
Applications of deep learning for mobile malware detection : A systematic
literature review
Neural Computing and Applications
Catal, Cagatay; Giray, Görkem; Tekinerdogan, Bedir
https://doi.org/10.1007/s00521-021-06597-0

This article is made publicly available in the institutional repository of Wageningen University and Research, under the
terms of article 25fa of the Dutch Copyright Act, also known as the Amendment Taverne. This has been done with explicit
consent by the author.

Article 25fa states that the author of a short scientific work funded either wholly or partially by Dutch public funds is
entitled to make that work publicly available for no consideration following a reasonable period of time after the work was
first published, provided that clear reference is made to the source of the first publication of the work.

This publication is distributed under The Association of Universities in the Netherlands (VSNU) 'Article 25fa
implementation' project. In this project research outputs of researchers employed by Dutch Universities that comply with the
legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in
institutional repositories. Research outputs are distributed six months after their first online publication in the original
published version and with proper attribution to the source of the original publication.

You are permitted to download and use the publication for personal purposes. All rights remain with the author(s) and / or
copyright owner(s) of this work. Any use of the publication or parts of it other than authorised under article 25fa of the
Dutch Copyright act is prohibited. Wageningen University & Research and the author(s) of this publication shall not be
held responsible or liable for any damages resulting from your (re)use of this publication.

For questions regarding the public availability of this article please contact openscience.library@wur.nl

https://doi.org/10.1007/s00521-021-06597-0
mailto:openscience.library@wur.nl

REVIEW

Applications of deep learning for mobile malware detection:
A systematic literature review

Cagatay Catal1 • Görkem Giray2 • Bedir Tekinerdogan3

Received: 27 November 2020 / Accepted: 4 October 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
For detecting and resolving the various types of malware, novel techniques are proposed, among which deep learning

algorithms play a crucial role. Although there has been a lot of research on the development of DL-based mobile malware

detection approaches, they were not reviewed in detail yet. This paper aims to identify, assess, and synthesize the reported

articles related to the application of DL techniques for mobile malware detection. A Systematic Literature Review is

performed in which we selected 40 journal articles for in-depth analysis. This SLR presents and categorizes these articles

based on machine learning categories, data sources, DL algorithms, evaluation parameters & approaches, feature selection

techniques, datasets, and DL implementation platforms. The study also highlights the challenges, proposed solutions, and

future research directions on the use of DL in mobile malware detection. This study showed that Convolutional Neural

Networks and Deep Neural Networks algorithms are the most used DL algorithms. API calls, Permissions, and System

Calls are the most dominant features utilized. Keras and Tensorflow are the most popular platforms. Drebin and VirusShare

are the most widely used datasets. Supervised learning and static features are the most preferred machine learning and data

source categories.

Keywords Deep learning � Machine learning � Mobile applications � Malware detection � Systematic literature review

(SLR) � Cybersecurity

1 Introduction

Malicious software (a.k.a., malware), such as worms,

viruses, trojans, rootkits, spyware, backdoors, and botnets,

deliberately cause harmful or unexpected effects on the

computer systems. Cyber-criminals often use different

kinds of malware to launch security attacks that can affect

thousands of organizations and millions of users [72]. As

such, many anti-malware software vendors such as

Symantec, AVAST, ESET, Bitdefender, TrendMicro,

McAfee, and cybersecurity researchers developed different

malware detection techniques.

Malware threats are expanding not only vertically in

terms of the number of incidents but also horizontally in

terms of functionality and types of malware [26]. Recently,

ransomware [38] and cryptojacking [13] became the most

dominant malware categories, among others. In addition,

malware addressing mobile [50, 60] and Internet of Things

(IoT) systems [19] are on the rise. The key factor for the

rise of mobile malware is associated with financial moti-

vation. Since IoT systems are widely used in different

application domains, they are also vulnerable to malware

attacks. One of the most recent examples is the Mirai

family of malware that infected IoT devices with a massive

Distributed Denial of Service (DDoS) attacks in late 2016

[3, 39]. The latest mobile malware is related to mobile

banking trojans, cryptocurrency mining, and ransomware

[40]. Since a large number of mobile applications are

developed and released every day, manual inspection of the

behavior of these applications is not an option anymore,

& Cagatay Catal

ccatal@qu.edu.qa

Bedir Tekinerdogan

bedir.tekinerdogan@wur.nl

1 Department of Computer Science and Engineering, Qatar

University, Doha, Qatar

2 Izmir, Turkey

3 Information Technology Group, Wageningen University and

Research, Wageningen, The Netherlands

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-021-06597-0(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-0959-2930
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06597-0&domain=pdf
https://doi.org/10.1007/s00521-021-06597-0

and therefore, automated malware detection approaches

emerged. Currently, there are nearly 3 million applications

on Google Play Store [4], and the first half of 2020, around

300,000 new Android applications, were added to this

store. For such a rapidly growing ecosystem, the need for

automated malware detection approaches is just inevitable.

Ucci et al. [70] reviewed papers on the use of machine

learning in malware analysis and presented a taxonomy of

machine learning techniques for malware analysis based on

the objective, feature, and machine learning algorithm

dimensions. They divided the objective dimension into the

following three categories:

i. Malware detection This objective investigates

whether a given software is malicious or not. Most

of the reviewed papers belong to this category.

ii. Malware similarity analysis This objective detects

similarities among malware and can be divided into

the following sub-categories:

o Variants detection Many new malicious software

applications are the variants of the existing

malware because reuse of the code and resources

are beneficial for the attackers. The detection of

variants reduces the workload of analysts.

o Families detection The objective is to detect the

family of the given malware.

o Similarities detection The objective is to detect

the similarities and differences between the

given binary file and already analyzed ones.

Researchers can focus on the new part and

discard the similar ones.

o Differences detection This objective determines

the differentiating novel aspects of the malware.

iii. Malware category detection: The objective is to

recognize the category of malware. However, cyber-

security firms do not have a standardized malware

category taxonomy yet Ucci et al. [70].

For malware detection, three types of malware analysis

are mostly performed [26]. The first one is the static anal-

ysis that does not execute the application for the analysis.

On the other hand, with dynamic analysis, the behavior of

the application is analyzed based on its execution. Although

static analysis is faster, it usually fails to detect malware if,

for example, code obfuscation approaches are applied by

malware developers. There are several obfuscation tech-

niques, namely encryption, oligomorphic, polymorphic,

metamorphic, stealth, and packaging [5]. Encryption is used

to hide malicious code in the code, oligomorphic applies a

different key for encrypting and decrypting the payload of

the malware, and polymorphic creates a myriad number of

distinct decryptors. Metamorphic does not apply the

encryption, and the opcode is changed when the malicious

code is executed. Stealth (a.k.a., code protection) makes

some changes in the system that it locates not to be detected

by the detection systems and packaging compresses the

malware or hide the actual code using the encryption [5].

Polymorphic malware and code obfuscation cannot help

much to malware developers because dynamic analysis

checks the dynamic behavior of the application [26]. The

third category for malware detection can be considered as

the integration of both static analysis and dynamic analysis,

which is called hybrid analysis. In addition to these types of

analysis approaches, some researchers also proposed mal-

ware visualization based on image processing techniques

[53]. Researchers transformed binary samples into grays-

cale images, and the features of the images were used for the

classification. After the visualization is performed, the

malware detection problem can be evaluated as an image

recognition problem [18].

In the early days of malware detection, signature-based

approaches [28] were widely used. Hereby, signatures

indicate short strings that are used to uniquely represent a

certain program, and signature-based approaches used

pattern-matching techniques to detect these strings. How-

ever, when a slight change such as encryption and obfus-

cation is introduced in the malicious code, signature-based

approaches cannot detect them [74]. To overcome this

limitation, heuristic-based malware detection approaches

[7] using machine learning algorithms were proposed and

evaluated in different benchmarking datasets. Different

approaches that analyze the dynamic behavior of the

applications [62], permissions [47], and the n-grams in the

byte code [33] were developed, and however, they are

dependent on the expert knowledge while designing the

features of the machine learning models [50].

Recently, deep learning has provided promising results

in many different domains, such as computer vision and

natural language processing (i.e., image classification, face

detection, text classification) [23, 48, 77]. Mahdavifar and

Ghorbani [49] reviewed the deep learning approaches

applied in cybersecurity and categorized the studies into

the following main categories: malware detection and

analysis (Android-based and PC-based studies), network

intrusion detection, phishing detection, website defacement

detection, and spam detection. They specified the following

common limitations of deep learning approaches in

cybersecurity: Parameters are not fine-tuned precisely, a

sufficient number of evaluation parameters are not used for

evaluation, datasets are small-scale and out-of-date, no

time complexity analysis is performed, the selection of a

particular deep learning model is not formally verified, and

models cannot explain the logic behind the decision.

In parallel with the developments in deep learning,

cybersecurity researchers started to develop deep learning-

based techniques for malware detection for coping with the

Neural Computing and Applications

123

limitations of traditional approaches. For instance,

McLaughlin et al. [50] used the disassembled bytecode of

the application as textual data and applied Convolutional

Neural Networks (CNN) for malware detection. Apart from

the high-performance benefit of deep learning algorithms,

another motivation for the researchers is that the deep

learning approaches can discover the features required to

develop models automatically, and likewise, there is no

need for a domain expert to define these features manually.

The use of systematic reviews in Software Engineering

and the term ‘‘Evidence-based Software Engineering’’

(EBSE) were proposed by Kitchenham et al. [35] in 2004.

As part of EBSE, two kinds of systematic reviews, namely

Systematic Literature Review (SLR) and Systematic

Mapping Studies (SMS), are now used as well-established

tools in software engineering [12]. These studies are called

secondary studies because they review primary studies that

analyze several research questions. Also, they are different

than traditional review articles (a.k.a., survey article)

because they systematically search electronic databases for

relevant articles and follow a well-defined protocol. While

SMS studies categorize studies in a particular research area

and map them based on several facets [57], SLR studies

respond to particular research questions (RQs) by identi-

fying relevant articles, extracting the required data, and

synthesizing them [36, 69].

The objective of this article is to better understand the

state-of-the-art on the use of deep learning in mobile

malware detection by identifying and synthesizing the

relevant information systematically and respond to the RQs

defined at the beginning of this research. The SLR protocol

specified by Kitchenham et al. [37] were followed in this

research. Forty articles were selected by applying the study

selection criteria. In addition, quality assessment was per-

formed on the selected articles. As such, this paper includes

recently published articles in this domain, presents the

state-of-the-art, and paves the way for further research on

the application of deep learning in mobile malware

detection.

To the best of our knowledge, this is the first Systematic

Literature Review (SLR) on the review of deep learning-

based studies for mobile malware detection. As explained

in Sect. 2—Related Work, several survey papers have been

published for malware detection so far; however, neither of

these focused on deep learning approaches, nor did these

analyze mobile malware detection approaches in a sys-

tematic way.

A systematic overview of the state-of-the-art on the use

of deep learning in mobile malware detection is lacking

and this knowledge gap can only be addressed by carrying

out a systematic review study (i.e., SLR). Therefore, the

objective of this study is to systematically investigate

where and how deep learning algorithms have been applied

for mobile malware detection by researchers. While there

are some review papers published in the literature, there is

no systematic review paper that focuses on mobile malware

detection. There are some review papers that focused on

Android platform, as discussed in Sect. 2.2.; however,

there is no such a constraint in our SLR study.

The contributions of this article are threefold:

• High-quality journal articles that focused on the use of

deep learning approaches for mobile malware detection

were identified, required data were extracted, and

synthesized.

• Widely used benchmarking datasets, deep learning

algorithms, deep learning development platforms, eval-

uation parameters, and features were determined and

reported.

• Challenges and research gaps in deep learning-based

mobile malware detection were briefly presented.

The following research questions have been defined in

this SLR study:

• RQ1 Which machine learning categories (supervised/

unsupervised/semi-supervised/reinforcement learning)

have been preferred in deep learning-based mobile

malware detection?

• RQ2 What data sources/features (e.g., API calls and

system calls) have been used for the development of the

malware detection models?

• RQ3 What kind of deep learning algorithms (e.g., CNN

and LSTM) have been applied?

• RQ4 What kind of evaluation parameters (e.g., accu-

racy) and evaluation approaches (e.g., cross-validation)

has been used?

