Reducing Chilling Injury in Tomato: Bridging the gap between cultivation and postharvest storage

Fahrizal Yusuf Affandi

Propositions

- Colour and firmness de-synchronisation during cold storage and during subsequent shelf-life is a symptom of chilling injury in tomato. (this thesis).
- Oxidative stress initiated by singlet oxygen (¹O₂) and the ¹O₂-quenching potential of carotenoids likely determine the chilling tolerance of carotenoid-rich fruit such as tomato.
 (this thesis).
- In any attempts to fight postharvest losses in the developing world, the loss of product quality, and not just quantitative product losses, should be taken into account.
- 4. Extreme focus on international accreditation obstructs progression in research for universities in developing countries.
- 5. Doing a PhD in the Netherlands means that you are also trained to become coffee lover.
- 6. In low income countries people need to get sweaty to earn money, in high income countries, people spend their money to get sweaty.

Propositions belonging to the thesis, entitled

Reducing Chilling Injury in Tomato: Bridging the gap between cultivation and postharvest storage

Fahrizal Yusuf Affandi

Wageningen, 8 December 2021

	Reducing Chilling Injury in Tomato:
Bridging the gap bet	ween cultivation and postharvest storage
	Fahrizal Yusuf Affandi

Thesis Committee

Promotor

Prof. Dr E.J. Woltering

Special Professor, Physiology and Quality of Fresh Products

Wageningen University & Research

Co-Promotors

Dr R.E. Schouten

Assistant Professor, Horticulture & Product Physiology Wageningen University & Research

Dr J.C. Verdonk

Assistant Professor, Horticulture & Product Physiology Wageningen University & Research

Other members

Prof. Dr V. Fogliano, Wageningen University & Research

Prof. Dr L. Zacarías, IATA, Spanish Research Council, Valencia, Spain

Dr B. Farneti, Fondazione Edmund Mach (FEM), Trento, Italy

Dr B.E. Verlinden, Flanders Center of Postharvest Technology, Leuven, Belgium

This research was conducted under the auspices of the Graduate School PE&RC (Production Ecology and Resource Conservation)

Reducing Chilling Injury in Tomato:

Bridging the gap between cultivation and postharvest storage

Fahrizal Yusuf Affandi

Thesis

Submitted in fulfillment of the requirement for the degree of doctor

at Wageningen University

by the authority of the Rector Magnificus,

Prof. dr A.P.J. Mol, in the presence of the

Thesis Committee appointed by the Academic Board

to be defended in public

on Wednesday 8 December 2021

at 11 a.m. in the Aula

Fahrizal Yusuf Affandi Reducing Chilling Injury in Tomato: Bridging the gap between cultivation and postharvest storage, 167 pages. PhD Thesis, Wageningen University, Wageningen, The Netherlands (2021) With References, With Summary in English ISBN: 978-94-6447-015-4 DOI: https://doi.org/10.18174/556492

To my late father, Bapak Endang Affandi (1955-2013), and my mother, Ibu Ngesti Wahyuningsih

Table of contents

Chapter 1
General introduction
Chapter 2
$Far-red\ light\ during\ cultivation\ induces\ postharvest\ cold\ tolerance\ in\ tomato\ fruit31$
Chapter 3
Additional blue light during cultivation induces cold tolerance in tomato fruit, but only to an
optimum
Chapter 4
Growth temperature affects postharvest quality properties and chilling tolerance of green
harvested dwarf tomatoes
Chapter 5
Exploring the role of low oxygen storage to reduce chilling injury in tomato
5.1. Low oxygen storage alleviates chilling injury in cherry tomatoes
Chapter 6.
General discussion
Summary
Acknowledgments
About the Author
PE&RC Training and Education Statement
List of Publications

General introduction

1.1. Background

Temperature is the most important factor in extending shelf life and maintaining quality in horticultural products (Paul, 1999). Low-temperature storage has been considered to be the most effective method for maintaining the quality of many fruits and vegetables due to its effect on slowing down respiration, ethylene production, ripening, senescence, volatile alteration, and decay. In cold environment the physiological process in plants could be substantially retarded or even completely inhibited (Biswas, 2012). Temperature has a profound effect on the rates of biological reaction (e.g. metabolism and respiration) because enzymes which take part in this process are extremely temperature dependent (Nunes and Emond, 2003). It has also been proved that the growth and proliferation of microorganisms which cause rotting are limited at temperature around 0°C. Moreover, at the same relative humidity, weight loss resulting from moisture loss is reduced at low temperatures. However, instead of getting benefit from low temperature storage, some fruit and vegetable experience detrimental effects known as chilling injury (CI).

CI manifests as pitting, uneven and delay of colouring, development of brown areas in the peel, grainy and brown regions in tissues in the outer pericarp, and pathogen proliferation (Maa et al., 2014). CI is a disorder caused by prolonged storage at low temperature and occurs mostly in tropical and sub-tropical fruit and vegetables (Wang, 1994). Fruit such as mango, banana, papaya, guava, pineapple and tomato are chilling sensitive (Kader, 1999). Numerous intrinsic (e.g., cultivar, preharvest conditions) and extrinsic (e.g., temperature, exposure time to chilling temperatures, air humidity) factors influence severity of CI (Luengwilai et al., 2012). CI induced disorders reduces quality and consumer acceptability especially for fruit and vegetables grown in tropical and sub-tropical regions as well as hamper the possibility for transportation to an extended export destination. CI leads to substantial economic losses in the horticultural chain, especially to fruit and vegetables from tropical and sub-tropical origin (Wang, 1994). The FAO stated fruit and vegetable losses in South- and Southeast Asia can reach up to 51% with more than 35% of those losses during the postharvest and distribution stages of the supply chain (FAO, 2011).

