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Key Points: 

• The first global environmental risk assessment was made for innovative ships that apply 

underwater released exhaust gas as ‘air lubrication’        

• Ecoregions with relatively high vulnerability to acidification and algal blooms are mainly 

located above 30° N latitude 

• The risk for the marine ecosystem of the underwater released exhaust CO2 from ships is 

limited to specific shipping-dense areas 
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Abstract 

Applying underwater released exhaust gas as ‘air lubrication’ along the ship’s hull to reduce the 

energy consumption is under development. However, this direct emission to the water could pose 

a risk to the local marine environment, especially in shipping-dense areas. Specifically, CO2, a 

dominant component in the exhaust gas, has the potency to enhance algal blooms and cause 

acidification. This study provides the first relative risk assessment of ships with underwater 

release exhaust gas systems on a global scale, taking into account local water conditions and 

shipping intensity. Risk was characterized for 262 marine ecoregions by plotting the expected 

CO2 emission from ships to water against the estimated vulnerability to acidification and algal 

blooms. The vulnerability of each ecoregion was assessed based on background dissolved 

inorganic carbon (DIC) level, chlorophyll-a concentrations and total alkalinity. The results 

reveal that areas with relatively high vulnerability are mainly located above 30° N latitude. The 

Yellow Sea, Southern China Sea, and North Sea come out as relatively high risk areas. Looking 

in more detail to European high-risk ecoregions, the highest risk levels are found in areas with 

dense shipping lanes and maritime chokepoints, e.g. the Strait of Dover and the Strait of 

Gibraltar. This was the first attempt to make such a risk assessment and the outcome is only 

indicative. In a next phase additional parameters, such as water currents and biological 

composition of the ecosystem should be included. 

  

1 Introduction 

Underwater released exhaust gas systems as ‘air-lubrication’ of ship hulls are under 

development and expected to reduce the drag force, in turn reducing the fuel consumption and 

total emission of global shipping activities (Sapra et al., 2017; Van Biert et al., 2016). 

Additionally, it improves the air quality on working decks (Sapra et al., 2017). These advantages 

make the system attractive, especially under the more strict maritime emission regulation (Sapra 

et al., 2017; Van Biert et al., 2016), e.g. the nitrogen oxides (NOx) emissions control (IMO, 

2013). However, such an application implies concentrated input of exhaust gas in the local 

marine ecosystem and may pose a serious risk, especially in the case of intensively used shipping 

lanes. Specifically, CO2, one of the main components in the exhaust gas (Anderson et al., 2015), 

could enhance algal bloom and cause acidification, depending on the local environmental 

conditions. 

For photosynthetic organisms, dissolved CO2 is one of the essential nutrients (together 

with N, P, Fe, etc.). CO2 is continuously exchanged between the atmosphere and seawater 

phases, which provides carbon nutrients to these aquatic primary producers, like microalgae 

(Markou et al., 2014; Zeebe &Wolf-Gladrow, 2001). In the case of high algal densities, the mass 

transfer of CO2 from the atmosphere to the liquid state can be slower than the algal uptake rate 

(Markou et al., 2014; Zeebe &Wolf-Gladrow, 2001). As long as other nutrients are still 

available, CO2 availability will then become the factor determining further algal growth (Markou 

et al., 2014). In such conditions, underwater released exhaust CO2 may relieve this carbon 

resource limitation and stimulate further development of algae densities potentially resulting in 

an algal bloom or extending the blooming period.  

After release, CO2 dissolves in water and increases the Dissolved Inorganic Carbon 

(DIC) level (Zeebe &Wolf-Gladrow, 2001). With increasing DIC levels, the seawater becomes 

acidified, as indicated by a reduction of the pH value. This acidification may e.g. inhibit the 

calcification process of organisms such as corals and mussels (Kurihara, 2008; Sunday et al., 

2017). The inhibition of the calcification process hampers the organism’s ability to form calcium 
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carbonate (CaCO3) structures like skeletons and shells (Fassbender et al., 2016) with negative 

impact on growth and survival (Kurihara, 2008; Wei et al., 2019). The capacity of seawater to 

resist a decrease in pH with increasing CO2 concentrations mainly depends on the amount of 

anions present (e.g. CO3
2- and HCO3

-) (Zeebe &Wolf-Gladrow, 2001) and is indicated by Total 

Alkalinity (TAlk). Waters with a higher TAlk have stronger acid-neutralizing capacity and can 

absorb larger amounts of CO2 before the water pH drops (Omernik &Powers, 1983). The 

sensitivity of marine regions for enhanced CO2 exposure therefore will depend on the local TAlk 

level and nutrient levels, information that can be derived from data described for global marine 

ecoregions (Spalding, Fox et al. 2007) and can be used in ArcGIS to combine different 

conditions.  

Both, stimulation of the algae density growth and inhibition of the growth of calcifying 

organisms, can be devastating for local marine ecosystems. Of course, the intensity of the CO2 

exposure as well as the sensitivity of the receiving marine ecosystem will determine the eventual 

risk for adverse effects to develop. The present study aims to assess for ecoregions the relative 

risk that projected underwater released exhaust CO2 will cause algal blooms or acidification.  