• RQ5 Which deep learning algorithm works best for

mobile malware detection?

• RQ6:What kind of feature selection techniques have

been used?

• RQ7 Which public datasets have been analyzed during

the development of the models?

• RQ8 Which deep learning platforms have been used for

the implementation of the models?

• RQ9 What are the challenges and research gaps in

mobile malware detection?

The following sections of this paper are organized as

follows: Sect. 2 explains Deep Learning algorithms and

presents similar review articles. Section 3 describes the

adopted research methodology and explains how this SLR

study was performed. Section 4 presents the results of the

SLR and discusses the responses to research questions.

Section 5 presents the general discussion regarding the

research questions and also, explains the potential threats to

validity. Finally, Sect. 6 discusses the conclusions and

future work.

Neural Computing and Applications

123

2 Background and related work

We explain the deep learning research field and deep

learning algorithms in Sect. 2.1. In Sect. 2.2., we present

the related review studies and compare our study with these

review studies.

2.1 Deep learning (DL) and DL algorithms

Deep Learning (DL) is a sub-branch of the machine

learning research field that is based on Artificial Neural

Networks (ANN) concept. ANN is a biologically inspired

computing paradigm that uses artificial neurons in its

architecture. Connections (a.k.a., edges) in the architecture

transmit a signal from one neuron to another like in the

biological brain and edges have weights to adjust the

learning process. Neurons are triggered based on the

threshold levels. The propagation function is responsible

for computing the input to a neuron and the final result is

calculated as a weighted sum. A typical ANN model

consists of three types of layers: input later, hidden layer,

and output layer. Signals reach to the architecture from the

input layer, pass through several hidden layers depending

on the structure of the network, and finally, reach to the

output layer. This typical architecture is also known as

Multi-Layer Perceptron (MLP) because it has several lay-

ers, and each layer can consist of different number of

neurons. The number of neurons in the input layer is

determined based on the number of independent variables

(i.e., features) and the number of neurons in the output

layer is related to the outcome of the prediction task. For

instance, for a binary classification task, one neuron is

sufficient in the output layer because it can represent two

classes when binary representation is used. In DL, the

number of hidden layers is much larger than the number of

hidden layers in a typical ANN architecture. Due to

increasing computing power and different types of com-

puting hardware (e.g., GPU, TPU, etc.), large-scale pre-

diction models can be built easily though it takes a

considerable amount of time to find the optimal structure of

the network.

Recently, DL algorithms achieved promising results for

many problems in different domains such as agriculture

[34], medical image analysis [45], mobile & wireless net-

working [76], and cybersecurity [8, 49].

DL can be considered as a representation learning or

feature learning because in contrast to traditional machine

learning (a.k.a., shallow learning) in which features are

manually extracted, in DL, the features are automatically

discovered. Hand engineered features fail to scale in a big

data context, which requires the preference for DL algo-

rithms that help to learn the features directly from the data

itself. Due to the massive amount of generated data (i.e.,

big data), fast implementation DL frameworks (e.g., Ten-

sorFlow and Keras), parallelizable Graphics Processing

Units (GPU), and recent optimized hardware (i.e., Tensor

Processing Unit-TPU), DL algorithms are widely used to

address challenging problems in different domains.

Compared to the traditional Artificial Neural Network

(ANN) algorithms, DL algorithms have many hidden lay-

ers (e.g., 1202 layers in ResNet [31]) and different layer

types such as convolutional layers and pooling layers. For

instance, the Multi-Layer Perceptron (MLP) feedforward

ANN algorithm mostly uses fully-connected layers; how-

ever, in Convolutional Neural Networks (CNN), not only

fully-connected layers but also several convolutional and

pooling layers are applied.

In a recent review article, Pouyanfar et al. [59] presented

a review of deep learning algorithms and divided the DL

algorithms into the following four categories:

1. Recursive neural network (RvNN) In RvNN models,

the input is processed hierarchically in a tree manner,

and unlike recurrent neural networks (RNN), the time

dimension is not considered. This type of model

provided remarkable results in Natural Language

Processing (NLP).

2. Recurrent neural network (RNN) RNN algorithms are

different than traditional ANN algorithms because they

use sequential information in the network [59]. These

models are used for sequential inputs, and time is an

important element in these models. Long-Short Term

Memory (LSTM) models are the most popular RNN

algorithms used. There are different variations of

LSTM models, namely Vanilla LSTM, Stacked LSTM,

CNN-LSTM, Encoder-Decoder LSTM, Bidirectional

LSTM, and Generative LSTM [10].

3. Convolutional neural network (CNN) Three types of

layers are applied in CNN models, namely convolu-

tional layers, pooling layers, and fully-connected

layers. Convolutional layers include filters and feature

maps. Filters can be considered as the neurons of the

layer and create some output value based on the

weighted inputs [9]. The feature map is the output of

the filter. Pooling layers are used to down-sample the

feature map and can reduce the overfitting [11]. In a

typical CNN model, convolutional layers are followed

by a pooling layer, and this structure is repeated a few

times, and finally, a fully-connected layer is applied.

4. Deep generative networks (DGN) Generative models

are used in many problems such as speech recognition,

visual recognition, and robotics [55]. These models

aim to capture the probabilistic distribution of the data

to generate similar data. Recently, these models were

parameterized with the help of deep neural networks,

Neural Computing and Applications

123

and stochastic optimization methods and different deep

generative networks emerged. These DGN models can

be divided into two main categories, namely cost

function-based models and energy-based models [55].

In the review article of Pouyanfar et al. [59], the

authors divided Deep Generative Networks into the

following four algorithm categories. While Deep Belief

Networks and Deep Boltzmann Machines are energy-

based models, Autoencoder and Generative Adversar-

ial Network are cost-function-based DGN models.

a. Deep belief network (DBN) DBNs are probabilistic

models and consist of multiple layers of stochastic

latent variables. They can be considered as a stack

of Restricted Boltzmann Machines (RBM). Each

RBM interacts with the previous and next layers.

The top two layers create an associative memory

and have undirected connections. The lower layers

have directed connections.

b. Deep boltzmann machine (DBM) DBMs are the

stacked layers of Restricted Boltzmann Machines

and consist of several hidden layers [61]. However,

a Restricted Boltzmann Machine has a single

hidden layer. DBM is also a type of Markov

random field including several hidden layers of

hidden random variables.

c. Generative adversarial network (GAN) GAN mod-

els use two neural networks (i.e., generator and

discriminator) competing one against the other to

create new data [27]. While the generator learns to

create the data, the discriminator learns to differ-

entiate the fake data from the real one.

d. Variational autoencoder (VAE) VAE models have

an encoder, decoder, and a loss function. They are

used to learn latent representations for unsuper-

vised learning.

During our Systematic Literature Review (SLR) study

on mobile malware detection, we identified the following

deep learning categories that were not discussed in the

review paper of Pouyanfar et al. [59] and applied in mal-

ware detection:

• Deep neural networks (DNN) These models are similar

to the traditional ANN-based models; however, in DNN

models, we have many hidden layers instead of a single

hidden layer. Also, fully-connected layers are preferred

in DNN models, but in other deep learning models such

as CNN, different layers such as convolutional layers

and pooling layers are used. If there is more than one

hidden layer in the topology, we represent the model as

a DNN model in this study.

• Hybrid deep learning model: Different deep learning

algorithms are combined in a way that the combined

model is superior to the individual models. For instance,

CNN models are used together with autoencoder

models for better performance, or LSTM models are

integrated with CNN models.

• Multi-modal deep learning: Multi-modal learning uses

different feature types from multiple sources [6]. For

instance, audio, speech, visual, and text information can

be used to create a machine learning model. Recently,

several deep learning-based approaches have been

developed for multi-modal learning [54, 64].

• Multi-view deep learning Multi-view learning algo-

rithms were developed with the help of multi-view data

[43, 44]. Recently, deep learning-based techniques have

been implemented for multi-view learning [22].

In the survey article of Mahdavifar and Ghorbani [49],

they classified deep learning architectures into the follow-

ing three categories and referred to the article of Deng [20]

who divided deep learning architectures into the three

classes (i.e., generative, discriminative, and hybrid) based

on the intention behind using these algorithms.

1. Discriminative Discriminative architectures are not

related to the data generation and focus on the

prediction task. They are less expensive compared to

generative models because generative models need

additional modeling effort.

a. Discriminative restricted boltzmann machine

(DRBM)

b. Convolutional neural network (CNN)

2. Generative Generative architectures are beneficial for

creating new instances that are similar to the existing

ones.

a. Autoencoder

i. Stacked autoencoder (SAE)

ii. Denoising autoencoder (DAE)

b. Recurrent neural network

i. Long-short term memory (LSTM)

ii. Echo state network (ESN)

c. Boltzmann machine

i. Deep boltzmann machine (DBM)

ii. Restricted boltzmann machine (RBM)

1. Deep belief network (DBN)

d. Generative adversarial network (GAN)

3. Hybrid The goal is discrimination but supported with

the generative architectures.

a. Deep neural network

Neural Computing and Applications

123

i. Recursive neural network

2.2 Related work

Several review articles have been published on the mal-

ware detection problem. According to Gibert et al. [26], the

other survey papers published so far [[1, 7, 63, 65, 70, 73]]

did not review deep learning-based papers. Gibert et al.

[26] compared their study with these survey studies based

on feature taxonomy, static methods, dynamic methods,

hybrid methods, multimodal learning methods, deep

learning methods, and issues & challenges dimensions.

They reviewed 67 research papers that focused on the

application of machine learning for malware detection, and

16 of these papers applied deep learning algorithms. Their

main concern was the detection and classification of mal-

ware on the Windows platform instead of mobile applica-

tions. They specified the following research directions and

challenges: availability of the open and public datasets,

concept drift concept, incremental learning, adversarial

learning, and the problem of class imbalance. Our study is

different than the study of Gibert et al. [26] because we

mainly focused on deep learning-based techniques (i.e., 40

articles), covered more deep learning papers (i.e., 40 vs. 16

papers) in this systematic literature review, and investi-

gated the approaches developed for mobile applications

instead of Windows platform.

Qamar et al. [60] presented a review of mobile malware

attacks, malware detection techniques, and solutions using

papers published between 2013 and 2019. They discussed

five mobile malware detection studies that applied deep

learning algorithms. Four of these papers used the Con-

volutional Neural Network (CNN) algorithm, and only one

of them applied the Artificial Neural Networks (ANN)

algorithm. They reported that while deep learning-based

techniques provide a better performance, they are compu-

tationally more expensive compared to the traditional

machine learning algorithms. Aslan and Samet [5]

reviewed malware detection papers and categorized them

into the following classes: signature-based, behavior-based,

heuristic-based, model checking-based, deep learning-

based, cloud-based, mobile-based, and IoT-based tech-

niques. In their review article, they explained four deep

learning-based papers that used Deep Belief Network

(DBN), ANN, and Convolutional layers and stated that API

calls, systems calls, and hybrid features were utilized. Their

primary concern was not the analysis of deep learning-

based approaches for malware detection.

Pan et al. [56] performed an SLR in Android malware

detection and reviewed papers that apply static analysis.

They divided the static analysis into the following four

categories: Android characteristic-based, opcode-based,

program graph-based, and symbolic execution-based

method. They represented deep learning-based models

under the Neural Network (NN) category while classifying

the machine learning models in the literature. They showed

the following deep learning models in the classification

taxonomy: Convolutional Neural Networks (CNN),

Recurrent Neural Networks (RNN), Long-Short Term

Memory (LSTM), Deep Belief Network (DBN), and Arti-

ficial Neural Network (ANN). They concluded that static

analysis is effective in detecting Android malware based on

several experiments and empirical results. Their primary

focus was the use of static analysis in the Android platform.

However, in this article, we do not have such a restriction,

and we review deep learning-based approaches for mobile

malware detection.

