArsC family transcriptional regulator	0.000	2.02
IEJ01_13145	NP_466021.1	lmo2498	-	phosphate ABC transporter permease	0.000	2.01
IEJ01_04725	NP_464453.1	lmo0928	-	3-methyladenine DNA glycosylase	0.000	1.97
IEJ01_10405	NP_465508.1	lmo1984	ilvB	acetolactate synthase	0.000	1.95
IEJ01_13135	NP_466019.1	lmo2496	-	phosphate ABC transporter ATP-binding protein	0.000	1.95
IEJ01_13210	NP_466034.1	lmo2511	-	hypothetical protein Imo2511	0.000	1.94
IEJ01_03105	NP_464135.1	lmo0608	-	ABC transporter ATP-binding protein	0.000	1.94
IEJ01_04545	NP_464422.1	lmo0896	rsbX	indirect negative regulation of sigma B dependant gene expression	0.000	1.93
IEJ01 03280	NP 464169.1	lmo0642	-	hypothetical protein Imo0642	0.000	1.93
IEJ01 09030	NP 465238.1	lmo1713	-	rod shape-determining protein MreB	0.000	1.92
IEJ01 09430	NP 465314.1	lmo1789	-	hypothetical protein Imo1789	0.000	1.90
IE101 07030	NP 464865.1	Imo1340	-	hypothetical protein Imo1340	0.000	1.89
IEI01 13140	NP 466020.1	lmo2497	-	phosphate ABC transporter permease	0.000	1.89
IEI01_00195	NP 463572 1	Imo0039	-	carbamate kinase	0.000	1.88
IEI01_01810	NP 463881 1	Imo0351	-	phosphotransferase mannnose-specific family component IIA	0.000	1.88
IEI01_09475	NP 465323 1	lmo1798		hypothetical protein Imo1798	0.000	1.87
IEI01_01473	ND 462855 1	Imo0225	_	transcriptional regulator	0.000	1.07
IEI01_01090	ND 464919 1	Imo1202	- alaD	alveral-2-phosphate debudrogenase	0.000	1.00
IE101_00/95	ND 462022 1	Imp0202	gipu	gryceror-o-priospilate denydrogenase	0.000	1.00
IEJU1_01525	NF_403823.1	Imo1052	-	heat-shock protein fittA serine protease	0.000	1.80
IE101 02222	NP_4051/5.1	11101050	-	hypothetical protein info1050	0.000	1.83
IEJU1_03320	NP_464177.1	11100650	-	nypotnetical protein Imoubsu	0.000	1.81
IEJU1_03090	INP_464132.1	1m00605	-	hypothetical protein Imoubus	0.000	1.81
IEJ01_01520	NP_463822.1	Imo0291	-	hypothetical protein Imo0291	0.000	1.81

Table S5.5 continued (3 of 6): Differentially expressed genes in variant 14 when compared to Listeria monocytogenes LO28 WT

