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Abstract: Identifiability, observability, and controllability are important structural proper-
ties of a dynamic system model. Our interest lies in the detection of a lack of identifiabil-
ity/observability and/or controllability through the computation and subsequent analysis of
the exact nullspace of the gramian for non-linear systems. For this analysis we have developed
a user-friendly application with the name StrucID which runs in Matlab. The StrucID App
requires as input a model definition in (possibly non-linear) state space format. In addition,
an output equation that may also be non-linear is required. Through a rank test (SVD) on an
associated sensitivity matrix, so-called signature graphs are produced. These represent a model’s
singular values and nullspace vectors and provide a visual summary. The results can now be
used in a substantially reduced symbolic computation (not included yet in the current version of
StrucID) that computes a Fliess series expansion of the output signal to arrive at the nullspace of
an associated Jacobi matrix. Solving an underlying partial differential equation then completes
the structural analysis and generates a re-parametrisation and/or state transformation that
allows for model reduction in an exact manner. A few examples will be presented.
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1. INTRODUCTION

The analysis of the structural properties (such as local
observability) of large dynamic models may fall victim to
insufficient methods available to do so. In this submission,
we would like to introduce an application that can be
tasked with the preliminary analysis of such models,
that is investigating their structural properties. This first
examination of a model’s structure can be done before any
experiments are conducted and can a priori highlight some
flaws that result in the total correlation between certain
model parameters. A structural analysis is needed before
any state or parameter inference is performed or before (in
case of the dual problem) any control action is taken to
steer the state of the system to a desired location in the
state space. In practice such an analysis is often omitted
because of its complexity. One could even argue that this
complexity is an essential weak point in non-linear control
theory. Indeed, for a structural analysis a Lie algebra
must then be introduced and many Lie derivatives (and
Lie brackets) need to be computed symbolically before
anything can be said about observability or controllability
(Isidori, 1995; Hermann and Krener, 1977). If, for example,
a 5-state model is observed through one sensor that reads
out one of the states in the model, then this already
can become infeasible (Chappell et al., 1990). We think,
therefore, that there is a need for software tools that
help the user in establishing a quick and accurate answer.
For the identifiability question several packages exist that

are all based on symbolic computations (see table 1).
These are very useful tools establishing local (and in
some cases even global) identifiability. In this paper we
introduce an alternative application that follows a different
route to arrive at the structural properties of a dynamical
system. It is based on a combined numerical/algebraic
computation of the nullspace of the associated gramian.
Its main advantage is computational speed, but it also
provides an alternative point of view that has a certain
attractiveness to it.

Before we introduce the StrucID version 2.0 package, we
first give some background information on the approach
we take in analysing structural properties. Essentially,
we walk the avenue of parametric sensitivities and this
yields a computational attractive point of departure. Since
the results obtained in the first stage are numerical, we
continue the analysis with a second symbolic computation.
The required number of calculations is now reduced using
the results obtained from the singular value decomposition
(SVD) of the parametric output sensitivity matrix. The
second stage of our analysis corroborates the numerical
results and subsequently allow for both the precise char-
acterization of the relationship between correlated param-
eters and the associated re-parametrization of the model
at hand.
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we take in analysing structural properties. Essentially,
we walk the avenue of parametric sensitivities and this
yields a computational attractive point of departure. Since
the results obtained in the first stage are numerical, we
continue the analysis with a second symbolic computation.
The required number of calculations is now reduced using
the results obtained from the singular value decomposition
(SVD) of the parametric output sensitivity matrix. The
second stage of our analysis corroborates the numerical
results and subsequently allow for both the precise char-
acterization of the relationship between correlated param-
eters and the associated re-parametrization of the model
at hand.
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Table 1. Some available identifiability software
packages and their associated references in the

literature.