2 Materials and Methods 

To be able to assess the risk of underwater exhausted CO2 for the local marine 

environment, both the exposure, as well as the vulnerability to CO2 needed to be quantified and 

compared for each ecoregion (Figure 1) (section 2.4). The exposure level was assessed from the 

reported CO2 emission from maritime traffic in 2018 in combination with the assumed saturation 

level of DIC in seawater (section 2.2). Quantification of the vulnerability to CO2 was based on 

two indicators: 1) TAlk level as a measure of resistance to acidification, and 2) chlorophyll-a 

concentration as a measure of eutrophication (section 2.3).  

2.1 Data collection, representation and projection 

All pre-processing and spatial analyses were performed in ESRI ArcGIS 10.6.1 unless 

described otherwise. All datasets were converted to the Compact Miller projection prior to 

further analyses.  

2.1.1 Global ocean map data collection 

The coastlines of the global map were created using the land-sea mask dataset and 

methods as described by Halpern et al. (2008). The land-based data that in reference to this data 

mask occurred within the ocean, or ocean based data that occurred on land were clipped and 

removed to ensure consistency across all data used in our analysis (Halpern et al., 2008). All data 

were represented at 1 km2 resolution. For the collected data that was only available at a coarser 

native resolution, it was assumed that the coarse-scale value was evenly distributed across all 1 

km2 cells within that region (Halpern et al., 2015). This essentially maintains the coarse-scale 

pattern while the finer resolution information is preserved when it is available. For the gaps in 

datasets, the null values were filled with a 5 x 5 focal mean filter (Sharma et al., 2010; Tomlin, 

2016). It was specified that only cells containing values were used to find the focal mean of the 

target cell. This means that a null value will be ignored when it exists within the neighbourhood 

of the focal mean filter. Thus, this process removed gaps while minimizing unjustified 

smoothing effects of missing data on the dataset (Sharma et al., 2010; Tomlin, 2016). The filter 

was run multiple times from the edge of each gap until all encapsulated null values were filled 

(i.e. null values surrounded by values). Very large data gaps occurred in areas with sea ice. These 

data gaps were not filled due to their large size. Instead, ice masks were created to indicate where 
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scores are less certain. Ice masks were created to indicate where scores are less certain. To 

indicate which areas are counted as sea ice, the daily fractional ice cover data from 2012 were 

obtained via the Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Version 5.2 

(Casey et al., 2011). The daily fractional ice cover data were then averaged by meteorological 

season and converted to binary terms: either the cell has ice, or the cell has no ice. Grid cells that 

contained an average sea ice fraction greater than 0.15 were considered to have ice, and were 

thus included in the ice masks.  

 

 
Figure 1 Workflow diagram of the relative risk assessment of underwater released exhaust CO2 

from maritime shipping for global and local ecoregions. Dissolved inorganic carbon (DIC) 

exposure assessment of CO2 emitted from maritime shipping and vulnerability assessment of 

algal bloom (indicated as Chlo. + original DIC level) and acidification (indicated as TAlk level) 

were considered in risk characterization for global and local ecoregions to CO2 emitted by 

underwater exhausts. SSS: seawater surface salinity; SST: seawater surface temperature; Chlo.: 

chlorophyll-a; TAlk: Total Alkalinity. 

 

2.1.2 Ecoregions 

The global ocean was divided into 262 ecoregions by taking two steps: 1) the coastal and 

shelf waters shallower than 200m were divided into 232 ecoregions based on biogeographic 

patterns (Mark D Spalding et al., 2007a), and 2) all remaining open oceans were divided into 30 

ecoregions following similar classifications as the coastal and shelf water areas (Mark D 

Spalding et al., 2012). Each ecoregion consists of relatively homogeneous species composition 

that is distinct from adjacent areas (Mark D Spalding et al., 2007a). The datasets were collected 

via the Nature Conservancy’s Geospatial Conservation Atlas (Atlas, 2019) and UNEP’s Ocean 

data viewer (Conservancy, 2012). 

As Europe was later indicated to be continent that experiences the highest DIC exposure, 

the 15 marine ecoregions around Europe (Figure S1a in the supporting information) were 

subdivided into ecologically relevant classes based on ocean floor depth (Waller, 1996): the 

epipelagic zone (0 – 200 m), the mesopelagic zone (200 - 1000 m), the bathypelagic zone (1000 

– 2250 m), the abyssopelagic zone (2250 - 4500 m), and the hadopelagic zone (4500 – 11500 m). 
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To show variation in risk level between coastlines and open seas, the epipelagic zone was 

arbitrarily sub-divided into five depth classes, resulting in a total of 9 depth classes (Figure S1b 

in the supporting information). Dividing the 15 European ecoregions by depth class resulted in a 

total of 114 European sub-ecoregions that were labelled according to the ecoregion code (same 

as the global ocean code) and depth class. 

2.1.3 Chlorophyll-a concentration and DIC 

Nutrient concentrations in seawater are regularly measured on a local scale, but a dataset 

with global coverage that met our needs was not available. As an alternative, the chlorophyll-a 

concentration was used as an indicator for algal biomass, since the chance that additional DIC 

will promote further algal development is greater at higher algal density. The chlorophyll-a 

dataset was collected from NASA’s Aqua-MODIS satellite (NASA Goddard Space Flight 

Center, 2018) for each calendar month of 2018 and aggregated to seasonal means (December - 

February, March - May, June - August, and September - November). The yearly average DIC 

concentrations of the ocean were collected from the GLODAPv2 dataset (Lauvset et al., 2016; 

Olsen et al., 2016). 