UDX ID Product Logit Reg. Total Charge E401_06555 Product Importantical protein Imo2564 0.000 1.79 E401_0650 Productical protein Imo2564 0.000 1.75 E401_0690 Pr.463731.1 Imo200 p/f Imo200 1.68 E401_0690 Pr.46373.1 Imo200 p/f Imo200 1.68 E401_0690 Pr.46373.1 Imo200 p/f Imo200 1.67 E401_0690 Pr.46373.1 Imo200 p/f Imo200 1.67 E401_0190 Pr.46373.1 Imo200 p.74 Imo200 1.67 E401_0190 Pr.46373.1 Imo2527 - Phypothetical protein Imo2570 0.000 1.67 E401_01300 Pr.46433.1 Imo252 - cell wall-binding protein 0.000 1.63 E401_01300 Pr.46433.1 Imo252 - ABC transporter ATP-binding protein 0.000 1.63 E401_01300 Pr.46433.1 Imo2562 - ABC transporter ATP-binding protein 0.							Variant 14
EI00_0858 NP_465173.1 Imo1648 hypothetical protein Imo3648 0.000 1.75 EI00_12645 MP_46522.1 Imo239 Npothetical protein Imo2399 0.000 1.76 EI00_12645 MP_46522.1 Imo2095 P/4 Ei00_1267 0.000 1.75 EI01_02650 MP_46423.1 Imo2095 P/4 Ei01_Proteinal protein 0.000 1.67 EI01_0265 MP_46423.1 Imo2070 - hypothetical protein Imo270 0.000 1.67 EI01_12655 MP_464351.1 Imo2071 - hypothetical protein Imo270 0.000 1.67 EI01_12657 MP_66451.1 Imo272 - hypothetical protein Imo2571 0.000 1.63 EI01_12657 ABC transporter ATP-binding protein 0.000 1.62 1.61 EI01_120250 NP_46523.1 Imo257 - ABC transporter ATP-binding protein 0.000 1.62 EI01_02050 NP_46523.1 Imo253 - hypothetical protein Imo2542 0.000 1.62 EI01_02050	LO28 ID	Protein product	Locus tag	Locus	Product	Padj	log ₂ fold change
EDI_0288 W_43517.1 INDUSE - Inpublicial protein inc338 0.000 1.75 EDI_0286 W_46430.1 Inc630 - Inpublicial protein inc339 0.000 1.76 EDI_0286 W_46430.1 Inc6305 -// Inpublicial protein inc339 0.000 1.68 EDI_02865 W_464231.1 Inc6005 -// Inpublicial protein inc370 0.000 1.67 EDI_010950 W_46257.1 Inc070 inpublicial protein inc377 0.000 1.67 EDI_011950 W_46257.1 Inc0727 - ealwall-binding protein 0.000 1.67 EDI_011950 W_46257.1 Inc0527 - ealwall-binding protein 0.000 1.63 EDI_011950 W_46257.1 Inc052 - ABC transporter ATP-binding protein 0.000 1.63 EDI_012950 W_46137.1 Inc0552 - ABC transporter ATP-binding protein 0.000 1.61 EDI_012950 W_46137.4 Inc0564 - Mpotheticial protein Inc0564 0.000 1.61<		ND 405172.1	lm e1C40		h. matheatical mustain las a1640	0.000	1 70
Elot_14030 Inc.243230 Inc.243230 Inc.243230 Elot_100900 Pri 4423711 Inc.2030 pri 442471 Elot_100900 Pri 442471 Inc.2035 sign RNA polymerase signa factor sign 0.000 1.68 Elot_100305 Pri 442471 Inc.2035 Pri 442471 Inc.2017 0.000 1.67 Elot_100305 Pri 4623711 Inc.2037 Pri polymetrical protein Inc.271 0.000 1.67 Elot_120071 Pri 460531 Inc.2527 - hypothetical protein Inc.257 0.000 1.63 Elot_120071 Pri 460531 Inc.2527 - multiday transporter 0.000 1.63 Elot_120071 Pri 460531 Inc.2527 - RC transporter ATP-binding protein 0.000 1.63 Elot_120230 Pri 461321 Inc.2537 - ABC transporter ATP-binding protein 0.000 1.62 Elot_120230 Pri 461321 Inc.253 - ripothetical protein Inc.254 0.000 1.63 Elot_120300 Pri 461321 Inc.253 <	IEJ01_08585	NP_405173.1	Imo2200	-	hypothetical protein Imo1048	0.000	1.79
EL01_2000 Nr. 4493311 IntoCord pr/A IntoCord 173 EL01_2000 Nr. 4443111 IntoCord pr/B RNA (symin protein mod25) 0.000 1.68 EL01_20055 Nr. 4443211 IntoCord 0.000 1.67 EL01_20055 Nr. 4443211 IntoCord 0.000 1.67 EL01_20055 Nr. 4453311 IntoCord 0.000 1.67 EL01_20055 Nr. 4456331 IntoCord agratine deiminase 0.000 1.64 EL01_20155 Nr. 4456331 IntoCord - cell wall-binding protein 0.000 1.63 EL01_20155 Nr. 465331 IntoCord - ABC transporter ATP-binding protein 0.000 1.63 EL01_20150 Nr. 465331 IntoCord - Hypothetical protein intoCS4 0.000 1.61 EL01_20250 Nr. 464331 IntoCord - Hypothetical protein intoCS4 0.000 1.62 EL01_20250 Nr. 464331 IntoCord - Hypothetical protein intoCS4 0.000 <td< td=""><td>IEJ01_12045</td><td>NP_403922.1</td><td>IIII02399</td><td>-</td><td>hypothetical protein Imo2004</td><td>0.000</td><td>1.70</td></td<>	IEJ01_12045	NP_403922.1	IIII02399	-	hypothetical protein Imo2004	0.000	1.70
ED1_0290 VF_48/31.1 INDUCAD µ/A Instructional protein 0.000 1.75 ED1_0286 VF_46237.1 INDUCAD µ/A Instructional protein 0.000 1.88 ED1_0286 VF_46237.1 INDUCAD µ/A Instructional protein 0.000 1.67 ED1_1050 VF_46357.1 INDUCAD µ/A Instructional protein 0.000 1.67 ED1_1280 VF_46310.1 INDUCAD µ/A Instructional protein 0.000 1.67 ED1_1280 VF_46310.1 INDUCAD µ/A Instructional protein 0.000 1.62 ED1_10215 VF_46303.1 INDUCAD µ/A PAC Loncord Protein 0.000 1.63 ED1_10205 VF_46312.1 INDUCAD µ/A PAC Loncord Protein 0.000 1.63 ED1_10205 VF_46433.1 INDUCAD µ/A Photohecid protein 0.000 1.63 ED1_10205 VF_46433.1 INDUCAD µ/A Photohecid protein 0.000 1.63 <td< td=""><td>IEJ01_04010</td><td>NP_404450.1</td><td>III00904</td><td>- nrfA</td><td>listoriolucia protein intois04</td><td>0.000</td><td>1.74</td></td<>	IEJ01_04010	NP_404450.1	III00904	- nrfA	listoriolucia protein intois04	0.000	1.74
Lind Dass Im add 271 Im add 276 Im add 276 Lind Linds N P_465371.1 Im add 2761 Hypothetical protein Ima2671 0.000 1.63 Lind Linds N P_465371.1 Im add 2761 Hypothetical protein Ima2671 0.000 1.67 Lind Linds N P_46517.1 Im add 2761 Hypothetical protein Ima2671 0.000 1.67 Lind Linds N P_46503.1 Im add 271 Im add 271 0.000 1.65 Lind Linds N P_46503.1 Im add 271 Im add 271 Im add 271 0.000 1.63 Lind Linds N P_46503.1 Im 0.000 A BC transporter ATP-sinding protein 0.000 1.63 Lind Linds N P_4653.1 Im 0.054 A BC transporter ATP-sinding protein 0.000 1.61 Lind Linds N P_4653.1 Im 0.054 Hypothetical protein Im 0.0580 0.000 1.61 Lind Linds N P_4653.1 Im 0.055 Hypothetical protein Im 0.0580 0.000 1.63 Lind Linds N P_4653.1 Im 0.057 Hypothetical protein Im 0.0580 0.000 1.58 Lind Linds N P_4653.1 Im 0.057 Hypothetical protein Im 0.058	IEJ01_00990	NP_405751.1	Imo0200	sigR	RNA polymerase sigma factor SigR	0.000	1.75
List1_4055 NP_465511 Imo2671 0.000 1.67 List1_1050 NP_4655711 Imo2672 0.000 1.67 List1_1050 NP_465711 Imo2587 0.000 1.67 List1_1050 NP_465051 Imo2587 0.000 1.67 List1_1050 NP_465051 Imo2587 0.000 1.64 List1_1050 NP_465051 Imo2587 0.000 1.63 List1_10505 NP_465051 Imo2572 - ABC transporter ATP-inding protein 0.000 1.63 List1_102055 NP_465131 Imo5564 - ABC transporter ATP-inding protein 0.000 1.61 List1_102055 NP_465331 Imo2564 - ribute-s-phosphate 3-epimerase 0.000 1.58 List1_102055 NP_4645311 Imo2564 - ribute-s-phosphate 3-epimerase 0.000 1.58 List1_10205 NP_4645311 Imo2564 - ribute-s-phosphate 3-epimerase 0.000 1.58 List1_10255 NP_4645511 Imo2162 - </td <td>IEI01_02865</td> <td>NP_404421.1</td> <td>Imo0760</td> <td>Sigo</td> <td>hypothetical protein Imo0760</td> <td>0.000</td> <td>1.08</td>	IEI01_02865	NP_404421.1	Imo0760	Sigo	hypothetical protein Imo0760	0.000	1.08
Libol. 2010 MP_463371.1 Incod38 - InpoSetual protein incod27 0.000 1.67 LE00_10150 MP_463571.1 Incod38 - hypothetical protein incod387 0.000 1.67 LE00_11250 MP_466045.1 Inco237 - hypothetical protein inco287 0.000 1.63 LE00_11454 MP_466045.1 Inco241 - muthing protein 0.000 1.63 LE00_0156 MP_46134.1 Incod564 - A&C transporter ATP-binding protein 0.000 1.61 LE00_0285 MP_46134.1 Incod564 - hypothetical protein inco364 0.000 1.61 LE00_0285 MP_46333.1 Inco564 - hypothetical protein inco468 0.000 1.58 LE00_0385 MP_46451.1 Incod54 - hypothetical protein inco468 0.000 1.58 LE00_0495 MP_46581.1 Inco163 - inprotein inco1482 0.000 1.58 LE00_01500 MP_46581.1 Inco163 - inproperindox/protein inco1482	IEI01_03805	NP_404287.1	lmo2671		hypothetical protein Imo2671	0.000	1.08
LED_10360 IV_403711 Indox39 - apilable UM_10257 0.000 1.67 LED_11455 IV_4661101 ino2527 - cell wall-binding protein 0.000 1.65 LED_11455 IV_4660451 ino2527 - cell wall-binding protein 0.000 1.64 LED_10455 IV_4663411 ino06411 - phosphenolyrowste synthase 0.000 1.63 LEDU_03030 IV_4633411 ino06557 - A&C transporter ATP-binding protein 0.000 1.61 LEDU_02505 IV_4633311 ino0556 - hypothetical protein ino0554 - inposphenolyform/glycinamidine synthase I 0.000 1.61 LEDU_02505 IV_4640331 ino0555 - hypothetical protein ino0548 0.000 1.58 LEDU_1350 IV_4640331 ino2527 - transcriptional antterminator BglG 0.000 1.58 LEDU_14055 IV_4655811 ino2527 - transcriptional antterminator BglG 0.000 1.61 LEDU_14056 IV_4655831 ino	IEJ01_00100	NP_400193.1	Imc0020	-	agmating doiminase	0.000	1.07
Libol. 2000 MP_4660451 Imo252 - rmponentation 0.000 1.65 E101_1245 MP_4660451 Imo252 - cell wali-binding protein 0.000 1.64 E101_14475 MP_4660451 Imo252 - ABC transporter MP_16010 0.000 1.63 E101_0805 MP_465171 Imo1652 - ABC transporter ATP-binding protein 0.000 1.61 E101_02035 MP_4652151 Imo3770 pur/ phosphenobs/form/glycinamidine synthase I 0.000 1.61 E101_02035 MP_465211 Imo3580 - rhubotes-5-phosphata s-epimerase 0.000 1.61 E101_02035 MP_465611 Imo1882 - hypothetical protein Imo388 0.000 1.58 E101_04055 MP_465611 Imo1432 - hypothetical protein Imo2163 0.000 1.58 E101_0405 MP_465611 Imo2163 - imosperidase 0.000 1.61 E101_0405 MP_465611 Imo2163 - hypothetical protein Imo2163	IEI01_12600	NP_405571.1	Imo2597		hypothetical protein Imo2597	0.000	1.07
Liou 1, 2007 IN-4667231 Into274 - Center and inding poten 0.000 1.64 LEDU_1155 IN-4637401 Into611 - phospheeno/pyruxite synthase 0.000 1.63 LEDU_0150 IN-4637411 Into6567 - A&C transporter ATP-binding protein 0.000 1.62 LEDU_0250 IN-4642551 Into6556 - hypothetical protein 0.000 1.61 LEDU_0250 IN-4643511 Into6556 - hypothetical protein into0544 0.000 1.61 LEDU_0250 IN-464331 Into6556 - hypothetical protein into0548 0.000 1.58 LEDU_1250 IN-464531 Into2579 - NAD-dependent deaceValae 0.000 1.58 LEDU_14455 IN-465581 Into2162 0.000 1.58 IEU0_1500 NA-465821 Into2263 - transcriptional antterminator BgG 0.000 1.61 LEDU_10200 VR_465821 Into279 - transcriptional antterminator BgG 0.000 1.63 LEDU_102	IEJ01_13000	NP_400110.1	IIII02567	-	cell wall-binding protein	0.000	1.07
Libb_arto_ N_463340.1 Inductory Inductory Inductory Libb_arto_ N_463340.1 Inductory Phospherologywate synthase 0.000 1.63 Libb_arto_ N_463340.1 Indo607 ABC transporter ATP-binding protein 0.000 1.61 Libb_arto_ N_463325.1 Indo770 put phosphorbosylform/giveniang protein 0.000 1.61 Libb_arto_ N_46333.1 Imo0584 hyoothetical protein Imo0544 0.000 1.61 Libb_arto_ N_46333.1 Imo1283 - hyoothetical protein Imo3644 0.000 1.58 Libb_arto_ N_46328.1 Imo1283 - hyoothetical protein Imo3648 0.000 1.58 Libb_arto_ N_46328.1 Imo273 - NAD-degendent dacetylase 0.000 1.58 Libb_arto_ N_46328.1 Imo273 - Imophothetical protein Imo2162 0.000 1.61 Libb_arto_ N_46328.1 Imo273 - Imophothetical protein Imo2162 0.000 1.63 Libb_arto_ N_46328.1 Imo273 - PT5 cirbiose transports suburit IA 0.000 1.63	IEJ01_13203	NP_400045.1	IIII02322	-	multidrug transporter	0.000	1.05
Lindowsky Lindowsky Lindowsky Lindowsky Lindowsky Lindowsky ABC transporter ATP-binding protein 0.000 L63 Lindowsky ABC transporter ATP-binding protein 0.000 L61 Lindowsky Packsyste Disporter Lindowsky 0.000 L60 Lindowsky Packsyste Disporter Lindowsky Disporter Lindowsky Disporter Lindowsky Disporter Lindowsky Lindowsky Packsyste Disporter Lindowsky Disporter Lindowsky<	IEI01_02115	NP_463940.1	Imo0411		nhosnhoenolnyrivate synthase	0.000	1.63
Lind_1000 NP_464134.1 Imo0607 ABC transporter ATP-binding protein 0.000 1.62 LED0_20350 NP_465253.1 Imo170 purL phosphor/bosy/formylg/vinamidine synthase I 0.000 1.61 LED0_20355 NP_46433.1 Imo0564 0.000 1.61 LED0_20352 NP_46433.1 Imo0565 ribulose-5-phosphate 3-epimerase 0.000 1.58 LED0_104555 NP_466251.1 Imo1263 hypothetical protein Imo1868 0.000 1.58 LED0_10450 NP_465261.1 Imo2163 rtranscriptional antherminator BgIG 0.000 1.58 LED0_10450 NP_0645128.1 Imo2037 rtranscriptional antherminator BgIG 0.000 1.63 LED0_10450 NP_0645128.1 Imo2104 NA terminase large subunit 0.000 1.63 LED1_10120 NP_46525.1 Imo2104 NA terminase large subunit IB 0.000 1.63 LED1_11205 NP_46322.1 Imo2204 PT5 reclibose transporter subunit IB 0.000 1.67 LED1_11250 NP_46325.1	IEI01_02115	NP 465177 1	Imo1652		ABC transporter ATP-binding protein	0.000	1.63
Lind_200300 NP_465295.1 Imo1770 purt phosphorikosyfformylghung mythung nythung nyth	IEI01_03100	NP 464134 1	Imo0607		ABC transporter ATP-binding protein	0.000	1.62
Incol Description Description Description Description IED0 20250 NP_464033.1 Imo0584 - hypothetical protein Imo0584 0.000 1.60 IED0 20250 NP_465033.1 Imo1888 - hypothetical protein Imo1868 0.000 1.58 IED0 70745 NP_465681.1 Imo2739 - hypothetical protein Imo1868 0.000 1.58 IED0 10350 NP_4656861.1 Imo2102 hypothetical protein Imo2162 0.000 1.58 IED0 10350 NP_465828.1 Imo2104 - transcriptional antterminator BgIG 0.000 1.61 IED1 10360 NP_465935.1 Imo2104 - hypothetical protein Imo2104 0.000 1.63 IED1_10250 NP_465935.1 Imo2104 - hypothetical protein Imo2104 0.000 1.67 IED1_10250 NP_465935.1 Imo2104 - hypothetical protein Imo2104 0.000 1.67 IED1_11250 NP_465935.1 Imo2106 - <td>IEI01_09320</td> <td>NP 465295 1</td> <td>lmo1770</td> <td>nurl</td> <td>nbosnboribosvlformvlglvcinamidine svnthase I</td> <td>0.000</td> <td>1.61</td>	IEI01_09320	NP 465295 1	lmo1770	nurl	nbosnboribosvlformvlglvcinamidine svnthase I	0.000	1.61
Indo Important Imp	IEI01_02985	NP 464112 1	Imo0584	-	hypothetical protein Imo0584	0.000	1.61
EU01_09825 NP_463393.1 Imo1888 - hypothetical protein Imo1868 0.000 1.59 EU01_07455 NP_46393.1 Imo1882 - hypothetical protein Imo1432 0.000 1.58 EU01_11465 NP_46628.1 Imo2739 - NAD dependent deactivase 0.000 1.58 EU01_11330 NP_465886.1 Imo279 - transcriptional antiterminator 8gl6 0.000 -1.58 EU01_05050 NP_465128.1 Imo2037 - transcriptional antiterminator 8gl6 0.000 -1.63 EU01_0200 NP_46538.1 Imo2683 - PTS fructose transporter subunit IIA 0.000 -1.63 EU01_1202 NP_465295.1 Imo2683 - PTS fructose transporter subunit IIB 0.000 -1.67 EU01_1208 NP_465205.1 Imo2683 - PTS fructose transporter subunit IIB 0.000 -1.67 EU01_02085 NP_465823.1 Imo2683 - PTS fructose transporter subunit IIC 0.000 -1.67 EU01_0305 NP_465692.1 Imo2569 - PTS fructose transporter subunit IIC 0.000 -1.78 EU01_0450 NP_4644451.1	IEI01_02590	NP 464033 1	Imo0505	-	ribulose-5-phosphate 3-enimerase	0.000	1.60
Libol 2002 M-2002 M-2	IEI01_02330	NP 465393.1	Imo1868		hypothetical protein Imo1868	0.000	1.59
Indo Indo <thindo< th=""> Indo Indo <thi< td=""><td>IEI01_07495</td><td>NP 464957 1</td><td>Imo1432</td><td></td><td>hypothetical protein Imo1000</td><td>0.000</td><td>1.55</td></thi<></thindo<>	IEI01_07495	NP 464957 1	Imo1432		hypothetical protein Imo1000	0.000	1.55
Intol 1,1133 Intol 1,123 Intol 1,123 Intol 1,123 0.000 1.158 E100_10350 NP_465086.1 Imo2162 NppOthetical protein Imo2162 0.000 -1.58 E100_01500 NP_465086.1 Imo2103 - aminopeptidase 0.000 -1.61 E100_01600 NP_465128.1 Imo2104 - mypothetical protein Imo2104 0.000 -1.63 E101_01200 NP_463025.1 Imo0426 - PT5 fructose transporter subunit IIA 0.000 -1.63 E101_01200 NP_463025.1 Imo0426 - PT5 fructose transporter subunit IIB 0.000 -1.67 E101_01203 NP_465628.1 Imo0299 - transcriptional antterminator 0.000 -1.67 E101_01203 NP_46568.1 Imo0291 0.000 -1.67 E101_0335 NP_46303.0 Imo0292 - matoscriptional antterminator BgIG 0.000 -1.71 E101_01305 NP_46303.01 Imo0297 - PT5 mannose transporter subunit IIC 0.000 -1.78 E101_1325 NP_46303.01 Imo2162 - matospretr subunit IIC 0.000	IEI01_07455	NP 466261 1	Imo2739		NAD-dependent deacetylase	0.000	1.50
ILDU_1125 IN_20001.1 Introduct 2 Inpotent inpo	IEI01_11220	NP 465686 1	Imo2162	-	hypothetical protein Imo2162	0.000	-1.59
ILDU_2D30 IN_2-0326.1 Involution anticet mixed bg/o 0.000 1-1.36 ILDU_2D30 IN_2-0326.1 Imo1603 - antioxpiourian anticet mixed bg/o 0.000 1-1.61 ILDU_1D200 INP_465128.1 Imo2036 - Hypothetical protein Imo2104a 0.000 -1.63 IEI01_0208 NP_465251.1 Imo2036 - PTS cellbiose transporter subunit IIA 0.000 -1.64 IEI01_0185 NP_465623.1 Imo2039 - transcriptional antiterminator 0.000 -1.67 IEI01_01355 NP_465630.1 Imo2097 - hypothetical protein Imo2161 0.000 -1.67 IEI01_01355 NP_465630.1 Imo266 - transcriptional antiterminator Bg/G 0.000 -1.74 IEI01_01355 NP_465602.1 Imo2166 - maltogenic amylase 0.000 -1.78 IEI01_01355 NP_46502.1 Imo2266 - protease 0.000 -1.85 IEI01_01430 NP_46423.1 Imo0897 - protease 0.000 -1.85	IEI01_01550	NP_403080.1	Imo0202		transcriptional antiterminator BalG	0.000	-1.58
IEUD_60300 INP05126.1 Initiation animape public 0.000 1.61 IEUD_16102 VP_008475633.1 Imo2104a - hypothetical protein Imo2104a 0.000 -1.63 IEUD_11020 VP_008475633.1 Imo2104a - hypothetical protein Imo2104a 0.000 -1.65 IEUD_11325 NP_465263.1 Imo209 - transcriptional antiterminator 0.000 -1.67 IEUD_11325 NP_465621.1 Imo2091 - hypothetical protein Imo2161 0.000 -1.67 IEUD_1325 NP_465630.1 Imo2201 - hypothetical protein Imo2261 0.000 -1.71 IEUD_14040 NP_466190.1 Imo2266 - transcriptional antiterminator BgIG 0.000 -1.78 IEUD_15050 NP_46592.1 Imo2868 - transcriptional antiterminator BgIG 0.000 -1.78 IEUD_140400 NP_464431.1 Imo384 Iol8 protein 0.000 -1.85 IEUD_140500 NP_646432.1 Imo384 Iol8 proteias 0.000 -1.89	IEI01_01350	NP_403828.1	Imo1602	-		0.000	1.50
IEUD_00000 WT_009377/06.1 WA WA Itel Initial State (1) 0.000 1.03 IEUD_11020 NP_643955.1 Imo0426 - PTS fructose transporter subunit IIA 0.000 -1.64 IEUD_11080 NP_645925.1 Imo0268 - PTS cellbiose transporter subunit IIB 0.000 -1.67 IEUD_10335 NP_64582.1 Imo2099 - transcriptional antiterminator 0.000 -1.67 IEUD_10335 NP_64582.1 Imo2091 - hypothetical protein Imo2101 0.000 -1.67 IEUD_10435 NP_64582.1 Imo0097 - PTS manose transporter subunit IIC 0.000 -1.74 IEUD_11125 NP_64590.1 Imo2569 - peptide ABC transporter subunit IIC 0.000 -1.78 IEUD_11350 NP_64691.1 Imo3569 - peptide ABC transporter subunit IIB 0.000 -1.85 IEUD_140400 NP_64692.1 Imo3960 - protease 0.000 -1.92 IEUD_14310 NP_64532.1 Imo3997 - PTS cellb	IEJ01_08360	NP_405128.1	IIII01603	-	aminopeptidase	0.000	-1.01
IEUD_11200 IP_U0497305a1 ImpOntential protein inpontential protein inpontential protein information in the inpontential protein information information in the inpontential protein information in the inpontential protein information in the inpontential protein information informatin informatin information informatin information information info	IEJ01_00403	VP_009917706.1	INA	NA	hypothetical protein Imp21042	0.000	-1.05
IEUD_Q1250 NP_465205.1 Im02420 P15 TRUCKSE transporter subunit IB 0.000 1.65 IEUD_11205 NP_465623.1 Im02099 - transcriptional antiterminator 0.000 1.67 IEUD_11205 NP_465623.1 Im02091 - hypothetical protein Im02161 0.000 1.67 IEUD_10355 NP_465822.1 Im02091 - hypothetical protein Im02161 0.000 1.67 IEUD_104035 NP_465630.1 Im02569 - P15 manose transporter subunit IIC 0.000 1.74 IEUD_11350 NP_465602.1 Im02569 - peptide ABC transporter suburate-binding protein 0.000 1.78 IEUD_104350 NP_465423.1 Im00960 - protease 0.000 1.85 IEUD_104310 NP_46423.1 Im00399 - PTS foctlose transporter subunit IIC 0.000 1.92 IEUD_104350 NP_46332.1 Im0399 - PTS beat-glucoside transporter subunit IIA 0.000 1.92 IEUD_104350 NP_46332.1 Im03939 - PTS b	IEJ01_11020	ND 4620EE 1	IIII02104d	-	PTS fructoco transportor subunit IIA	0.000	-1.05
IEUD_19130 NP_402031 Imo2003 F13 Enhouse transporter subunit ins 0.000 1.63 IEUD_10985 NP_465223.1 Imo209 - transcriptional antiterminator 0.000 1.67 IEUD_10985 NP_46322.1 Imo209 - hypothetical protein imo2161 0.000 -1.67 IEUD_104355 NP_463630.1 Imo2668 - transcriptional antiterminator BgIG 0.000 -1.71 IEUD_11125 NP_465603.1 Imo2668 - transcriptional antiterminator BgIG 0.000 -1.78 IEUD_11125 NP_465092.1 Imo2569 - peptide ABC transporter substrate-binding protein 0.000 -1.85 IEUD_10490 NP_46481.1 Imo0384 - IolB protein 0.000 -1.85 IEUD_104305 NP_46532.1 Imo0397 - Transporter 0.000 -1.85 IEUD_104505 NP_46332.1 Imo0303 - PTS fuctose transporter subunit IIB 0.000 -1.92 IEUD_102050 NP_46332.1 Imo0309 - PTS beta-glucoside tra	IEJ01_02190	NP_405955.1	IIII00420	-	PTS collhiese transporter subunit IIR	0.000	1.04
IEUD_11355 NP_456322.1 Im02095 Im02095 Im02161 0.000 1.67 IEID1_11325 NP_463832.1 Im02091 - Hypothetical protein Im02161 0.000 -1.67 IEID1_06335 NP_463832.1 Im02091 - Hypothetical protein Im02161 0.000 -1.71 IEID1_14040 NP_466190.1 Im02668 - transcriptional antiterminator BgIG 0.000 -1.74 IEID1_13050 NP_465550.1 Im02126 - maltogenic amylase 0.000 -1.78 IEID1_04550 NP_464314.1 Im00384 - peptide ABC transporter substrate-binding protein 0.000 -1.85 IEID1_04500 NP_464485.1 Im00397 - transporter 0.000 -1.89 IEID1_04500 NP_464485.1 Im00397 - PTS cellbiose transporter subunit IIC 0.000 -1.92 IEID1_02060 NP_46322.1 Im00390 - PTS tect-glucoside transporter subunit IIA 0.000 -1.96 IEID1_020455 NP_464382.1 Im00280 - <	IEJ01_14180	NP_400203.1	IIII02065	-	transcriptional aptitorminator	0.000	-1.03
