


Abstract  The Atmospheric Carbon Transport (ACT)-America Earth Venture mission conducted 
five airborne campaigns across four seasons from 2016 to 2019, to study the transport and fluxes of 
Greenhouse gases across the eastern United States. Unprecedented spatial sampling of atmospheric 
tracers (CO2, carbon monoxide [CO], carbonyl sulfide [COS]) related to biospheric processes offers 
opportunities to improve our qualitative and quantitative understanding of seasonal and spatial patterns 
of biospheric carbon uptake. Here, we examine co-variation of boundary layer enhancements of CO2, 
CO, and COS across three diverse regions: the crop-dominated Midwest, evergreen-dominated South, 
and deciduous broadleaf-dominated Northeast. To understand the biogeochemical processes controlling 
these tracers, we compare the observed co-variation to simulated co-variation resulting from model- and 
satellite- constrained surface carbon fluxes. We found indication of a common terrestrial biogenic sink 
of CO2 and COS and secondary production of CO from biogenic sources in summer throughout the 
eastern US, driven by stomatal conductance. Upper Midwest crops drive E  CO2 and E  COS depletion from 
early to late summer. Northeastern temperate forests drive E  CO2 and E  COS depletion in late summer. 
The unprecedented ACT-America flask samples uncovered evidence that southern humid temperate 
forests photosynthesize and absorb CO2 and COS, and emit CO precursors, deep into the growing season. 
Satellite- constrained carbon fluxes capture much of the observed seasonal and spatial variability, but 
underestimate the magnitude of net CO2 and COS depletion in the South, indicating a stronger than 
expected net sink of CO2 in late summer. Additional sampling of the South will more accurately constrain 
underlying biological processes and climate sensitivities governing southern carbon dynamics.

Plain Language Summary  The Atmospheric Carbon Transport (ACT)-America airborne 
mission provided unprecedented sampling of atmospheric greenhouse gas concentrations throughout the 
eastern United States from 2016 to 2019. A subset of these gases, namely carbon dioxide (CO2), carbonyl 
sulfide (COS), and carbon monoxide (CO), are strongly influenced by photosynthetic activity in plants. 
Unlike other sources of carbon such as fossil fuels and biomass burning, photosynthetic influences 
on CO2, COS, and CO are correlated in time and space. As such, the covariation of boundary layer 
enhancements of CO2, COS, and CO can provide clues about the seasonal and spatial distribution of plant 
carbon uptake. By examining this covariation across diverse regions in the eastern US, we uncovered 
evidence that humid temperate forests in the previously poorly constrained southern US continue to 
photosynthesize and absorb CO2 and COS (and emit CO through biogenic volatile organic compound 
precursor emissions) deeper into the growing season than expected by models and satellite-constrained 
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Prior CO flux components used in the inversion include combustion CO sources (fossil fuel, biofuel, and 
biomass burning), and CO oxidation from biogenic non-methane VOCs and methane. Atmospheric CO ox-
idation is assumed to occur within the relatively coarse 4 × 5 scales, such that CO surface emissions occur 
in the same grid box as precursor emissions. Biomass burning emissions are obtained from GFED4 (van der 
Werf et al., 2010). Anthropogenic emissions (fossil fuel and biofuel) combine off-line emission inventories 
from the Emission Database for Global Atmospheric Research global model (EDGAR v4.2; Olivier & Ber-
dowski, 2001) and regional models over North America (Kuhns et al., 2003) propagating seasonal, weekly, 
and diurnal variation. We do not account for net soil uptake of CO, which we acknowledge could partially 
offset combustion and biogenic sources in the southeast US (e.g., Liu et al., 2018). Biogenic and biomass 
emissions are estimated at 3-hourly resolution, other fluxes are monthly.

Precursor emissions of CO from biogenic sources are computed using the Model of Emissions of Gases and 
Aerosols from Nature (MEGAN) version 2.0 (Guenther et al., 2006). MEGAN models the VOC emission 
with three parameters, an annual emission factor, an activity factor, and a production and loss rate. The 
emission factor represents the emission of a compound at standard condition where the activity factor 
represents the emission changes due to deviations from standard condition. Emissions are calculated for 
each plant functional type and summed to estimate the total emission per grid cell accounting for regional 
variations in vegetation type, leaf area index, canopy maturity, solar angle, surface temperature, and soil 
moisture (Guenther et al., 2006). Biogenic CO emissions combine 30% isoprene, 20% monoterpene, and 
67% acetone emission. The regional distribution in North America is characterized by isoprene dominance 
in the southeast US (Figure S3).