Feizollah et al. [24] reviewed 100 papers based on their

features and feature selection techniques and reported that

only 8 out of 100 papers applied feature selection algo-

rithms such as information gain. They divided features into

the following categories: static features (permissions, Java

code, intent filters, network address, strings, and hardware

components), dynamic (system calls, network traffic, sys-

tem components, user interactions), hybrid (the combina-

tion of static and dynamic), and applications metadata

(application description, creator ID, and application cate-

gory). They reported that static features were used 45%,

dynamic features 42%, the hybrid features 10% and

applications metadata 3% in the identified papers. Among

static features, Android permission was the most popular

one (36%) because permissions are an important barrier to

attackers. Among dynamic features, the system calls were

the most dominant category, and the number of papers that

used the network traffic data was nearly half of the papers

that used the system calls. Liu et al. [46] performed a

survey on Android malware detection approaches using

machine learning. They divided papers based on the fol-

lowing machine learning categories: Decision Trees, Naive

Bayes, Linear Model, Support Vector Machines, K-Nearest

Neighbors, K-means, Neural Network & Deep Learning

(NN & DL), Ensemble Learning, and Online Learning.

They showed 21 papers under the NN & DL category and

reported that while algorithms in this category provide high

performance, they require a lot of data for training. They

provided several future research directions from the

machine learning perspective. For instance, they referred to

the problem of concept drift, which means the predictive

performance of classifiers can decline over time. They state

that incremental learning can be used to add sample data

dynamically, active learning can be utilized for the data

scarcity problem, and transfer learning can be applied to

transfer the knowledge from one domain to another. They

also explain that the reliability estimation based on the

Neural Computing and Applications

123

evaluation results has not been studied in detail yet for

Android malware detection.

According to our literature search and the summary

presented in Table 1, no paper has systematically analyzed

and synthesized the articles that used deep learning algo-

rithms for mobile malware detection problem yet. Besides

only one paper [5] focused on either the Android or Win-

dows platforms. We did not restrict our search only to the

Android platform and accessed 40 high-quality articles

from electronic databases using a systematic literature

review. We focus explicitly on deep learning for malware

detection. Hence, our research is different than the other

review studies and provides complementary and significant

insight into this important problem.

3 Research methodology

Figure 1 shows our SLR process, which has been formed

based on well-known review protocol and guidelines [37]

and our experience in SMS and SLR studies

[14, 15, 67, 69]. Our SLR process included three main

phases, i.e., primary study selection, data extraction, and

data synthesis and reporting. The subsections 3.1, 3.2 and

3.3 present each of these phases.

3.1 Primary study selection

We used five widely used online databases, i.e., ACM,

IEEE Xplore, ScienceDirect, Springer, and Wiley. We used

the following search string to query the five online data-

bases: ‘‘deep learning’’ AND (‘‘malware detection’’ OR

‘‘malware classification’’ OR ‘‘malware analysis’’).

To identify the relevant set of papers to answers our

research questions, we specified our exclusion criteria, as

listed in Table 2.

Authors held a meeting and explained how they applied

the exclusion criteria. This think-aloud application of

selection criteria [2] helped to clarify ambiguities and

unintended interpretations. After applying the exclusion

criteria, we obtained a set of papers consisting of 29 papers.

Before extracting data from the primary studies, we

conducted a quality assessment, as proposed in the litera-

ture [29]

Table 3 lists the criteria we used for quality assessment.

These criteria have been derived from [37] and used in

earlier SLRs, such as [69]. For each criterion, we scored the

papers using a 3-point Likert scale (yes = 1, some-

what = 0.5, no = 0). For instance, we scored for Q1 as 1 if

the aim of the study was stated clearly in the introduction

(expected place); as 0.5 if the aim was vaguely stated, or

not at the expected place, and as 0 if the aim was not stated

in the paper.

Table 1 Summary of related work

Year Source Review

type

Mobile

platforms

Focus Description

2015 Feizollah

et al.

[24]

Non-

systematic

Android Only traditional ML algorithms A non-systematic literature review of feature

selection for Android malware detection

2019 Qamar

et al.

[60]

Non-

systematic

Android Five DL-based primary studies for mobile

malware detection

A non-systematic literature review of

Android mobile malware attacks and

detection methods

2020 Aslan and

Samet

[5]

Non-

systematic

Android

and

windows

Four DL-based primary studies for mobile

malware detection

A non-systematic literature review of

malware detection methods on Android and

Windows platforms

2020 Gibert

et al.

[26]

Systematic Windows 16 DL-based primary studies out of 67 DL

machine learning papers

A systematic literature review of malware

detection and classification approaches

using machine learning on Windows

platform

2020 Liu et al.

[46]

Systematic Android 21 DL-based primary studies A systematic literature review of Android

malware detection methods using ML

2020 Pan et al.

[56]

Systematic Android No special focus on traditional ML or DL; Only

detection methods using static analysis

included (dynamic and hybrid analysis

excluded)

A systematic literature review of Android

malware detection methods using static

analysis

Neural Computing and Applications

123

Tomaintain a high-quality input of primary studies for this

SLR,we decided to exclude the paperswith a score lower than

four points out of eight.We excluded two studies [32, 66]with

a score under our threshold. As a result of the database search,

we had a total number of 27 papers.

To identify the primary studies that we could have

overlooked with our automatic queries, we further

employed the snowballing strategy [71]. We used Google

Scholar to check the papers that cited the 27 primary

studies we identified via database search. After applying

PRIMARY STUDY SELECTION

DATA SYNTHESIS AND REPORTINGDATA EXTRACTION

specify data
sources and

keywords

Search
keywords

conduct search

ACM
IEEE Xplore
ScienceDirect
Springer
Wiley

apply exclusion
criteria

Set of papers
obtained

via DB search

Exclusion
criteria

assess quality

Set of included
papers

Quality assessment
criteria

Final set of
DB search

conduct
backward and

forward
snowballing

apply exclusion
criteria assess quality combine results

Google
Scholar

Set of papers
obtained via
snowballing

Set of included
papers

Final set of
snowballing

Final set of
primary studies

extract data
based on RQs

iden�fy,
generalize

a�ributes and
unify extracted

data

synthesize data report results

Ini�al data Final classifica�on
scheme & unified data

Synthesized
data

Research
results

)72()236(

(13) (40)

(29)

(13)(1725)

Fig. 1 SLR process used in this study

Neural Computing and Applications

123

the snowballing strategy and our exclusion criteria listed in

Table 2, we obtained an additional set of 13 primary

studies.

Furthermore, we assessed the quality of these papers

using the criteria listed in Table 3. None of the papers

obtained via snowballing was disqualified after quality

assessment. Figure 2 shows the quality scores of the

selected primary studies. While x-axis shows the quality

score of papers, the y-axis represents how many papers had

this score. For instance, according to Fig. 2, it is shown that

8 papers had 7.5 scores and only 2 papers had 3.5 scores.

Since papers that had less than 4 points were removed,

these two papers were not used in this SLR study. As

shown in Fig. 2, most of the papers (i.e., 26 papers) had

more than 6 points and the rest had a score between 4 and

6.

Table 2 Exclusion criteria
Criterion

EC1 Duplicate papers from multiple sources

EC2 Papers without full text available

EC3 Papers not written in English

EC4 Papers not published in a journal

EC5 Short papers, editorials, issue introductions

EC6 Secondary studies, such as literature review, SMS, SLR

EC7 Papers which do not use deep learning to detect malware in mobile applications

EC8 Papers which only use traditional ML algorithms

EC9 Papers which do not include empirical results

Table 3 Quality assessment

criteria
Question

Q1 Are the aims of the study clearly stated?

Q2 Are the scope and context and experimental design of the study clearly defined?

Q3 Are the variables in the study likely to be valid and reliable?

Q4 Is the research process documented adequately?

Q5 Are all the study questions answered?

Q6 Are the negative findings presented?

Q7 Are the main findings stated clearly (regarding creditability, validity, and reliability)?

Q8 Do the conclusions relate to the aim of the purpose of the study, and are they reliable?

Fig. 2 Quality score distribution

of the selected papers

Neural Computing and Applications

123

Finally, we combined the data about 40 primary studies

(listed in Sect. 0) in a Google sheet.

3.2 Data extraction

After selecting the primary studies, we started with the data

extraction phase. Data extraction steps were highly itera-

tive and required close collaboration among the authors.

As a result, the authors formed the final classification

scheme, as listed in the second column of Table 4.

3.3 Data synthesis and reporting

Since we managed to categorize the extracted data for most

of the RQs, the data extraction phase yielded a set of

quantitative data to be synthesized. We reported the fre-

quencies and percentages of each identified category to

answer the RQs.

The only RQ that required qualitative analysis is RQ9,

that is, the challenges and proposed solutions. We con-

ducted open coding [51] in cycles to analyze the chal-

lenges. A code symbolically assigns a summative or

evocative attribute for a portion of qualitative data [51].

4 Results

In this section, we present the responses to research ques-

tions defined at the beginning of this research. Before

presenting the responses, we provide additional informa-

tion about the identified articles, such as the yearly distri-

bution and distribution of articles per journal. As shown in

Fig. 3, the number of articles is increasing each year.

Although we completed our search process in the middle of

2020, the number of papers is more than the number of

papers in 2019. This indicates that the application of deep

learning algorithms for mobile malware detection is the

new trend among cybersecurity researchers. We expect

more research in this direction in the upcoming years. In

this SLR study, we focused on high-quality papers and,

therefore, selected articles published in journals.

In Table 5, we show the distribution of articles per

journal. According to this table, the most preferred journal

is Computers & Security, and the second one is IET

Information Security. In addition to these journals, we

identified two papers from the following journals: Cluster

Computing, Journal of Ambient Intelligence and Human-

ized Computing, Journal of Intelligent & Fuzzy Systems,

KSII Transactions on Internet and Information Systems

(TIIS), Multimedia Tools and Applications, and Soft

Computing. The other journals included only one article on

Table 4 Data extraction form

Field Categories

Journal title Free text

Publication year Number

Paper title Free text

Abstract Free text

ML category Supervised, unsupervised, semi-supervised

Type of analysis Static, dynamic, hybrid

Data sources API call, application component, binary info, bytecode, certificate info, environmental feature, hardware

component, intent, network address, network traffic, opcode, payload info, permissions, system call, source code,

URL

DL approaches Autoencoder, CNN, DBN, DNN, GAN, Hybrid DL model, multi-modal DL, multi-View DL, RNN/LSTM

Evaluation parameters Accuracy, AUC, F-measure, FNR, FPR, PPV, precision, recall, TPR

Validation method Cross-validation, Hold-out, Not mentioned

Best algorithm CNN, DBN, DNN, GAN, Hybrid DL model, LSTM, Multimodal DL, Multiview DL, Traditional ML

Feature selection method Autoencoder-based, boruta, infogain, random forest-based, relief, SAILS, Not mentioned

Evaluation dataset AMD dataset, android adware and general malware dataset (AAGM), android malware genome project, android

PRAGuard dataset, AndroZoo, Contagio mobile website (iOS), drebin, ISCX android botnet dataset, maldozer,

virusshare, virustotal, custom dataset, other, not mentioned

The implementation

platform

Caffe, H2O, keras, matlab, tensorflow, torch, not mentioned

Challenges and proposed

solutions

Free text

Neural Computing and Applications

123

the use of deep learning for mobile malware detection.

Researchers who would like to publish their recent research

results can consider these journals because of the relevant

scope of these journals.