2.1.4 TAlk 

As the vulnerability indicator for acidification, TAlk was calculated based on sea surface 

temperature (SST) and sea surface salinity (SSS) by following the equation described by Lee et 

al. (2006). The SSS and SST data for each calendar month of 2018 were collected from NASA’s 

JPL SMAP satellite (Nasa/Jpl, 2019) and NOAA’s Coral Reef Watch satellites (Watch, 2018, 

updated daily) respectively. 

2.2 DIC exposure assessment 

2.1.1 Maritime CO2 emission 

To assess the DIC exposure level caused by underwater released exhaust CO2, the 

amount of maritime emitted CO2 has to be estimated. For this, a 2013 shipping intensity dataset 

was collected from the Knowledge Network for Biocomplexity (Halpern et al., 2015). This 

dataset contains the registered number of ships in each 1 km2 grid cell (X) in a log[𝑋 + 1] 
transformed and rescaled (between 0 and 1, with the highest per-pixel transformed value = 1) 

form. The emission factors for each ship class were collected from the literature (ECTA, 2011; 

McKinnon &Piecyk, 2010; Otten et al., 2017). 

2.1.2 Shipping intensity and the amount of emitted CO2 

To calculate the number of ships in each grid cell (X), the rescaling of the collected 

shipping intensity dataset (occurring in a rescaled log[𝑋 + 1] form) was reversed first using the 

following formula: 

𝑌 = 𝑌′(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) + 𝑋𝑚𝑖𝑛    

Here 𝑌′ is the log [X+1] transformed data, Y is the collected data and Xmin and Xmax are 

the minimum and the maximum number of registered ships in each grid cell. The collected 

dataset contains zero, which is the result of “log 1”. Thus, Xmin is zero. The unknown Xmax was 

estimated by log[𝑋 + 1] transforming the raw ship traffic dataset from Halpern et al. (2015)’s 

study. This raw dataset contains the number of ships in each grid cell, but also includes invalid 
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and cross land routes. Finally, the number of registered ships in a grid cell (X) of 2013 was 

calculated by the exponential of the log transformed data (2). 

 

X = 𝐸𝑥𝑝(𝑌) − 1       (2) 

Next, the calculated data were multiplied with the 8.16% growth rate (from 2013 

to 2018) in the global merchant fleet to project the ship traffic intensity for 2018 

(UNCTAD, 2018a). The presented study focused on maritime shipping in 2018, because 

that was the most recent and reliable maritime shipping information available from the 

United Nations annual review of maritime transportation, when this study was carried 

out. This adaption also created a worst-case-scenario as it assumes that all vessels are 

merchant ships. 

Finally, the total amount of emitted CO2 per ship per grid cell (ET) is quantified 

by multiplying the proportional share (Pi) of each i… m vessel class, the amount of 

emitted CO2 per km (Ki) of each i… m vessel class, and the average travel distance of a 

ship to pass a 1 km2 grid cell: 0.7 km (Text S1 in the supporting information) (3). To 

consider the worst-case-scenario, Ki was determined based on the highest emission 

factors in Table 1. An emission factor of the ‘other ships’ class was not available because 

of the broad definition of this class (including all liquefied petroleum gas tankers, ferries, 

cruises, etc.) by UNCTAD (2018b). Therefore, the emission factor of ‘other ships’ was 

assumed to be in the same range as ‘general cargo’, since both classes share a similar 

average deadweight tonnage (dwt) and short-sea shipping function (Table 1).  

 

𝐸𝑇 = ∑ 𝑃𝑖 × 𝐾𝑖 × 0.7𝑚
𝑖=1     (3) 

Table 1. Information of Glbal Maritime Merchant in 2018.  

Merchant 

ship class 

 Nr. ship  Mean dwt/ship 

(tonnes) 

Emission factors (lower 

and upper levels)  

(g CO2 /ton/kma)  

kg CO2 

emitted/km/shipd 

Oil tankers 10420  53839 10.3 - 15 807.6 

Bulk carriers 11125 73618 7 - 11.9 876.1 

Container 

ships 

5164 48993  8.4 – 12b 587.9 

General 

cargo 

19613 3773 13.9 -  21 79.2 

Other vessels 47847 4535 13.9 -  21c 95.2 

Note. The number of global maritime merchant ships in each purpose class (nr. ship), the mean 

deadweight tonnage (dwt) of each ship in 2018 (UNCTAD, 2018b), the corresponding CO2 

emission factors (ECTA, 2011; McKinnon &Piecyk, 2010; Otten et al., 2017), as well as the 

mean kg CO2 emitted per traveled km per ship.  aUnit defining transport performance. An output 

of one is reached when one ton is transported one km. bEmission factors of container ships based 

on twenty-foot equivalent units (TEU’s) instead of dwt. cEmission factors are assumed to be the 

same as for ‘general cargo’ due to their similar mean dwt and short-sea shipping function. 
dCalculated as: (mean dwt per ship x emission factor) / 1000.  