Tomato (*Solanum lycopersicum*) is among the most produced and consumed crops in the world (FAO, 2014). However, post-harvest losses of tomato fruit can reach about 25-42% globally which represents not only quantitative but also qualitative losses (consumer acceptability and fruit nutritional content) (Arah et al., 2015). Tomato fruit quality is dependent on cultivar growing conditions and postharvest handling. The post-harvest life of tomatoes is limited by colour and firmness, and these two attributes determine the acceptance period of fresh tomatoes (Schouten et al., 2007). In Southeast Asian countries, tomatoes are usually harvested immature, at the mature green or breaker stage which allows storage and transport over longer distance (Chomchalow et al., 2002).

In tomato, CI symptoms are expressed as uneven ripening, surface pitting, excessive softening and increased susceptibility to fungal attack. It also affects properties such as loss of colour and flavour (Palash Biswas et al., 2012; Farneti et al., 2015; Zhang et al., 2016). Tomatoes suffer from chilling injury (CI) at temperature below 12 °C (Park et al., 2018; Luengwilai et al., 2012). However, negative tomato volatile alteration already occurs at temperature below 16 °C (Farneti et al., 2015, Maul et al., 2000). Chilling stress might also deregulate the normal ethylene-induced ripening process. However, climacteric ethylene is not essential for initiating CI in tomato, demonstrating that other factors are determinants in CI (Lurie et al., 1998, Luengwilai and Beckles, 2010).

In mango, CI symptoms are dark, scald-like discoloration and pitting or sunken lesions on the peel when fruit are stored at low temperature (below 13 °C) for long periods (Wang et al., 2008). Abnormal ripening and decay are typical CI symptoms. CI sensitivity of mango is cultivar dependant. For example, the difference in disorder such as peel browning of cold stored (4 °C) fresh mango fruits originated from Thailand could be attributed to difference in phenylalanine ammonia lyase (PAL) activity (Chidtragool et al., 2011), ascorbic acid content (AsA) and the activity of antioxidant enzymes such as super oxide dismutase (SOD) and catalase (CAT) (Chongchatuporn et al., 2013; Zhang et al., 2012). In banana, low temperature storage results in pitting and discoloration of the peel and abnormal ripening of the pulp (Murata., 1969; Wang et al., 2014; Luo et al., 2015). Browning in bananas is due to enzymatic oxidation of phenolics into quinones, which then polymerise into brown products (Nguyen et al., 2004). A correlation was found between chilling-induced peel browning and PAL and polyphenol oxidase (PPO) activity. Bananas treated with a hot-water dipping (HWD, 52 °C for 3 min) showed elevated chilling resistance (Wang et al., 2012).

1.2. Low Temperature stress induces CI in tomato

Cold storage induces numerous structural changes in cell structure that lead to disruption of several metabolic processes such as respiration and photosynthesis (Holtzapffel et al., 2003; Liu et al., 2012; İşeri et al., 2013). Several theories have been proposed to explain the primary cause of CI but the exact mechanisms and effect of these disorder is not yet understood (Sevillano et al., 2009; Luengwilai et al., 2012; Albornoz et al., 2019). In search for the primary cause of CI, primary or secondary injury events were considered. A primary injury events was defined as the initial rapid response to low temperature that causes a dysfunction in plant cells or metabolic processes (Aghdam and Bodbodak, 2014). This primary injury event is thought to be readily reversible if the temperature is brought back to non-chilling conditions. Sustained low temperature then leads to a cascade of processes that are considered secondary injury events, which may be irreversible and permanent whatever the subsequent handling of the product (Sevillano et al., 2009).

Alterations in plasma membrane lipid structure are thought to be the primary event that causes CI. As low temperature storage progresses, membrane lipid bilayers undergo transition from

liquid crystalline to a gel like structure. Historically, the initial hypothesis regarding the cause of CI is that low temperature causes physical changes in membrane lipid phase, conformation and hence fluidity which are important factor for proper membrane function (Lyons, 1973. Membrane solidification decreases membrane flexibility resulting in cracking and openings forming at the liquid-crystal/gel interface. These cracks and openings result in membrane leakiness, a loss of membrane integrity, and the loss of solute or ion gradients across the membrane (Raison et al., 1971).