ILDD_1125 NP_45382.1 Im02101 - hypothetical protein Im02101 0.000 -1.67 IEI01_0635 NP_453630.1 Im02091 - PTS mannose transporter subunit IIC 0.000 -1.71 IEI01_1125 NP_45650.1 Im02166 - transcriptional antiterminator BgIG 0.000 -1.78 IEI01_1125 NP_45650.1 Im02166 - maltogenic amylase 0.000 -1.78 IEI01_01350 NP_466092.1 Im02569 - peptide ABC transporter subunit IIC 0.000 -1.85 IEI01_04350 NP_464485.1 Im00897 - transporter subunit IIC 0.000 -1.85 IEI01_04550 NP_464485.1 Im00897 - transporter subunit IIC 0.000 -1.92 IEI01_04500 NP_464485.1 Im00399 - PTS cellbiose transporter subunit IIB 0.000 -1.92 IEI01_04355 NP_464383.1 Im00835 - peptidoglycan binding protein 0.000 -2.02 IEI01_04235 NP_464385.1 Im00835 - p	IEI01_10385	NP_405025.1	Imo2055		hypothetical protein Imo2161	0.000	-1.07
IEUD_00033 NP_46320.1 Im00221 Im02166	IEI01_06225	NP_403083.1	Imo0201		hypothetical protein Imo2101	0.000	-1.07
IEUO_12040 NP_4661000 Image in transporter submitted 0.000 1.74 IEUO_12040 NP_46650.1 Imo2568 - maltogenic amylase 0.000 -1.78 IEUO_13505 NP_466902.1 Imo2569 - peptide ABC transporter substrate-binding protein 0.000 -1.78 IEUO_1985 NP_466902.1 Imo284 - IolB protein 0.000 -1.85 IEUO_04850 NP_464483.1 Imo0897 - transporter 0.000 -1.89 IEUO_104550 NP_464482.1 Imo0397 - transporter 0.000 -1.89 IEUO_102060 NP_464322.1 Imo0397 - transporter subunit IIC 0.000 -1.96 IEUO_102050 NP_464322.1 Imo2089 - PTS fructose transporter subunit IIA 0.000 -1.96 IEUO_104355 NP_464382.1 Imo0897 - sugar ABC transporter subunit IIA 0.000 -2.02 IEUO_104235 NP_464382.1 Imo0897 - peptidoglycan binding protein 0.000 -2.02 </td <td>IEI01_00485</td> <td>NP_463630.1</td> <td>Imo0097</td> <td></td> <td>PTS mannose transporter subunit IIC</td> <td>0.000</td> <td>-1.07</td>	IEI01_00485	NP_463630.1	Imo0097		PTS mannose transporter subunit IIC	0.000	-1.07
International and the second state of the s	IEI01_00400	NP 466190 1	lmo2668		transcriptional antiterminator BgIG	0.000	-1 74
Introduction Introduction Introduction Introduction Introduction Introduction IEIOL 1305 NP_463031.1 Imod2569 - peptide ABC transporter substrate-binding protein 0.000 -1.78 IEIOL 13055 NP_463314.1 Imod2569 - protease 0.000 -1.85 IEIOL 13055 NP_464485.1 Imod897 - transporter 0.000 -1.85 IEIOL 13350 NP_464232.1 Imod897 - transporter subunit IIC 0.000 -1.96 IEIOL 0.000 NP_46323.1 Imod397 - PTS cellbiose transporter subunit IIA 0.000 -1.96 IEIOL 0.04550 NP_463323.1 Imod370 - peptide/glycan binding protein subunit IIA 0.000 -2.02 IEIOL 0.4355 NP_464385.1 Imod835 - peptide/glycan binding protein 0.000 -2.03 IEIOL 0.4355 NP_464386.1 Imod847 - Npothetical protein imo4347 0.000 -2.10 <td>IEI01_11125</td> <td>NP 465650 1</td> <td>lmo2126</td> <td></td> <td>maltogenic amylase</td> <td>0.000</td> <td>-1 78</td>	IEI01_11125	NP 465650 1	lmo2126		maltogenic amylase	0.000	-1 78
Interlation	IEI01_11125	NP 466092 1	Imo2569		nentide ABC transporter substrate-binding protein	0.000	-1 78
IEIO_10489 NP_464485.1 Im0060 - protease 0.000 -1.85 IEIO1_04550 NP_464485.1 Im00807 - transporter 0.000 -1.85 IEIO1_14310 NP_466230.1 Im02708 - PTS cellbiose transporter subunit IIC 0.000 -1.92 IEIO1_14310 NP_466232.1 Im00399 - PTS fructose transporter subunit IIB 0.000 -1.96 IEIO1_14780 NP_466322.1 Im00859 - geta_glucoside transporter subunit IIA 0.000 -1.96 IEIO1_04235 NP_466322.1 Im00859 - sugar ABC transporter subunit IIA 0.000 -2.02 IEIO1_02435 NP_464362.1 Im00837 - peptidoglycan binding protein 0.000 -2.03 IEIO1_02435 NP_464362.1 Im00837 - protease 0.000 -2.10 IEIO1_02435 NP_463966.1 Im00437 - protease 0.000 -2.10 IEIO1_0455 WP_013731642.1 N NA phage tail protein 0.000	IEI01_13505	NP 463914 1	Imo0384	-	IolB protein	0.000	-1.85
IEIO Index Index Index Index Index Index IEIO NP_a64423.1 Im00897 - PTS cellbiose transporter subunit IIC 0.000 -1.82 IEIO 14310 NP_a66320.1 Im00399 - PTS cellbiose transporter subunit IIC 0.000 -1.92 IEIO 1500 NP_a66322.1 Im00301 - PTS beta-glucoside transporter subunit IIA 0.000 -1.96 IEIO 10355 NP_a66322.1 Im00301 - Statasporter subunit IIA 0.000 -1.96 IEIO 10355 NP_a66326.1 Im0035 - peptidoglycan binding protein 0.000 -2.02 IEIO 10355 NP_a64386.1 Im00437 - hypothetical protein Im0437 0.000 -2.10 IEIO 104355 NP_a64486.1 Im02684 - PTS cellbiose transporter subunit IIC 0.000 -2.12 IEIO1_06455 WP_012581455.1 NA NA phage tail protein 0.000 -2.12 IEIO1_06455 <	IE101_04890	NP 464485 1	Imo0960	-	protease	0.000	-1.85
IEIO_1_4310 NP_46230.1 Im02708 PTS cellbiose transporter subunit IIC 0.000 -1.92 IEIO1_14310 NP_463929.1 Im0399 - PTS cellbiose transporter subunit IIB 0.000 -1.96 IEIO1_1570 NP_463832.1 Im0300 - PTS beta-glucoside transporter subunit IIA 0.000 -1.96 IEIO1_14780 NP_463832.1 Im02800 - dehydrogenase 0.000 -1.99 IEIO1_04355 NP_464385.1 Im00835 - peptidoglycan binding protein 0.000 -2.03 IEIO1_04235 NP_464386.1 Im00837 - peptidoglycan binding protein 0.000 -2.03 IEIO1_04235 NP_464366.1 Im00837 - peptidoglycan binding protein 0.000 -2.01 IEIO1_0450 VP_646362.1 NA NA protease 0.000 -2.10 IEIO1_06450 VP_012581455.1 NA NA phage tail protein 0.000 -2.16 IEIO1_06450 WP_01258155.1 NA NA phage tail protein 0.000 <td>IEI01_04550</td> <td>NP 464423 1</td> <td>Imo0897</td> <td>-</td> <td>transporter</td> <td>0.000</td> <td>-1.89</td>	IEI01_04550	NP 464423 1	Imo0897	-	transporter	0.000	-1.89
IEIO_20260 NP_46292.1 Imo239 - PTS fructose transporter subunit IIB 0.000 - 1.22 IEIO1_02060 NP_463832.1 Imo0399 - PTS fructose transporter subunit IIB 0.000 -1.96 IEIO1_14780 NP_463832.1 Imo0399 - dehydrogenase 0.000 -1.96 IEIO1_02435 NP_463835.1 Imo0859 - sugar ABC transporter subunit IIB 0.000 -2.02 IEIO1_02435 NP_464362.1 Imo0859 - peptidoglycan binding protein 0.000 -2.03 IEIO1_02435 NP_464362.1 Imo0837 - peptidoglycan binding protein 0.000 -2.07 IEIO1_02450 VP_4033164.1 Im00961 - protease 0.000 -2.10 IEIO1_06450 WP_013731642.1 NA NA DUF3168 domain-containing protein 0.000 -2.11 IEIO1_06450 WP_012581555.1 NA NA phage tail protein 0.000 -2.16 IEIO1_06450 WP_012951555.1 NA NA phage ta	IEI01 14310	NP 466230 1	lmo2708	-	PTS cellbiose transporter subunit IIC	0.000	-1.92
IEJ01_01570 NP_463832.1 Im00301 - PTS beta-glucoside transporter subunit IIA 0.000 -1.96 IEJ01_01570 NP_463832.1 Im00301 - dehydrogenase 0.000 -1.99 IEJ01_04355 NP_464385.1 Im00835 - sugar ABC transporter substrate-binding protein 0.000 -2.02 IEJ01_02245 NP_464365.1 Im00835 - peptidoglycan binding protein 0.000 -2.03 IEJ01_02245 NP_464386.1 Im00837 - hypothetical protein Im00437 0.000 -2.01 IEJ01_02455 NP_464486.1 Im00816 - protease 0.000 -2.10 IEJ01_04555 WP_0031642.1 N NA DUF3168 domain-containing protein 0.000 -2.11 IEJ01_06455 WP_012581455.1 N NA phage tail protein 0.000 -2.12 IEJ01_06468 WP_012581455.1 N NA phage tail protein 0.000 -2.16 IEJ01_01355 NP_46508.1 Im02163 - oxidoreductase <	IEI01_02060	NP 463929.1	Imo0399	-	PTS fructose transporter subunit IIB	0.000	-1.96
IEID1_14780 NP_463322.1 Im0280 - sugar ABC transporter substrate-binding protein 0.000 - 1.09 IEID1_14780 NP_463322.1 Im02800 - sugar ABC transporter substrate-binding protein 0.000 -2.02 IEID1_4235 NP_464385.1 Im00835 - peptidoglycan binding protein 0.000 -2.03 IEID1_04235 NP_464386.1 Im00837 - hypothetical protein im0437 0.000 -2.01 IEID1_04495 NP_464486.1 Im00437 - protease 0.000 -2.10 IEID1_04495 NP_466206.1 Im02684 - PTS cellbiose transporter subunit IIC 0.000 -2.11 IEID1_06455 WP_01258155.1 NA NA phage tail protein 0.000 -2.16 IEID1_06450 WP_01258155.1 NA NA phage tail protein 0.000 -2.16 IEID1_0135 NP_465687.1 Im02163 - oxidoreductase 0.000 -2.21 IEID1_00765 NP_465386.1 Im02153 -	IEI01_01570	NP 463832.1	Imo0301	-	PTS beta-glucoside transporter subunit IIA	0.000	-1.96
IEIO1_04355 NP_464385.1 Im00859 - sugar ABC transporter substrate-binding protein 0.000 -2.02 IEIO1_04235 NP_464382.1 Im00835 - peptidglycan binding protein 0.000 -2.03 IEIO1_04235 NP_464386.1 Im00837 - hypothetical protein Im00437 0.000 -2.07 IEIO1_04245 NP_464386.1 Im00961 - protease 0.000 -2.10 IEIO1_06455 WP_003731642.1 NA NA DUF3168 domain-containing protein 0.000 -2.11 IEIO1_06455 WP_012581555.1 NA NA phage tail protein 0.000 -2.16 IEIO1_06450 WP_012951555.1 NA NA phage tail protein 0.000 -2.16 IEIO1_06450 WP_012951555.1 NA NA phage tail protein 0.000 -2.17 IEIO1_06450 NP_465687.1 Im02153 - oxidoreductase 0.000 -2.21 IEIO1_1135 NP_46576.1 Im02153 - aspartate aminotransferase 0.000<	IEI01 14780	NP 466322.1	lmo2800	-	dehvdrogenase	0.000	-1.99
IEIO1_04235 NP_464362.1 Im00835 - peptidglycan binding protein 0.000 - 2.03 IEIO1_02245 NP_463966.1 Im00437 - hypothetical protein Im00437 0.000 -2.07 IEIO1_02455 NP_464486.1 Im00961 - protease 0.000 -2.10 IEIO1_04895 NP_464486.1 Im00961 - protease 0.000 -2.10 IEIO1_0455 WP_003731642.1 NA NA DUF3168 domain-containing protein 0.000 -2.12 IEIO1_06455 WP_012581553.1 NA NA phage tail protein 0.000 -2.16 IEIO1_06470 WP_01255153.1 NA NA phage tail protein 0.000 -2.16 IEIO1_06480 WP_012951555.1 NA NA phage tail protein 0.000 -2.17 IEIO1_07065 NP_465087.1 Im0252 - aspartate aminotransferase 0.000 -2.21 IEIO1_06465 WP_009931626.1 NA NA hypothetical protein 0.000	IEI01 04355	NP 464385.1	lmo0859	-	sugar ABC transporter substrate-binding protein	0.000	-2.02
IEJ01_02245 NP_463966.1 Imo0437 - hypothetical protein Imo0437 0.000 -2.07 IEJ01_02245 NP_463966.1 Imo0961 - protease 0.000 -2.10 IEJ01_02495 NP_464486.1 Imo0961 - protease 0.000 -2.10 IEJ01_0450 WP_003731642.1 NA NA DUF3168 domain-containing protein 0.000 -2.12 IEJ01_06455 WP_012581455.1 NA NA phage tail protein 0.000 -2.13 IEJ01_06470 WP_01258155.1 NA NA phage tail protein 0.000 -2.16 IEJ01_06470 WP_01258155.1 NA NA phage tail protein 0.000 -2.16 IEJ01_06470 WP_01258155.1 NA NA phage tail protein 0.000 -2.16 IEJ01_06470 WP_0465861.1 Imo2163 - zinc ABC transporter substrate-binding protein 0.000 -2.21 IEJ01_0765 NP_46576.1 Imo2252 - aspartate aminotransferase 0.000 -2.2	IEJ01 04235	NP 464362.1	lmo0835	-	peptidoglycan binding protein	0.000	-2.03
IEJ01_04895 NP_464486.1 Imo0961 - protease 0.000 -2.10 IEJ01_06450 WP_003731642.1 NA NA DUF3168 domain-containing protein 0.000 -2.10 IEJ01_14185 NP_466206.1 Imo2684 - PTS cellbiose transporter subunit IIC 0.000 -2.13 IEJ01_06470 WP_012951553.1 NA NA phage tail protein 0.000 -2.16 IEJ01_06470 WP_012951553.1 NA NA phage tail protein 0.000 -2.17 IEJ01_06480 WP_012951553.1 NA NA phage tail protein 0.000 -2.17 IEJ01_06480 WP_012951553.1 NA NA phage tail protein 0.000 -2.17 IEJ01_07655 NP_463686.1 Imo0153 - zinc ABC transporter substrate-binding protein 0.000 -2.21 IEJ01_07656 NP_46376.1 Imo2152 - aspartate aminotransferase 0.000 -2.23 IEJ01_016463 WP_009931626.1 NA hypothetical protein 0.000 <td< td=""><td>IEJ01 02245</td><td>NP 463966.1</td><td>lmo0437</td><td>-</td><td>hypothetical protein Imo0437</td><td>0.000</td><td>-2.07</td></td<>	IEJ01 02245	NP 463966.1	lmo0437	-	hypothetical protein Imo0437	0.000	-2.07
IEJ01_06450 WP_003731642.1 NA DUF3168 domain-containing protein 0.000 -2.10 IEJ01_0455 WP_003731642.1 NA NA PDUF3168 domain-containing protein 0.000 -2.12 IEJ01_06455 WP_012581555.1 NA NA phage tail protein 0.000 -2.13 IEJ01_06450 WP_012951553.1 NA NA phage tail tape measure protein 0.000 -2.16 IEJ01_06480 WP_012951555.1 NA NA phage tail tape measure protein 0.000 -2.16 IEJ01_06480 WP_012951555.1 NA NA phage tail protein 0.000 -2.16 IEJ01_07058 NP_4656861.1 Im02153 - oxidoreductase 0.000 -2.21 IEJ01_1780 NP_465776.1 Im02252 - aspartate aminotransferase 0.000 -2.23 IEJ01_07656 WP_009931626.1 NA NA hypothetical protein 0.000 -2.26 IEJ01_06459 WP_045511.61 Im02120 - maltodextrose utilization protein MalA 0.	IEJ01 04895	NP 464486.1	lmo0961	-	protease	0.000	-2.10
IEJ01_14185 NP_466206.1 Imo2684 - PTS cellbiose transporter subunit IIC 0.000 -2.12 IEJ01_06455 WP_012581455.1 NA NA phage tail protein 0.000 -2.13 IEJ01_06470 WP_01258155.1 NA NA phage tail protein 0.000 -2.16 IEJ01_06480 WP_012951555.1 NA NA phage tail protein 0.000 -2.16 IEJ01_06480 WP_012951555.1 NA NA phage tail protein 0.000 -2.16 IEJ01_07075 NP_465087.1 Imo2153 - oxidoreductase 0.000 -2.21 IEJ01_06465 WP_009931626.1 Imo2153 - zic ABC transporter substrate-binding protein 0.000 -2.21 IEJ01_08455 WP_009931626.1 NA NA hypothetical protein 0.000 -2.23 IEJ01_08295 NP_465116.1 Imo2152 - maltodextrose utilization protein MalA 0.000 -2.26 IEJ01_08295 NP_465146.1 Imo2122 - maltodextrose utilization protein	IEJ01 06450	WP 003731642.1	NA	NA	DUF3168 domain-containing protein	0.000	-2.10
IEJ01_06455 WP_012581455.1 NA NA phage tail protein 0.000 -2.13 IEJ01_06470 WP_01255155.1 NA NA phage tail protein 0.000 -2.16 IEJ01_06470 WP_01255155.1 NA NA phage tail protein 0.000 -2.16 IEJ01_11335 NP_465687.1 Imo2163 - oxidoreductase 0.000 -2.17 IEJ01_00765 NP_463686.1 Imo2153 - zinc ABC transporter substrate-binding protein 0.000 -2.21 IEJ01_01780 NP_465161.1 Im0252 - aspartate aminotransferase 0.000 -2.23 IEJ01_01780 NP_465161.1 Im02122 - N-acetyl-gamma-glutamyl-phosphate reductase 0.000 -2.26 IEJ01_01302 NP_465161.1 Im02122 - maltodextrose utilization protein MalA 0.000 -2.28 IEJ01_08295 NP_465151.1 Im01290 arg/ bifunctional ornithine acetyltransferase/N-acetylglutamate synthase 0.000 -2.23 IEJ01_08290 NP_465151.1 Im01467	IEJ01 14185	NP 466206.1	lmo2684	-	PTS cellbiose transporter subunit IIC	0.000	-2.12
IEJ01_06470 WP_012951553.1 NA NA phage tail tape measure protein 0.000 -2.16 IEJ01_06480 WP_012951555.1 NA NA phage tail tape measure protein 0.000 -2.16 IEJ01_06480 WP_012951555.1 NA NA phage tail protein 0.000 -2.16 IEJ01_11335 NP_465687.1 Imo2153 - oxidoreductase 0.000 -2.21 IEJ01_17050 NP_465776.1 Imo2252 - aspartate aminotransferase 0.000 -2.23 IEJ01_06465 WP_009931626.1 NA NA hypothetical protein 0.000 -2.23 IEJ01_06463 WP_009931626.1 NA NA hypothetical protein 0.000 -2.23 IEJ01_1050 NP_465116.1 Imo1519 <i>argL</i> Mactryse utilization protein MalA 0.000 -2.28 IEJ01_06430 WP_015987290.1 NA NA hypothetical protein 0.000 -2.29 IEJ01_07670 NP_465115.1 Imo1590 <i>argL</i> bifunctional ornithine acetyltransferase	IEJ01 06455	WP 012581455.1	NA	NA	phage tail protein	0.000	-2.13
IEJ01_06480 WP_012951555.1 NA NA phage tail protein 0.000 -2.16 IEJ01_06480 WP_012951555.1 NA NA phage tail protein 0.000 -2.17 IEJ01_11335 NP_465687.1 Imo0153 - oxidoreductase 0.000 -2.21 IEJ01_1780 NP_465687.1 Imo0252 - aspartate aminotransferase 0.000 -2.21 IEJ01_06465 WP_009931626.1 NA NA hypothetical protein 0.000 -2.23 IEJ01_06455 WP_00931626.1 Imo2152 - matodextrose utilization protein 0.000 -2.23 IEJ01_06455 WP_00931626.1 Imo2122 - matodextrose utilization protein MalA 0.000 -2.28 IEJ01_06430 WP_015987290.1 NA NA hypothetical protein 0.000 -2.29 IEJ01_07670 NP_465115.1 Imo1467 arg/ bifunctional ornithine acetyltransferase/N-acetylglutamate synthase 0.000 -2.30 IEJ01_07670 NP_465492.1 Imo1467 - ph	IEJ01 06470	WP 012951553.1	NA	NA	phage tail tape measure protein	0.000	-2.16
IEJ01_11335 NP_465687.1 Imo2163 - oxidoreductase 0.000 -2.17 IEJ01_00765 NP_463686.1 Imo0153 - zinc ABC transporter substrate-binding protein 0.000 -2.21 IEJ01_00765 NP_463686.1 Imo2152 - aspartate aminotransferase 0.000 -2.23 IEJ01_00825 NP_46516.1 Imo1591 argc N-acetyl-gamma-glutamyl-phosphate reductase 0.000 -2.26 IEJ01_08295 NP_46516.1 Imo2122 - maltodextrose utilization protein MalA 0.000 -2.28 IEJ01_08290 NP_465115.1 Imo1590 arg/ bifunctional ornithine acetyltransferase/N-acetylglutamate synthase 0.000 -2.28 IEJ01_08290 NP_465115.1 Imo1590 arg/ bifunctional ornithine acetyltransferase/N-acetylglutamate synthase 0.000 -2.30 IEJ01_07670 NP_465492.1 Imo1467 - phosphate starvation-induced protein PhoH 0.000 -2.34 IEJ01_0390 WP_014390130.1 NA NA hypothetical protein 0.000 -2.36	IEJ01 06480	WP 012951555.1	NA	NA	phage tail protein	0.000	-2.16
IEJ01_0765 NP_463686.1 Imo0153 - zinc ABC transporter substrate-binding protein 0.000 -2.21 IEJ01_11780 NP_465776.1 Imo2252 - aspartate aminotransferase 0.000 -2.21 IEJ01_06465 WP_009931626.1 NA NA hypothetical protein 0.000 -2.23 IEJ01_11105 NP_465166.1 Imo1591 argC N-acetyl-gamma-glutamyl-phosphate reductase 0.000 -2.28 IEJ01_06430 WP_015987290.1 NA NA hypothetical protein 0.000 -2.28 IEJ01_08290 NP_465115.1 Imo1591 arg/ bifunctional ornithine acetyltransferase/N-acetylglutamate synthase 0.000 -2.30 IEJ01_08290 NP_465115.1 Imo1540 arg/ bifunctional ornithine acetyltransferase/N-acetylglutamate synthase 0.000 -2.30 IEJ01_07670 NP_4654992.1 mo1467 - phosphate starvation-induced protein PhoH 0.000 -2.34 IEJ01_0309 WP_014390130.1 NA NA hypothetical protein 0.000 -2.36	IEJ01_11335	NP 465687.1	lmo2163	-	oxidoreductase	0.000	-2.17
IEJ01_11780 NP_465776.1 Imo2252 - aspartate aminotransferase 0.000 -2.21 IEJ01_06465 WP_009931626.1 NA Nypothetical protein 0.000 -2.23 IEJ01_06465 WP_009931626.1 NA Nypothetical protein 0.000 -2.23 IEJ01_105 NP_465116.1 Imo1591 <i>argC</i> N-acetyl-gamma-glutamyl-phosphate reductase 0.000 -2.28 IEJ01_06430 WP_015987290.1 NA NA hypothetical protein 0.000 -2.29 IEJ01_08290 NP_465115.1 Imo1590 <i>argJ</i> bifunctional ornithine acetyltransferase/N-acetylglutamate synthase 0.000 -2.30 IEJ01_07670 NP_465492.1 Imo1467 - phosphate starvation-induced protein PhoH 0.000 -2.34 IEJ01_0390 WP_014390130.1 NA NA hypothetical protein 0.000 -2.34	IEJ01_00765	NP_463686.1	lmo0153	-	zinc ABC transporter substrate-binding protein	0.000	-2.21
IEJ01_06465 WP_009931626.1 NA hypothetical protein 0.000 -2.23 IEJ01_08295 NP_465116.1 Imo1591 argC N-acetyl-gamma-glutamyl-phosphate reductase 0.000 -2.26 IEJ01_108295 NP_465145.1 Imo2122 - maltodextrose utilization protein MalA 0.000 -2.28 IEJ01_08290 NP_465115.1 Imo1590 argJ hypothetical protein 0.000 -2.29 IEJ01_07670 NP_465115.1 Imo1467 - phosphate starvation-induced protein PhoH 0.000 -2.30 IEJ01_07670 NP_4654992.1 Imo1467 - phosphate starvation-induced protein PhoH 0.000 -2.34	IEJ01_11780	NP_465776.1	lmo2252	-	aspartate aminotransferase	0.000	-2.21
IEJ01_08295 NP_465116.1 Imo1591 argC N-acetyl-gamma-glutamyl-phosphate reductase 0.000 -2.26 IEJ01_011105 NP_465646.1 Imo2122 - maltodextrose utilization protein MalA 0.000 -2.28 IEJ01_06430 WP_015987290.1 NA NA hypothetical protein 0.000 -2.29 IEJ01_06300 WP_615155.1 Imo1590 argJ bifunctional ornithine acetyltransferase/N-acetylglutamate synthase 0.000 -2.30 IEJ01_06390 WP_014930130.1 NA NA hypothetical protein 0.000 -2.34	IEJ01_06465	WP_009931626.1	NA	NA	hypothetical protein	0.000	-2.23
IEJ01_11105 NP_465646.1 Imo2122 - maltodextrose utilization protein MalA 0.000 - 2.28 IEJ01_06430 WP_015987290.1 NA NA hypothetical protein 0.000 - 2.29 IEJ01_08290 NP_465115.1 Imo1590 arg/ bifunctional ornithine acetyltransferase/N-acetylglutamate synthase 0.000 - 2.30 IEJ01_07670 NP_464992.1 Imo1467 - phosphate starvation-induced protein PhoH 0.000 - 2.34 IEJ01_06390 WP_014930130.1 NA NA hypothetical protein 0.000 - 2.36	IEJ01_08295	NP_465116.1	lmo1591	argC	N-acetyl-gamma-glutamyl-phosphate reductase	0.000	-2.26
IEJ01_06430 WP_015987290.1 NA NA hypothetical protein 0.000 -2.29 IEJ01_08290 NP_465115.1 Imo1590 arg/ bifunctional ornithine acetyltransferase/N-acetylglutamate synthase 0.002 -2.30 IEJ01_07670 NP_464992.1 Imo1467 - phosphate starvation-induced protein PhoH 0.000 -2.34 IEJ01_0390 WP_01430130.1 NA NA hypothetical protein 0.000 -2.36	IEJ01_11105	NP_465646.1	lmo2122		maltodextrose utilization protein MalA	0.000	-2.28
IEJ01_08290 NP_465115.1 Imo1590 argJ bifunctional ornithine acetyltransferase/N-acetylglutamate synthase 0.002 -2.30 IEJ01_07670 NP_464992.1 Imo1467 phosphate starvation-induced protein PhoH 0.000 -2.34 IEJ01_06390 WP_014930130.1 NA NA hypothetical protein 0.000 -2.36	IEJ01 06430	WP 015987290.1	NA	NA	hypothetical protein	0.000	-2.29
IEJ01_07670 NP_464992.1 Imo1467 phosphate starvation-induced protein PhoH 0.000 -2.34 IEJ01_06390 WP_014930130.1 NA NA hypothetical protein 0.000 -2.36	IEJ01 08290	NP 465115.1	lmo1590	argJ	bifunctional ornithine acetyltransferase/N-acetylglutamate synthase	0.002	-2.30
IEJ01_06390 WP_014930130.1 NA NA hypothetical protein 0.000 -2.36	IEJ01_07670	NP_464992.1	lmo1467	-	phosphate starvation-induced protein PhoH	0.000	-2.34
	IEJ01_06390	WP_014930130.1	NA	NA	hypothetical protein	0.000	-2.36