4.1 RQ-1: Machine learning categories

The first research question is on the machine learning

categories. The labeling process of the data points for

malware detection is time-consuming, labor-intensive, and

expensive. For supervised learning approaches, labeled

data points are needed because unlabeled data points can-

not be used in that case; however, for unsupervised learn-

ing, these labels are not needed; instead, unlabeled data

points can be used directly. In semi-supervised learning,

unlabeled data points are used together with the labeled

data points to improve the overall performance, and first,

pre-labels are assigned to the unlabeled data points, and

then, the labels are adjusted depending on the error

parameter iteratively. In reinforcement learning, an agent

observes the environment, performs some actions based on

the available data and rules, and gets rewards (positive or

negative) depending on the preferred action. The aim of

reinforcement learning is to maximize rewards while

1
2

6

15
16

0
2
4
6
8

10
12
14
16
18

2016 2017 2018 2019 2020

Fig. 3 Number of papers until March 2020

Table 5 Distribution of papers

per journal
Journal # of Papers Reference(s)

Computers & security 4 [P2,P20, P21, P36]

Iet information security 3 [P6, P29, P33]

Cluster computing 2 [P5, P19]

Journal of ambient intelligence and humanized computing 2 [P10, P32]

Journal of intelligent & fuzzy systems 2 [P22, P30]

KSII transactions on internet and information systems (TIIS) 2 [P7, P27]

Multimedia tools and applications 2 [P34, P40]

Soft computing 2 [P24, P28]

Alexandria engineering journal 1 [P25]

Applied soft computing 1 [P26]

Concurrency and computation: practice and experience 1 [P14]

Digital investigation 1 [P12]

Engineering applications of artificial intelligence 1 [P16]

Expert systems with applications 1 [P39]

Future generation computer systems 1 [P4]

IEEE access 1 [P1]

IEEE transactions on information forensics and security 1 [P13]

IEEE transactions on systems, man, and cybernetics: systems 1 [P37]

Information Sciences 1 [P31]

International journal of engineering & technology 1 [P11]

Journal of computer virology and hacking techniques 1 [P18]

Journal of information security and applications 1 [P9]

Journal of parallel and distributed computing 1 [P8]

Microelectronics reliability 1 [P35]

Neural computing and applications 1 [P15]

Neurocomputing 1 [P23]

Procedia computer science 1 [P17]

Transactions on emerging telecommunications technologies 1 [P3]

Tsinghua science and technology 1 [P38]

Neural Computing and Applications

123

continuously interacting with the environment. According

to our analysis shown in Table 6, all the articles applied

supervised learning approaches; however, one article also

included a semi-supervised learning algorithm, and one

article applied unsupervised learning algorithm as well.

Since we explain deep learning approaches in Sect. 4.3 in

detail, in this subsection, we do not explain these super-

vised learning studies.

There is only one article that applied semi-supervised

learning [P26] in addition to the deep learning-based

supervised learning model. Sharmeen et al. [P26] stated

that their semi-supervised approach extracts the hidden

patterns with the help of a clustering algorithm and com-

bines these patterns to the supervised classifier with the

Euclidean metric. They concluded that the deep learning-

based supervised learning approach provides better per-

formance compared to the clustering-based semi-super-

vised learning approach. However, their semi-supervised

learning approach did not apply deep learning-based semi-

supervised learning approaches, and therefore, we consider

that deep learning-based semi-supervised learning approa-

ches can be a future research direction for mobile malware

detection.

Only one study focused on the use of unsupervised

learning. Kim et al. [P13] applied Multi-Modal Neural

Network (MNN) shaped autoencoder and Deep Neural

Network (DNN) shaped autoencoder for malware detection

and reported that MNN shaped one provides 6% better

performance than the DNN shaped autoencoder approach.

We did not encounter any article that applied deep learn-

ing-based reinforcement learning.

This is an important observation because it shows that

most of the DL-based mobile malware prediction efforts go

into the supervised learning strategies and models. How-

ever, more impact and benefits will come from unsuper-

vised and semi-supervised learning sides. While deep

learning algorithms provide great performance for super-

vised learning, there is a need to develop new algorithms

for other learning categories as well. This will also trigger

developing new malware prediction models based on these

new learning algorithms.

4.2 RQ-2: Data sources/features

Features of the models are one of the most critical elements

while designing machine learning-based malware detection

models. As explained in the Introduction section, three

kinds of analysis, namely static, dynamic, and hybrid, can

be performed for the detection of malware. While static

features can be collected without the execution of the

application, dynamic features require the execution of the

application. Hybrid features can be considered as a com-

bination of static and dynamic features. Most of the time,

binary files are used to collect static features. For instance,

opcode, which is a single instruction executed by the CPU,

is an example of static features. Network traffic-related

features are examples of dynamic features because the

application must be installed in a smartphone, and the

network traffic must be observed and collected. As shown

in Fig. 4, most of the articles (i.e., 55%) applied static

features, and only 12,5% of the articles used hybrid fea-

tures. The collection of dynamic data requires more effort

because the application must be run, and the required data

must be collected. As such, most of the researchers might

have preferred to develop models based on only static

features. However, the addition of dynamic features to the

models also provides extra benefits, and we expect to see

more research on the use of hybrid features in the future.

In Fig. 5, we show the distribution of data sources that

were used for the implementation of the prediction models.

API calls and permissions are the most used features for

malware detection. Since most of the articles focused on

the Android platform and Android apps request permission

for sensitive data, researchers used these permissions more

often than the other features. The API calls are also used as

much as permissions because, in this context, API calls

provide valuable information to infer certain behavior. The

other data sources are presented in Fig. 5. The other data

sources are system calls, intent, application component,

hardware component, opcode, binary information, byte-

code, network traffic, URL, certificate info, environmental

features, network address, and payload info.

Fig. 4 Distribution of feature types

Table 6 Distribution of articles per machine learning category

Machine learning category Number of papers

Supervised learning 40

Unsupervised learning 1

Semi-supervised learning 1

Reinforcement learning 0

Neural Computing and Applications

123

Figures 4 and 5 provide important observations. The

first one indicates that researchers did not focus on com-

bining the static and dynamic features much, however, the

power of this combination (i.e., hybrid features) will result

in improved performance in malware prediction models

because the models will utilize from different kinds of

features instead of depending on one type of feature set.

The second one shows that while there are different data

sources types, most of the researchers focused on one type

of data source (e.g., API calls and permissions), however,

the integration of different kinds of data sources can dra-

matically improve the performance of the prediction

models. This big picture shows the possibilities for

researchers and practitioners that have not been evaluated

in detail before.

4.3 RQ-3: deep learning approaches

In Sect. 2.1, we explained the deep learning and related

algorithms applied for mobile malware detection. In Fig. 6,

we show the distribution of deep learning algorithms. The

most used deep learning algorithms are Convolutional

Neural Networks (CNN) and Deep Neural Network (DNN)

algorithms. The other widely used algorithms are Recurrent

Neural Networks (RNN)/Long-Short Term Memory

(LSTM) networks and Deep Belief Networks (DBN). Since

DNN algorithms resemble the traditional ANN algorithms,

researchers easily apply these algorithms to this problem.

CNN and LSTM are also widely known and used algo-

rithms in many different problems, and therefore, they

might be selected for the application. However, some of the

algorithms are not used much, such as Autoencoder,

Hybrid deep learning algorithms, Generative Adversarial

Networks (GAN), Multi-Modal Deep Learning, and Multi-

View Deep Learning.

1
1
1
1

2
2
2
2

3
3

4
4

6
10

16
16

0 2 4 6 8 10 12 14 16 18

Payload info
Network address

Environmental feature
Cer�ficate info

URL
Network traffic

Bytecode
Binary info

Opcode
Hardware component

Source code
Applica�on component

Intent
System Call
Permissions

API CallFig. 5 Distribution of data

sources

1

1

1

4

4

8

11

16

16

0 5 10 15 20

Mul�-view DL

Mul�-modal DL

GAN

Hybrid DL Model

Autoencoder

DBN

RNN/LSTM

DNN

CNN
Fig. 6 Distribution of DL

approaches

Neural Computing and Applications

123

Advantages and disadvantages of these algorithms are

listed as follows:

• CNN

o Advantage Neurons are not necessarily fully con-

nected to each other. More complex problems can

be handled with these algorithms compared to the

shallow learning algorithms.

o Disadvantage A large dataset is required to build

the model and finding the optimal architecture takes

time.

• DNN

o Advantage It is effectively used for classification

and regression problems. Building the model is

relatively easier because there are not many layer

types to select.

o Disadvantage The number of hidden layers affect

the network complexity and therefore, complex

network requires more computational time and

power compared to the shallow learning algorithms.

• RNN/LSTM

o Advantage It can model sequence data and handle

varying length inputs.

o Disadvantage While RNNs cannot store past infor-

mation for a long time, LSTMs are vulnerable to

overfitting.

• DBN

o Advantage Training time is shorter and provides

fast inference.

o Disadvantage Increasing run-time complexity.

• Autoencoder

o Advantage There is no need for labeled data.

o Disadvantage There is a need for a pre-training

stage.

• Hybrid Model

o Advantage It combines the powerful features of

different deep learning algorithms.

o Disadvantage More computational time and power

are required.

• GAN

o Advantage It does not introduce any deterministic

bias like autoencoders. It does not require any

Monte Carlo approximations for training.

o Disadvantage Different types of data must be

provided.

• Multi-modal DL

o Advantage It combines different types of informa-

tion to improve performance.

o Disadvantage Combining different levels of noise

is challenging and difficult to manage.

• Multi-view DL

o Advantage Heterogeneous sources (i.e., views) are

used to address the given problem.

o Disadvantage It requires more training data.

We did not encounter any article that used multi-task

learning for mobile malware detection. Also, the number of

papers that used multi-modal and multi-view learning is

very limited. We expect to see more research on the use of

multi-modal deep learning and multi-view deep learning in

the future because these algorithms combine several types

of features and provide better performance in some cases.

Also, multi-task learning can be applied for mobile mal-

ware detection in the future.

This is an important observation because most of the

researchers and practitioners develop malware prediction

models using well-known DL algorithms such as CNN and

LSTM, however, they do not consider the other alternatives

shown in Fig. 6. This figure also shows that there are still

future research opportunities because some algorithms such

as multi-modal DL and multi-view DL have not been

investigated in detail yet in the literature.

4.4 RQ-4: evaluation parameters and validation
approaches

For the evaluation of the prediction models, researchers

used different evaluation parameters and different valida-

tion approaches. In Fig. 7, we depict the frequency of each

evaluation parameter that was used in the identified arti-

cles. Most of the papers used the accuracy evaluation

parameter, and the second most used parameter is the

F-measure. Precision and recall parameters are the other

widely used parameters. The other evaluation parameters

are False Positive Rate (FPR), Area under ROC Curve

(AUC), True Positive Rate (TPR), False Negative Rate

(FNR), and Positive Predictive Value (PPV).

In Fig. 8, we represent the distribution of validation

approaches. According to this figure, most of the papers

preferred the use of a cross-validation approach instead of a

hold-out strategy. There were also a few papers that did not

mention the validation approach. We suggest researchers

explain this kind of information because the repeatability in

experimental studies is crucial.

Figures 7 and 8 provide important observations. The

first one indicates that some evaluation metrics (i.e.,

accuracy and F-measure) are widely preferred by

researchers and the second one shows that cross-validation

Neural Computing and Applications

123

is mostly used in malware prediction studies. For new

researchers in this field, these observations are very valu-

able because it’s hard to select the right metrics and vali-

dation approaches for research.

4.5 RQ-5: best performing algorithms

In Sect. 4.3, we showed how many times each deep

learning algorithm has been used in articles. We observed

that CNN and DNN were applied 16 times out of 40 arti-

cles. However, the best performance might have been

reached with another deep learning algorithm in these

studies. To this end, we investigated articles based on the

best performing algorithm.

According to Fig. 9, Deep Neural Networks (DNN) was

reported the best algorithm in 11 articles, and Convolu-

tional Neural Network (CNN) algorithm was reported as

the best algorithm in 8 articles. The other best performing

algorithms are Long-Short Term Memory (LSTM) (i.e., 5)

and Deep Belief Network (DBN) (i.e., 5) algorithms.

Traditional machine learning algorithms were reported as

the best performing algorithm in 4 articles. Three articles

reported that the best model is achieved with the hybrid

deep learning models, and two articles reported the best

model based on the multi-modal deep learning approach.

Generative Adversarial Networks (GAN) and Multi-View

Deep Learning were reported as the best performing

algorithm only in one article.

This is an important observation because most of the

researchers and practitioners develop malware prediction

models using well-known DL algorithms such as CNN and

LSTM. However, as shown here, DNN algorithm also

provides good performance for this problem. It is also

shown that some algorithms such as hybrid DL, multi-

modal DL, multi-view DL, and GAN have not been

investigated in detail yet in literature. These algorithms can

improve the performance of prediction models and there-

fore, they provide insights for researchers.