Name Reference

COMBOS Meshkat et al. (2009)

DAISY Bellu et al. (2007)

EAR Karlsson et al. (2012)

STRIKE-GOLDD Villaverde et al. (2016)

GenSSI 2.0 Hong et al. (2019)

Observability Test Sedoglavic (2002)

2. METHODS

Consider the well-known non-linear state space model and
associated observation equation

dx(t)

dt
= f(x(t), u(t), θ) (1)

y(t) = h(x(t), u(t), θ) (2)

with f and h vector functions, x(t) the vector of state
variables, u(t) the vector of input variables, and θ the
vector that contains all the parameters in the model
structure f and/or observation function h. To study the
optimal placement of sensors for a fluid model, Krener and
Ide review in their CDC paper on observability of large
system models the possibility of establishing a measure for
the degree of observability of the above state space model
via the well-known tangent mapping

dδx

dt
=

∂f

∂x
δx (3)

δy(t) =
∂h

∂x
δx (4)

where the Jacobi matrices are evaluated on a reference
trajectory that is a solution to (1)-(2), (Krener and Ide,
2009). The local singular values of the non-linear mapping
(1)-(2) are defined by the singular values of the tangent
mapping. If these singular values are large, then it is
relatively easy to reconstruct x(0) from the measurements.
The local singular values, in turn, characterize the local
observability gramian P (x0) that can be computed on the
basis of the fundamental solution Φ(t) for the tangent
mapping (3)–(4), i.e.

d

dt
Φ(t) =

∂f

∂x
Φ(t) (5)

Φ(0) = I (6)

The observability gramian is now defined as

P (x0) =

∫ tf

0

ΦT (τ)
∂hT (τ)

∂x

∂h(τ)

∂x
Φ(τ) dτ (7)

In Krener and Ide (2009) the primary interest is in com-
puting a condition number of the observability gramian as
a measure of un-observability. In fact, (7) is approximated
by the well-known empirical gramian in their paper. This
approximation is used frequently in the literature on non-
linear model reduction (Lall et al., 2002). Our point of
departure, however, is that we use the well-known forward
sensitivities equations (that can be shown to be exactly
equivalent to (5)–(6)!) and compute these sensitivities as
accurate as possible. The reason for focussing on a precise
computation of the sensitivity dynamics is that we are
primarily interested in the exact zero singular values of
the observability gramian and so we do not approximate

this gramian with an empirical version of it. A few remarks
are in place:

• We compute parametric output sensitivities for a
given reference trajectory. This trajectory, obviously,
is a choice and this may influence the outcome of the
analysis. This is not very different from a ‘normal’
non-linear observability analysis (as presented in non-
linear control theory on the basis of a Lie-algebra
that is constructed from so-called drift and control
vector fields (Hermann and Krener, 1977)). Indeed, it
is known that there are regular and non-regular points
in that setting and the outcome of an observability
analysis can also be different in these points. As it
turns out, only very specific initial conditions can
cause the outcome to be different but, in general, the
regular points cover almost the whole state space.

• In our sensitivity analysis the states are treated as
special parameters, i.e. the states’ initial conditions
are parametrized and considered as time-invariant pa-
rameters whose sensitivity dynamics are calculated.
This allows observability of states to be treated in
exactly the same way as (time-invariant) parameters.

• We can treat structural controllability in the same
framework through computation of the well-known
controllability gramian

Q(xf ) =

∫ tf

0

Φ(τ)
∂f(τ)

∂u

∂fT (τ)

∂u
ΦT (τ) dτ. (8)

The computation of this controllability gramian is fa-
cilitated easily by the associated adjoint equations of
the tangent mapping (3)–(4) on a reference trajectory
that starts at final state xf and is integrated back-
wards in time. The singular values of Q(xf ) are again,
computed as precise as possible via the sensitivity
dynamics and we once more emphasize that these
are not approximated on the basis of an empirical
gramian.

• In the celebrated paper by Moore structural prop-
erties of linear systems are established in much the
same way as we do in this paper, using a principal
component analysis, (Moore, 1981). In the case of
linear systems the tangent mapping yields the exact
same gramian that is analysed in his paper. For non-
linear systems the Jacobi matrix in (5) is time-varying
but the dynamics are still linear for Φ(t), allowing a
rank test to be performed to check for linear depen-
dencies between sensitivity functions. The possibility
of a linear dependence between parametric output
sensitivities is well-known in the area of non-linear
parameter estimation as an indicator of a possible
lack of identifiability (Bard, 1974; Miao et al., 2011).