The hypothesis on bulk phase changes of membrane lipid as a direct low temperature effect has been questioned (Sharom et al., 1994; Marangoni et al., 1996; Hodges et al., 2000). Hodges and Forney (2001) for instance, suggested that membrane damage occurs as a direct temperature effect, and is not visible until the product is brought back to a higher temperature. Previous studies have indicated lipid changes in mitochondrial membranes isolated from chilling-injured fruits, but none of the mitochondrial membranes showed phase transitions in chilling-resistant plants (Raison et al., 1971). However, later studies reported that during cold storage. Less than 5% of the lipid content changes to a gel like structure in most plants (Raison and Orr, 1986), and bulk phase transition was unlikely to happen in the biological membrane (Feigenson, 2007). Since there is a lack of direct observation of the phase change, the lipid phase change hypothesis is not convincing (Lukatkin et al., 2012). Therefore, development of lateral phase separation of which solid and liquid regions in a lipid bilayer at coexistence temperatures between the pretransition temperature and the transition temperature has been proposed (Liang et al., 2020). Avocado fruits stored at cold temperatures showed lipid phase separation in cold acclimated fruits, compared with fruit kept at 20 °C. However, this phase separation disappeared when these cold stored fruits were transferred to room temperature (Platt-Aloia and Thomson, 1987). This strongly indicates that the alteration of membrane properties is a gradual process depending on temperature-dependent physical properties of the membrane lipids, and that chilling-induced changes in the membrane can be reversed before irreversible damages in the membrane occurs (Mangaroni et al., 1996). Sharom et al. (1994) observed phase separation of chilled tomatoes only after 20 d of cold storage when they were brought back to room temperature for 5 d. Therefore, it was suggested that membrane phase separation took place only after occurrence of secondary events (for instance, lipid peroxidation) induced by prolonged low temperature storage (Marangoni et al., 1996). Lateral phase separations may be reversible until certain time and temperature combination where lipid degradation and accumulation of lipid degradation products induce irreversible membrane damage (Figure 1) (Sharom et al., 1994; Marangoni et al., 1996).

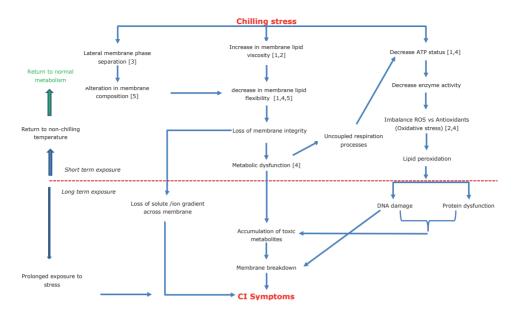


Figure 1. Schematic diagram of the initiation and development of CI in chilling sensitive produce. The number inside bracket indicates a process in which defence mechanisms might take place as indicated in figure 2 below. This figure was adapted from Lukatkin et al. (2012) and Aghdam and Bodbodak (2014)

In addition, careful observation indicated that events connected to membrane degradation are not independent events, instead they are interconnected. However, the order of each event is not clear. Nevertheless, studies pointed to one commonality: the plasma membrane is the early site of propagation of CI (Lyons, 1973; Platt-Aloia and Thomson, 1987; Parkin et al., 1989; Marangoni et al., 1996).

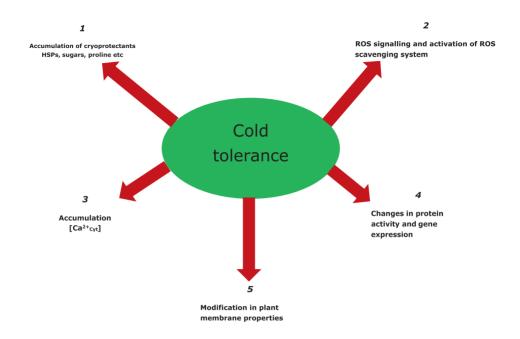


Figure 2. Different defence mechanisms induced as responses to cold stress adapted from Theocharis et al.(2012)

Low temperature stress induces alterations in the membrane composition. Around 80% of the membrane are made up of lipids (mainly phospholipids) and proteins (Larsson et al., 1990) with structural carbohydrates the remaining 20% (Murata and Nishida, 1990). Membrane composition, especially the type of lipids, greatly determine its physical characteristics and stability. Low temperature storage induces changes in lipid composition of the membrane of which MDGD (monogalactosyldiacylglycerol) and PC (phosphatidylcholine) are amongst the most sensitive membrane lipids to low temperature (Marangoni et al., 1996; Kong et al., 2018). In addition, the degree of unsaturation of the fatty acid side chains is closely correlated with the membrane fluidity and cold tolerance (van Meer et al., 2008). Many studies have revealed that cold-tolerance plants have a higher proportion of unsaturated fatty acids than cold-sensitive plants. The higher degree of unsaturated acids makes the membrane more liquid at lower temperatures. Unsaturated fatty acids have a lower melting point than saturated fatty acid owing to more double bound structure that therefore will not solidify upon cold storage (Lyons and Asmundson, 1965; Los and Murata, 1997). For example, "Qingzhong" fruits (a cold-resistant loquat cultivar) possess a higher content of unsaturated fatty acids than those in 'Fuyang' fruit, a cold-sensitive loquat cultivar (Cao et al., 2011).