Table S5.5 continued (4 of 6): Differentially expressed genes in variant 14 when compared to Listeria monocytogenes LO28 WT

						Variant 14
LO28 ID	Protein product	Locus tag	Locus	Product	Padj	$\log_2 fold \ change$
15104 44420	ND 465640.4	Jac - 24.25		ADC to a substant a bit discusses in	0.000	2.20
IEJ01_11120	NP_465649.1	Im02125	-	sugar ABC transporter substrate-binding protein	0.000	-2.39
IEJ01_14785	NP_400323.1	IIII02801	-	N-acetyImannosamme-o-phosphate 2-epimerase	0.000	-2.41
IEJ01_06460	WP_014930131.1	INA Ime2121	NA	nypotnetical protein	0.000	-2.41
IEJ01_11100	NP_405045.1	IIIIOZIZI	-	marcose prospriorylase	0.000	-2.42
IEJ01_06475	ND 464251 1	INA Imo0724	NA	phage tall family protein	0.000	-2.49
IEJ01_05090	NP_404251.1	NA	-	P27 family place terminace small subunit	0.000	-2.52
IEJ01_06400	WP_014929342.1	NA	NA	DUES59 domain-containing protein	0.000	-2.55
16101_00385	WP_010991273.1	NA	NA		0.000	2.54
IEJ01_00393	ND 465001 1	Imo2468		ATP-dependent Cla protesse proteolytic subunit	0.000	-2.58
IEJ01_00420	NP_403331.1	Imo0722	-	metul-accepting chemotaxis protein	0.000	-2.58
IEI01_06415	WP 014929544 1	NA	NΔ	nhage portal protein	0.000	-2.58
IEI01_06440	WP 014929549 1	NΔ	NA	phage bead-tail adapter protein	0.000	-2.55
IEI01 11115	NP 465648 1	lmo2124	-	sugar ABC transporter permease	0.000	-2.69
IEI01_06425	WP 012581458 1	NA	ΝΔ	nhage major cansid protein	0.000	-2.05
IEI01_06445	WP 009917701 1	NΔ	NA	hypothetical protein	0.000	-2.81
IEI01_00445	NP 465647 1	lmo2123	-	sugar ABC transporter permease	0.000	-2.87
IEI01 10940	NP 465614.1	Imo2090	araG	argininosuccinate synthase	0.000	-3.05
IEI01 11770	NP 465774 1	Imo2250	arnl	amino acid ABC transporter permease	0.000	-3.07
IEI01_06435	WP 012951549 1	NΔ	NΔ	nhage gn6-like head-tail connector protein	0.000	-3.07
IEI01_00455	NP 465615 1	lmo2091	araH	argininosuccinate lyase	0.000	-3.17
IEI01_10545	NP_465775_1	lmo2251	-	amino acid ABC transporter ATP-hinding protein	0.000	-3.28
IEI01_03660	NP 464245 1	Imo0718	-	hypothetical protein Imo0718	0.000	-4.46
IEI01_03650	NP 464243 1	Imo0716	flil	flagellum-specific ATP synthase	0.000	-4 57
IEI01_03655	NP 464244 1	Imo0717	-	transglycosylase	0.000	-4 64
IEI01_03645	NP 464242 1	Imo0715	fliH	flagellar assembly protein H	0.000	-4 70
IEI01_03640	NP 464241.1	Imo0714	fliG	flagellar motor switch protein FliG	0.000	-4.70
IEI01_03635	NP 464240.1	Imo0713	fliF	flagellar MS-ring protein FliF	0.000	-4.86
IEJ01 03490	NP 464211.1	lmo0684	-	hypothetical protein Imo0684	0.000	-5.19
IEI01 03630	NP 464239.1	lmo0712	fliF	flagellar hook-basal body protein EliE	0.000	-5.30
IEI01 03510	NP 464215.1	Imo0688	-	hypothetical protein Imo0688	0.000	-5.30
IEJ01 03495	NP 464212.1	lmo0685	-	flagellar motor protein MotA	0.000	-5.43
IEJ01 03595	NP 464232.1	lmo0705	flaK	flagellar hook-associated protein FlgK	0.000	-5.44
IEJ01 03470	NP 464207.1	lmo0680	flhA	flagellar biosynthesis protein FlhA	0.000	-5.48
IEJ01 03605	NP 464234.1	lmo0707	fliD	flagellar capping protein FliD	0.000	-5.50
IEJ01 03515	NP 464216.1	lmo0689	-	chemotaxis protein CheV	0.000	-5.51
IEJ01 03600	NP 464233.1	lmo0706	flqL	flagellar hook-associated protein FlgL	0.000	-5.55
IEJ01 03610	NP_464235.1	lmo0708	-	flagellar protein	0.000	-5.58
IEJ01_03505	NP 464214.1	lmo0687	-	hypothetical protein Imo0687	0.000	-5.58
IEJ01_03485	NP_464210.1	lmo0683	-	chemotaxis protein CheR	0.000	-5.60
IEJ01_03585	NP 464230.1	lmo0703	-	hypothetical protein Imo0703	0.000	-5.60
IEJ01_03550	NP_464223.1	lmo0696	flgD	flagellar basal body rod modification protein	0.000	-5.61
IEJ01_03475	NP_464208.1	lmo0681	-	flagellar biosynthesis regulator FlhF	0.000	-5.61
IEJ01_03615	NP_464236.1	lmo0709	-	hypothetical protein Imo0709	0.000	-5.64
IEJ01_03535	NP_464220.1	lmo0693	-	flagellar motor switch protein FliY	0.000	-5.64
IEJ01_03540	NP_464221.1	lmo0694	-	hypothetical protein Imo0694	0.000	-5.65
IEJ01_03625	NP_464238.1	lmo0711	flgC	flagellar basal body rod protein FlgC	0.000	-5.65
IEJ01_03590	NP_464231.1	lmo0704	-	hypothetical protein Imo0704	0.000	-5.66
IEJ01_03620	NP_464237.1	lmo0710	flgB	flagellar basal-body rod protein FlgB	0.000	-5.67
IEJ01_03465	NP_464206.1	lmo0679	flhB	flagellar biosynthesis protein FlhB	0.000	-5.70
IEJ01_03545	NP_464222.1	lmo0695	-	hypothetical protein Imo0695	0.000	-5.86
IEJ01_03480	NP_464209.1	lmo0682	flgG	flagellar basal body rod protein FlgG	0.000	-5.87
IEJ01_08960	NP_465224.1	lmo1699	-	chemotaxis protein	0.000	-5.89
IEJ01_03575	NP_464228.1	lmo0701	-	hypothetical protein Imo0701	0.000	-5.91
IEJ01_03565	NP_464226.1	lmo0699	fliM	flagellar motor switch protein FliM	0.000	-5.91
IEJ01_03570	NP_464227.1	lmo0700	-	flagellar motor switch protein FliY	0.000	-5.91
IEJ01_03580	NP_464229.1	lmo0702	-	hypothetical protein Imo0702	0.000	-5.92
IEJ01_03500	NP_464213.1	lmo0686	motB	flagellar motor rotation MotB	0.000	-5.92
IEJ01_03555	NP_464224.1	lmo0697	flgE	flagellar hook protein FlgE	0.000	-5.92
IEJ01 03530	NP 464219.1	lmo0692	cheA	two-component sensor histidine kinase CheA	0.000	-5.95