• In the same paper Moore already pointed out that
in order to find an accurate value for the singular
values of the gramian, it is better to SVD the matrix
∂h
∂x Φ(t) (in case of observability), rather than the
observability gramian itself. This comes down to
checking linear dependencies between functions of the
linear time-varying system (5)-(6) on a time interval
[0, tf ], and this is exactly the same approach as taken
in (Moore, 1981).

In Stigter and Molenaar (2015); Joubert et al. (2020)
it is demonstrated how the zero singular values of the
observability gramian can be utilized for an efficient sym-
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bolic computation that allows for the re-parametrisation
of the non-linear model (1) to be performed. In short:
Since unidentifiable parameters come in groups (one group
per zero singular value, see e.g. Joubert et al. (2020)),
we can focus the symbolic computations on the uniden-
tifiable parameters for each group separately. This really
is a tremendous (symbolic) computational saving that is
harvested from the initial SVD analysis on the output
sensitivity matrix, (Stigter et al., 2018).

3. THE STRUCID VERSION 2.0 APP

In figure 1 the opening window of the StrucID v2.0 App
is presented. It consists of 3 panels, namely (from left
to right) (i) the user input panel, (ii) the output and
parameter selection panel, and (iii) the results panel.

3.1 User Input Panel

In the user input panel we can select the type of analysis
(either controllability or observability) to be conducted,
specify a length for the integration interval (tf ), and
define the desired accuracy of the integration results. For
the final integration time tf it is usually sufficient to
specify the length as twice the largest characteristic time
constant of the system. These time constants can be easily
obtained in Matlab by computation of the eigenvalues of
the matrix exponent of the Jacobi matrix associated with
model (1). Our experience has shown that the integration
length may change the outcome of the structural analysis,
but if it is not specified too high then the outcome
is very reliable. The accuracy of the parametric output
sensitivities solution yθ(t) in our App relies heavily on the
state-of-the-art Sundials 1 solver that is, in fact, part of the
SimBiology toolbox in Matlab. This solver utilizes complex
derivatives for a very accurate computation of the Jacobi
matrices ∂f

∂x ,
∂h
∂x ,

∂f
∂θ , and

∂h
∂θ that appear in the forward

sensitivity equations:

dxθ(t)

dt
=

∂f

∂x
xθ +

∂f

∂θ
(9)

yθ(t) =
∂h

∂x
xθ +

∂h

∂θ
(10)

where xθ(t) = dx
dθ . The input panel finally includes two

buttons with names ”Import Model” and ”Analyse” that
allow the user to import the model input file (in plain
ASCII text format) and (after a successful import) start
the analysis.

3.2 Selection Panel

Since a structural observability or controllability analysis
depends completely on the available input and/or output
signals, we have included a so-called selection panel that
allows for greater flexibility when the analysis is repeated
many times with different sensor combinations. A user can
use check marks (�) to easily select the sensors (or input
variables) he/she has available in the given experimental
setup. Of course, it is interesting to study how exactly the
observability of a system changes if a different selection
of sensors is chosen and our App provides a quick tool
to find, for example, a minimal output set, i.e. the set of
1 https://computing.llnl.gov/projects/sundials

sensors that is minimally needed for identification of all the
selected states and/or parameters in the model (Joubert
et al., 2018). At the bottom of the central panel, a user
can specify exactly which state variables and parameters
he/she wishes to reconstruct from the available signals.
Initial values for state variables and/or parameters that
are considered unknown can also be specified here. A
reasonable random value will be generated by the software
if an IC is not specified numerically. Specifying user defined
initial values can be important in some cases and can make
a difference in the outcome of a structural analysis as
clearly demonstrated in Saccomani et al. (2003).