2.2.3.  COS Flux

We examine three independent process-based and data-constrained estimates of plant COS uptake from 
(a) the Simple Biosphere Model version 4 (SiB4) process model, (b) atmospheric data-constrained and in-
dependent geostatistical inverse modeling (GIM) framework, and (c) semi-empirical SIF-based constraint 
(GOPT). These products are described in more detail below. We note that SiB4 and GIM estimates are not 
year specific, and thus do not represent climate conditions at the time of ACT-America data collection. Oth-
er COS component fluxes prescribed in this study include soil uptake (Whelan et al., 2016), anthropogenic 
emissions (Kettle et al., 2002), biomass burning (van der Werf et al., 2010), and oceanic emissions (Kettle 
et al., 2002). The same component fluxes are prescribed for each estimate of plant COS uptake, with the 
exception that SiB4 uses its own soil uptake, as described below.

2.2.3.1.  SiB4

The Simple Biosphere Model (SiB4; Haynes, Baker, Denning, Stöckli, et al., 2019, Haynes, Baker, Denning, 
Wolf, et al., 2019) is a mechanistic and process-based model that simulates land-atmosphere exchanges of 
energy, momentum and moisture, as well as the terrestrial carbon cycle. By simulating biogeochemical and 
biophysical processes over heterogeneous vegetation, SiB4 not only provides estimates of water, energy and 
carbon fluxes, but it also predicts a wide variety of land characteristics and properties, including soil mois-
ture, soil carbon pools, biomass, leaf area index, albedo, COS, and SIF. To create a self-consistent, predic-
tive model, SiB4 combines elements from a prognostic phenology model (SiBpp; Stöckli et al., 2008, 2011), 
a crop model (SiBcrop; Corbin et al., 2010; Lokupitiya et al., 2009), and a terrestrial carbon pool model 
(SiB-CASA; Schaefer et al., 2008, 2009) into a single modeling framework. By combining the processes from 
these three previous versions of SiB and using tiles of plant functional types (PFTs) to represent land cover 
heterogeneity, SiB4 can investigate land surface properties and land-atmospheric exchanges on a variety of 
temporal and spatial scales.

Plant uptake of atmospheric CO2 and COS are directly related to photosynthesis through diffusion by sto-
matal conductance and consumption by collocated reaction in the chloroplasts of leaves (Rubisco and car-
bonic anhydrase (CA), respectively) (Berry et al., 2013; Campbell et al., 2008). Diffusion of gases including 
CO2, COS, and water vapor along the pathway from the atmosphere to leaf cell where biochemistry takes 
place is controlled by boundary layer, stomatal, and mesophyll conductance (Berry et al., 2013). The prog-
nostic canopy air space in SiB4, and addition of mesophyll conductance scaling to Vcmax (and modulation 
by environmental conditions), enables direct calculations of plant COS uptake (Baker et al., 2003; Stöckli 
& Vidale, 2005).
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SiB4 has its own representation of soil COS exchange, which accounts for biotic uptake and respiration. 
In more productive environments, CA accumulates in the surface litter and near-surface soil, and thus 
respire more COS and as function of productivity (Berry et al., 2013). Estimates of soil uptake from Whelan 
et al. (2016) are derived from an empirical model based on temperature and moisture, which accounts for 
biotic uptake and abiotic exchange. Both soil flux estimates show net uptake on average, but differ signif-
icantly in magnitude and spatial pattern in the eastern US (Figure S4). Despite clear differences in spatial 
variability, soil exchange is small relative to plant uptake, and has negligible impact on atmospheric signal 
predictions (e.g., Figure S5) or tracer-tracer regressions.

2.2.3.2.  GIM

Atmospheric trace gas applications of the GIM framework have primarily been used to estimate surface net 
ecosystem exchange CO2 fluxes (Michalak, 2004) by coupling atmospheric trace gas observations to a model 
of atmospheric transport. The GIM framework allows for the incorporation of covariate datasets to help 
constrain the space-time patterns of surface flux estimates (Gourdji et al., 2008, 2012). The GIM approach 
used here optimizes plant COS fluxes over North America using COS observations from the NOAA air-
borne network (https://www.esrl.noaa.gov/gmd/ccgg/aircraft/) and remotely sensed SIF (GOME-2, Joiner 
et al., 2013) as a single covariate. SIF is used as a covariate to help the inversion capture the space time 
patterns of photosynthetic CO2 and hence plant COS fluxes. This approach is based on a North American 
regional CO2 inversion (Shiga et al., 2018) using the same pre-computed footprint library created from the 
WRF-STILT atmospheric transport model (Nehrkorn et al., 2010) runs for NOAA's CarbonTracker Lagrange 
project (https://www.esrl.noaa.gov/gmd/ccgg/carbontracker-lagrange/). The influence of the background 
is removed by subtracting the average of observations above 2.5 km in any given aircraft sampling profile 
from the observations in the lowest 1.5 km (boundary layer).