2.2.3 Emitted CO2 induced DIC exposure  

For the risk assessment, we assumed that all CO2 produced by the ships is emitted 

underwater. The water DIC level is determined by the amount of dissolved CO2 instead of the 
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total emitted CO2 (Figure 1). Potentially, all CO2 can dissolve in water and change the carbon 

composition in water. However, when the saturation of DIC is reached (depending on e.g. 

temperature, salinity and pressure), additional CO2 will not dissolve in the water anymore (Zeebe 

&Wolf-Gladrow, 2001) and will escape to the atmosphere. In addition, the dissolved CO2 

continually exchanges with the CO2 gas in the atmosphere, which eventually leads to an 

equilibrium. Due to the saturation of DIC in water and the equilibrium of CO2 concentrations 

between water and atmosphere, increasing the amount of injected CO2 in DIC saturated water 

does not raise the exposure of the local marine ecosystem further. Therefore, the saturation level 

of DIC and the equilibrium of CO2 concentrations in water and atmosphere phases determine the 

maximum exposure level caused by underwater released exhaust CO2. 

2.2.4 Determination of the DIC saturation level 

We determined the maximum saturation level of DIC in seawater and the time required to 

reach this in a laboratory experiment. For this, a flow of air (flow rate 148 ml/min) with 5% CO2 

was continuously injected into 150ml of artificial seawater (sea salt Marine Zoomix®; 

temperature 20 ˚C; salinity 31.7‰; alkalinity 2.07 mmol/l and background pH 8.1). The uptake 

of CO2 in the water was reflected by the lowering of the pH. The injection was terminated when 

the water pH level did not further decrease indicating that the maximum saturation was reached. 

After terminating the CO2 supply, the water pH level started increasing as the surplus CO2 from 

the water escaped to the atmosphere. The water pH was continually measured until the pH was 

stable, and the equilibrium of CO2 in the water and atmosphere was re-established. The DIC 

concentrations in the water were calculated based on temperature, salinity and pH level of the 

water using the Seacarb package in R (Team, 2013). The DIC data was plotted against time.   

Based on the outcome of the experiment, the increased average DIC level was calculated 

for the number of ships passing a 1x1 km grid during 24 hours. In this model, we assumed 1) all 

CO2 produced by a ship is emitted underwater and immediately dissolves; 2) the background and 

saturated DIC levels of the local water are the same as in the laboratory test, 2.07 mmol/l and 

3.97 mmol/l respectively; 3) the temperature condition is the same as in the laboratory test, 20 

℃, and 4) after a ship passed, the DIC concentration returns to the atmospheric equilibrium in 

the same time as in the laboratory test. The relationship between the average increased DIC and 

the number of ships in 24 hours was applied to the ship traffic dataset for creating a global DIC 

exposure map.  

In the actual shipping condition, the CO2 will be injected along the ship’s hull instead of 

in the entire grid cell (1 km x 1 km). Therefore, the actual size of the exposure area was 

estimated by assuming 1) the injected CO2 impacts a 5m depth of water column, and 2) the DIC 

saturation level (3.97 mmol/l) has to be reached before additional CO2 could impacts a larger 

waterbody. Finally, the impacted surface area (DIC saturated area) of a grid cell was calculated 

by dividing the DIC saturated water volume by the impacted depth (5 m).   

2.3 Vulnerability assessments of ecoregions 

2.3.1 Vulnerability for CO2 induced algal blooms 

From the collected chlorophyll-a concentration dataset, 5000 random data points were 

plotted against their background DIC levels (Figure 2). The plot shows no relation between DIC 

and chlorophyll-a at DIC levels above 1840 µmol/kg. At lower DIC levels, the lower limits of 

the plot show a negative correlation between DIC and chlorophyll-a. This suggests depletion of 
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DIC by primary production, thus a situation where additional CO2 can facilitate further algal 

development. As 1 mg/m3 chlorophyll-a is considered as the low limit of a “productive area” for 

microalgae (Demarcq et al., 2007; Nixon &Thomas, 2001), situations with < 1 mg chlorophyll-a 

/m3, that only occur at DIC > 1840 µmol/kg are unlikely to be limited by DIC. This condition 

was therefore assigned as having low vulnerability for CO2-induced algal blooms (score 0 - 0.2) 

(Table 2). In order to derive a relative vulnerability score for situations with Chlorophyll-a > 1 

mg/m3, the background DIC levels of the 5000 random data points (Figure 2) were divided into 

4 ranges with DIC = 1840 µmol/kg as median value. Vulnerability scores for chlorophyll-a > 1 

mg/m3 situations were then defined as “0.2 - 0.4”, “0.4 – 0.6”. “0.6 – 0.8” and “0.8 - 1”, when 

1060 < DIC < 1460 µmol/kg, 1460 < DIC < 1840 µmol/kg, 1840 < DIC < 2100 µmol/kg and 

2100 < DIC < 2347 µmol/kg, respectively (Table 2). Here, a range of vulnerability scores was 

given instead of a categorical score, because continuous values of vulnerability generate a map 

with gradual changes, which better represents reality. Within each vulnerability range, a high 

vulnerability score was given to the place with a relatively low background DIC level as a 

relatively small addition could be enough to facilitate an algal bloom in a situation with enough 

nutrients.  