3.3 Result Panel

Once the analysis button has been pressed (after a suc-
cessful import of the model definition from the text file),
the sensitivities are computed and a singular value decom-
position of the output sensitivity matrix is found. Results
are presented in two figures, namely (i) a graph of the
singular values and the null space of the sensitivity matrix
(corresponding to the singular values that are considered
as zero) and (ii) a directed (adjacency) graph that is

based on the Jacobi matrix ∂f
∂x . In this graph an arrow

from node j to node i is drawn if the corresponding (i, j)
matrix element in the Jacobi matrix is non-zero. The
directed graph depicted in figure 2 shows how the 14 state
variables in example 4.1 are connected to one-another.
In addition, the state variables that are involved in the
observation equation (2) are indicated in red so that the
user knows which nodes in the directed graph are associ-
ated with sensors in the experimental setup. Finally, the
result panel also presents the largest gap-distance between
consecutive singular values of the sensitivity matrix. This
yields a first indication of a possible rank deficiency of
the sensitivity matrix since the singular values after the
gap can be treated as zero and hence, indicate a possible
lack of observability. A better underpinning of the rank
deficiency is performed in a second stage of our analysis,
i.e. via a symbolic computation. Utilising the preceding
SVD results for this example allows one to perform an
identifiability analysis within a matter of seconds. In the
past, reported computation times required hours to com-
plete for large models with only one (or a few) sensor(s)
available (Anguelova et al., 2012).

4. EXAMPLES

4.1 Identifiability analysis and model re-parametrisation

Consider the well-known unidentifiable JAK/ STATmodel,
(Raue et al., 2014; Quaiser et al., 2011). The constitutive
activation of the JAK (Janus kinase)/STAT signalling
pathway forms part of both the primary mediastinal B-cell
lymphoma (PMBL) and the classical Hodgkin lymphoma
(cHL) Raia et al. (2011). Raue et al. investigated the iden-
tifiability of this benchmark model using three different
approaches and concluded that the model is unidentifiable
Raue et al. (2014). We treat the unknown initial value
of state x2 as an additional parameter and so in total,
the values of 23 unknown parameters need to be inferred,
(Raue et al., 2014; Raman, 2016):
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tifiable parameters for each group separately. This really
is a tremendous (symbolic) computational saving that is
harvested from the initial SVD analysis on the output
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to right) (i) the user input panel, (ii) the output and
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In the user input panel we can select the type of analysis
(either controllability or observability) to be conducted,
specify a length for the integration interval (tf ), and
define the desired accuracy of the integration results. For
the final integration time tf it is usually sufficient to
specify the length as twice the largest characteristic time
constant of the system. These time constants can be easily
obtained in Matlab by computation of the eigenvalues of
the matrix exponent of the Jacobi matrix associated with
model (1). Our experience has shown that the integration
length may change the outcome of the structural analysis,
but if it is not specified too high then the outcome
is very reliable. The accuracy of the parametric output
sensitivities solution yθ(t) in our App relies heavily on the
state-of-the-art Sundials 1 solver that is, in fact, part of the
SimBiology toolbox in Matlab. This solver utilizes complex
derivatives for a very accurate computation of the Jacobi
matrices ∂f
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∂θ , and
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(9)

yθ(t) =
∂h

∂x
xθ +
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(10)

where xθ(t) = dx
dθ . The input panel finally includes two

buttons with names ”Import Model” and ”Analyse” that
allow the user to import the model input file (in plain
ASCII text format) and (after a successful import) start
the analysis.

3.2 Selection Panel

Since a structural observability or controllability analysis
depends completely on the available input and/or output
signals, we have included a so-called selection panel that
allows for greater flexibility when the analysis is repeated
many times with different sensor combinations. A user can
use check marks (�) to easily select the sensors (or input
variables) he/she has available in the given experimental
setup. Of course, it is interesting to study how exactly the
observability of a system changes if a different selection
of sensors is chosen and our App provides a quick tool
to find, for example, a minimal output set, i.e. the set of
1 https://computing.llnl.gov/projects/sundials

sensors that is minimally needed for identification of all the
selected states and/or parameters in the model (Joubert
et al., 2018). At the bottom of the central panel, a user
can specify exactly which state variables and parameters
he/she wishes to reconstruct from the available signals.
Initial values for state variables and/or parameters that
are considered unknown can also be specified here. A
reasonable random value will be generated by the software
if an IC is not specified numerically. Specifying user defined
initial values can be important in some cases and can make
a difference in the outcome of a structural analysis as
clearly demonstrated in Saccomani et al. (2003).