4.6 RQ-6: feature selection techniques

Since deep learning algorithms can learn using many fea-

tures, the selection of features is not mostly preferred. Also,

this type of algorithms can discover the features from the

data itself instead of hand-engineered features. To this end,

we observed that many of the articles (i.e., 32) did not

specify any feature selection technique in the article. This

means that most of the papers did not need any feature

selection technique in the study. However, eight articles

stated that researchers used some feature selection tech-

niques, namely Random Forest-based feature selection,

InfoGain, SAILS, Relief, Boruta, and Autoencoder-based

feature selection. In Fig. 10, the distribution of these

techniques is presented. If we investigated the traditional

machine learning-based mobile malware detection articles,

we would probably encounter more feature selection

techniques. This observation indicates that the feature

selection technique is not required while developing deep

learning-based models. This is an important observation

because new researchers in DL might consider what type of

feature selection techniques they must prefer while devel-

oping their models. However, as shown in this figure, a

1

2

6

7

12

13

19

26

31

0 5 10 15 20 25 30 35

PPV

FNR

TPR

AUC

FPR

Recall

Precision

F-Measure

AccuracyFig. 7 Distribution of

evaluation parameters

5

11

25

0 10 20 30

not men�oned

Hold-out

Cross valida�on

Fig. 8 Distribution of validation approaches

Neural Computing and Applications

123

feature selection component is not required for DL-based

malware prediction models.

4.7 RQ-7: datasets

We investigated the datasets that were used by the

researchers in the articles. The following datasets were

used in these articles: Drebin, VirusShare, Android Mal-

ware Genome Project, AMD dataset, Contagio Mobile

website, AndroZoo, VirusTotal, Android PRAguard data-

set, MalDozer, ISCX Android botnet dataset, and Android

Adware and General Malware (AAGM) dataset.

As shown in Fig. 11, the most used dataset is the Drebin

dataset, and the second most used one is the VirusShare

dataset. Some articles combined existing datasets and

created their own datasets (i.e., custom dataset category) or

did not specify the applied dataset (i.e., not mentioned

category). The webpages of these datasets are shown in

Table 7. There are also other datasets that are not used in

these articles. Canadian Institute for Cybersecurity also

shares several datasets in the following link: https://www.

unb.ca/cic/datasets/index.html. Also, the Kharton dataset

can be accessed from the following link: http://kharon.

gforge.inria.fr/dataset/

Figures 10 and 11 provide important information for

researchers because studies in this field either use a few

datasets for research or do not discuss the possible other

datasets. Here, we presented these datasets with their

webpages.

4.8 RQ-8: implementation platforms

We investigated the deep learning implementation plat-

forms used during the experiments. The following deep

learning development platforms were identified during this

SLR study: Keras (https://keras.io/), TensorFlow (https://

www.tensorflow.org/), Torch (https://pytorch.org/), H2O

(https://www.h2o.ai/), Caffe (https://caffe.berkeleyvision.

org/), and MATLAB (https://www.mathworks.com/pro

ducts/matlab.html).

1

1

2

3

4

5

5

8

11

0 2 4 6 8 10 12

GAN

Mul�-view DL

Mul�-modal DL

Hybrid DL Model

Tradi�onal ML

DBN

LSTM

CNN

DNN
Fig. 9 Distribution of best

performing algorithms

1

1

1

1

2

2

32

0 5 10 15 20 25 30 35

Autoencoder-based

Boruta

Relief

SAILS

InfoGain

Random Forest-based

not men�oned
Fig. 10 Feature selection

Neural Computing and Applications

123

https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html
http://kharon.gforge.inria.fr/dataset/
http://kharon.gforge.inria.fr/dataset/
https://keras.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://pytorch.org/
https://www.h2o.ai/
https://caffe.berkeleyvision.org/
https://caffe.berkeleyvision.org/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html

Keras is a high-level Application Programming Inter-

face (API) that runs on top of several frameworks such as

TensorFlow and Theano. TensorFlow is an open-source

deep learning software library and was developed by the

Google Brain team. For quick implementations, Keras is

preferred instead of TensorFlow because of its easy to use

functions. Keras was developed by a Google developer as

part of the ONEIROS (Open-ended Neuro-Electronic

Intelligent Robot Operating System) project. The Torch

platform has been developed by the Facebook AI group,

and it is an open-source deep learning library. H2O is an

open-source deep learning library and was developed by a

company now called H20.ai. Caffee is a deep learning

framework and was developed by Berkeley AI Research.

MATLAB platform is a computing environment developed

by MathWorks. Although it is not specifically designed for

deep learning research, it can be used to develop deep

learning-based models.

In Fig. 12, we show the distribution of DL implemen-

tation platforms. According to this figure, the most used

implementation platform is Keras. On the other hand, 14

studies did not specifically mention the platform. In addi-

tion to Keras, TensorFlow is also widely preferred (i.e., ten

studies) by researchers. However, the use of Torch, H2O,

Caffe, and MATLAB is very limited. Except for the

MATLAB platform, these deep learning development

platforms were used only in 1 article.

Figure 12 presents important information for practi-

tioners and researchers because it shows that Keras plat-

form and Tensorflow are widely used by researchers. In

other articles, researchers can see other types of platforms,

however, in this paper we evaluated 40 studies and pre-

sented the preferred implementation platforms. It is also

interesting to note that there are many papers (i.e., 14

papers) that did not mention about the platform, however,

we believe that the specification of the implementation

platform is also important for repeatable experiments.

4.9 RQ-9: challenges

Challenges and possible solutions were extracted from the

identified articles; however, not all of these primary studies

1
1
1
1

2
2

3
3

6
6

8
8

11
20

0 10 20 30

Android Adware and General Malware Dataset (AAGM)
ISCX Android Botnet Dataset

MalDozer
not men�oned

Android PRAGuard Dataset
Custom dataset

Other
VirusTotal
AndroZoo

Contagio Mobile website (iOS)
AMD dataset

Android Malware Genome Project
VirusShare

DrebinFig. 11 Distribution of datasets

Table 7 Malware datasets and

their webpages
Dataset Webpage

Drebin https://www.sec.cs.tu-bs.de/*danarp/drebin/

VirusShare https://virusshare.com/

AMD dataset http://amd.arguslab.org/

Android malware genome project http://www.malgenomeproject.org/

Contagio http://contagiomobile.deependresearch.org/index.html

AndroZoo https://androzoo.uni.lu/

VirusTotal https://www.virustotal.com/intelligence/help/

AndroidPRAGuard dataset http://pralab.diee.unica.it/en/AndroidPRAGuardDataset

AAGM https://www.unb.ca/cic/datasets/android-adware.html

ISCX android botnet https://www.unb.ca/cic/datasets/android-botnet.html)

MalDozer [P12] Available upon contacting authors

Neural Computing and Applications

123

https://www.sec.cs.tu-bs.de/~danarp/drebin/
https://virusshare.com/
http://amd.arguslab.org/
http://www.malgenomeproject.org/
http://contagiomobile.deependresearch.org/index.html
https://androzoo.uni.lu/
https://www.virustotal.com/intelligence/help/
http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
https://www.unb.ca/cic/datasets/android-adware.html
https://www.unb.ca/cic/datasets/android-botnet.html

presented or discussed challenges. We could extract these

challenges and solutions from 19 identified articles.

Table 8 lists the challenges and the proposed solutions

reported in these 19 primary studies for mobile malware

detection. These observations are very important for

14

1

1

1

2

10

12

0 2 4 6 8 10 12 14 16

not men�oned

Caffe

H2O

Torch

Matlab

Tensorflow

Keras
Fig. 12 Distribution of DL

implementation platforms

Table 8 The challenges and proposed solutions reported in 19 primary studies

Category Challenges (C1–C12) Proposed solutions (S1–S19) Reference

Dataset C1. Obtaining training dataset S1. Researchers’ contribution to public datasets [P38]

C2. Imbalanced training dataset S2. Using imbalanced learning algorithms [P16]

C3. Including only permission

sets in the dataset

S3. Adding extra inputs such as system calls and network traffic to the training

dataset

[P10]

C4. Wrong labels in the training

dataset

S4. Checking samples against well-known data sources, such as VirusTotal service [P18]

Model

building

C5. Long training time S5. Using parallel strategies and algorithms [P39]

S6. Using CNN algorithm instead of LSTM algorithm [P4]

S7. Using deep autoencoder algorithm as a pre-training step of the CNN algorithm [P32]

No specific solution proposed [P8]

S8. Using broad learning algorithm instead of the backpropagation algorithm

conducted over multiple hidden layers on CNN and MLP

[P37]

S9. Using early stopping, i.e., monitoring the performance of a model and

terminating optimization when there is no further improvement in an epoch

[P24]

C6. Hyper-parameter

optimization

S10. Using Grid Search algorithm [P23]

S11. Using Tree-structured Parzen Estimator instead of Grid Search and the

Random Search

[P24]

C7. Choosing an optimal feature

set for the model

S12. Using the DNN algorithm [P20]

S13. Using k-max pooling instead of 1-max pooling [P14]

C8. Adversarial attacks S14. Building DL models trained with adversarial patterns [P5]

C9. Limitations of static and

dynamic analysis techniques

S15. Using byte-level representation [P36]

C10. Misdetection of malware

with obfuscated code

S16. Using the API method calls [P12]

S17. Using various kinds of features [P13]

C11. Over-fitting problem S18. Training a neural network with fewer parameters unless more parameters/

layers are required

[P15]

Network

traffic

C12. Encrypted traffic S19. Using VPN API on mobile devices [P31]

Neural Computing and Applications

123

researchers and practitioners because no paper has pro-

vided these challenges like this before. Each of these

challenges can be addressed by researchers to pave the way

for further research.

We classified these challenges into the following three

main categories:

• Dataset A training dataset is required for building a

machine learning model.

• Model building A machine learning model building

process includes several steps, namely data collection,

preparation of the data, algorithm selection, training,

testing, parameter tuning (a.k.a., hyperparameter opti-

mization), and prediction.

• Network traffic Network traffic-related features are

represented in several mobile malware detection

datasets and used in machine learning models.

Obtaining a sufficient and up-to-date training dataset is a

common obstacle [P38]. Therefore, Yuan et al. [P38]

suggested that researchers should contribute to public

datasets [P38]. For multi-class classification problems such

as the identification of malware families, the availability of

training datasets becomes a more challenging problem

[P10]. It is prevalent to face with an insufficient number of

samples for some malware families [P10]. To cope with

such a challenge, researchers can use imbalanced learning

algorithms [30]. Even if a sufficient number of samples are

available, wrong labels may become a problem when

building a model [P18]. Therefore, Mercaldo and Santone

[P18] proposed to check samples against well-known data

sources, such as VirusTotal service [P18].

Training time is a common problem when building a DL

model for malware detection [P4, P24, P32, P37, P39].

Zhong and Gu [P39] used parallel strategies and algorithms

to cope with long computation time for DL models [P39].

Amin et al. [P4] preferred to use CNN instead of LSTM to

decrease the computation time of the DL model [P4].

Wang et al. [P32] used deep autoencoder as a pre-training

method of CNN to reduce the training time [P32]. On the

other hand, D’Angelo et al. [P8] reported the use of

autoencoder as a bottleneck for processing time and did not

propose a solution for this problem [P8]. Yuan et al. [P37]

observed that the backpropagation algorithm conducted

over multiple hidden layers resulted in a time-consuming

training process for CNN and MLP [P37]. To reduce the

training time, they used a broad learning algorithm [P37].

Pektaş and Acarman [P24] used an early stopping criterion

to shorten the time required for hyper-parameter opti-

mization [P24]. The same researchers used a Grid Search

algorithm to find the best combination of hyper-parameters

in one of their earlier studies [P23]. They realized the high

computational cost of Grid Search and used a Random

Search to overcome this obstacle [P24]. Since Grid Search

and Random Search explore hyper-parameter space ran-

domly and blindly, they used Tree-Structured Parzen

Estimator to optimize hyper-parameters intelligently [P24].

Choosing an optimal set of features for training is

another crucial challenge reported in the primary studies

[P14, P20]. Nguyen-Vu et al. [P20] relied on DNNs for

selecting proper feature sets [P20]. Li et al. [P14] reported

a shortcoming of max pooling for choosing features in a

CNN [P14]. Max pooling cannot select multiple essential

features and hence, may lose important information [P14].

Li et al. [P14] used k-max pooling for feature selection to

deal with top-k important features [P14].

For the model building, other challenges should also be

considered, such as adversarial attacks [P5], limitations of

static and dynamic analysis [P36], obfuscation techniques

[P12, P13], and over-fitting problem [P15]. Ananya et al.