Table 2. Relative Vulnerability Classes for Elevated CO2 Concentrations Assigned to Local 

Water Conditions Indicating Sensitivity for CO2 Induced Algal Blooms or Acidification.  
 Vulnerability range and conditions 

 0 - 0.2 0.2 - 0.4 0.4 - 0.6 0.6 - 0.8 0.8 - 1 

Chlorophyll-a  

(mg /m3) 

& DIC (µmol/kg)  

<1 & 

1840 - 

2347 

>1 & 

2100 - 

2347 

> 1 &  

1840 - 

2100 

 > 1 & 

1460 - 

1840 

 > 1 & 

1060 - 1460 

TAlk (μmol/kg) 2450 - 

2400 

2400 - 

2350 

2350 - 

2300 

2300 - 

2250 

2250 - 2200 

Note. The criteria include the chlorophyll-a concentration (mg/m3) as a measure for nutrient 

availability, dissolved inorganic carbon (DIC) concentration (µmol/kg), and Total Alkalinity 

(TAlk) levels (μmol/kg). 
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Figure 2. Chlorophyll-a concentration (mg/m3) and the yearly average DIC level (µmol/kg) of 

5,000 random sample points of the NASA’s Aqua-MODIS satellite dataset in 2018 (NASA 

Goddard Space Flight Center, 2018). Sample points with 1 mg chlorophyll-a/m3 and DIC with 

1840 µmol/kg are indicated as red and black dash line, respectively. 1 mg/m3 chlorophyll-a was 

reported as the threshold value to define the low limits of a “productive area” for microalgae 

(Demarcq et al., 2007; Nixon &Thomas, 2001). The linear correlation between chlorophyll-a 

concentration and DIC level is not observed when DIC > 1840 µmol/kg in this figure. 

2.3.2 Vulnerability to acidification 

The derived monthly TAlk values were aggregated to seasonal mean (same season as 

chlorophyll-a concentration) levels. A TAlk level around the global mean, 2300 - 2350 μmol/kg, 

was classified as ‘medium’ vulnerability to acidification with a score range “0.4 – 0.6”. TAlk 

values below this range have a lower acid-neutralizing capacity and therefore the vulnerability 

score increased with increments of 50 μmol/kg to a maximum score of 1.0 at TAlk 2200 

μmol/kg. The same approach was followed in the opposite direction, where the vulnerability 

score was reduced with increments of 50 μmol/kg to a minimum vulnerability score of 0 at 2450 

μmol/kg (Table 2).   

2.3.3 Vulnerability assessment 

The vulnerability to algal bloom (chlorophyll-a and DIC) and acidification (TAlk level) 

were given equal weights (0.5). The final per-pixel (1x1 km) vulnerability score (Overall Vuln) 

could be computed by summation of the weight (0.5) of each indicator (TAlk and Chlorophyll 

combined with background DIC level (Chlo. _DIC)) multiplied by the vulnerability score (S) of 

each indicator, as: 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑉𝑢𝑙𝑛 = 𝑆(𝑇𝐴𝑙𝑘) × 0.5 + 𝑆(𝐶ℎ𝑙𝑜. _𝐷𝐼𝐶) × 0.5 (4) 
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2.4 Relative risk assessment 

The relative risk level of each ecoregion to acidification and algal bloom was 

characterized by plotting the DIC exposure level via maritime shipping against the vulnerability 

score. The ecoregions with relatively high increased DIC concentrations and higher vulnerability 

scores are considered as higher risk than the ecoregions with lower increased DIC concentrations 

and vulnerability scores.  

The 262 global ecoregions and 144 European sub-ecoregions were mapped and assigned 

with code numbers. On this map, the layer with the average DIC exposure level via maritime 

shipping and the average seasonal vulnerability to algal bloom and acidification of each region 

were mapped. Also, the specific DIC exposure level and vulnerability scores for algal bloom and 

acidification of individual ecoregion can be found via their code numbers. 

3. Results 

3.1 Ship intensity and emitted CO2 

The worldwide total CO2 emission via marine transportation in 2018 was estimated at 

1,389 million tonnes under a worst-case-scenario (based on the upper emission factor from Table 

1) (Figure 3). The emissions per grid cell were relatively low in the open sea due to the high 

dispersion of shipping lanes. Contrastingly, high emissions per grid cell were found at dense 

shipping lanes in coastal areas. Between 1,549 and 12,734 tonnes of CO2 were emitted per grid 

cell in the top 5% busiest ship areas (Figure 3). The highest CO2 emission per grid cell was 

estimated for the Strait of Gibraltar at 12,734 tonnes, closely followed by other maritime 

chokepoints such as the Panama Canal, the Malacca Strait, the Strait of Hormuz and the Danish 

Straits (Figure 3). 

 
 

Figure 3. The estimated total amount of CO2 (tonnes) emitted from shipping in 2018. The 

estimation was based on a worst-case-scenario by using the upper emission factors from Table 

1. Colours indicate the estimated CO2 amount emitted in each 1 km2 grid cell. 
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3.2 DIC exposure assessment 

The background and saturated DIC concentrations in this study were set at 2.07 mmol/l 

and 3.97 mmol/l respectively and the temperature was set at 20℃. Thus, a maximum of 1.90 

mmol/l DIC can be added via CO2 exposure. The estimated added DIC concentration steeply 

went up with increasing number of ships per 24 hours until after the ninth ship the concentration 

reached 1.61 mmol/l, so still below the maximum level of 1.90 mmol/l) (Figure 4). From then 

on, the added DIC concentration levelled off at around 1.61 -1.90 mmol/l regardless of the 

shipping frequency. Therefore, we assumed that after 9 ships, more volume of water started to 

experience an increase in the DIC level. With less than 9 ships passing by, the volume of impact 

water remained ≤ 17 m2 of the grid cell (Table 3). In the highest shipping intensity grid cell (134 

ships/24 hours), 228 m2 water of the 1 km2 grid cell (0.023% of the grid cell) reached a saturated 

DIC level. 