Table S5.5 continued (5 of 6): Differentially expressed genes in variant 14 when compared to Listeria monocytogenes LO28 WT

Table S5.5 continued (6 of 6): Differentially expressed genes in variant 14 when compared to Listeria monocytogenes LO28 WT

						Variant 14
LO28 ID	Protein product	Locus tag	Locus	Product	Padj	log_2 fold change
IEJ01_03525	NP_464218.1	lmo0691	cheY	chemotaxis response regulator CheY	0.000	-5.99
IEJ01_03460	NP_464205.1	lmo0678	fliR	flagellar biosynthesis protein FliR	0.000	-6.03
IEJ01_08965	NP_465225.1	lmo1700	-	hypothetical protein Imo1700	0.000	-6.12
IEJ01_03560	NP_464225.1	lmo0698	-	flagellar motor switch protein	0.000	-6.16
IEJ01_03520	NP_464217.1	lmo0690	flaA	flagellin	0.000	-7.43
IEJ01_07680	NP_464994.1	lmo1469	rpsU	30S ribosomal protein S21	0.000	-19.80
IEJ01_07675	NP_464993.1	lmo1468		hypothetical protein Imo1468	0.000	-20.08

Table S5.6: Differentially expressed genes in variant 14EV1 when compared to Listeria monocytogenes LO28 WT

						14EV1
LO28 ID	Protein product	Locus tag	Locus	Protein name	Padj	log_2 fold change
IEJ01_13955	NP_466173.1	lmo2651	-	PTS mannitol transporter subunit IIA	0.000	3.58
IEJ01_13950	NP_466172.1	lmo2650	-	MFS transporter	0.000	3.55
IEJ01_13940	NP_466170.1	lmo2648	-	phosphotriesterase	0.000	3.29
IEJ01_13935	NP_466169.1	lmo2647	-	creatinine amidohydrolase	0.001	3.15
IEJ01_13945	NP_466171.1	lmo2649	ulaA	PTS system ascorbate transporter subunit IIC	0.000	2.64
IEJ01_04465	NP_464406.1	lmo0880	-	wall associated protein precursor	0.000	2.31
IEJ01_05065	NP_464519.1	lmo0994	-	hypothetical protein Imo0994	0.000	2.25
IEJ01_13925	YP_008475644.1	lmo2644a	-	hypothetical protein Imo2644a	0.000	1.94
IEJ01_11585	NP_465737.1	lmo2213	-	hypothetical protein Imo2213	0.000	1.73
IEJ01_13930	NP_466168.1	lmo2646	-	hypothetical protein Imo2646	0.002	1.73
IEJ01_01380	NP_463794.1	lmo0263	inlH	internalin H	0.000	1.61
IEJ01_04655	NP_464439.1	lmo0913	-	succinate semialdehyde dehydrogenase	0.000	1.60
IEJ01_07670	NP_464992.1	lmo1467	-	phosphate starvation-induced protein PhoH	0.000	-1.86
IEJ01_07680	NP_464994.1	lmo1469	rpsU	30S ribosomal protein S21	0.000	-19.62
IEJ01_07675	NP_464993.1	lmo1468	-	hypothetical protein Imo1468	0.000	-19.89

Table S5.7: Differentially expressed genes in variant 14EV2 when compared to Listeria monocytogenes LO28 WT

		0		· ·· ·· ·· ·· ·· · · · ·· ·· ·· · · ·		14EV2
LO28 ID	Protein product	Locus tag	Locus	Protein name	Padj	log ₂ fold change
				-		
IEJ01_13940	NP_466170.1	lmo2648	-	phosphotriesterase	0.000	3.33
IEJ01_13935	NP_466169.1	lmo2647	-	creatinine amidohydrolase	0.001	2.85
IEJ01_13950	NP_466172.1	lmo2650	-	MFS transporter	0.000	2.17
IEJ01_13955	NP_466173.1	lmo2651	-	PTS mannitol transporter subunit IIA	0.000	2.16
IEJ01_13930	NP_466168.1	lmo2646	-	hypothetical protein Imo2646	0.000	2.09
IEJ01_13925	YP_008475644.1	lmo2644a	-	hypothetical protein Imo2644a	0.000	2.05
IEJ01_11560	NP_465732.1	lmo2208	-	hypothetical protein Imo2208	0.000	1.81
IEJ01_13945	NP_466171.1	lmo2649	ulaA	PTS system ascorbate transporter subunit IIC	0.000	1.72
IEJ01_02250	NP_463967.1	lmo0438	-	hypothetical protein Imo0438	0.008	1.69
IEJ01_11955	NP_465814.1	lmo2290	-	protein gp13	0.000	-1.58
IEJ01_12000	NP_465823.1	lmo2299	-	portal protein	0.000	-1.58
IEJ01_11970	NP_465817.1	lmo2293	-	protein gp10	0.000	-1.59
IEJ01_11985	NP_465820.1	lmo2296	-	phage coat protein	0.000	-1.66
IEJ01_14310	NP_466230.1	lmo2708	-	PTS cellbiose transporter subunit IIC	0.000	-1.67
IEJ01_12015	WP_012582399.1	NA	NA	NA	0.000	-1.76
IEJ01_11995	NP_465822.1	lmo2298	-	protein gp4	0.000	-1.81
IEJ01_11975	NP_465818.1	lmo2294	-	protein gp9	0.000	-1.86
IEJ01_11980	NP_465819.1	lmo2295	-	protein gp8	0.000	-1.90
IEJ01_07670	NP_464992.1	lmo1467	-	phosphate starvation-induced protein PhoH	0.000	-1.92
IEJ01_11965	NP_465816.1	lmo2292	-	protein gp11	0.000	-1.93
IEJ01_11950	NP_465813.1	lmo2289	-	protein gp14	0.000	-1.94
IEJ01_00525	NP_463638.1	lmo0105	-	chitinase B	0.000	-1.94
IEJ01_11960	NP_465815.1	lmo2291	-	major tail shaft protein	0.000	-2.13
IEJ01_11570	NP_465734.1	lmo2210	-	hypothetical protein Imo2210	0.000	-2.43
IEJ01_07680	NP_464994.1	lmo1469	rpsU	30S ribosomal protein S21	0.000	-19.96
IEJ01_07675	NP_464993.1	lmo1468	-	hypothetical protein Imo1468	0.000	-20.24

						Variant 14		14EV1		14EV2
LO28 ID	Protein product	Locus tag	ocus	Protein name	Padj	log ₂ fold change	Padj	log ₂ fold change	Padj	log ₂ fold change
IE101 04510) NP 464415.1	1 6880om	sbR1	ositive regulator of sigma-B activity	0.847	0.02	0.836	0.03	0.904	-0.01
IEJ01_00805	NP_463694.1	lmo0161 r	sbR2	nypothetical protein Imo0161	0.000	-0.83	0.748	0.04	0.040	0.23
IEJ01_08555	NP_465167.1	lmo1642 r	sbR3	sigma factor regulator	0.000	0.93	0.227	0.13	0.625	0.05
IEJ01_09695	NP_465367.1	lmo1842 r	sbR4	ypothetical protein lmo1842	0.719	0.04	0.983	-0.01	0.295	-0.11
IEJ01_04060	NP_464326.1	lmo0799	rsbL	ypothetical protein lmo0799	0.565	0.07	0.990	0.00	0.500	0.09
IEJ01_0451	NP_464416.1	lmo0890	rsbS	regative regulation of sigma-B activity	0.028	-0.26	0.370	-0.12	0.204	-0.15
IEJ01_0452	NP_464418.1	lmo0892	rsbU	serine phosphatase	0.365	-0.08	0.989	0.00	0.256	0.11
IEJ01_04530) NP_464419.1	lmo0893	rsbV	anti-anti-sigma factor (antagonist of RsbW)	0.000	1.39	0.648	-0.06	0.091	0.17
IEJ01_0453	NP_464420.1	lmo0894 /	was	serine-protein kinase RsbW	0.000	1.26	0.794	0.04	0.058	0.17
IEJ01_04540) NP_464421.1	lmo0895	sigB	RNA polymerase sigma factor SigB	0.000	1.68	0.113	0.14	0.001	0.27
IEJ01_04545	NP_464422.1	lmo0896	rsbX	ndirect negative regulation of sigma B dependant gene expression (serine phosphatase)	0.000	1.93	0.000	0.27	0.000	0.35
6

General discussion

Introduction

Listeria monocytogenes is generally considered to be a robust microorganism, capable of growing and surviving in a wide range of adverse conditions such as low pH, low temperature and low a_w (NicAogáin and O'Byrne, 2016), and can adapt efficiently to changing environments including conditions inside the human body. These features allow *L. monocytogenes* to persist in the food chain, and establish life-threatening listeriosis in the very young, elderly, immunocompromised, and in pregnant women (NicAogáin and O'Byrne, 2016; Toledo-Arana et al., 2009).

There is an inherent heterogeneity in microbial populations that further contributes to the ubiquitous nature of *L. monocytogenes* by enhancing its capacity to cope with environmental stresses during transmission from the environment to the human host. This heterogeneity leads to stochastic differences in stress response between individual cells of a population, and to differential survival of a small fraction of the population after exposure to lethal stresses such as heat or low pH, resulting in tailing of the inactivation curve. *L. monocytogenes* has served as a model species in a large number of studies on the impact of strain diversity and the role of population heterogeneity in adaptive stress response and subsequent survival capacity (Karatzas et al., 2005; Metselaar et al., 2013; Van Boeijen et al., 2010; Van der Veen and Abee, 2011; Vanlint et al., 2012).

Mutation rate and isolation of a mutator strain

Most authors have investigated the diversity and heterogeneity of *L. monocytogenes* by working on standing genetic variation. I.e., they have investigated the diversity and heterogeneity that was already present in populations. In contrast, in chapter 2, we have investigated the rate at which new mutations are generated. Mutations in bacteria are either produced stochastically during replication of DNA, or after environmental insults that lead to DNA damage, and require repair by genes involved in the SOS response (Van der Veen et al., 2010).

Chapter 6

The trade-off between the positive (adaptive) effect of beneficial mutations, and the negative effects of deleterious mutations that increase genetic load, is believed to be the cause of the low mutation rates that are typically observed in populations (Desai and Fisher, 2011; Lynch, 2011; Sniegowski and Raynes, 2013; Wielgoss et al., 2013). We investigated the mutation rate of 20 strains of *L. monocytogenes*, and found one mutator strain (FBR16) with a 100-1000-fold increase in mutation rate, and identified an insertion in the DNA mismatch repair gene *mutS* (Imo1403) that was responsible for the observed phenotype. In addition, we found another strain (H7767) that had a high sequence diversity in the *mutS* but this did not result in a mutator phenotype for this strain. One explanation would be the presence of additional repair systems in H7767, which could be elucidated by measuring the mutation rate of a $\Delta mutS$ mutation in strain H7767.

The fluctuation analysis that is used in chapter 2 is a powerful tool to estimate mutation rates. However, there are practical limitations to this technique. It derives a mutation rate from a single gene under specific conditions, and the fitness of the phenotype that is under study (rifampicin resistance) has a strong influence on the number of mutants that can be found. This can lead to bias in the estimation of mutation rates in conditions such as low temperature, where the *rpoB* mutants are known to be less fit (data not shown). However, when these limitations are taken into account, mutation rates can be quickly compared between strains in the same conditions. Although mutation rate has received little attention in *L. monocytogenes*, recent studies have investigated the mutation rate in persister strains found in food processing facilities (Harrand et al., 2020). The authors have found very little differences in SNPs, and suggested that the main factor driving strain diversification in processing facilities are prophages.

Although an organism's mutation rate is generally considered to be almost constant (Lynch, 2010; Drake, 1991), the optimal mutation rate depends on the specific environment that the cells are in (Elena and Lenski, 2003; Eyre-Walker and Keightley, 2007; Kimura, 1967; Perfeito et al., 2007). Under optimal (e.g., laboratory) conditions, mutator strains only occur sporadically (Boe et al., 2000; de Visser, 2002; Marinus, 2010), and very high mutation rates have been shown to be potentially detrimental to fitness (Sprouffske et al., 2018). However, in natural environments, where (mild) stress is the default (Hallsworth, 2018), a much higher prevalence of mutator strains has been observed (Hall and Henderson-Begg, 2006). Examples are mutator strains amongst clinical isolates of pathogenic E. coli (Denamur et al., 2002) Pseudomonas aeruginosa (Oliver, 2015), and food pathogens such as Salmonella spp. and Staphylococcus aureus (Sheng et al., 2020; Wang et al., 2018; Wang et al., 2013). This raises questions about the absence of suspected mutator genotypes of L. monocytogenes in databases such as RefSeq (see chapter 2). As the optimal mutation rate is a function of genotype and environment, it is possible that mutator strains are less adaptive in a species such as *L. monocytogenes* that is able to thrive in diverse conditions (Freitag et al., 2009). Did we happen to find a very rare mutator in *L. monocytogenes*, caused by an insertion in *mutS*? Or is there selection against mutator strains, caused by the genetic load of a high mutation rate, explaining their absence from the databases? Competition experiments between mutator and WT strains of *L. monocytogenes* EGD have suggested that competitive fitness and virulence of the mutator strain were lower in a mouse model (Mérino et al., 2002), while homologous recombination was increased 15-fold, pointing to a transient mutator phenotype. In addition, very high mutation rates have been shown to limit adaptation in E. coli (Sprouffske et al., 2018). Whether the lower fitness that was observed for the mutator strain of EGD (Mérino et al., 2002) translates to FBR16 remains to be elucidated, by direct competition experiments in FBR16 and FBR16 mutS repaired.