Increasing the proportion of unsaturated fatty acid is thought to be an adaptive mechanism of plants to cold stress facilitated mainly by induction of fatty acid desaturase (FAD) (Vogg, 1998; Khodakovskaya et al., 2005). FAD maintains structure and function of membranes. The enzyme

creates the double bond C-Cs which allows for membrane fluidity upon low temperature stress (Los and Murata, 1998). Intermittent warming alleviated the CI of peppers largely because of increasing the unsaturated fatty acids content (Liu et al., 2015). In addition, the combination of salicylic acid and trisodium phosphate treatment enhanced fatty-acid desaturation efficiency indicated by the increased expression of key fatty acid desaturase genes, and higher content of unsaturated fatty acids (Ge et al., 2020). On the other hand, reduced levels of phosphatidic acid (PA) and diacylglycerol (DAG) may play a role in improving cold tolerance due its association with ROS production (Chen Tan et et al., 2015; al., 2018). In monogalactosyldiacylglycerol (MGDG), a major chloroplast membrane lipid, phosphatidylcholine sharply decreased during the CI development in green bel pepper, indicating they may be used as biomarker for cold tolerance (Kong et al., 2018). In addition, lipid composition of mitochondrial membranes is also affected by low temperature stress. Disruptions of the mitochondria can result in interference of metabolic processes that lead to the supply of ATP (Sevillano et al., 2009).

A decreased Adenosine Triphosphate (ATP) level in chilling injured fruit resulted in energy deficiency (Zhou et al., 2014; Pan et al., 2017). Prolonged cold stress resulted in reduction in ATP and adenosine diphosphate (ADP) levels in blueberries, and low ATP content was associated with increased pitting incidence under chilling stress (Zhou et al., 2014). Mitochondria and chloroplasts are the main sites involved in energy production to sustain the metabolism of a living cell. Alteration in lipid composition in the membranes can affect the function of mitochondria and chloroplasts during cold stress (Jing et al., 2009; Barrero-Sicilia et al., 2017). Cold stress may uncouple mitochondrial respiration as well as decreasing the activity of membrane bound ATPases leading to a significant drop in ATP production (Rurek et al., 2015). Similarly, low temperature also supressed the rate of photosynthesis resulting in a rigid thylakoid membranes and inactive enzymes (Liu et al., 2018). Disruption of these two energy-producing pathways because of the chilling injured membrane lead to metabolic disorder such as photoinhibition, enzyme inactivation, change in membrane fatty acid composition which in turn, increase the level of reactive oxygen (ROS) which is considered harmful to the cell membranes (Sevillano et al., 2009).

1.3. Oxidative stress, a key process that leads to CI

Apart from direct effect of low temperature on membrane integrity, oxidative stress likely is the secondary cause that initiates CI. Low temperature exerts abiotic stress to fruits that results in the inability to react to excess Reactive Oxygen Species (ROS) (Imahori et al., 2016). ROS such as singlet oxygen, hydrogen peroxide, superoxide anions, and hydroxyl radicals are the byproducts of normal cell metabolism (i.e respiration and photosynthesis) (Mitler, 2002). Primary enzymatic sources of ROS in plant cells include photosystem II (Tijskens et al., 1994) and electron transport chain (Purvis and Shewfelt, 1993). Under physiological steady-state conditions, the plant responds to the presence of ROS by increasing the synthesis of antioxidants and scavenging enzymes (Purvis and Shewfelt 1993; Imahori et al., 2016). However, storage under

low temperature might uncouple the respiratory chain and initiate the production of considerable amount of ROS (Valenzuela et al., 2017). Low temperature also reduces the scavenging efficacy of enzymes and impairs the antioxidant turnover (Hodges et al., 2004; Imahori et al., 2016). The imbalance between ROS production and scavenging capacity is termed oxidative stress.

Excessive amount of ROS is dangerous because it can induce cell death (Mittler, 2002). ROSattack membrane lipid and initiating membrane lipid peroxidation. Lipid peroxidation is a natural process in plants and increases during plant senescence or ripening, however, it can also increase as a consequence of oxidative stress caused by chilling injury (Lado et al., 2015). Accumulation of peroxidised lipids leads to phase changes of the lipid bilayer membrane from a liquid crystalline to a gel like structure (Apel and Hirt 2004; Hodges et al., 2004). As the membrane solidifies it becomes less flexible. Cracking and channels can form at the liquidcrystalline to gel interface leading to membrane leakiness, solute loss, and membrane integrity loss (Hodges et al., 2004). ROS may also attack proteins in the membrane, and finally DNA and RNA leading to an accumulation of toxic metabolites, metabolic disorders and finally cell death (Liang et al., 2020). Alternatively, enhanced ROS levels especially hydroxyl radicals (OH) can activate programmed cell death (PCD) pathways (Gechev et al., 2006). Exposure of tobacco BY-2 suspension cells to 5-6 °C for two to 5 weeks resulted in characteristic features of PCD, including DNA condensation and fragmentation (Koukalova et al., 1997). In cucumber chilled at 2 °C, characteristic features of PCD were induced at the same of time (9d) of CI initiation (Zhao et al., 2014).