Table 3. The Relationship Between the Number of Ships (nr. ships) and Size of DIC Saturated 

Area. 
Ships nr. ≤ 9 10 20 30 60 90 120 134 

DIC saturated 

area (m2) 

≤ 17 19 34 51 102 153 204 228 

% of 1 km2 grid 

cell 

0.002 0.002 0.003 0.005 0.010 0.015 0.020 0.023 

Note. The table shows the number of ships passing through a 1km2 grid cell during 24 hours and 

the part (total m2 and %) of the 1 km2 grid cell that will be completely DIC saturated. The total 

impacted area will be larger (not fully DIC saturated). 
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Figure 4. The correlation of increased in DIC level (mmol/l) and the number of ships (ship nr.) 

passing through a 1 km2 grid cell during 24 hours. Assumptions: 1) all CO2 produced by the 

ship(s) is emitted underwater and immediately dissolves and 2) the background and saturation 

DIC levels of the local water are 2.07 mmol/l and 3.97 mmol/l, respectively, therefore the 

maximum increase in DIC level is 1.90 mmol/l. 

Approximately 70% of the grid cells (with registered ships) in the open sea experienced a 

DIC increase between 0.15 - 0.22 mmol/l, corresponding to less than one ship per 24 hours, since 

1 ship/24 hour already can increase 0.51 mmol/l DIC level (Figure 5). High average DIC 

exposure (0.52 – 1.9 mmol/l, were located along with European, Chinese and North American 
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coastlines. Eventually, ecoregions along European coastlines were selected to run a zoomed-in 

local relative risk assessment (section 3.4).  

 
Figure 5. Estimated dissolved inorganic carbon (DIC) exposure (mmol/l) per 24 hours from 

global shipping, assuming 100% underwater exhaust emission. The scale maximum is restricted 

by the maximum dissolved CO2 saturation level. Colours indicate DIC exposure level in each 1 

km2 grid cell. 

3.3 Vulnerability assessment 

The spatial distribution of global ocean vulnerability to algal blooms in 2018 was studied 

based on chlorophyll-a concentration with the background DIC level, and its vulnerability to 

acidification was evaluated based on the TAlk level. For the “chlorophyll-a and background 

DIC”, almost all vulnerability score ≥ 0.5 areas were located around the coastal lines of the 

Northern Hemisphere (Figure S2 and S3 in the supporting information). Contrastingly, almost 

the entire Southern Hemisphere showed a vulnerability score ≤ 0.2, except the coastline along 

with Argentine with scores between 0.5 - 0.6 (Figure S2 and S3 in the supporting information). 

For the TAlk level, areas with > 2500 µmol/kg TAlk were found in the Atlantic Ocean (Figure 

S4 in the supporting information). While the Pacific Ocean, especially along its coastlines, 

showed a lower TAlk level (higher vulnerability) compared with other oceans. More seasonal 

variation seems to occur in the Northern Hemisphere than it does in the South. 

After combining all the vulnerability scores, the high vulnerability areas to both 

acidification and algal blooms were mainly found in coastal areas and above 30° N latitude till 

the ice edge (Figure 6). The sea ice areas (polar zone) are not being considered in discussion and 

conclusion due to the missing data in the input datasets (Figure 6). A seasonal impact on the 

results was observed within the same region, with higher vulnerability scores in the warm season 

than for the cold season (Figure 6 and Figure S5 in the supporting information).  
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Figure 6. Spatial distribution of vulnerability to algal blooms and acidification in surface layers 

of the global oceans in June – August (a), and December - February (b) of 2018. Colours show 

gridded values based on a merge of three vulnerability indicators, chlorophyll-a & DIC and 

TAlk as presented in Table 2.  

3.4 Relative risk assessment 

Over 90% of the global ecoregions showed a DIC exposure level < 0.48 mmol/l and a 

vulnerability score to acidification and algal blooms < 0.5 (Figure 7). The Yellow Sea and 

Southern China Sea showed relatively higher risk than other areas in all seasons (Figure 7, 

Figure S6, S7 and Table S1 in the supporting information). Next in line is the North Sea, which 

is exposed to over 0.95 mmol/l DIC by maritime emissions, and a relatively high vulnerable 

score close to 0.5 especially during June – August. Seasonal variation in shipping intensity was 

not included in this study. Therefore, the DIC exposure level of each region was consistent over 

the year. The seasonal variation of global risk was therefore only influenced by the seasonal 

vulnerability score (Figure 6 and Figure 7). 
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Figure 7. Plot of the vulnerability scores of 262 global maritime ecoregions to algal blooms and 

acidification and the estimated DIC exposure (mmol/l) by shipping in June - August (a) and 

December – February (b). Assumption: all ships would be equipped with underwater exhaust 

systems. The colour intensity indicates the vulnerability score (blue) and increase in DIC level 

(red) combined into a relative risk level from low (light grey) to high (blue/red).  