3.3 Result Panel

Once the analysis button has been pressed (after a suc-
cessful import of the model definition from the text file),
the sensitivities are computed and a singular value decom-
position of the output sensitivity matrix is found. Results
are presented in two figures, namely (i) a graph of the
singular values and the null space of the sensitivity matrix
(corresponding to the singular values that are considered
as zero) and (ii) a directed (adjacency) graph that is

based on the Jacobi matrix ∂f
∂x . In this graph an arrow

from node j to node i is drawn if the corresponding (i, j)
matrix element in the Jacobi matrix is non-zero. The
directed graph depicted in figure 2 shows how the 14 state
variables in example 4.1 are connected to one-another.
In addition, the state variables that are involved in the
observation equation (2) are indicated in red so that the
user knows which nodes in the directed graph are associ-
ated with sensors in the experimental setup. Finally, the
result panel also presents the largest gap-distance between
consecutive singular values of the sensitivity matrix. This
yields a first indication of a possible rank deficiency of
the sensitivity matrix since the singular values after the
gap can be treated as zero and hence, indicate a possible
lack of observability. A better underpinning of the rank
deficiency is performed in a second stage of our analysis,
i.e. via a symbolic computation. Utilising the preceding
SVD results for this example allows one to perform an
identifiability analysis within a matter of seconds. In the
past, reported computation times required hours to com-
plete for large models with only one (or a few) sensor(s)
available (Anguelova et al., 2012).

4. EXAMPLES

4.1 Identifiability analysis and model re-parametrisation

Consider the well-known unidentifiable JAK/ STATmodel,
(Raue et al., 2014; Quaiser et al., 2011). The constitutive
activation of the JAK (Janus kinase)/STAT signalling
pathway forms part of both the primary mediastinal B-cell
lymphoma (PMBL) and the classical Hodgkin lymphoma
(cHL) Raia et al. (2011). Raue et al. investigated the iden-
tifiability of this benchmark model using three different
approaches and concluded that the model is unidentifiable
Raue et al. (2014). We treat the unknown initial value
of state x2 as an additional parameter and so in total,
the values of 23 unknown parameters need to be inferred,
(Raue et al., 2014; Raman, 2016):

Fig. 1. The main window of the StrucID App version 2.0

Fig. 2. Directed graph for the JAK/STAT model. The red
nodes are associated with an output sensor.

ẋ1(t) = −θ1 u1 c1 x1(t)− θ5 x1(t) + θ6 x2(t) (11)

ẋ2(t) = θ5 x1(t)− θ6 x2(t) (12)

ẋ3(t) = θ1 u1 c1 x1(t)− θ2 x3(t)x7(t) (13)

ẋ4(t) = θ2 x3(t)x7(t)− θ3 x4(t) (14)

ẋ5(t) = θ3 x4(t)− θ4 x5(t) (15)

ẋ6(t) = − θ7 x3(t)x6(t)

(1 + θ13 x13(t))
− θ7 x4(t)x6(t)

(1 + θ13 x13(t))
+ θ8 c2 x7(t)

(16)

ẋ7(t) =
θ7 x3(t)x6(t)

(1 + θ13 x13(t))
+

θ7 x4(t)x6(t)

(1 + θ13 x13(t))
− θ8 c2 x7(t)

(17)

ẋ8(t) = −θ9 x8(t)x7(t) + c2 θ10 x9(t) (18)

ẋ9(t) = θ9 x8(t)x7(t)− c2 θ10 x9(t) (19)

ẋ10(t) = θ11 x9(t) (20)

ẋ11(t) = −θ12 c1 u1 x11(t) (21)

ẋ12(t) = θ12 c1 u1 x11(t) (22)

ẋ13(t) =
θ14 x10(t)

(θ15 + x10(t))
− θ16 x13(t) (23)

ẋ14(t) = θ17 x9(t) (24)

The model output contains 5 additional parameters,
θ18, ..., θ22:

y1(t) = x1(t) + x3(t) + x4(t) (25)

y2(t) = θ18 (x3(t) + x4(t) + x5(t) + x12(t)) (26)

y3(t) = θ19 (x4(t) + x5(t)) (27)

y4(t) = θ20 x7(t) (28)

y5(t) = θ21 x10(t) (29)

y6(t) = θ22 x14(t) (30)

y7(t) = x13(t) (31)

y8(t) = x9(t) (32)