1.4. Multiple pathways are involved in chilling tolerance

Defence mechanisms to limit oxidative stress are governed by both enzymatic and non-enzymatic antioxidant species (Gill and Tuteja, 2010). Non-enzymatic compounds include ascorbic acid (AsA), glutathione, proline, polyamines, carotenes, flavonoid, and α -tocopherol (Demidchik, 2015). Enzymatic compounds comprise SOD, CAT, peroxidases (POX), ascorbate peroxidase (APX) and glutathione reductase (GR) (Hodges et al., 2004). AsA, glutathione, and α -tocopherol work synergistically. GSH (a reduced form of glutathione) is used by GR to regenerate AsA from dehydroascorbic acid (DHA) and AsA can regenerate α -tocopherol from its oxidized form (Hariyadi and Parkin, 1991). Moreover, AsA is the most abundant antioxidant in plant cell which also serves as electron donor to many important reactions (Szarka et al., 2012). In terms of enzymatic antioxidants, the balance between SOD, CAT and APX is crucial to maintain a low level of superoxide anion and hydrogen peroxide. Together with sequestering metal ions, this balance is important to avoid generation of hydroxyl radicals (OH-) which are the most reactive and toxic ROS (Mittler, 2002). Cold stress has been shown to increase H2O2 accumulation in cells and to enhance the activity of antioxidant enzymes and transcript levels of the genes encoding them (Kuk et al., 2003).

In tomato, special attention is paid to lycopene, a carotenoid which possesses the highest singlet oxygen scavenging capacity (Di Mascio et al., 1989). The antioxidant capacity of lycopene is contributed by its eleven conjugated double bonds (Llansola-Portoles et al., 2015). One of the symptoms of CI is lycopene degradation in red ripe tomato (Farneti et al., 2012). Lycopene also protects other carotenoids from oxidative stress. Upon contact with ROS, lycopene may undergo isomerisation or degradation (Heyman et al., 2015). Lycopene degradation does not only reduce tomato nutritional value, but also decreases its visual quality since lycopene is the main tomato colour pigment and one of the most important quality factors perceived by consumers (Schouten et al., 2007). Besides colour, aroma volatile production is often affected at CI temperatures. Some volatiles are increased due to lipid peroxidation and lycopene breakdown linked with a negative consumer perception (Farneti et al., 2014). Nair et al. (2003) reported a significant reduction in total aroma volatiles, monoterpenes, sesquiterpenes, esters, aldehyde, and nor isoprenoids for tomatoes stored at chilling temperatures. This loss is associated with significant reduction in the transcripts of genes encoding for key enzymes in volatile biosynthesis. Recent work demonstrated this is caused by a cold-induced change in methylation status of the promoters of these genes. After a return to 20 °C, the expression of these genes did not return to pre-chilling transcript levels (Zhang et al., 2016).

Apart from antioxidants, also other mechanisms are thought to function as a response to chilling stress (Figure 2). One of them is a C-repeat/dehydration-responsive element (CRT/DRE)-binding factor (LeCBF1), a transcription factor regulated by exogenous ethylene. CBF is expressed following cold induction, and is associated with cold injury protection (Zhao et al., 2009; Zhao et al., 2011). The CBF family consist of CBF1, CBF2 and CBF3. Overexpression of CBF1 in Arabidopsis induces the expression of a wide range CBF/DREB-regulated COR genes and to enhance whole plant freezing tolerance without a low temperature stimulus (Jaglo-Ottosen et al. 1998; Liu et al., 1998; Maruyama et al., 2004). The three CBF genes are induced within 15 min after exposure to low temperatures, and accumulation of targeted CBF/DRE-regulated COR genes starts within 2 h (Mantyla et al., 1995). CBF transcription factors activate a cluster of genes that are collectively referred as the CBF regulon. Among these genes, the most important members are those belong to cold regulated gene (CORs) family, such as low-temperature induced (LTI), cold-inducible (KIN), and responsive to desiccation (RD) family and the dehydrin (DHN) family. Abscisic acid and dehydration also induce CBF genes expression (Shinozaki and Yamaguchi, 2000; Knight et al., 2004). Many CBF homologues have been found in higher plants both cold tolerant and cold sensitive (Ruelland et al. 2009; Zhao et al., 2009).

Heat shock proteins (HSPs) are also reported to play a role in cold tolerance (Lurie et al., 2003). Heat shock effect can be achieved through different methods for instance by holding the fruit at higher temperature (38 °C), hot water dipping, or hot water spraying over the fruit (Rodriguez et al., 2005; Luengwilai 2012; Zhang et al., 2012). Moderate heat stress (heat shock treatment) for a limited time (i.e. hot water treatments) after harvest induces production of small Heat Shock Proteins (sHSPs) that contributes to acquiring chilling tolerance (Lurie, 1998). HSPs convers

protection to stress due to their chaperone activity which consists of (i) ability to recognise and bind to unfolded proteins in order to complete their folding correctly, (ii) preventive action against protein aggregation, and (iii) the contribution to renaturation of aggregated proteins (Aghdam et al., 2013) Moreover, HSPs and HSTFs (Heat shock transcription factors, that regulate HSPs synthesis) are able to sense ROS and thus activates defence mechanism to overcome oxidative stress (Zhang et al., 2005). In addition to its chaperone activity, small HSPs (sHSPs) posses ability as membrane stabilizers and ROS scavengers which act synergistically with antioxidant system. sHSPs induce accumulation of antioxidant enzymes such as APX, CAT, and POX to prevent photoinhibition and thylakoid degradation in transgenic tobacco plants exposed to chilling (Li et al., 2012). The tomato chloroplast sHSP, HSP21, is induced by heat treatment in developing fruits during the transition of chloroplasts to chromoplasts which protects photosystem II from temperature-dependent oxidative stress (Neta-Sharir et al., 2005). A transcriptomic study targeting the RNA-seq at mature-green 'Micro-Tom' tomatoes exposed to a heat treatment of 40 °C for 7 min followed by long-term cold storage 5 °C for 14 d, revealed that chilling tolerance is mediated by up-regulation of heat shock transcription factors, heat shock proteins and genes that code for proteins involved in detoxification (Cruz-Mendívil et al., 2015).