When looking at a more detailed level to Europe, it becomes clear that the relatively high 

risk that was predicted for this ecoregion only concerns areas with dense shipping lanes and 

maritime chokepoints, such as the Strait of Dover and the Strait of Gibraltar (Figure 8). The 

biggest seasonal increase in the relative risk could be observed in coastal areas of the Celtic Seas, 

the Saharan Upwelling, and the South European Atlantic Shelf in spring and summer (Figure 8, 

Figure S8, S9 and Table S2 in the supporting information).  
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Figure 8. Spatial distribution of the relative risk for algal blooms and acidification in the 15 

European marine ecoregions (global ecological codes: 17, 24, 33, 151, 165, 215, 216, 225, 226, 

227, 228, 229, 230, 231, and 260 (Mark D. Spalding et al., 2007b) in June – August (a), and 

December – February (b). Colours show gridded values from plotting vulnerability scores 

against DIC exposure caused by maritime shipping emitting CO2 underwater. The vulnerability 

score and DIC exposure level of each ecoregion are presented in the separate table (Table S2 in 

supporting information). The colours in this map are corresponding with the colours in Figure 7. 

Thus, the colour intensity indicates the vulnerability score (blue) and increase in DIC level (red) 

combined into a relative risk level from low (light grey) to high (blue/red).  

4 Discussion  

In the presented study an assessment was made of the relative risk that a local marine 

environment is negatively impacted by the application of underwater released exhaust gas as ‘air 

lubrication’ along the ship’s hull. High nutrient availability potentially inducing algal blooms or 

low buffering capacity potentially resulting in acidification were used as indicators of 

environmental vulnerability. Following a worst-case exposure scenario, it is assumed that all 

ships will be equipped with underwater exhaust systems and that all emitted CO2 is absorbed by 

the water. Based on this a first-tier risk environmental assessment was performed for 262 

ecoregions. 

4.1 Shipping emitted CO2 and DIC exposure 

The worldwide CO2 emission from marine shipping was extrapolated from data of 2013 

to be 1,389 million tonnes in 2018. This number can be considered as the worst case, as current 

developments suggest a lower growth of CO2 emission. IMO predicted the CO2 emission to grow 

50% - 250% (to 1,194 – 2,786 million tonnes) by 2050, but estimated that emission < 900 

million tonnes CO2 in 2018 (IMO, 2015). In our study, we also used the upper emission factors 

from Table 1 which also contribute to a worst-case-scenario of the emitted CO2 amount. If the 

amount of shipping emitted CO2 would continue to increase in the future as predicted, the DIC 

exposure (concentration and surface size) via underwater exhaust gas will increase as well. For 

the amount of emitted CO2 in an individual grid cell, our calculation used the average travel 

distance in that cell (0.7 km). This was not according to a worst-case-scenario, since the longest 

travel distance to pass a 1 x 1 km grid cell is over its full diagonal, so 1.41 km. Using the average 
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travel distance in the calculation leads to the amount of CO2 emission per grid cell closer to the 

real conditions, especially from the ecoregion perspective, which consists of many grid cells.  

In this study, we excluded the effect of water currents, and thus the transport and dilution 

of the dissolved CO2 that result from that. It can therefore be assumed that our calculations 

overestimate the volumes of water where the maximum area DIC saturation level will be reached 

while we underestimate the volume of water that is exposed to lower (diluted) CO2 

concentrations. We also assumed that all emitted CO2 will be completely dissolved in the water, 

whereas in reality it may be expected that some will escape to the atmosphere. The maximum 

DIC exposure levels calculated here are worst-case estimations. These and several other aspects 

need to be taken into account in further refinement of the exposure assessment for areas where 

the DIC levels are indicated to become a potential problem. Especially the size of the impacted 

area with water currents, the ship’s speed, the water mixing depth (here set at 5 m depth) and the 

extent to which the underwater released exhaust CO2 is likely to fully dissolve in the water or 

will partially immediately escape to the atmosphere with gas bubbles. The dissolving of CO2 gas 

in water phases involves a series of reactions (Zeebe &Wolf-Gladrow, 2001), which takes time 

and has a saturation level assuming a static situation.  

For refining the exposure assessment, also the assumed DIC saturation level should be 

further fine-tuned. The current exposure assessment is based on a single water condition (20 ˚C, 

31.7‰ salinity and 2.07 mmol/l alkalinity) without primary production. The background and 

saturation level of DIC, however, are influenced by the water conditions, such as temperature, 

salinity, and algal productivity (Markou et al., 2014; Zeebe &Wolf-Gladrow, 2001). If a specific 

water condition is known, a prediction of the DIC exposure level can be made based on the 

presented approach. For example, between July - August, Chukchi Sea shelves experience 

relatively high water temperature (-1.5 to + 7 ℃) and phytoplankton production. Thus, it is 

expected that the background DIC level in this area is lower than in the cold season and also than 

the background DIC level assumed in this study. Indeed, the reported background DIC level in 

part of this area is even below 0.6 mmol/l DIC in July – August (Bates et al., 2005).  
 

4.2 Vulnerability assessment 

Areas vulnerable to acidification and algal blooms are mostly the subtropical ecotypes, 

especially near coastal regions and in warm seasons (e.g. East China seas in June - August and 

south coastline of Argentina in December – February). This distribution can mostly be attributed 

to the high vulnerability for algal blooms around nutrient rich nearshore areas (Figure S2 in the 

supporting information). Algal blooms are shown to exacerbate in eutrophic areas during 

seasonal warming (Lee et al., 2006; Moore &Abbott, 2000). Anthropogenic nutrients input along 

the coastline and at large river mouths, e.g. from aquaculture, runoff, sewage and other point-

source pollution, is the main driver to create those eutrophic conditions (Halpern et al., 2015).  

Other areas with high vulnerability scores (> 0.7) are mainly located above 30°N latitude. 