[P5] developed DL models trained with adversarial pat-

terns to decrease the risk of adversarial attacks [P5]. Yuan

et al. [P36] identified the limitations of static and dynamic

analysis techniques and proposed a byte-level solution

[P36]. Obfuscation techniques are another challenge for

malware detectors [P12, P13]. Kim et al. [P13] reported the

negative impact of obfuscation techniques on static anal-

ysis and proposed using various kinds of features to alle-

viate this negative impact [P13]. Karbab et al. [P12]

specifically used API method calls to cope with obfuscated

code [P12]. Mahdavifar and Ghorbani [P15] reported that

building a neural network with many hidden layers and

neurons in each layer causes the over-fitting problem [P15].

To solve this problem, they trained the neural network with

more parameters, and thus, the training error was driven to

a small value, while the error on new data was relatively

large [P15]. In other words, the network memorized the

training data, but it failed to generalize to new situations

[P15].

Wang et al. [P31] identified encrypted traffic as a

challenge for malware identification [P31]. To deal with

encrypted traffic, they designed a system that leverages

VPN API on mobile devices to provide full access to the

network traffic of these devices and identify malware

samples with HTTPs traffic [P31]. A forwarder in gateway

transparently bridges packets on the VPN interface and

payload data on the regular socket interface and forwards

the traffic to the detection server for analysis [P31].

5 Discussion

In this section, we present the discussion related to each

research question (Sect. 5.1), and also, we present the

potential threats to validity (Sect. 5.2).

Neural Computing and Applications

123

5.1 General discussion

There are several differences between the Systematic Lit-

erature Review (SLR) and Systematic Mapping Studies

(SMS) studies [15]. While RQs of SMS studies are general,

RQs of SLR studies are very specific. RQs drive the search

process in SLR studies, and research topics in SMS studies

drive the search process. All the relevant papers must be

identified in SLR studies, and quality assessment is

mandatory; however, quality assessment is optional, and all

the relevant papers are not required in SMS studies. Since

we have very specific research questions as part of this

research, we aimed to perform an SLR study instead of an

SMS study. However, researchers can also work on an

SMS study on malware detection without limiting the

techniques to deep learning.

Discussion per research question is presented as follows:

• RQ-1 We observed that only 1 article used semi-

supervised learning, and 1 article applied unsupervised

learning together with supervised learning approaches.

There was no article that applied reinforcement learn-

ing. For instance, Deep Recurrent Q-Network (DQN)

was developed in 2015 by researchers of DeepMind and

provided state-of-the-art results in different problems

[21, 74]. The DQN algorithm uses deep learning and

reinforcement learning and also applies the experience

replay technique [51]. However, this algorithm has not

been used in mobile malware detection problem yet. To

this end, the integration of reinforcement learning with

deep learning approaches and the application of these

models on malware detection is considered as a future

research direction. We did not encounter any article that

applied a semi-supervised deep learning approach, and

therefore, we can consider this research field as a

potential research field because a lot of unlabeled data

can be processed with the help of semi-supervised

learning approaches and the time-consuming process of

labeling can be relatively reduced. There are deep

learning-based semi-supervised learning approaches

[41, 67] that can be investigated for mobile malware

detection. Similarly, unsupervised deep learning

approaches can be investigated in detail [43, 44] as

well. Similarly, Mahdavifar and Ghorbani [49] stated

that the use of deep learning in cybersecurity is mostly

about supervised learning, which assumes that there are

labeled data points. However, the collection and

labeling of the data points are time-consuming and

expensive. As such, more research is needed on the

application of deep unsupervised, deep semi-super-

vised, and deep reinforcement learning deep learning

approaches in cybersecurity. The outcome of our SLR

analysis is aligned with the outcome of Mahdavifar and

Ghorbani [49].

• RQ-2 We identified that while static features are mostly

preferred by the researchers (i.e., 55%), the use of

hybrid features is very limited (i.e., 13%). Since static

features-based models are not resilient to the obfusca-

tion techniques, the integration of dynamic features to

the models are important. For instance, network traffic-

related features can provide very valuable information;

however, we noticed that this type of feature was not

widely applied yet. The collection of dynamic features

might be costly and time-consuming, but its benefit is

beyond its limitations. To this end, we expect to see

more research on the use of hybrid features in the future

to develop resilient malware detection models.

• RQ-3 We noticed that CNN and DNN algorithms were

the most applied algorithms. LSTM and DBN algo-

rithms were applied as the second and third most

applied algorithms, respectively. It is interesting to see

that the hybrid models were not preferred much (i.e.,

four studies) in these articles. We expect to see more

research on the combination of deep learning models in

the future because each deep learning algorithm has its

own pros and cons, and therefore, the power of multiple

algorithms can be more than the power of each

individual deep learning algorithm in some cases. Also,

we observed that some machine learning types such as

multi-task learning, multi-modal learning, and multi-

view learning were neglected, but they can be applied

effectively in mobile malware detection problem.

• RQ-4 We identified that accuracy and F-measure are

widely used evaluation parameters, and the cross-

validation is the most preferred validation approach.

F-measure is also widely used in other prediction

problems that have unbalanced datasets such as soft-

ware fault prediction [17]. We observed that there is not

a consensus on the evaluation parameter yet because

most of these articles reported several experimental

results with respect to the different evaluation param-

eters such as FPR and FNR [16]. While the AUC

parameter is widely used in many prediction problems

such as software fault prediction, it is not widely

preferred in malware detection articles. This indicates

that more research is required for convergence across

studies and for improving the confidence in experi-

mental studies. Lessmann et al. [42] presented such a

framework for software defect prediction studies

because there was three potential bias at that time,

namely the use of a few proprietary datasets, concep-

tually inaccurate evaluation parameters, and inappro-

priate statistical testing procedures. A similar

framework for benchmarking mobile malware detection

Neural Computing and Applications

123

studies can be beneficial to decide on the best

performing algorithm.

• RQ-5 DNN was reported as the best algorithm in terms

of predictive accuracy in 11 articles. The CNN

algorithm was reported as the best algorithm in 8

studies. This shows that most of the researchers are still

applying algorithms (i.e., DNN) similar to the tradi-

tional ANN algorithms because they have prior expe-

rience in these traditional algorithms. This might be

limiting the number of DL algorithms used in the

experiments to reach a conclusion on the best perform-

ing algorithm. Based on our paper pool, out of the 11

studies reported DNN as the best performing algorithm,

nine studies compared DNN only with traditional ML

algorithms. Two studies analyzed DNN’s performance

against other DL algorithms: Pektaş and Acarman [P23]

against a Hybrid DL model, CNN, and RNN/

LTSM,Pektaş and Acarman [P24] against CNN. Out

of the eight studies that reported CNN as the best

performing, none of them compared CNN’s perfor-

mance against another DL algorithm. If a framework

can be set up for benchmarking of algorithms, potential

bias can be minimized, and all the algorithms can be

evaluated in a similar manner. Since all the algorithms

were not evaluated in an article in detail, it is difficult to

state that the best algorithm for mobile malware

detection is DNN. We expect to see more research on

the benchmarking of deep learning algorithms in the

future.

• RQ-6 We observed that most of the studies (i.e., 32) did

not mention the feature selection technique. When the

high-performance of the models is considered, this

observation indicates that the feature selection compo-

nent is not required for deep learning-based malware

detection models. The use of feature selection tech-

niques is also related to the number of features, and

therefore, we can conclude that the number of features

is not too much.

• RQ-7 We identified several public datasets hosted on

different websites. On the other hand, we also observed

that some of them are not actively maintained, and

some links are not active. For sustainable and repeat-

able experiments, the maintenance of these datasets for

malware detection is important, and researchers who

build these datasets should continue to maintain them

for further research. For better performance, deep

learning algorithms require a huge amount of data,

and therefore, we expect to see very large-scale datasets

in the future for better mobile malware detection

models.

Another deficiency we observed in experimental

design is the number of datasets used in experiments to

reach a conclusion on the best performing algorithm.

Since the performance of ML/DL algorithms is heavily

based on training, testing and validation data, it is

important to use various datasets when comparing the

performance of ML/DL algorithms. Out of the eight

studies that reported CNN as the best performing, six of

them used only one dataset in their experiments. Four

studies out of 11, reported DNN as the best performing

DL algorithm using only one dataset. We propose the

use of more datasets in experimental design to reach

more reliable results on the performance of ML/DL

algorithms in mobile malware detection.

• RQ-8 We noticed that 14 studies did not specify the

deep learning implementation platform. For repeatable,

improvable, and refutable experiments [25], it is also

crucial to report not only the algorithms and parameters

but also the implementation platform because the

implementation of the algorithms might be different

across platforms and some implementations might be

optimized whereas some of them are not.

• RQ-9 We also identified several research challenges and

gaps in mobile malware detection. These challenges

and research gaps were reported based on the identified

papers and the analysis performed by the researchers in

the articles. As such, there might be some challenges

and research gaps that were not discussed by the

original authors of the articles, and we might have

skipped those challenges.

5.2 Potential threats to validity

Validity considerations are applicable for SMS and SLR

studies similar to empirical studies [57, 58]. The threats to

the validity of this SLR are mainly related to the specifi-

cation of the candidate pool of papers, primary study

selection bias, data extraction, and data synthesis.

The candidate pool of papers has been specified by

searching online databases using keywords. We used broad

terms to form search keywords to decrease the risk of

excluding potentially relevant studies. Besides, we did not

include a keyword for mobile applications and hence aimed

at obtaining all malware detection studies using DL

regardless of their platform, i.e., mobile, desktop. With this

approach, we decreased precision and increased recall

hence obtained more candidate papers to be assessed for

specifying the final set of primary studies. Also, we sear-

ched for five widely used online databases in SMS and

SLR studies in computer science and software engineering.

To mitigate the risk of missing some relevant studies, we

also conducted both backward and forward snowballing.

We believe that an adequate pool of candidate papers has

been formed for this study, and if there is any missing

journal paper, the rate will be negligible.

Neural Computing and Applications

123

Since we searched in the widely used computer science

databases and performed forward & backward snowballing

during this research, we believe that we covered the deep

learning-based articles published so far. However, there

might be some articles that were not published in high-

quality journals and not indexed in these databases, and

therefore, they might not be included in this SLR study.

The snowballing step of this research also helped us to

double-check whether we covered all the deep learning-

based articles. Our main objective was to present the state-

of-the-art of the deep learning-based mobile malware

detection studies, and as such, we did not include articles

that do not apply deep learning or do not present experi-

ments on the datasets related to the mobile systems.

Application of exclusion criteria is subject to research-

ers’ bias and a potential threat to validity. The authors built

a comprehensive list of exclusion criteria (Table 2) and

used the think-aloud application of exclusion criteria [2] to

mitigate the risk of ambiguous interpretations. In addition,

the authors selected primary studies using a joint voting

mechanism. All of the conflicts have been recorded and

resolved via discussions among the authors.

The validity of the data extraction is another essential

aspect, which directly affects the results of this study. To

ensure the correctness of the extracted data, the authors

formed categories iteratively and incrementally. They

aimed at decreasing the risk of researcher bias via mapping

the relevant data in primary studies to the specified groups.

Whenever an author was undecided about the data to be

extracted, he recorded that case, and these cases were

resolved via discussions among the authors. Since we

mainly used descriptive statistics to answer the RQs, we

think that threats to internal validity are relatively small.

6 Conclusion and future work

With the broad application of mobile computing, malware

has become a serious problem that can have a dramatic

impact on systems. Together with the advancements in

computing, deep learning solutions have become feasible

for both effective and efficient detection of malware.

Several solutions have been provided in the literature with

their specific benefits, but also with the open challenges. To

identify these solutions and make explicit the open chal-

lenges, in this study, we have presented the results of a

systematic review in which we have reviewed 40 articles

that applied deep learning algorithms for mobile malware

detection. Compared to the existing secondary studies in

this domain, this is the first study that adopts a systematic

review approach on malware detection using deep learning

for different platforms.