1.5. Preharvest factors affect CI sensitivity

Cultivation practices affect the sensitivity of fruit to chilling injury (Ferguson et al., 1999). It is believed that moderate stress such as temperature, water status or light during cultivation trigger plants to react by initiating immediate protection against the stressor. After being exposed to the initial stressor the plant will now also be protected against other stresses simultaneously or subsequently (Neta-Sharir, 2005; Lurie, 2004 and Jiang, 2002).

Exposure to high temperatures on the vine, particularly close to or at harvest, may induce tolerance to low temperatures (Ferguson et al., 1999). Avocado fruit exposed to direct sunlight on the tree, frequently exceeding 35 °C, showed lower CI levels than fruit from shaded parts of the tree when stored at 0 °C. In addition, cucumber fruit grown in elevated greenhouse temperature (32 °C) improve their tolerance to chilling (less weight loss, no visible symptoms of CI and lower ion leakage) than fruit grown at control temperature (27 °C) due to maintenance of higher firmness and enhance activity of antioxidant enzymes such as SOD and CAT (Kang and Saltveit, 2001). On the other hand, grapefruit, sweet pepper and shoots of sweet basil have been shown to be less sensitive to chilling temperatures when exposed to temperatures between 12 and 18 °C (Ferguson et al., 1999). Exposing plants to sub-optimal growing temperature between 10 – 20 °C for certain duration (7 – 10 days) induces tolerance to chilling in tomato plants (Barrero-Gil et al., 2016); watermelon (Lu et al., 2020) and sweet pepper (Ferguson, 1999). Increased tolerances to low temperature (4 °C) of tomato plants and watermelon fruit were mediated by thorough transcriptomic and metabolic adjustment occur at two steps. First, early responses involving transient changes in gene expression of stress related proteins and hormone signalling such as CBFs genes, and hormones like ethylene, abscisic acid (ABA) and gibberellin

(GA). Second response after 24 h including stable gene expression encodes full metabolic adjustment such sugar accumulation, amino acid accumulation, enhancement of antioxidant mechanism (accumulation of flavonoids and anthocyanin) and re-arrangement of photosynthetic machinery.

Light is an environmental factor that also influences chilling sensitivity (Wang et al., 2019; Hoffman et all., 2015). Light treatments can be given during preharvest or postharvest stage to induce cold tolerance (Ahres et al., 2020). Stress tolerance (including cold tolerance) improvement by light might be mediated by enhancement of antioxidants level, activation of CBF defence pathways and increased sugars accumulation (Joung-Kim et al., 2002; Maibam et al., 2013; Bianchetti et al., 2018). The light spectrum, intensity and duration of light treatments are factors that influences the production of antioxidants and other secondary metabolites affecting the oxidative stress levels (D'Souza et al., 2015). In addition, light induces sugars accumulation which in many cases are considered as cryoprotectants, osmoregulators and signalling molecules that provide tolerance to cold stress. Sugars convers protection to plant cell membranes during cold-induced dehydration by replacing water molecules and form hydrogen bonds with lipid molecules (Uemura et al. 2003; Ruelland et al. 2009). Moreover, carbohydrates may also act as ROS scavengers that stabilises the membrane upon cold stress. Sugar signalling is also closely associated with hormone signalling, the control of growth and development, and stress responses in plants (Zeng et al. 2011).

Far-red (FR) lighting is known to induces many morphological responses in plants, including promotion of shoot elongation and reduction of stem diameter in dicotyledonous and ornamental species from a low R:FR (Kalaitzoglou et al., 2019). Apart from the morphological effect, far-red (FR) light positively and Red (R) light negatively regulates cold tolerance in tomato plants during cultivation (Wang et al., 2016). FR induced activation of PHYA and subsequent ABA and JA signalling leading to activation of the CBF stress signalling pathway genes leading to chilling tolerance in tomato leaves (Wang et al., 2016). In the postharvest stage, FR lighting stimulate changes in cuticle wax composition resulted in a tighter cuticle-wax adhesion and enhanced barrier properties against transpiration (Cozmuta et al., 2016). Transpiration is also thought to be associated with the decline of MGDG and PC membrane lipids in bell pepper, and can be a good indicator of CI (Cohen et al., 1994; Maalekuu et al., 2006; Kong et al., 2018).

Postharvest blue light (BL) increases antioxidant enzymes activity as well as the content of antioxidants such as AsA and tocopherol in strawberry (Xu et al., 2014). Accumulation of anthocyanins in lettuce (Li and Kubota, 2009), Chinese cabbage (Avercheva et al., 2014), and grape berries (Kondo et al., 2014) were also reported as an effect of BL illumination. Postharvest illumination of BL for seven days resulted in tomato surface yellowing and firmness retention due to an increase γ -aminobutyric Acid (GABA) and decrease glutamic acid (GLU) production which negatively correlated to ripening (Dhakal and Baek, 2014).