L Q Jiang et al. (2015) reported similar results when they identified the vulnerability of the 

global oceans to acidification via aragonite saturation state, which decreased toward higher 

latitude after 40°. They attribute this latitudinal gradient to the water temperature influenced 

change in TAlk/DIC ratio. In our study, the overall high vulnerability scores above 40° latitudes 

are mainly caused by the low TAlk level in those regions, thus high vulnerability to acidification 

as well. TAlk is mainly reflected by SSS (sea surface salinity) changes instead of SST (sea 

surface temperature) (Lee et al., 2006). Low TAlk usually results from low large influxes of 
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freshwater through ice melting (sea ice edge) and through river outflows (e.g. the Amazon, the 

Congo River and the Bay of Bengal), or where precipitation exceeds evaporation (Buis et al., 

2011). Therefore, TAlk levels generally are lower at higher altitudes and usually show high 

seasonal variation. Another seasonal variable in TAlk was found in the Northern Hemisphere 

more than in the Southern Oceans (Fine et al., 2015), namely due to high salinity variability and 

active water currents that resulted in upwelling of water enriched in alkalinity during winter and 

autumn (Z P Jiang et al., 2014). Such a difference in seasonal impact between north and south 

was not found in the overall vulnerability distribution map that combines the TAlk with 

“chlorophyll -a and background DIC” indicators.  

It is important to be aware that the vulnerability of areas may change with time due to 

changes in anthropogenic activities and also due to climate change, especially towards the 

current ice-covered areas. Halpern et al. (2015) reported that a significant amount of ice was lost 

over the 5 years period of their study of the human impact on the world’s oceans, demonstrating 

that the water conditions near the polar zone are rapidly changing with time. Likewise, the 

estimation of vulnerable areas in the present study will be influenced by such large scale 

changes. 

4.3 Potential impact assessment of underwater released exhaust CO2 

Ecoregions with a high estimated DIC exposure and vulnerability to algal blooms and 

acidification would be at risk according to our tier 1 relative risk assessment when all ships 

would be equipped with underwater exhaust systems. Globally, the Yellow Sea and the Southern 

China Sea were identified as the ecoregions with the relatively highest risk (relatively high 

exposure and vulnerability) in those 262 ecoregions, closely followed by the North Sea. There 

clearly would be hotspots of exposure in the busiest shipping traffic grid cell (134 ships/24 

hours) in the Yellow Sea, Southern China Sea and the North Sea.). Based on this first tier 

potential impact assessment it cannot yet be concluded whether there will be a relatively small 

area with very high exposure or a larger area with a lower exposure but a greater total DIC 

increase. But in general terms, it is clear that in these ecoregions the relative risk via high 

exposure concentration and vulnerability score is high. 

The European marine ecoregion risk assessment revealed high local exposure conditions. 

The result supports the conclusion of the global relative risk assessment that especially dense 

shipping lanes and maritime chokepoints determine the potential impact of the entire ecoregion. 

In the more detailed relative risk assessment, seasonal variation in risk was more apparent than in 

the global assessment. The seasonal variation in the European ecoregions can be attributed to the 

increased algal density during the warming period (March-August) (Lee et al., 2006; Moore 

&Abbott, 2000), as well as elevated TAlk concentrations in the North Sea and the Celtic Seas 

from February through May. The result suggests that risk assessment on smaller ecoregions can 

reveal specific local conditions that would be unnoticed at the global ecoregions level.  

Further fine-tuning still can be achieved for the vulnerability assessment and potential 

impact assessment. For example, both global and local risk assessments in this study assume a 

linear response of the ecosystem to increased exposure level and vulnerability scores. However, 

most marine ecosystems exhibit synergistic and antagonistic responses to stressors instead of 

additive (Crain et al., 2008), which creates a nonlinear relationship of risk to exposure and 

vulnerability level. Also, the biological composition of each ecoregion would be relevant to 

consider, something we did not include in this study. Some nearshore locations dominated by 

coral reefs, such as the Australian Great Barrier reef, scored low on vulnerability or risk in this 
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study but are quite vulnerable for elevated CO2 concentrations (Ainsworth et al., 2016). 

Therefore, it is recommended to perform local risk assessments for specific ecoregions, also 

including the unique biological composition and water conditions of the studied regions to 

identify specific exposure-response relationships.   

5 Conclusions 

In this study, we carried out a first-tier relative risk assessment of potential future 

underwater released exhaust CO2 from merchant ships on marine ecosystems. The relative risk of 

262 marine ecoregions for enhanced algal blooms and acidification based on specific water 

conditions was combined with the predicted additional DIC exposure level for each ecoregion 

from the extra CO2 exposure. Globally, relatively high-risk ecoregions were mainly located in 

the Northern Hemisphere, especially along coastlines, such as in the North Sea and Southern 

China sea. Those regions combine high shipping frequencies with high vulnerability to CO2 

induced algal blooms and acidification. In this study, worst-case exposure-scenarios were 

applied, that need to be refined to better assess the impacted water volume and area and the 

maximum DIC level that could be reached. Furthermore, this study paves the path for ongoing 

risk assessment of underwater released exhaust CO2 when more information becomes available. 

In addition, this approach could be used for sensitivity assessment of ecoregions for future 

elevated CO2 levels, and can be further refined by including additional important parameters, 

such as the biological composition of the ecosystem and the magnitude and influence of water 

mixing. For sure it already indicates areas that deserve further attention. 
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