Importantly, the predefined initial conditions are,

x(0) = [1.3, x2(0), 0, 0, 0, 2.8, 0, 165, 0, 0, 0.34, 0, 0, 0] (33)

Stage one numerical results confirm that the model is
indeed structurally unidentifiable if the model is analysed
for the defined initial conditions in (33) and where x2(0) �=
0. This results is evident from the large gap between the
singular values in figure 3. The 2 singular values beyond
this gap suggest that the null-space contains 2 base vectors
and so there are 2 sets of totally correlated parameters.
The union of the elements in these 2 sets, θunid =
{θ11, θ15, θ17, θ21, θ22}, follows from the nonzero elements
in figure 4. The symbolically calculated nontrivial null-
space, computed using Mathematica, confirms that there
are indeed 2 sets of totally correlated parameters. The
2 base vectors spanning this null-space are computed
as {0, 0,−θ17/θ22, 0, 1} and {−θ11/θ21,−θ15/θ21, 0, 1, 0}
respectively.

The coefficients within these base vectors now allow us
to formally define the algebraic relationship between the

linear dependant columns of the Jacobi matrix
(

dG(θ)

dθunid

)
.

These now become the coefficients of 2 individual partial
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Fig. 3. Identifiability signature of the JAK/STAT model.
The 2 singular values beyond the gap suggest that the
model is structurally unidentifiable and that there are
2 sets of totally correlated parameters.
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Fig. 4. Identifiability signature of the JAK/STAT model.
Entries in the last 2 columns of the right singular
matrix, related to the 2 singular values beyond the
gap. The non-zero elements indicate the union be-
tween 2 potential sets of totally correlated parame-
ters, {θ11, θ15, θ17, θ21, θ22} .

differential equations, described for the functions φ1 =
φ1(θ17, θ22) and φ2 = φ2(θ11, θ15, θ21):

−θ17
θ22

∂φ1

∂θ17
+

∂φ1

∂θ22
= 0, (34)

−θ11
θ21

∂φ2

∂θ11
− θ15

θ21

∂φ2

∂θ15
+

∂φ2

∂θ21
= 0. (35)

One possible solution to (34) is φ1,1 = θ17θ22, while

φ2,1 = θ15
θ11

and φ2,2 = θ11θ21 are solutions to (35).

We are now in a position to define the 3 new systems
parameters θid = {φ1,1, φ2,1, φ2,2}, that will replace the 5
unidentifiable parameters, θunid = {θ11, θ15, θ17, θ21, θ22}
(an overall reduction of 2 parameters since there are 2 sets
of totally correlated parameters).

This example is unique in the sense that the required
state transformations are not related to unidentifiable
initial conditions. Instead, they are required since the
measured output vector contains additional unidentifiable
parameters. The interested reader is referred to the work of
Chappell and Evans for additional background on the topic
of state transformations, (Chappell and Gunn, 1998; Evans
and Chappell, 2000). We further refer to Joubert et al.
(2020) for a detailed description of the re-parametrisation
process.

Fig. 5. Directed graph of 3-state model. The two red nodes
are directly accessible with a control signal.
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Fig. 6. Controllability signature of 3-state model defined
in example 4.2.

4.2 Controllability – example of a confined movement on
a sphere

Consider the following control system, whose directed
graph is depicted in figure 5.

d

dt

(
x1(t)
x2(t)
x3(t)

)
=

(
x2(t)
−x1(t)

0

)
+

(
0

x3(t)
−x2(t)

)
u(t) (36)

If we calculate the product xT (t) d
dtx(t), we quickly see

that it equals zero for any input u(t) and, therefore,
the integral 1

2 x
T x is a constant of motion. In other

words, once started at a fixed point x0 in state space, the
dynamics of this system continue to evolve on the sphere
xT
0 x0 = R2, with R the radius of the sphere. This lack of

controllability is confirmed by the controllability signature
as presented in figure 6.