Apart from FR and BL lighting, UV-C irradiation was also reported to alleviate CI. UV-C treatment (7 kJ m⁻²) on peppers reduced decay incidence, weight loss and maintain higher firmness after 10 d of cold storage at 10 °C followed by 8d shelf life at 20 °C (Vincente et al., 2005). Three to ten minutes of UV-C irradiation with an intensity of 8.22 W m⁻² reduced chilling injury significantly after storage at 5 °C plus 7 days of shelf life at 20 °C as well as a reduction in fungal decay in peaches (Gonzalez-Aguilar et al., 2004). Gonzalez-Aguilar et al. (2007) attributed the efficacy of UV treatment to its ability to induced accumulation of phenols and flavonoids which was positively correlated with antioxidant capacity.

Water deficit induces production of ABA and increases antioxidant enzyme activity such as SOD, CAT, APX and GSR (Jiang and Zhang, 2002). Water deficit also induces dehydrin production, proteins that are suggested to have protective effects against water and temperature stress. Dehydrin genes are expressed under regulation of ABA-dependent and ABA-independent signalling pathways (Hanin et al., 2011). Dehydrins act as radical scavengers leading to a reduction of lipid peroxidation thereby increasing cold tolerance of tobacco (Hara et al., 2003).

1.6. The technology behind low oxygen storage alleviation of CI

Controlled atmosphere (CA) and modified atmosphere packaging (MAP) are storage and packaging technologies that limit respiration through manipulation of O₂ and CO₂ levels that differ from the normal atmosphere (20–21% O₂, about 0.03% CO₂, about 78–79% N₂, and trace quantities of other gases) to delay ripening and senescence of fruit and vegetables (Sozzi et al., 1999; Brandenburg and Devon, 2009). CA and MAP involve atmospheres with reduced oxygen or elevated carbon dioxide (Saltveit, 2003). The difference between CA and MA technology relies upon control and management to achieve desired atmospheric condition (Fagundes et al., 2015). In CA, the atmosphere condition is achieved and controlled strictly to be as close as possible to the set point. On the other hand, MAP does not apply a strict atmospheric control as CA. In MAP the required atmosphere condition is achieved by physiological processes e.g., respiration (passive MAP), or combined with flushing the packaging container with single or mixed gas during packaging (active MAP) (Martínez-Romero et al., 2003). Therefore, once the produce is put inside MAP, atmosphere condition is no longer controlled or modified by measuring gas concentration or applying active gas modification (Hoehn et al., 2009)

Low oxygen inhibits CI incidence due to restricted oxygen availability for peroxidation of cell membrane lipids, reduces oxidative stress by lowering ROS levels and by maintaining higher levels of antioxidants such as ascorbic acid, and carotenoids (Brandenburg and Devon, 2009; Fahmy and Nakano, 2014).

Lowering the availability of the oxygen causes a decline in a cell's general metabolism. Reduction of oxygen decreases respiration, ripening, softening, senescence, decomposition of sugars, acids, pectins, and proteins. Low oxygen decreases ethylene production by fruit and vegetables and decrease their sensitivity to ethylene action (Kader, 1986). This is because the

synthesis of both 1-amino-cyclopropane-1-carboxylic acid (ACC) and ACC-synthase requires oxygen (Gorny and Kader, 1996). The optimum oxygen concentration for storage varies due to difference in the rate of oxygen consumption and diffusion and temperature. On the other hand, a too low oxygen concentration leads to shifting from aerobic respiration to fermentation which resulted in ethanol and acetaldehyde production that can lead to off-flavour (Kanellis, 2009).

Recent findings reported that low oxygen stress to some extent, provides beneficial effects for fruit to cope with cold stress (Cukrov et al., 2019). Low concentration of ethanol in the fruit tissue (depends on species and varieties) is not only acceptable in a sense that it does not contribute to off flavour but also may induce positive effects (Yahia 2009; Pesis, 2005; Hodges et al., 2004;). Exogenous ethanol treatment was reported to be a major ROS scavenging natural volatile in tomato (Yanuriati et al., 2009). At the same time, in cucumber it was suggested to induce cold tolerance by membrane-lipid fluidization (Sabban-Amin et al., 2011). Amino acid metabolism is also affected by low O2 storage. The concentration of alanine, aspartate, aminobutyric acid (GABA), proline, serine, and threonine, has been found often to be modulated by oxygen level during fruit CA storage (Cukrov et al., 2019). GABA and proline are known to have protective effect on membrane integrity (Aghdam et al., 2012; Zhang et al., 2013; Dhakal and Baek, 2014). Hydrogen peroxide accumulates under low oxygen stress and is thought to act as signalling molecule that triggers several defence mechanisms against prolonged stress such as heat shock protein transcript factor (HSFs), heat shock proteins (HSPs), and enhancement of antioxidant enzymes (Pegoraro et al., 2012). MAP application has been shown to alleviate CI in fruit due to the maintenance of moderate to high relative humidity (RH) inside the package (Batu and Thompson, 1998; Zainon et al., 2004).

1.7. Aim and content of this thesis

The aim of this thesis is to elucidate the role of several preharvest and postharvest factors that contribute to chilling tolerance. The thesis studies the role of preharvest factors such as light and temperature during growth and aims to explain physiological basis behind CI and chilling tolerance. This thesis also investigates the processes that lead to CI and tackles the disruptive effects of CI on tomato quality by applying low oxygen storage. Moreover, interaction between preharvest lighting with low oxygen storage in minimising CI is also investigated.