The inversion also accounts for the influence from secondary COS fluxes from soils (Whelan et al., 2016), 
anthropogenic emissions (Zumkehr et al., 2018), and biomass burning (Stinecipher et al., 2019). We ac-
knowledge uncertainty of GIM COS to secondary fluxes, especially with respect to soil COS fluxes given 
large differences in magnitude and spatial variability of available estimates in the eastern US (Figure S4). 
Overall, soil COS uptake from Whelan et al. (2016) is larger than that of SiB4, leading to less plant COS 
uptake in our inversion, but providing the best match to available NOAA COS data.

To isolate plant COS fluxes, the influence from secondary COS fluxes have been removed by convolving 
these surface fluxes with the WRF-STILT footprints and then subtracting from the boundary layer obser-
vations. Plant COS fluxes are optimized yearly at 1 × 1 spatial resolution over North America from 2008 
to 2012 using four different sets of covariance parameters assuming two different model-data mismatch 
variances and two different temporal correlation lengths (see Table S1). A 5-year climatology of the monthly 
average of these four inversion runs is used here to reduce the impact of both data gaps and the impact of 
covariance parameter choices.

2.2.3.3.  GOPT

As mentioned above, plant uptake of atmospheric COS is directly related to photosynthesis through dif-
fusion modulated by stomatal conductance. Even though most terrestrial biosphere models include a rep-
resentation of stomatal conductance enabling prediction of GPP, and multiple empirical-based methods 
exist for constraining GPP against satellite vegetation data (Anav et al., 2015), most models don't simulate 
leaf COS uptake. To get around this limitation, we developed a simplified biome-specified linear regres-
sion method that converts GPP into COS plant uptake from the mechanism in the SIB4 model, effectively 
accounting for changes in leaf relative uptake (LRU) between PFTs. Analysis of monthly mean plant COS 
and GPP output from SiB4 shows a biome-dependent linear relationship. Therefore, we compute the linear 
regressions from GPP to COS flux for broad MODIS-based biome classifications. We compute the regression 
between GPP and COS plant uptake data for each biome (ib) from SIB4 output in the following form:

   COS , GPP ,ib ib ibx y k x y b � (1)

where x and y are latitude and longitude coordinates. By applying the consistent biome specified regres-
sion model, we can derive COS plant uptake from any GPP product. A limitation of this simplified model 
is time-invariant assumption in LRU leading to potential divergent nighttime pathways of COS (uptake) 

https://www.esrl.noaa.gov/gmd/ccgg/aircraft/
https://www.esrl.noaa.gov/gmd/ccgg/carbontracker%2Dlagrange/
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versus CO2 (respiration). Here, we derived SIF-based GPP estimates following Parazoo et al. (2014), where 
year-specific monthly GPP at each grid point is inferred from a precision-weight minimization of spaceborne 
SIF, which is regressed against global GPP from upscaled flux tower data (e.g., Frankenberg et al., 2011; 
Jung et al., 2011) and subjected to prior knowledge of GPP from an ensemble of terrestrial ecosystem mod-
els (Sitch et al., 2015). This method is updated here using OCO-2 measured SIF constraints. Monthly GPP is 
downscaled to 3 h using the same approach for NBE, and then used in Equation 1 to estimate COS.

2.2.3.4.  Total Versus Biogenic Flux

Seasonal maps of posterior CO2, CO, (from CMS-Flux) and COS flux (from GIM) are shown in Figure 3. 
The corresponding biogenic component is shown in Figure 4. For CO2 and COS, total and biogenic fluxes 
show consistent magnitude and spatial distribution over the entire year. The main difference can be seen 
in the northeast and upper Midwest, where fossil fuel emissions are prevalent. Fossil emissions drive most 
of the COS flux and amplify CO2 emissions in winter, and offset much of the plant-driven COS drawdown 
in summer. The CO posterior is driven largely by hotspots of emissions from fossil fuel (year-round) and 
fires in summer. Biogenic emissions occur mainly in summer in the south, lower Midwest, and along the 
mid-Atlantic regions, and show consistent magnitude from early to late summer (June–August).