Variants can be found in multiple strains after exposure to a variety of stresses

Population heterogeneity, generated for instance by mutations, has been studied by inactivation of multiple strains of *L. monocytogenes* by high hydrostatic pressure (HHP) (Van Boeijen et al., 2010), heat, and acid (Metselaar et al., 2013) and revealed considerable tailing of inactivation curves, allowing for isolation of stable resistant variants from the tail. Previous work used phenotyping and genomic analysis to investigate *L. monocytogenes* LO28 variants that were exposed to HHP, revealed significant population diversity, including

a subset with mutations and deletions in the ctsR gene. The ctsR variants had a multiplestress resistant phenotype, which was linked to the increased expression of genes encoding Clp proteases resulting from a defect in the repressor function of CtsR (Van Boeijen et al., 2010). However, these *ctsR* variants were shown to have a reduced maximum specific growth rate and also a reduced virulence potential in a mouse model (Van Boeijen et al., 2010). Interestingly, these HHP selected variants showed cross resistance to other stresses including heat and acid stress. Further work by Metselaar et al. (2013) resulted in isolation of additional variants that were isolated after a single exposure to acid stress. Chapter 3 focusses on two of these latter variants; variant 14, with a large deletion that spans the whole rpsU gene, as well as yqeY and half of phoH; and variant 15, with a single point mutation in rpsU that resulted in an amino acid substitution from arginine to proline in the RpsU protein, RpsU^{17Arg-Pro}. For these variants, enhanced stress-resistance was correlated with increased activity of the glutamate decarboxylase (GAD) system (Metselaar et al., 2015), previously reported to contribute to *L. monocytogenes* acid resistance (Cotter et al., 2001; Feehily and Karatzas, 2013; Karatzas et al., 2012). In chapter 3, we investigated additional mechanisms contributing to the observed multiple stress-resistant phenotype of the variants. In variants 14 and 15, about 70% of the 145 genes of the SigB regulon included in the analysis, were upregulated, although no mutations in the sigB gene or its regulatory genes were found (Metselaar et al., 2015). The activation of SigB-mediated stress defence offers an explanation for the multiple-stress resistant phenotype observed in *rpsU* variants 14 and 15. Moreover, our variants 14 and 15, when grown in BHI, display a pattern of gene expression that suggests mitigation of catabolite repression, and elevated glycerol consumption, with the associated high activity of the virulence regulator gene prfA. Notably, the upregulation of the PrfA/SigB-regulated attachment and invasion genes in IA and in IB in these variants and the observed higher adhesion/invasion to Caco-2 cells of the variants compared to the WT (Koomen et al., 2018) suggests that virulence potential of these variants is higher than that of the L. monocytogenes LO28 WT, but additional studies are required to confirm this.

Modelling and validation of the ecological behaviour of *L. monocytogenes* WT and stress resistant variants 14 and 15 indicated that multiple stress resistance could contribute to increased performance along the food chain, which, in combination with the conceivable higher survival of acidic conditions in the stomach, could result in a higher exposure and probability of disease (Abee et al., 2016; Metselaar et al., 2016). It cannot be excluded that

following the initial selection of multiple stress resistant variants (Abee et al., 2016), other variants with additional mutations can originate from the ancestor variant. In chapters 4 and 5 we tested this idea by subjecting two parallel cultures for variant 15, and two parallel cultures for variant 14, to an experimental evolution regime (see Figure 6.1) where we selected for increased fitness, measured as maximum specific growth rate (μ_{max}). Both for variant 15, with a point mutation in rpsU, and for variant 14 with a whole deletion of rpsU, the selection for increased fitness resulted in fixing additional mutations that lead to shifting the trade-off between fitness and stress resistance, as summarized in Figure 6.4. Although variant 15EV1 and variant 15EV2 both fixed a compensatory mutation in the 17th codon of rpsU (codons CAT and ACT respectively), they did not fix the same mutation, and we did not find a reversion to the CGT codon that results in RpsU^{17Arg} that is present in the LO28 WT. Within a single mutational step, one of 9 different codon changes can occur at position 17, of which 6 lead to a codon that does not code for proline on position 17 in RpsU (see Table 6.1) and only one of the nine mutations results in an arginine, conceivably offering an explanation for why we did not select a variant with the WT RpsU^{17Arg} codon. In addition, based on the slight difference in μ_{max} and proteomic profile between 15EV1 and 15EV2, we hypothesize that the RpsU^{17Arg-His} of 15EV1 is slightly more efficient in restoring the WT phenotype than RpsU^{17Arg-Thr} of 15EV2.

Isolate	Codon		1	Amino acid	AA change
Variant 15	С	С	Т	Proline	-
	С	С	G	Proline	No
	С	С	А	Proline	No
	С	С	С	Proline	No
	G	С	Т	Alanine	Yes
15EV2	A	С	т	Threonine	Yes
	Т	С	Т	Phenylalanine	Yes
LO28 WT	С	G	Т	Arginine	Yes
15EV1	С	A	т	Histidine	Yes
	С	Т	Т	Leucine	Yes

 Table 6.1: Possible mutations in one mutational step from variant 15

Figure 6.1: Summary of the experimental procedure used in this thesis.

A heterogeneous population of cells including WT and stress resistant variants (a) was exposed to acid stress (b), leading to differential survival. From the surviving population (c), single cells with a constitutively higher stress resistance but reduced fitness were selected and exposed to consecutive rounds of experimental evolution (d), ultimately selecting for evolved variants with increased growth rate and reduced, WT-like, stress resistance (e).

Lower fitness in variants is only indirectly linked to SigB activation

In chapter 4 and 5, we described evolved variants with higher fitness, that originated from variants with lower fitness and multiple stress resistance under non-stressed conditions (see Figure 6.1). If the major negative effect on fitness would come from energy-consuming SigB activation, we would expect the experimental evolution to select for mutations that inactivate either *sigB* or its regulating sequences. However, no mutation(s) were found in *sigB*, or genes of the SigB operon, which suggests that the apparent induction, and subsequent relaxation of SigB may be linked to the observed differences in the ribosomes. From an evolutionary perspective, we expect most mutations to be deleterious (Elena and Lenski, 2003; Eyre-Walker and Keightley, 2007; Kimura, 1967; Perfeito et al., 2007), and we expect the number of mutations that disrupt SigB activation to be much higher than the

number of mutations that restore ribosome functioning. As we did not find any mutations that disrupt the function of SigB, we suggest that the fitness gain is the primary trait under selection, and that the SigB activation is a response to it, not its cause. However, the interaction between mutations in RpsU and activation of SigB is still unknown.

In addition, in *L. monocytogenes*, stress induces the dimerization of 70S ribosomes into translationally silent 100S ribosomes that are associated with dormancy and robustness (Kline et al., 2015). Cells with a larger fraction of 100S ribosomes are more robust to stress, however, at the expense of fitness, as the 100S ribosomes need to be split into 70S ribosomes before they become active again. Preliminary results of sucrose density centrifugation showed that in variants 14 and 15 a larger fraction of 100S ribosomes exist, with relatively more unassembled ribosomes in variant 14 (see Figure 6.2). The existence of 100S ribosomes in both variants suggests an additional level of interaction between the ribosomes and the stress response that may add to the lower fitness phenotype.

Figure 6.2: Ribosome profiles of L. monocytogenes LO28 wild type, and variants 14 and 15.

Possible interaction between RpsU and SigB

The RpsU^{17Arg-Pro} mutation in variant 15, in combination with the downregulation of *rpsU* in this variant (Metselaar et al., 2015; Koomen et al., 2018) is presumably responsible for a loss of RpsU function that has phenotypic effects that are highly similar to the complete deletion of *rpsU* in variant 14. This is supported by the observation that the RpsB^{22Arg-Ser}

substitution in the ribosomal S2 gene (rpsB, Imo1658) that was found in variant 14EV2, when introduced to variant 15, also decreased stress resistance and increased the maximum specific growth rate (data not shown). Activation of SigB is controlled by the stressosome, that integrates and relays a range of stress signals and activates the SigB regulon (Guldimann et al., 2016; NicAogáin and O'Byrne, 2016; Radoshevich and Cossart, 2018, Dessaux et al., 2020). The exact mechanism by which the stressosome responds to signals from, or induced by, the ribosome remains largely unknown. In the widely accepted (in vitro) stressosome model proposed by Williams et al. (2019) a signaling cascade of RsbU, RsbV and RsbW and ending in the activation of SigB, is triggered by the stressosome after phosphorylation of RsbR and RsbS (see Figure 6.3). In both variant 14 and variant 15, proteomics shows a strong downregulation of RsbS. The expression of the *rsbS* gene is not significantly downregulated in the DNA-microarray data of variants 14 and 15, nor in the RNA-seq analysis of variant 14, suggesting that the low level of RsbS protein in variants 14 and 15 is the result of post-translational regulation. Conceivably, this downregulation of RsbS leads to the release of RsbT, as proposed in the model of Williams et al. (2019) (see Figure 6.3), that can then associate with RsbU to generate a downstream signal, ultimately leading to the release of SigB. Our RNA analysis indicated that both sigB and rsbX were transcribed in variant 14. RsbX is a feedback phosphatase (Xia et al., 2016) under direct control of SigB, and thought to reset the stressosome to its inactive position after induction. The upregulation of this negative feedback system without a reversion of the SigB levels to default, suggests that the stress signal coming from the ribosome is continuous during exponential growth. In addition, the revised stressosome model presented by Dessaux and co-authors (2020a) suggests an additional role for the paralogues of RsbR in modulating the generation of active stressosome complexes upon the sensing of stress. The only receptor for which a clear trigger is described is the blue-light sensor RsbL (Dorey et al., 2019). Additional studies with RpsU^{17Arg-Pro} – $\Delta rsbR$, and $\Delta rsbR$ paralogue double mutants are needed to identify the exact stress that triggers stressosome activation in the *rpsU* variants. Moreover, as the RsbR paralogues are hypothesized to negatively regulate the stressosome, they might provide an explanation for the decrease of the multiple-stress resistance of variants 14 and 15 that has been found for stationary cells at 20°C (Metselaar et al., 2015b).

From the top left, following perception of a stress signal, RsbT dissociates from RsbR and RsbS (indicated by T, R and S in the stressosome), after activation of its kinase activity. After release from the stressosome RpsT binds to RsbU. The phosphatase activity of RbsU is activated and removes a phosphate (P) group from RbsV. The anti-sigma factor RsbW has a higher affinity for the now dephosphorylated RsbV than for SigB, resulting in release of SigB allowing it to bind to RNA polymerase and initiate transcription of SigB regulon members. RpsU function, and/or attachment to the 30S ribosome is disrupted similarly by a point mutation resulting in RpsU^{Arg-Pro}, or a full deletion of rpsU in variants 15 and 14 respectively, relaying a signal to either the stressosome, or directly to RsbV (see main text for details). Adapted from Dessaux et al., 2020a, Williams 2019, and Cabeen et al., 2017.

One of the stresses that might trigger SigB activation is nutrient stress. Nutrient stressinduced activation has been described for L. monocytogenes, but how the L. monocytogenes stressosome responds to metabolic stress is currently unknown (Guerreiro et al., 2020; Williams et al., 2019). Nutritional stress can be perceived indirectly through uncharged tRNA's associated to ribosomes, leading to the stringent response via ReIA (Taylor et al., 2002). Alternatively, an indirect link between ribosomes and (nutritional) stress via translation efficiency, is discussed in chapter 5. The compensatory mutations in rpsB that were fixed by the two evolving lines of variant 14 suggested an effect on the correct binding of RpsB to the 30S subunit of the ribosome. This binding is critical for the association of RpsA to the ribosomal platform region, and leads to a fully competent 30S ribosome. This could indicate that partial reversion of the trade-off between growth and stress resistance in V14EV1 and V14EV2, carrying a compensatory mutation in RpsB, has a positive effect on binding of RpsA to the pre-initiation complex. This mode of activation suggests an effect of the *rpsB* mutations on restoring translation efficiency in evolved variants V14EV1 and V14EV2. Impaired binding of RpsA to the pre-initiation complex and a lowered translation efficiency would be more pronounced at lower temperatures (Marzi et al., 2007 and references therein), and offer a possible explanation for the lower fitness of the variants at low temperatures. Although challenging in prokaryotes, recent approaches combining ribosome profiling with RNA-sequencing have been used to study translation efficiency (Mohammad et al., 2019), and could be used to investigate the conceived differences in translation efficiency of the variants compared to the LO28 WT.

The results presented in chapters 4 and 5 suggest that the 70S ribosome is involved in a signaling cascade to the stressosome. In addition, stressosome-independent means of signal transduction cannot be excluded, as previous publications showed that even in the absence of RsbV, some SigB activation can occur under some growth conditions (Brigulla et al., 2003; Utratna et al., 2014).

Impact of population heterogeneity on food safety

The effects of the introduction of the RpsU^{17Arg-Pro} mutation in *rpsU* were not limited to strain LO28. The same phenotypic switch from high fitness-low stress resistance to low fitness-high stress resistance was observed after the introduction of the RpsU^{17Arg-Pro} mutation into the background of *L. monocytogenes* EGDe, proving that the single arginine-proline substitution at position 17 in RpsU can explain the observed changes in phenotype. The

possibility of selecting resistant variants from non-model strains has been raised before, and can now be experimentally explored in strains that are much more resistant already, without a reduction on fitness, such as L6 (Aryani et al., 2015). In our current model, stress resistance comes from activation of SigB. It is yet unclear whether activation of SigB in strains that are already very stress resistant will lead to even higher stress resistance, or that the relative effect is lower in these strains. By studying the effect of *rpsU* mutations in these strains, we can quantify if already stress resistant strains pose an additional risk when mutated, and whether there is a trade-off between fitness and stress resistance, as summarized in Figure 6.4. Previous work has described variants 14 and 15 as much more stress resistant than the LO28 WT (Metselaar et al., 2015). However, the *D*-value and μ_{max} of the variants stay within the limits of those currently found in literature (den Besten et al., 2017), and these limits provide valuable input to include *L. monocytogenes* variability in growth and inactivation for quantitative microbial risk assessment (QMRA).

Figure 6.4: The trade-off between fitness and stress resistance, as in Figure 5.6. WT LO28 and evolved variants have a high growth rate, coupled to a low stress resistance (diagonal from upper left corner to lower right corner). The variants have high stress resistance, coupled to low fitness (diagonal from upper right corner to lower left corner). Selection for the inverse phenotype flips the balance.

Chapter 6

One of the remaining questions is whether this trade-off is inevitable; would it be possible to push the population to an evolutionary solution that will increase both fitness and stress resistance? The (in)evitability of a trade-off is relevant information for QMRA, where the hypothetical combination of the most stress resistant and the fastest grower can be used as an "extreme worst-case scenario", using the highest growth rate and stress resistance observed among a group of strains. But if these strains could not exist this would be an unrealistic scenario to include, and a biological trade-off would translate in a correlation between input parameters within QMRA. Interestingly, a recent study that incorporated strain variability in the design of heat treatments showed that strains with the highest resistance are determinant for the overall achieved inactivation, even if the probability of cells having such extreme heat resistance is very low (Zwietering et al. 2021), and it remains to be quantified whether the strain differences in fitness have a similar impact.

Notably, although multiple-stress resistant variants of L. monocytogenes have been found after a single exposure to lethal stress (Karatzas and Bennik, 2002; Metselaar et al., 2015; 2013; Rajkovic et al., 2009; Van Boeijen et al., 2011; 2008), we were thus far unable to identify these variants in the various online sequence databases (e.g., the GenBank database hosted at www.ncbi.nlm.nih.gov). Not finding rpsU variants in the databases can be a reflection of the biased content of the databases, which are focussed on strains used in research, as well as the strict rules that the databases have for genome quality and layout before admission. On the other hand, the testing methods used to detect L. monocytogenes in food, might also contribute to the fact that rpsU variants have not been reported as foodborne isolates. One factor might be that the assessment of stress resistance is done in laboratory conditions, while in a real-life scenario, stress parameters might change, as environmental conditions such as temperature have been described as potent modulators of stress response (Chen et al., 2020). In addition, growth of L. monocytogenes in biofilms has been shown to influence the stress response (Van der Veen and Abee, 2010), and might disrupt the trade-off between stress resistance and fitness in the LO28 variants. Moreover, testing foods for the presence of *L. monocytogenes* is routinely done by the food industry and the food inspection authorities and the test methods are based on standardized enrichments. Enrichments are needed to resuscitate damaged cells and selectively amplify the initial low concentrations of cells, and are followed by detection procedures. The growth kinetics during enrichment can be strongly influenced by the history of the cells (Abee et al. 2016; Bannenberg et al., 2021), with yet unknown effects on the probability of isolating a variant cell. Therefore, it remains to be elucidated whether the difference in fitness between variants and WT strains might also result in a lower probability to detect variants when enrichment-based detection procedures are used.