5. CONCLUDING REMARKS

We have introduced the user-friendly StrucID v2.0 App
which allows for the structural analysis of dynamic sys-
tem models. The analysis includes both observability and



 J.D. Stigter  et al. / IFAC PapersOnLine 54-7 (2021) 138–143 143

0 5 10 15 20
Singular values in decending order

-15

-5

4

L
o
g

1
0
(S

in
g
u
la

r 
V

a
lu

e
s
)

Gap > 10

Fig. 3. Identifiability signature of the JAK/STAT model.
The 2 singular values beyond the gap suggest that the
model is structurally unidentifiable and that there are
2 sets of totally correlated parameters.

-1

0

1

C
o
m

p
o
n
e
n
ts

 i
n
 

L
a
s
t 
2
 S

in
g
u
la

r 
V

e
c
to

rs

11 15 17 21 22

Parameters

Fig. 4. Identifiability signature of the JAK/STAT model.
Entries in the last 2 columns of the right singular
matrix, related to the 2 singular values beyond the
gap. The non-zero elements indicate the union be-
tween 2 potential sets of totally correlated parame-
ters, {θ11, θ15, θ17, θ21, θ22} .

differential equations, described for the functions φ1 =
φ1(θ17, θ22) and φ2 = φ2(θ11, θ15, θ21):

−θ17
θ22

∂φ1

∂θ17
+

∂φ1

∂θ22
= 0, (34)

−θ11
θ21

∂φ2

∂θ11
− θ15

θ21

∂φ2

∂θ15
+

∂φ2

∂θ21
= 0. (35)

One possible solution to (34) is φ1,1 = θ17θ22, while

φ2,1 = θ15
θ11

and φ2,2 = θ11θ21 are solutions to (35).

We are now in a position to define the 3 new systems
parameters θid = {φ1,1, φ2,1, φ2,2}, that will replace the 5
unidentifiable parameters, θunid = {θ11, θ15, θ17, θ21, θ22}
(an overall reduction of 2 parameters since there are 2 sets
of totally correlated parameters).

This example is unique in the sense that the required
state transformations are not related to unidentifiable
initial conditions. Instead, they are required since the
measured output vector contains additional unidentifiable
parameters. The interested reader is referred to the work of
Chappell and Evans for additional background on the topic
of state transformations, (Chappell and Gunn, 1998; Evans
and Chappell, 2000). We further refer to Joubert et al.
(2020) for a detailed description of the re-parametrisation
process.

Fig. 5. Directed graph of 3-state model. The two red nodes
are directly accessible with a control signal.
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Fig. 6. Controllability signature of 3-state model defined
in example 4.2.

4.2 Controllability – example of a confined movement on
a sphere

Consider the following control system, whose directed
graph is depicted in figure 5.

d

dt

(
x1(t)
x2(t)
x3(t)

)
=

(
x2(t)
−x1(t)

0

)
+

(
0

x3(t)
−x2(t)

)
u(t) (36)

If we calculate the product xT (t) d
dtx(t), we quickly see

that it equals zero for any input u(t) and, therefore,
the integral 1

2 x
T x is a constant of motion. In other

words, once started at a fixed point x0 in state space, the
dynamics of this system continue to evolve on the sphere
xT
0 x0 = R2, with R the radius of the sphere. This lack of

controllability is confirmed by the controllability signature
as presented in figure 6.

5. CONCLUDING REMARKS

We have introduced the user-friendly StrucID v2.0 App
which allows for the structural analysis of dynamic sys-
tem models. The analysis includes both observability and

controllability features. It is of particular value when
analysing large models, offering quick results and the abil-
ity to explore numerous experimental setups within sec-
onds. Combined with symbolic algebra software for further
analysis and verification of the numerical (SVD) results,
one is able to analyse large systems within computationally
trackable times. This makes StrucID v2.0 an attractive
tool. We foresee many applications where StrucID has
potential, e.g. in aerospace engineering where observability
is a major issue for navigation of space vehicles (Woodbury
et al., 2018), or in microbiology where large dynamic
models need to be calibrated, (Kim et al., 2018). The
StrucID v2.0 App runs in Matlab 2019b and is available
upon request from the authors.
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