2.3.  Atmospheric Signal Prediction

The preceding posterior fluxes are derived from atmospheric models run at fairly coarse spatial resolution. 
As such, when these fluxes are propagated back to the atmosphere using the same atmospheric models 
run in forward simulation mode, they will not capture the variability seen in the ACT-America samples. To 
bridge those scales, we run the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model 
(Draxler & Hess, 1997; Stein et al., 2015) in Stochastic Time-Inverted Lagrangian Transport (STILT)-emula-
tion mode and driven by meteorological fields from the Weather Research and Forecasting Chemistry mod-
el (WRF-Chem; Feng, Lauvaux, Klaus, et al., 2019) to estimates surface influence (footprint) predictions for 
ACT-America flask samples. WRF-HYSPLIT shows comparable skill to WRF-STILT in simulating tracer 
plumes and surface footprints when driven by the same meteorology (Hegarty et al., 2013).

Figure 4.  Same as Figure 3, but for plant component of total flux.
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The WRF-Chem simulation is carried out using version 3.6.1. The domain of interest contains most of 
North America [170°W - 60°W, 20°N - 75°N] at 27 km horizontal resolution. The model has 50 levels up to 
50 hPa with 20 levels in the lowest 1 km. The model meteorology is initialized every 5 days and driven with 
ERA5 reanalysis every 6 h at 25-km horizontal resolution. The WRF-Chem dynamic is relaxed to ERA5 
(Hersbach et al., 2020) meteorology every 6 h using grid nudging. Each meteorological re-initialization is 
started at a 12-h setback from the end of the previous 5-day run. The first 12 hours of every 5-day simulation 
are considered spin-up and discarded from the final analysis. We also update sea surface temperature every 
6 h at 12-km resolution. Choices of the model physics parameterizations used in this experiment are docu-
mented as the baseline setup described in Feng, Lauvaux, Klaus, et al. (2019) and Feng, Lauvaux,Williams, 
et al. (2019). Specifically, MYNN 2.5 PBL scheme (Nakanishi & Niino, 2004) and Noah Land surface model 
(Feng, Lauvaux,Williams, et al., 2019) are used for vertical mixing.

WRF-HYSPLIT was run backward for 10 days, or until particles exit the North American continental bound-
ary, roughly defined by the WRF-Chem domain above. For each back trajectory, 500 particles were released 
at each flask receptor location to generate footprints every 15 min along the particle trajectories. Surface 
footprints were re-calculated on a 1-degree grid and saved at hourly intervals. Surface influences for each 
region and campaign are shown in Figure 5.

We note several differences in summer influence patterns in 2016 and 2019. The NE region shows more 
local influence in 2016, and westerly and northerly influence in 2019. The MW region has a larger southerly 
component in 2016. The S region is more southerly and easterly in 2016, and has more local and southerly 
influence in 2019. We also note a strong influence from the Gulf of Mexico in both years.

3.  Results
We refer to prior and posterior surface fluxes in Figures 3 and 4 as FCO2, FCO, and FCOS, with positive values 
indicating a net source (or emission) of tracer from land to the atmosphere, and negative values indicating 
a net sink (or uptake) of tracer from atmosphere to land. Observed seasonal tracer distribution in the BL 
and FT, and corresponding enhancements ( E   = BL - FT), are shown in Figure S6 (top and bottom rows, re-
spectively). Comparison to predicted enhancements, determined by convolving prior and posterior surface 
fluxes with HYSPLIT influence functions, is provided in Figure 6. We refer to E   < 0 (BL < FT) as depletion 

Figure 5.  Concentration footprints corresponding to boundary layer flask data collected during five Atmospheric Carbon Transport campaigns. Footprints 
are organized by campaign (columns, in order of season and month(s) of year) and flask sampling region (Northeast in top row; South in middle row; Midwest 
in bottom row). Footprints are derived for each flask sample using surface influence functions from the HYSPLIT langrangian back trajectory model, and 
convolved with time resolved prior and posterior fluxes to determine predicted signals for comparison with observed signals. Footprints shown here represent 
a data-collection time average, with footprints from individual samples summed over the previous 10 days, and then averaged across all samples within each 
region for each campaign.
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