Conclusions and perspectives

This thesis provided insight into the rate with which diversity in *L. monocytogenes* is generated by mutations. It was shown for the first time, that a strain isolated from food was a mutator strain, and an insertion in the DNA mismatch repair gene *mutS*, was identified as the cause of the mutator phenotype. Additional studies included two previously isolated multiple-stress resistant variants with low fitness and a very similar phenotype, that was linked to the upregulation of SigB, even though one carried a point mutation in the ribosomal *rpsU* gene, while the other had a full deletion of *rpsU*. Recurring selection on increased fitness by experimental evolution revealed a tradeoff between a low-fitness, stress-resistant state, and a high-fitness, low stress-resistant state. We identified additional mutations in the ribosomes of the evolved variants, which revealed a link between the ribosomes and the activation of stress resistance by SigB.

Future research will focus on the current model of reversion of fitness effects via increased translation efficiency. This model suggests a limited extra fitness burden on the variants from the global upregulation of SigB. This can be experimentally verified by generating RpsU^{17Arg-Pro}– $\Delta sigB$ double mutants, that are expected to have WT stress resistance, combined with low fitness, as they lack the constitutive expression of *sigB*, while still being faced with the fitness effects of the mutation in *rpsU*. Moreover, generation of RpsU^{17Arg-Pro} mutants in genetic backgrounds missing one or multiple stressosome components can shed light on the interaction between the ribosome and the stressosome. In addition, as suggested by Dessaux et al. (2020b) phosphoproteomics are needed to investigate the phosphorylation state of the individual stressosome and ribosome components, in order to gain more insight into the signalling cascade leading to SigB activation.

A better understanding of the factors that influence mutation rate, and thereby the adaptive potential of populations is valuable to increase control of this pathogen. A mechanistic understanding of the observed trade-off between stress resistance and fitness will impact fundamental research, and ultimately, incorporation of these trade-offs into predictive models and risk assessments will add to producing minimally processed foods that are microbiologically safe.

156

References

- Abee, T., Koomen, J., Metselaar, K.I., Zwietering, M.H., Den Besten, H.M.W., 2016. Impact of pathogen population heterogeneity and stress-resistant variants on food safety. Annu. Rev. Food Sci. Technol. 7, 439–456. doi:10.1146/annurev-food-041715-033128
- Aryani, D.C., Den Besten, H.M.W., Hazeleger, W.C., Zwietering, M.H., 2015. Quantifying variability on thermal resistance of *Listeria monocytogenes*. Int. J. Food Microbiol. 193, 130–138. doi:10.1016/j.ijfoodmicro.2014.10.021
- Bannenberg, J.W., Abee, T., Zwietering, M.H., Den Besten, H.M.W., 2021. Variability in lag duration of *Listeria monocytogenes* strains in half Fraser enrichment broth after stress affects the detection efficacy using the ISO 11290-1 method. Int. J. Food Microbiol. 337, 108914. doi:10.1016/j.ijfoodmicro.2020.108914
- Den Besten, H.M.W., Aryani, D.C., Metselaar, K.I., Zwietering, M.H., 2017. Microbial variability in growth and heat resistance of a pathogen and a spoiler: All variabilities are equal but some are more equal than others. Int. J. Food Microbiol. 240, 24–31. doi:10.1016/j.ijfoodmicro.2016.04.025
- Boe, L., Danielsen, M., Knudsen, S., Petersen, J.B., Maymann, J., Jensen, P.R., 2000. The frequency of mutators in populations of *Escherichia coli*. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 448, 47–55. doi:10.1016/S0027-5107(99)00239-0
- Brigulla, M., Hoffmann, T., Krisp, A., Völker, A., Bremer, E., Völker, U., 2003. Chill induction of the SigB-dependent general stress response in *Bacillus subtilis* and its contribution to low-temperature adaptation. J. Bacteriol. 185, 4305–4314. doi:10.1128/jb.185.15.4305-4314.2003
- Cabeen, M.T., Russell, J.R., Paulsson, J., Losick, R., 2017. Use of a microfluidic platform to uncover basic features of energy and environmental stress responses in individual cells of *Bacillus subtilis*. PLOS Genet. 13, e1006901. doi:10.1371/journal.pgen.1006901
- Chen, R., Skeens, J., Orsi, R.H., Wiedmann, M., Guariglia-Oropeza, V., 2020. Pre-growth conditions and strain diversity affect nisin treatment efficacy against *Listeria monocytogenes* on cold-smoked salmon. Int. J. Food Microbiol. 333, 108793. doi:10.1016/j.ijfoodmicro.2020.108793
- Cotter, P.D., O'REILLY, K., Hill, C., 2001. Role of the glutamate decarboxylase acid resistance system in the survival of *Listeria monocytogenes* LO28 in low pH foods. J. Food Prot. 64, 1362–1368. doi:10.4315/0362-028x-64.9.1362
- De Visser, J.A.G.M., 2002. The fate of microbial mutators. Microbiology 148, 1247–1252. doi:10.1099/00221287-148-5-1247
- Denamur, E., Bonacorsi, S., Giraud, A., Duriez, P., Hilali, F., Amorin, C., Bingen, E., Andremont, A., Picard, B., Taddei, F., Matic, I., 2002. High frequency of mutator strains among human uropathogenic *Escherichia coli* Isolates. J. Bacteriol. 184, 605–609. doi:10.1128/JB.184.2.605-609.2002
- Desai, M.M., Fisher, D.S., 2011. The balance between mutators and nonmutators in asexual populations. Genetics 188, 997–1014. doi:10.1534/genetics.111.128116

- Dessaux, C., Guerreiro, D.N., Pucciarelli, M.G., O'Byrne, C.P., García-Del Portillo, F., 2020a. Impact of osmotic stress on the phosphorylation and subcellular location of *Listeria monocytogenes* stressosome proteins. Sci. Rep. 10, 20837–15. doi:10.1038/s41598-020-77738-z
- **Dorey, A.L., Lee, B.-H., Rotter, B., O'Byrne, C.P.,** 2019. Blue light sensing in *Listeria monocytogenes* is temperature-dependent and the transcriptional response to it is predominantly SigB-dependent. Front. Microbiol. 10, 2497. doi:10.3389/fmicb.2019.02497
- **Elena, S.F., Lenski, R.E.,** 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457–469. doi:10.1038/nrg1088
- Eyre-Walker, A., Keightley, P.D., 2007. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618. doi:10.1038/nrg2146
- **Feehily, C., Karatzas, K.A.G.,** 2013. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J. Appl. Microbiol. 114, 11–24. doi:10.1111/j.1365-2672.2012.05434.x
- Freitag, N.E., Port, G.C., Miner, M.D., 2009. *Listeria monocytogenes* from saprophyte to intracellular pathogen. Nat. Rev. Microbiol. 7, 623–628. doi:10.1038/nrmicro2171
- Genuth, N.R., Barna, M., 2018. The discovery of ribosome heterogeneity and its implications for gene regulation and organismal Life. Mol. Cell 71, 364–374. doi:10.1016/j.molcel.2018.07.018
- Gerst, J.E., 2018. Pimp my ribosome: Ribosomal protein paralogs specify translational control. Trends Genet. 34, 832–845. doi:10.1016/j.tig.2018.08.004
- **Guerreiro, D.N., Arcari, T., O'Byrne, C.P.,** 2020. The σB-mediated general stress response of *Listeria monocytogenes*: Life and death decision making in a pathogen. Front. Microbiol. 11, 1505. doi:10.3389/fmicb.2020.01505
- Guldimann, C., Boor, K.J., Wiedmann, M., Guariglia-Oropeza, V., 2016. Resilience in the face of uncertainty: Sigma factor B fine-tunes gene expression to support homeostasis in Gram-positive bacteria. Appl. Environ. Microbiol. 82, 4456–4469. doi:10.1128/AEM.00714-16
- Hall, L.M.C., Henderson-Begg, S.K., 2006. Hypermutable bacteria isolated from humans a critical analysis. Microbiology 152, 2505–2514. doi:10.1099/mic.0.29079-0
- Hallsworth, J.E., 2018. Stress-free microbes lack vitality. Fungal Biol. 122, 379–385. doi:10.1016/j.funbio.2018.04.003
- Harrand, A.S., Jagadeesan, B., Baert, L., Wiedmann, M., Orsi, R.H., Dudley, E.G., 2020. Evolution of *Listeria monocytogenes* in a food processing plant involves limited single-nucleotide substitutions but considerable diversification by gain and loss of prophages. Appl. Environ. Microbiol. 86, 38. doi:10.1128/AEM.02493-19
- Karatzas, K.A.G., Suur, L., O'Byrne, C.P., 2012. Characterization of the intracellular glutamate decarboxylase system: analysis of its function, transcription, and role in the acid resistance of various strains of *Listeria monocytogenes*. Appl. Environ. Microbiol. 78, 3571–3579. doi:10.1128/AEM.00227-12

- Karatzas, K.A.G., Bennik, M.H.J., 2002. Characterization of a *Listeria monocytogenes* Scott A isolate with high tolerance towards high hydrostatic pressure. Appl. Environ. Microbiol. 68, 3183–3189. doi:10.1128/AEM.68.7.3183-3189.2002
- Karatzas, K.A.G., Valdramidis, V.P., Wells-Bennik, M.H.J., 2005. Contingency locus in ctsR of *Listeria monocytogenes* Scott A: a strategy for occurrence of abundant piezotolerant isolates within clonal populations. Appl. Environ. Microbiol. 71, 8390–8396. doi:10.1128/AEM.71.12.8390-8396.2005
- Katju, V., Bergthorsson, U., 2019. Old trade, new tricks: Insights into the spontaneous mutation process from the partnering of classical mutation accumulation experiments with high-throughput genomic approaches. Genome Biol. Evol. 11, 136–165. doi:10.1093/gbe/evy252
- Kimura, M., 1967. On the evolutionary adjustment of spontaneous mutation rates. Genet. Res. 9, 23–34. doi:10.1017/S0016672300010284
- Kline, B.C., McKay, S.L., Tang, W.W., Portnoy, D.A., 2015. The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal fitness, and pathogenesis. J. Bacteriol. 197, 581–591. doi:10.1128/JB.02223-14
- Koomen, J., Den Besten, H.M.W., Metselaar, K.I., Tempelaars, M.H., Wijnands, L.M., Zwietering, M.H., Abee, T., 2018. Gene profiling-based phenotyping for identification of cellular parameters that contribute to fitness, stress-tolerance and virulence of *Listeria monocytogenes* variants. Int. J. Food Microbiol. 283, 14–21. doi:10.1016/j.ijfoodmicro.2018.06.003
- Lynch, M., 2011. The lower bound to the evolution of mutation rates. Genome Biol. Evol. 3, 1107–1118. doi:10.1093/gbe/evr066
- Marinus, M.G., 2010. DNA methylation and mutator genes in *Escherichia coli* K-12. Mutat. Res. Fundam. Mol. Mech. Mutagen. 705, 71–76. doi:10.1016/j.mrrev.2010.05.001
- Marzi, S., Myasnikov, A.G., Serganov, A., Ehresmann, C., Romby, P., Yusupov, M., Klaholz, B.P., 2007. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 130, 1019–1031. doi:10.1016/j.cell.2007.07.008
- Metselaar, K.I., Abee, T., Zwietering, M.H., Den Besten, H.M.W., 2016. Modeling and validation of the ecological behavior of wild-type *Listeria monocytogenes* and stress-resistant variants. Appl. Environ. Microbiol. 82, 5389–5401. doi:10.1128/AEM.00442-16
- Metselaar, K.I., Den Besten, H.M.W., Abee, T., Moezelaar, R., Zwietering, M.H., 2013. Isolation and quantification of highly acid resistant variants of *Listeria monocytogenes.* Int. J. Food Microbiol. 166, 508–514. doi:10.1016/j.ijfoodmicro.2013.08.011
- Metselaar, K.I., Den Besten, H.M.W., Boekhorst, J., van Hijum, S.A.F.T., Zwietering, M.H., Abee, T., 2015. Diversity of acid stress resistant variants of *Listeria monocytogenes* and the potential role of ribosomal protein S21 encoded by *rpsU*. Front. Microbiol. 6, 422. doi:10.3389/fmicb.2015.00422
- Metselaar, K.I., Ibusquiza, P.S., Camargo, A.R.O., Krieg, M., Zwietering, M.H., Den Besten, H.M.W., Abee, T., 2015b. Performance of stress resistant variants of *Listeria*

monocytogenes in mixed species biofilms with *Lactobacillus plantarum*. Int. J. Food Microbiol. 213, 1–7. doi:10.1016/j.ijfoodmicro.2015.04.021

- Mérino, D., Poupet, H.R., Berche, P., Charbit, A., 2002. A hypermutator phenotype attenuates the virulence of *Listeria monocytogenes* in a mouse model. Mol. Microbiol. 44, 877–887. doi:10.1046/j.1365-2958.2002.02929.x
- Mohammad, F., Green, R., Buskirk, A.R., 2019. A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution. Elife 8, 8324. doi:10.7554/eLife.42591
- NicAogáin, K., O'Byrne, C.P., 2016. The role of stress and stress adaptations in determining the fate of the bacterial pathogen *Listeria monocytogenes* in the food chain. Front. Microbiol. 7, 1865. doi:10.3389/fmicb.2016.01865
- Olier, M., Pierre, F., Rousseaux, S., Lemaitre, J.P., Rousset, A., Piveteau, P., Guzzo, J., 2003. Expression of truncated internalin A is involved in impaired internalization of some *Listeria monocytogenes* isolates carried asymptomatically by humans. Infect. Immun. 71, 1217–1224. doi:10.1128/IAI.71.3.1217-1224.2003
- **Oliver, A.,** 2015. Clinical relevance of *Pseudomonas aeruginosa* hypermutation in cystic fibrosis chronic respiratory infection. J. Cyst. Fibros 14, e1–e2. doi:10.1016/j.jcf.2014.12.009
- Perfeito, L., Fernandes, L., Mota, C., Gordo, I., 2007. Adaptive mutations in bacteria: high rate and small effects. Science 317, 813–815. doi:10.1126/science.1142284
- Radoshevich, L., Cossart, P., 2018. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 16, 32–46. doi:10.1038/nrmicro.2017.126
- Rajkovic, A., Smigic, N., Uyttendaele, M., Medic, H., de Zutter, L., Devlieghere, F., 2009. Resistance of *Listeria monocytogenes, Escherichia coli* O157:H7 and *Campylobacter jejuni* after exposure to repetitive cycles of mild bactericidal treatments. Food Microbiol. 26, 889–895. doi:10.1016/j.fm.2009.06.006
- Sheng, H., Huang, J., Han, Z., Liu, M., Lü, Z., Zhang, Q., Zhang, J., Yang, J., Cui, S., Yang, B., 2020. Genes and proteomes associated with increased mutation frequency and multidrug resistance of naturally occurring mismatch repair-deficient *Salmonella* Hypermutators. Front. Microbiol. 11, 770. doi:10.3389/fmicb.2020.00770
- Sniegowski, P., Raynes, Y., 2013. Mutation rates: how low can you go? Curr. Biol. 23, R147– R149. doi:10.1016/j.cub.2013.01.018
- Sprouffske, K., Aguílar-Rodríguez, J., Sniegowski, P., Wagner, A., 2018. High mutation rates limit evolutionary adaptation in *Escherichia coli*. PLOS Genet. 14, e1007324. doi:10.1371/journal.pgen.1007324
- Taylor, C.M., Beresford, M., Epton, H.A.S., Sigee, D.C., Shama, G., Andrew, P.W., Roberts, I.S., 2002. Listeria monocytogenes relA and hpt mutants are impaired in surfaceattached growth and virulence. J. Bacteriol. 184, 621–628. doi:10.1128/JB.184.3.621-628.2002
- Toledo-Arana, A., Dussurget, O., Nikitas, G., Sesto, N., Guet-Revillet, H., Balestrino, D., Loh, E., Gripenland, J., Tiensuu, T., Vaitkevicius, K., Barthelemy, M., Vergassola, M., Nahori, M.-A., Soubigou, G., Régnault, B., Coppée, J.-Y., Lecuit, M.,

Johansson, J., Cossart, P., 2009. The *Listeria* transcriptional landscape from saprophytism to virulence. Nature 459, 950–956. doi:10.1038/nature08080