In the SLR, we synthesized the results from the identi-

fied primary studies based on machine learning categories,

data sources/features, deep learning approaches, evaluation

parameters & validation techniques, best performing

algorithms, feature selection techniques, datasets, and

implementation platforms. Further, we derived the chal-

lenges and research directions. We identified the following

research directions to pave the way for further research and

explained them in the Discussion section:

1. The development of unsupervised deep learning

approaches for malware detection

2. The development of semi-supervised deep learning

models for malware detection

3. The development of reinforcement learning-based deep

learning techniques for malware detection

4. More hybrid features-based techniques

5. A framework for better benchmarking of deep learn-

ing-based approaches and better experimental design to

compare more DL algorithms to reach more general

results

6. Better maintenance of malware datasets and sustain-

able platforms for hosting malware datasets

7. More datasets should be used in experimental design to

compare the performance of ML/DL algorithms to

reach more reliable results

The results of the study can be beneficial for both

researchers and practitioners. Research can identify the key

research and solution directions, while practitioners can use

the result to focus on best-practices. As future work, we

aim to focus on these research directions. In particular, we

are planning to develop multi-modal deep learning-based

and semi-supervised deep learning techniques for mobile

malware detection.

Neural Computing and Applications

123

Funding No funding was received for conducting this study.

Declarations

Conflict of interest The authors have no relevant financial or non-

financial interests to disclose.

References

This section is divided into two parts: (1) Regular
references cited throughout the paper and (2)
Citations to the primary studies reviewed in the
SLR

1. Ab Razak MF, Anuar NB, Salleh R, Firdaus A (2016) The rise

of ‘‘malware’’: bibliometric analysis of malware study. J Netw

Comput Appl 75:58–76

2. Ali NB, Petersen K (2014) Evaluating strategies for study

selection in systematic literature studies. In: Proceedings of the

8th ACM/IEEE international symposium on empirical software

engineering and measurement pp. 1–4

3. Antonakakis M, April T, Bailey M, Bernhard M, Bursztein E,

Cochran J, Durumeric Z, Halderman JA, Invernizzi L, Kallitsis

M, Kumar D (2017) Understanding the mirai botnet. In: 26th

{USENIX} security symposium ({USENIX} Security 17)

pp. 1093–1110

4. AppBrain, ‘‘Number of Android apps on Google Play.’’ [On-

line]. Available: https://www.appbrain.com/stats/number-of-

android-apps. [Accessed: 17-July-2020].

5. Aslan ÖA, Samet R (2020) A comprehensive review on mal-

ware detection approaches. IEEE Access 8:6249–6271

6. Baltrušaitis T, Ahuja C, Morency LP (2018) Multimodal

machine learning: a survey and taxonomy. IEEE Trans Pattern

Anal Mach Intell 41(2):423–443

7. Bazrafshan Z, Hashemi H, Fard SMH, Hamzeh A (2013) A

survey on heuristic malware detection techniques. In: The 5th

conference on information and knowledge technology IEEE,

pp. 113–120

8. Berman DS, Buczak AL, Chavis JS, Corbett CL (2019) A survey

of deep learning methods for cyber security. Information

10(4):122

9. Brownlee J (2016) Deep learning with Python: develop deep

learning models on Theano and TensorFlow using Keras.

Machine Learning Mastery, Vermont

10. Brownlee J (2017) Long Short-term memory networks with

Python: develop sequence prediction models with deep learning.

Machine Learning Mastery, Vermont

11. Brownlee J (2019) Deep learning for computer vision: image

classification, object detection, and face recognition in Python.

Machine Learning Mastery, Vermont

12. Budgen D, Brereton P, Drummond S, Williams N (2018)

Reporting systematic reviews: some lessons from a tertiary

study. Inf Softw Technol 95:62–74

13. Carlin D, Burgess J, O’Kane P, Sezer S (2019) You could be

mine (d): the rise of cryptojacking. IEEE Secur Priv 18(2):16–22

14. Catal C (2012) On the application of genetic algorithms for test

case prioritization: a systematic literature review. In: Proceed-

ings of the 2nd international workshop on Evidential assessment

of software technologies pp. 9–14.

15. Catal C, Mishra D (2013) Test case prioritization: a systematic

mapping study. Software Qual J 21(3):445–478

16. Catal C, Sevim U, Diri B (2010) Metrics-driven software quality

prediction without prior fault data. In: Ao SI, Gelman L (eds)

Electronic Engineering and Computing Technology. Springer,

Dordrecht, pp 189–199

17. Choudhary GR, Kumar S, Kumar K, Mishra A, Catal C (2018)

Empirical analysis of change metrics for software fault predic-

tion. Comput Electr Eng 67:15–24

18. Cui Z, Xue F, Cai X, Cao Y, Wang GG, Chen J (2018) Detection

of malicious code variants based on deep learning. IEEE Trans

Industr Inf 14(7):3187–3196

19. Darabian H, Dehghantanha A, Hashemi S, Homayoun S, Choo

KKR (2020) An opcode-based technique for polymorphic

Internet of Things malware detection. Concurr Comput Practice

Exp 32(6):e5173

20. Deng L (2014) A tutorial survey of architectures, algorithms,

and applications for deep learning. APSIPA Trans Signal Inform

Process. https://doi.org/10.1017/atsip.2013.9

21. Du Z, Miao Q, Zong C (2020) Trajectory planning for auto-

mated parking systems using deep reinforcement learning. Int J

Automot Technol 21(4):881–887

22. Elkahky AM, Song Y, He X (2015) A multi-view deep learning

approach for cross domain user modeling in recommendation

systems. In Proceedings of the 24th international conference on

world wide web pp. 278–288

23. Farfade SS, Saberian MJ, Li LJ (2015) Multi-view face detec-

tion using deep convolutional neural networks. In: Proceedings

of the 5th ACM on international conference on multimedia

retrieval pp. 643–650

24. Feizollah A, Anuar NB, Salleh R, Wahab AWA (2015) A

review on feature selection in mobile malware detection. Digit

Investig 13:22–37

25. Gay G, Menzies T, Cukic B, Turhan B (2009) How to build

repeatable experiments. In: Proceedings of the 5th international

conference on predictor models in software engineering pp. 1–9

26. Gibert D, Mateu C, Planes J (2020) The rise of machine learning

for detection and classification of malware: research develop-

ments, trends and challenges. J Network Comput Appl

153:102526

27. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley

D, Ozair S, Bengio Y (2014) Generative adversarial nets. Adv

Neural Info Process Syst 27

28. Griffin K, Schneider S, Hu X, Chiueh TC (2009) Automatic

generation of string signatures for malware detection. In:

International workshop on recent advances in intrusion detec-

tion. Springer, Berlin, Heidelberg. pp. 101–120

29. Hassler E, Carver JC, Kraft NA, Hale D (2014) Outcomes of a

community workshop to identify and rank barriers to the sys-

tematic literature review process. In: Proceedings of the 18th

international conference on evaluation and assessment in soft-

ware engineering. pp. 1–10

30. He H, Garcia EA (2009) Learning from imbalanced data. IEEE

Trans Knowl Data Eng 21(9):1263–1284

31. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for

image recognition. In: Proceedings of the IEEE conference on

computer vision and pattern recognition pp. 770–778

32. Hsiao SC, Kao DY, Liu ZY, Tso R (2019) Malware image

classification using one-shot learning with Siamese networks.

Proced Comput Sci 159:1863–1871

33. Jerome Q, Allix K, State R, Engel T (2014) Using opcode-

sequences to detect malicious Android applications. In: 2014

IEEE international conference on communications (ICC) IEEE.

pp. 914–919

34. Kamilaris A, Prenafeta-Boldú FX (2018) Deep learning in

agriculture: a survey. Comput Electron Agric 147:70–90

Neural Computing and Applications

123

https://www.appbrain.com/stats/number-of-android-apps
https://www.appbrain.com/stats/number-of-android-apps
https://doi.org/10.1017/atsip.2013.9

35. Kitchenham BA, Dyba T, Jorgensen M (2004) Evidence-based

software engineering. In: Proceedings. 26th international con-

ference on software engineering IEEE. pp. 273–281

36. Kitchenham B, Pretorius R, Budgen D, Brereton OP, Turner M,

Niazi M, Linkman S (2010) Systematic literature reviews in

software engineering–a tertiary study. Inf Softw Technol

52(8):792–805

37. Kitchenham B, Pearl Brereton O, Budgen D, Turner M, Bailey J,

Linkman S (2009) Systematic literature reviews in software

engineering—a systematic literature review. Inf Softw Technol

51(1):7–15. https://doi.org/10.1016/j.infsof.2008.09.009

38. Kok SH, Abdullah A, Jhanjhi NZ, Supramaniam M (2019)

Ransomware, threat and detection techniques: a review. Int J

Comput Sci Network Secur 19(2):136

39. Kolias C, Kambourakis G, Stavrou A, Voas J (2017) DDoS in

the IoT: mirai and other botnets. Computer 50(7):80–84

40. Kouliaridis V, Barmpatsalou K, Kambourakis G, Chen S (2020)

A survey on mobile malware detection techniques. IEICE Trans

Inf Syst 103(2):204–211

41. Kuznietsov Y, Stuckler J, Leibe B (2017) Semi-supervised deep

learning for monocular depth map prediction. In: Proceedings of

the IEEE conference on computer vision and pattern recognition

pp. 6647–6655

42. Lessmann S, Baesens B, Mues C, Pietsch S (2008) Bench-

marking classification models for software defect prediction: a

proposed framework and novel findings. IEEE Trans Softw Eng

34(4):485–496

43. Li R, Wang S, Long Z, Gu D (2018) Undeepvo: monocular

visual odometry through unsupervised deep learning. In: 2018

IEEE international conference on robotics and automation

(ICRA) IEEE, pp. 7286–7291

44. Li Y, Yang M, Zhang Z (2018) A survey of multi-view repre-

sentation learning. IEEE Trans Knowl Data Eng

31(10):1863–1883

45. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F,

Ghafoorian M, Jeroen Van Der, Laak JA, Van Ginneken B,

Sánchez CI (2017) A survey on deep learning in medical image

analysis. Med Image Anal 42:60–88

46. Liu K, Xu S, Xu G, Zhang M, Sun D, Liu H (2020) A review of

android malware detection approaches based on machine

learning. IEEE Access. https://doi.org/10.1109/ACCESS.2020.

3006143

47. Liu X, Liu J (2014) A two-layered permission-based android

malware detection scheme. In: 2014 2nd IEEE international

conference on mobile cloud computing, services, and engi-

neering IEEE, pp. 142–148

48. Maggiori E, Tarabalka Y, Charpiat G, Alliez P (2016) Convo-

lutional neural networks for large-scale remote-sensing image

classification. IEEE Trans Geosci Remote Sens 55(2):645–657

49. Mahdavifar S, Ghorbani AA (2019) Application of deep learn-

ing to cybersecurity: a survey. Neurocomputing 347:149–176

50. McLaughlin N, Martinez del Rincon J, Kang B, Yerima S,

Miller P, Sezer S, Safaei Y, Trickel E, Zhao Z, Doupé A, Joon

Ahn G (2017) Deep android malware detection. In: Proceedings

of the seventh ACM on conference on data and application

security and privacy. pp. 301–308

51. Miles MB, Huberman AM, Saldana J (2014) Qualitative data

analysis: a methods sourcebook, 3rd edn. SAGE Publications

Inc., Thousand Oaks, CA

52. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Belle-

mare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G,

Petersen S (2015) Human-level control through deep rein-

forcement learning. Nature 518(7540):529–533

53. Nataraj L, Karthikeyan S, Jacob G, Manjunath BS (2011)

Malware images: visualization and automatic classification. In:

Proceedings of the 8th international symposium on visualization

for cyber security. pp. 1–7

54. Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY (2011)

Multimodal deep learning. In: Proceedings of the 28th interna-

tional conference on machine learning (ICML-11). pp 689–696

55. Oussidi A, Elhassouny A (2018) Deep generative models: sur-

vey. In: 2018 international conference on intelligent systems and

computer vision (ISCV). IEEE, pp. 1–8

56. Pan Y, Ge X, Fang C, Fan Y (2020) A systematic literature

review of android malware detection using static analysis. IEEE

Access 8:116363–116379

57. Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic

mapping studies in software engineering. In: 12th international

conference on evaluation and assessment in software engineer-

ing (EASE) 12. pp. 1–10

58. Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for

conducting systematic mapping studies in software engineering:

an update. Inf Softw Technol 64:1–18

59. Pouyanfar S, Sadiq S, Yan Y, Tian H, Tao Y, Reyes MP, Shyu

ML, Chen SC, Iyengar SS (2018) A survey on deep learning:

algorithms, techniques, and applications. ACM Comput Surv

(CSUR) 51(5):1–36

60. Qamar A, Karim A, Chang V (2019) Mobile malware attacks:

review, taxonomy & future directions. Futur Gener Comput Syst

97:887–909

61. Salakhutdinov R, Hinton G (2009) Deep boltzmann machines.

In: Artificial intelligence and statistics. pp 448–455. PMLR

62. Shabtai A, Kanonov U, Elovici Y, Glezer C, Weiss Y (2012)

‘‘Andromaly’’: a behavioral malware detection framework for

android devices. J Intell Inform Syst 38(1):161–190

63. Shabtai A, Moskovitch R, Elovici Y, Glezer C (2009) Detection

of malicious code by applying machine learning classifiers on

static features: a state-of-the-art survey. Inform Secur Tech Rep

14(1):16–29

64. Sohn K, Shang W, Lee H (2014) Improved multimodal deep

learning with variation of information. Adv Neural Inform

Process Syst 27:2141–2149

65. Souri A, Hosseini R (2018) A state-of-the-art survey of malware

detection approaches using data mining techniques. HCIS 8(1):3

66. Suresh S, Di Troia F, Potika K, Stamp M (2019) An analysis of

Android adware. J Comput Virol Hacking Tech 15(3):147–160

67. Tarhan A, Giray G (2017) On the use of ontologies in software

process assessment: a systematic literature review. In: Pro-

ceedings of the 21st international conference on evaluation and

assessment in software engineering. pp. 2–11

68. Tarvainen A, Valpola H (2017) Mean teachers are better role

models: weight-averaged consistency targets improve semi-su-

pervised deep learning results. Adv Neural Inf Process Syst 30

69. Tummers J, Kassahun A, Tekinerdogan B (2019) Obstacles and

features of farm management information systems: a systematic

literature review. Comput Electron Agric 157:189–204. https://

doi.org/10.1016/j.compag.2018.12.044

70. Ucci D, Aniello L, Baldoni R (2019) Survey of machine

learning techniques for malware analysis. Comput Secur

81:123–147

71. Wohlin C (2014) Guidelines for snowballing in systematic lit-

erature studies and a replication in software engineering. In:

Proceedings of the 18th international conference on evaluation

and assessment in software engineering—EASE ’14, 1–10. Doi:

https://doi.org/10.1145/2601248.2601268

72. Ye Y, Chen L, Hou S, Hardy W, Li X (2018) DeepAM: a

heterogeneous deep learning framework for intelligent malware

detection. Knowl Inf Syst 54(2):265–285

73. Ye Y, Li T, Adjeroh D, Iyengar SS (2017) A survey on malware

detection using data mining techniques. ACM Comput Surv

(CSUR) 50(3):1–40

Neural Computing and Applications

123

https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1109/ACCESS.2020.3006143
https://doi.org/10.1109/ACCESS.2020.3006143
https://doi.org/10.1016/j.compag.2018.12.044
https://doi.org/10.1016/j.compag.2018.12.044
https://doi.org/10.1145/2601248.2601268

74. Yuxin D, Siyi Z (2019) Malware detection based on deep

learning algorithm. Neural Comput Appl 31(2):461–472

75. Zeng J, Hu J, Zhang Y (2018) Adaptive traffic signal control

with deep recurrent Q-learning. In: 2018 IEEE intelligent

vehicles symposium (IV), IEEE, pp. 1215–1220

76. Zhang C, Patras P, Haddadi H (2019) Deep learning in mobile

and wireless networking: a survey. IEEE Commun Surv Tutor

21(3):2224–2287

77. Zhang X, Zhao J, LeCun Y (2015) Character-level convolutional

networks for text classification. Adv Neural Inf Process Syst

28:649–657

Primary studies (sources reviewed in the slr)

P1. Alotaibi A (2019) Identifying malicious software using deep

residual long-short term memory. IEEE Access

7:163128–163137

P2. Alzaylaee MK, Yerima SY, Sezer S (2020) DL-Droid: deep

learning based android malware detection using real devices.

Comput Secur 89:101663

P3. Amin M, Shah B, Sharif A, Ali T, Kim KL, Anwar S (2019)

Android malware detection through generative adversarial net-

works. Trans Emerg Telecommun Technol. https://doi.org/10.

1002/ett.3675

P4. Amin M, Tanveer TA, Tehseen M, Khan M, Khan FA, Anwar S

(2020) Static malware detection and attribution in android

bytecode through an end-to-end deep system. Futur Gener

Comput Syst 102:112–126

P5. Ananya A, Aswathy A, Amal TR, Swathy PG, Vinod P,

Mohammad S (2020) SysDroid: a dynamic ML-based android

malware analyzer using system call traces. Cluster Comput

23:2789–2808

P6. Bakhshinejad N, Hamzeh A (2019) Parallel-CNN network for

malware detection. IET Inf Secur 14(2):210–219

P7. Chen T, Mao Q, Lv M, Cheng H, Li Y (2019) DroidVecDeep:

android malware detection based on Word2Vec and deep belief

network. TIIS 13(4):2180–2197

P8. D’Angelo G, Ficco M, Palmieri F (2020) Malware detection in

mobile environments based on autoencoders and API-images.

J Parallel Distrib Comput 137:26–33

P9. De Lorenzo A, Martinelli F, Medvet E, Mercaldo F, Santone A

(2020) Visualizing the outcome of dynamic analysis of Android

malware with VizMal. J Inform Secur App 50:102423

P10. Dharmalingam VP, Palanisamy V (2020) A novel permission

ranking system for android malware detection—the permission

grader. J Ambient Intell Human Comput 12:5071–5081

P11. Jan S, Ali T, Alzahrani A, Musa S (2018) Deep convolutional

generative adversarial networks for intent-based dynamic

behavior capture. Int J Eng Technol 7(4.29):101–103

P12. Karbab EB, Debbabi M, Derhab A, Mouheb D (2018) Mal-

Dozer: automatic framework for android malware detection

using deep learning. Digit Investig 24:S48–S59

P13. Kim T, Kang B, Rho M, Sezer S, Im EG (2018) A multimodal

deep learning method for android malware detection using

various features. IEEE Trans Inf Forensics Secur 14(3):773–788

P14. Li D, Zhao L, Cheng Q, Lu N, Shi W (2019) Opcode sequence

analysis of Android malware by a convolutional neural network.

Concurr Comput: Practice Exp 32:e5308

P15. Mahdavifar S, Ghorbani AA (2020) DeNNeS: deep embedded

neural network expert system for detecting cyber attacks. Neural

Comput Appl 32:14753–14780

P16. Martı́n A, Rodrı́guez-Fernández V, Camacho D (2018) CAN-

DYMAN: classifying android malware families by modelling

dynamic traces with Markov chains. Eng Appl Artif Intell

74:121–133

P17. Martinelli F, Marulli F, Mercaldo F (2017) Evaluating convo-

lutional neural network for effective mobile malware detection.

Proced Comput Sci 112:2372–2381

P18. Mercaldo F, Santone A (2020) Deep learning for image-based

mobile malware detection. J Comput Virol Hacking Tech

16:157–171

P19. Nauman M, Tanveer TA, Khan S, Syed TA (2018) Deep neural

architectures for large scale android malware analysis. Clust

Comput 21(1):569–588

P20. Nguyen-Vu L, Ahn J, Jung S (2019) Android fragmentation in

malware detection. Comput Secur 87:101573

P21. Pei X, Yu L, Tian S (2020) AMalNet: a deep learning frame-

work based on graph convolutional networks for malware

detection. Comput Secur 93:101792

P22. Pei X, Yu L, Tian S, Wang H, Peng Y (2020) Combining multi-

features with a neural joint model for Android malware detec-

tion. J Intell Fuzzy Syst (Preprint) 38:2151–2163

P23. Pektaş A, Acarman T (2020) Learning to detect Android mal-

ware via opcode sequences. Neurocomputing 396:599–608

P24. Pektaş A, Acarman T (2020) Deep learning for effective

Android malware detection using API call graph embeddings.

Soft Comput 24(2):1027–1043

P25. Saif D, El-Gokhy SM, Sallam E (2018) Deep belief networks-

based framework for malware detection in android systems.

Alex Eng J 57(4):4049–4057

P26. Sharmeen S, Huda S, Abawajy J, Hassan MM (2020) An

adaptive framework against android privilege escalation threats

using deep learning and semi-supervised approaches. Appl Soft

Comput 89:106089

P27. Shi-qi L, Bo N, Ping J, Sheng-wei T, Long Y, Rui-jin W (2019)

Deep learning in Drebin: android malware image texture median

filter analysis and detection. KSII Trans Internet Inform Syst

(TIIS) 13(7):3654–3670

P28. Su X, Shi W, Qu X, Zheng Y, Liu X (2020) DroidDeep: using

Deep Belief Network to characterize and detect android mal-

ware. Soft Comput 24:6017–6030

P29. Tang M, Qian Q (2018) Dynamic API call sequence visualisa-

tion for malware classification. IET Inf Secur 13(4):367–377

P30. Vinayakumar R, Soman KP, Poornachandran P, Sachin Kumar S

(2018) Detecting Android malware using long short-term

memory (LSTM). J Intell Fuzzy Syst 34(3):1277–1288

P31. Wang S, Chen Z, Yan Q, Ji K, Peng L, Yang B, Conti M (2020)

Deep and broad URL feature mining for android malware

detection. Inf Sci 513:600–613

P32. Wang W, Zhao M, Wang J (2019) Effective android malware

detection with a hybrid model based on deep autoencoder and

convolutional neural network. J Ambient Intell Humaniz Com-

put 10(8):3035–3043

P33. Xiao X, Wang Z, Li Q, Xia S, Jiang Y (2016) Back-propagation

neural network on Markov chains from system call sequences: a

new approach for detecting Android malware with system call

sequences. IET Inf Secur 11(1):8–15

P34. Xiao X, Zhang S, Mercaldo F, Hu G, Sangaiah AK (2019)

Android malware detection based on system call sequences and

LSTM. Multimed Tools Appl 78(4):3979–3999

P35. Yen YS, Sun HM (2019) An android mutation malware detec-

tion based on deep learning using visualization of importance

from codes. Microelectron Reliab 93:109–114

P36. Yuan B, Wang J, Liu D, Guo W, Wu P, Bao X (2020) Byte-level

malware classification based on markov images and deep

learning. Comput Secur 92:101740

Neural Computing and Applications

123

https://doi.org/10.1002/ett.3675
https://doi.org/10.1002/ett.3675

P37. Yuan W, Jiang Y, Li H, Cai M (2019) A lightweight on-device

detection method for android malware. IEEE transactions on

systems, man, and cybernetics: systems

P38. Yuan Z, Lu Y, Xue Y (2016) Droiddetector: android malware

characterization and detection using deep learning. Tsinghua Sci

Technol 21(1):114–123

P39. Zhong W, Gu F (2019) A multi-level deep learning system for

malware detection. Expert Syst Appl 133:151–162

P40. Zhou Q, Feng F, Shen Z, Zhou R, Hsieh MY, Li KC (2019) A

novel approach for mobile malware classification and detection

in Android systems. Multimed Tools Appl 78(3):3529–3552

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

	Applications of deep learning for mobile malware detection: A systematic literature review
	Abstract
	Introduction
	Background and related work
	Deep learning (DL) and DL algorithms
	Related work

	Research methodology
	Primary study selection
	Data extraction
	Data synthesis and reporting

	Results
	RQ-1: Machine learning categories
	RQ-2: Data sources/features
	RQ-3: deep learning approaches
	RQ-4: evaluation parameters and validation approaches
	RQ-5: best performing algorithms
	RQ-6: feature selection techniques
	RQ-7: datasets
	RQ-8: implementation platforms
	RQ-9: challenges

	Discussion
	General discussion
	Potential threats to validity

	Conclusion and future work
	Funding
	References
	This section is divided into two parts: (1) Regular references cited throughout the paper and (2) Citations to the primary studies reviewed in the SLR
	Primary studies (sources reviewed in the slr)