- **Utratna, M., Cosgrave, E., Baustian, C., Ceredig, R.H., O'Byrne, C.P**., 2014. Effects of growth phase and temperature on activity within a *Listeria monocytogenes* Population: evidence for RsbV-independent activation of σB at refrigeration temperatures. Biomed Res. Int. 2014, 1–11. doi:10.1155/2014/641647
- Van Boeijen, I.K.H., Chavaroche, A.A.E., Valderrama, W.B., Moezelaar, R., Zwietering, M.H., Abee, T., 2010. Population diversity of *Listeria monocytogenes* LO28: phenotypic and genotypic characterization of variants resistant to high hydrostatic pressure. Appl. Environ. Microbiol. 76, 2225–2233. doi:10.1128/AEM.02434-09
- Van Boeijen, I.K.H., Francke, C., Moezelaar, R., Abee, T., Zwietering, M.H., 2011. Isolation of highly heat-resistant *Listeria monocytogenes* variants by use of a kinetic modeling-based sampling scheme. Appl. Environ. Microbiol. 77, 2617–2624. doi:10.1128/AEM.02617-10
- Van Boeijen, I.K.H., Moezelaar, R., Abee, T., Zwietering, M.H., 2008. Inactivation kinetics of three *Listeria monocytogenes* strains under high hydrostatic pressure. J. Food Prot. 71, 2007–2013. doi:10.4315/0362-028x-71.10.2007
- Van der Veen, S., Abee, T., 2011. Generation of variants in *Listeria monocytogenes* continuous-flow biofilms is dependent on radical-induced DNA damage and RecAmediated repair. PLoS One 6, e28590–8. doi:10.1371/journal.pone.0028590
- Van der Veen, S., Abee, T., 2010. Importance of SigB for *Listeria monocytogenes* static and continuous-flow biofilm formation and disinfectant resistance. Appl. Environ. Microbiol. 76, 7854–7860. doi:10.1128/AEM.01519-10
- Van der Veen, S., van Schalkwijk, S., Molenaar, D., de Vos, W.M., Abee, T., Wells-Bennik, M.H.J., 2010. The SOS response of *Listeria monocytogenes* is involved in stress resistance and mutagenesis. Microbiology (Reading, Engl.) 156, 374–384. doi:10.1099/mic.0.035196-0
- Vanlint, D., Rutten, N., Michiels, C.W., Aertsen, A., 2012. Emergence and stability of highpressure resistance in different food-borne pathogens. Appl. Environ. Microbiol. 78, 3234–3241. doi:10.1128/AEM.00030-12
- Wang, H., Xing, X., Wang, J., Pang, B., Liu, M., Larios-Valencia, J., Liu, T., Liu, G., Xie, S., Hao, G., Liu, Z., Kan, B., Zhu, J., 2018. Hypermutation-induced in vivo oxidative stress resistance enhances *Vibrio cholerae* host adaptation. PLoS Pathog. 14, e1007413. doi:10.1371/journal.ppat.1007413
- Wang, S., Wu, C., Shen, J., Wu, Y., Wang, Y., 2013. Hypermutable *Staphylococcus aureus* strains present at high frequency in subclinical bovine mastitis isolates are associated with the development of antibiotic resistance. Vet. Microbiol. 165, 410–415. doi:10.1016/j.vetmic.2013.04.009
- Wielgoss, S., Barrick, J.E., Tenaillon, O., Wiser, M.J., Dittmar, W.J., Cruveiller, S., Chane-Woon-Ming, B., Médigue, C., Lenski, R.E., Schneider, D., 2013. Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proc. Natl. Acad. Sci. U.S.A. 110, 222–227. doi:10.1073/pnas.1219574110

- Williams, A.H., Redzej, A., Rolhion, N., Costa, T.R.D., Rifflet, A., Waksman, G., Cossart, P., 2019. The cryo-electron microscopy supramolecular structure of the bacterial stressosome unveils its mechanism of activation. Nat. Commun. 10, 3005–3010. doi:10.1038/s41467-019-10782-0
- Xia, Y., Xin, Y., Li, X., Fang, W., Björkroth, J., 2016. To modulate survival under secondary stress conditions, *Listeria monocytogenes* 10403S employs RsbX to downregulate oB activity in the poststress recovery stage or stationary phase. Appl. Environ. Microbiol. 82, 1126–1135. doi:10.1128/AEM.03218-15
- Zwietering, M.H., Garre, A., Den Besten, H.M.W., 2021. Incorporating strain variability in the design of heat treatments: A stochastic approach and a kinetic approach. Food Res. Int. 139, 109973. doi:10.1016/j.foodres.2020.109973

S

Summary

Summary

The production of healthy, nutritious, tasty, and safe foods requires efficient strategies to control foodborne pathogens along the food chain. One of these pathogens is the notorious foodborne *Listeria monocytogenes*. *L. monocytogenes* is a robust, ubiquitously present human pathogen, and the cause of life-threatening listeriosis in the very young, elderly, pregnant, and immunocompromised persons, the so-called YOPI population. The incidence of *L. monocytogenes* infections is low, but the severity of listeriosis and the high mortality rate rank it among the top three causes of death by foodborne disease.

There is an inherent heterogeneity in microbial populations, and this heterogeneity gives *L. monocytogenes* the capacity to cope with stresses during transmission from the environment to the human host. Stochastic differences in stress response between individual cells of a population, lead to the differential survival of cells after lethal stresses such as heat or low pH, and ultimately result in tailing of the inactivation curve. The heterogeneity in a population can be either transient, where certain cells temporarily have different properties, or stable, where individual cells have undergone genetic changes that make them better able to resist (lethal) stress. Cells with genetic changes are called stable variants, and can be isolated from the tail of the inactivation curve.

Almost all research that has been done with *L. monocytogenes* has focussed on the diversity that is already present in a population. Therefore, in chapter 2, we investigated the rate at which new diversity is generated by mutations. Using a high-throughput protocol, we have experimentally determined the mutation rate of 20 *L. monocytogenes* strains, and found a mutator strain with an insertion in the DNA mismatch repair gene *mutS*, that resulted in a 100-1000-fold increase in mutation rate. To our knowledge, this is the first mutator strain of *L. monocytogenes* isolated from food.

In chapter 3 we focussed on two previously isolated multiple-stress resistant variants, both with a mutation in the ribosomal *rspU* gene, one with a point mutation in the *rpsU* gene, and one with a deletion of the whole *rpsU* gene. We described the overlap in the stress response of these two variants, and found that even though the mutation in *rpsU* was very different, the phenotypic responses were remarkably similar. Both variants were multiple-stress resistant due to massive upregulation of genes under the control of the stress-response regulator SigB. Moreover, both variants showed increased attachment to Caco-2 cells, so potentially more infective, and a significantly lower maximum specific growth rate, i.e., lower fitness.

Strains are known to persist in the food processing environment for many years, where they are exposed to continuous selection pressures. In chapters 4 and 5 we used experimental

evolution to explore what can happen when these stress-resistant variants with lower fitness are exposed to continuous selection for increased fitness. We focused on the same two variants as in Chapter 3, with a point mutation in and with a complete deletion of *rpsU*. We were able to select for additional mutations that reversed the phenotype from low-fitness and stress-resistant, to high-fitness with low stress-resistance, thereby revealing a tradeoff between these two states. Complementary whole genome sequencing and SNP analysis showed that in the point mutation variant, the additional compensating mutation occurred in *rpsU*, while in the deletion mutant, the additional mutation occurred in the ribosomal *rpsB* gene. Thereby we have revealed a link between the ribosomes and the activation of stress resistance by SigB.

In conclusion, the work presented in this thesis highlights various microbial adaptive and evolutionary mechanisms that contribute to the heterogeneous behavior of *L. monocytogenes.* This thesis revealed a trade-off between stress resistance and fitness in stress-isolated variants and it heightened our understanding of how this notorious pathogen is able to grow and survive in changing environments. A mechanistic understanding of the observed trade-off between stress resistance and fitness will impact fundamental research, and ultimately, incorporation of these trade-offs into risk assessments will add to producing minimally processed foods that are microbiologically safe.

Acknowledgements

List of publications

Overview of completed training activities

Acknowledgements

Graag wil ik hier van de gelegenheid gebruik maken om iedereen te bedanken die heeft bijgedragen aan het tot stand komen van dit proefschrift. Allereerst wil ik mijn promotoren en co-promotor heel erg bedanken. Tjakko, bedankt voor je continue enthousiasme, en voor het feit dat je deur altijd openstond voor overleg. We hebben vele uren hebben gediscussieerd over nieuwe experimenten en richtingen voor de papers, en ook al vond ik het soms lastig te navigeren door de explosie van ideeën die we konden hebben, het heeft zeker geleid tot innovatieve experimenten. Dank ook voor je optimisme gedurende de tijden dat het lastig ging, en voor de samenwerking in het *Salmonella* project. Heidy, van jouw kritische blik, en zeer scherpe oog voor detail, heb ik veel geleerd. Het was een waardevolle aanvulling, en je scherpe blik heeft enorm bijgedragen aan de kwaliteit van de manuscripten. Marcel, bedankt voor je input, je enthousiasme, het feit dat ik altijd kon binnenlopen voor de meest uiteenlopende vragen, het faciliteren van de jaarlijkse barbecue en uitjes, en natuurlijk alle hardlooprondjes in binnen- en buitenland.

Oscar, we hebben bijna 5 jaar een kantoor gedeeld voordat we thuis moesten gaan werken. Ik heb genoten van onze discussies over de meest uiteenlopende onderwerpen, en van het feit dat je altijd klaar stond om mee te denken en mee te rekenen aan selectie- en groeivragen. Frank, ook al woonde je bijna op het lab, het was gezellig om een kantoor te delen, en om samen te werken aan de bio-informatica analyse achter je eerste paper. Alex, je was een goede aanvulling op ons kantoor, en belangrijk voor de leuke balans tussen *Listeria* en fermentatie mensen.

A big thanks to all former and current collegues of the Food Microbiology lab. I will miss the discussions about everything from science to music and movies, the running on Thursday, the hotpot evenings, dinners, VrijMiBo's, cakes, and all other moments that we shared. I would like to thank you all for contributing to the atmosphere in the group. This has been essential in keeping me grounded in the difficult times that arose during the PhD process. It has been a great experience to work with so many smart and talented people!

Gerda, bedankt voor alles wat je doet om de sfeer in de groep goed te houden, en voor het doen van alle administratie. Ingrid, bedankt voor het op orde houden van de keuken, en voor alle bestellingen die je de afgelopen jaren voor me hebt gedaan. I am very glad to have had the chance to work with so many different and great MSc students during this project. Dear Luiza, Xi, Jian, Maria, Peter, Ginevra, Sandra, Aaron, Linda, Xuchuan, Yongge, Alberto B., Lubeibei, and Klara, thank you all for showing interest in one of my projects. Linda, Alberto B. and Xuchuan, it was very nice to have you as colleagues at FHM after your MSc projects and I wish you all the best in your own journey as a researcher.

Zonder de technische support op het lab zouden veel experimenten niet zo goed gegaan zijn. Marcel T., bedankt voor alle groeicurven, cloneringen, en RNA-isolaties die we samen hebben gedaan. Ook wil ik je bedanken voor alle discussies over wetenschap en de technische details van het labwerk. Jouw ervaring is van onschatbare waarde voor de afdeling. Luc, bedankt voor je hulp bij de experimenten met caco cellen die ik met jou en Maren bij het RIVM mocht doen. Het is goed om te zien dat er postdocs zijn met zoveel labervaring! Sjef, bedankt voor je hulp met het opzetten van de proteomics experimenten, en met de analyse van de data. Deze experimenten in Helix zijn een belangrijke pijler onder de hoofdstukken van deze thesis gebleken. Dear Leoni and Bing, even though our experiments with the ribosome gradients only made a subtle entry into the chapters of this thesis, I am very grateful for the help that I received in Radix, and for the promising results that we obtained. Alberto Garre, I have learned a lot from seeing an R expert at work. Your project at our lab has lifted the standard for cooperation, and I am very thankful for all our discussions on R, on how to deal with reviewer comments, and on working in science in general.

I am also very grateful to Prof. Michiel Kleerebezem, Dr. Indra Bergval, Prof. Conor O'Byrne, and Dr. Masja Nierop Groot for accepting the invitation to be part of my thesis committee, and taking the time to critically review this thesis.

A special thanks to my paranymphs. Linda, your cheerful, yet structured and very ambitious approach to labwork during your thesis has really lifted my spirit. Our cooperation was pivotal in the direction of this thesis, and it is great to see that you now work with the same enthusiasm and dedication on your own project. Xuchuan, thank you for continuing the project in a more molecular direction. I am sure that your hard work and determination in mutant construction will lead to novel insights for your own thesis.

Ik wil hier ook mijn (voormalige) huisgenoten bedanken. We hebben een interessante mix van mensen in een huis en ik ben heel blij dat we altijd bij elkaar konden binnenlopen als het tegenzat met werk, studie, of de zoektocht naar werk. Floris, bedankt voor je bijdrage aan de figuren van hoofdstuk 6.

Als laatste wil ik mijn vrienden, familie en natuurlijk mijn ouders bedanken. Jullie hebben me altijd gesteund tijdens mijn lange weg. Bedankt voor het al vertrouwen wat jullie in mij hadden, en voor de vele discussies over de beste aanpak.

Publications

- Tendolkar, U., Van Diepeningen, A., Joshi, A., Koomen, J., Bradoo, R., Baveja, S., and Agrawal, S. 2015. Rhinosinusitis caused by Saksenaea erythrospora in an immunocompetent patient in India: a first report. JMM Case Reports. 2. 10.1099/jmmcr.0.000044
- Abee, T., Koomen, J., Metselaar, K. I., Zwietering, M. H., & Besten, den, H. M. W. 2016. Impact of Pathogen Population Heterogeneity and Stress-Resistant Variants on Food Safety. Annual Review of Food Science and Technology, 7(1), 439–456. http://doi.org/10.1146/annurev-food-041715-033128
- Salverda, M. L. M., Koomen, J., Koopmanschap, B., Zwart, M. P., & de Visser, J. A. G. M. 2017. Adaptive benefits from small mutation supplies in an antibiotic resistance enzyme. Proceedings of the National Academy of Sciences of the United States of America, 114(48), 12773–12778. http://doi.org/10.1073/pnas.1712999114
- Koomen, J., Besten, den, H. M. W., Metselaar, K. I., Tempelaars, M. H., Wijnands, L. M., Zwietering, M. H., & Abee, T. 2018. Gene profiling-based phenotyping for identification of cellular parameters that contribute to fitness, stress-tolerance and virulence of *Listeria monocytogenes* variants. Int. J. Food Microbiol. 283, 14–21. http://doi.org/10.1016/j.ijfoodmicro.2018.06.003
- Koomen, J., Huijboom, L., Ma, X., Tempelaars, M.H., Boeren, S., Zwietering, M.H., Den Besten, H.M.W., Abee, T. 2021. Amino acid substitutions in ribosomal protein RpsU enable switching between high fitness and multiple-stress resistance in *Listeria* monocytogenes. Int. J. Food Microbiol. 351, 109269. https://doi.org/10.1016/j.ijfoodmicro.2021.109269
- Lake, F.B., van Overbeek, L.S., Baars, J.J.P., Koomen, J., Abee, T., Den Besten, H.M.W. 2021. Genomic characteristics of *Listeria monocytogenes* isolated during mushroom (*Agaricus bisporus*) production and processing, Int. J. Food Microbiol. 360, 109438. https://doi.org/10.1016/j.ijfoodmicro.2021.109438.
- Garre, A., **Koomen, J**., Den Besten, H.M.W., Zwietering, M.H. Modelling population growth in R with the biogrowth package. *Submitted for publication.*

Overview of completed training activities

Discipline specific activities

Courses	
Genetics and physiology of food-associated microorganisms VLAG,	2016
Wageningen, NL)	
Reaction kinetics in Food Science (VLAG, Wageningen, NL)	2016
Management of Microbiological Hazards in Foods (VLAG, Wageningen, NL)	2017
Data Scientist with R (DataCamp, online)	2018
Conferences	
FEMS (Valencia, ES)	2017
FEMS Microbial stress meeting (Kinsale, IE)	2018
KNVM Symposium (Bilthoven, NL)	2018
NLSEB (Ede, NL)	2018
ISOPOL (Toronto, CA)	2019
General courses	
Teaching and supervising thesis students (ESD)	2015
VLAG PhD week (VLAG)	2015
Transmission Electron Microscopy (WEMC)	2017
Career orientation (WGS)	2018
Data visualization with R (DataCamp)	2018
Data analyst with R	2019
Optional courses and activities	
Preparation of research proposal	2015
FHM weekly meetings	2015-2020
Seminars Microbial Population Genetics	2016-2019
FHM PhD study tour Italy	2017
Organization FHM PhD study tour Italy	2017
The research in this thesis was financially supported by Food Microbiology (Wageningen University, Wageningen, The Netherlands).

Cover design by Vera van Beek Printed by Digiforce | ProefschriftMaken