In Chapter 2, the role of preharvest FR lighting on cold tolerance is demonstrated. The FR effect on cold tolerance was tested by employing combination of FR lighting and variation in cold durations to alter the chilling stress. It was shown that FR affects the synchronisation between firmness and colour at harvest. FR cultivated red tomato was firmer at harvest and this effect was an important feature that contributes to better cold tolerance. It was also shown that mature green harvested tomatoes, cultivated with additional far-red light, had lower CI incidence expressed as reduced weight loss, less pitting, faster red colour development during shelf life, and less softening. In Chapter 2, it is shown that cold tolerance can also be improved by a

cultivation factor (lighting) and chilling injury phenomenon can be assessed by quality properties behaviour analysis during shelf life storage employing non-destructive techniques.

The role of preharvest blue LED lighting (BL) on CI alleviation is described in **Chapter 3**. With an almost similar setup with experiment in chapter 2, it is demonstrated that BL lighting in tomato cold tolerance is mediated by lower maturity at harvest and higher red colour loss during cold storage, which points to higher lycopene utilisation to fight oxidative stress. The effect of BL on several antioxidant (AsA and CAT) and oxidative stress indicator (MDA and H₂O₂) was also studied, and it was reported not to be related with CI incidence. Taken together with lycopene result, this point to significant variation in defence pathways that are activated in response to cold storage.

In Chapter 4 the possibility of temperature stress during cultivation is explored and possible mechanism underlying each factor is hypothesised. The role of growing factor and cold storage on colour development is also described. We found that growth at lower temperature than standard growth temperature induced cold tolerance and this is connected to retention of firmness of lower weight loss. Colouring delay was also observed which implies the involvement of lycopene or lycopene precursor in cold tolerance. This effect was cultivar dependent.

In Chapter 5, the effect of low oxygen on CI was tested on commercial cultivar through different set of experiment. In the first experiment, the low oxygen range from moderate low (5%) to extremely low (0.5%) effect on CI development were tested. The effect of maturity was tested by using two maturities: mature green and red. In the later experiment, the effect of combining low oxygen storage and FR lighting was tested. Storage under reduced partial pressure of O₂ reduced CI incidence in both MG and R tomatoes. Lower oxygen uptake was shown for MG tomatoes stored at 1 kPa O₂ previously cultivated with FR. This might later facilitated reduction in singlet oxygen formation and maintain colour synthesis.

In **Chapter 6**, General Discussion, the result in chapter 2-5 are put into more physiological aspect. The limitation of the current studies, practical implication as well as further research possibilities are envisaged and discussed.

References

Aghdam, M.S., Bodbodak, S., 2014. Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables. Food and Bioprocess Technology 7, 37–53. http://dx.doi.org/10.1007/s11947-013-1207-4.

Ahres, M., Gierczik, K., Boldizsár, Á., Vítámvás, P., and Galiba, G. 2020. Temperature and Light-Quality-Dependent Regulation of Freezing Tolerance in Barley. Plants. 9, 83. https://doi.org/10.3390/plants9010083.

- Albornoz, K., Cantwell, M.I., Zhang, L. and Beckles, D.M., 2019. Integrative analysis of postharvest chilling injury in cherry tomato fruit reveals contrapuntal spatio-temporal responses to ripening and cold stress. Scientific reports. 9, 1-14. https://doi.org/10.1038/s41598-019-38877-0.
- Apel, K. and Hirt, H., 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701.
- Arah, I.K., Kumah, E.K., Anku, E.K. and Amaglo, H., 2015. An overview of post-harvest losses in tomato production in Africa: causes and possible prevention strategies. Journal of Biology, Agriculture and Healthcare. 5, 78-88.
- Avercheva, O., Berkovich, Y.A., Smolyanina, S., Bassarskaya, E., Pogosyan, S., Ptushenko, V., Erokhin, A. and Zhigalova, T., 2014. Biochemical, photosynthetic and productive parameters of Chinese cabbage grown under blue–red LED assembly designed for space agriculture. Advances in space research, 53, 1574-1581. https://doi.org/10.1016/j.asr.2014.03.003.
- Barrero-Gil, J., Huertas, R., Rambla, J.L., Granell, A. and Salinas, J., 2016. Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments. Plant, Cell and Environment. 39, 2303-2318. https://doi.org/10.1111/pce.12799.
- Barrero-Sicilia, C., Silvestre, S., Haslam, R.P. and Michaelson, L.V., 2017. Lipid remodelling: Unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. Plant Science. 263, 194-200. https://doi.org/10.1016/j.plantsci.2017.07.017.
- Batu, A. and Thompson, A. K., 1998. Effects of Modified Atmosphere Packaging on Post Harvest Qualities of Pink Tomatoes. Tr. J. of Agriculture and Forestry, 22, 365-372.
- Beaudry, R. M., 2000. Responses of Horticultural Commodities to Low Oxygen: Limits to the Expanded Use of Modified Atmosphere Packaging. HortTechnology, 10. 491-500.
- Biswas, P., East, A.R., Brecht, J.K., Hewett, E.W., Heyes, J.A., 2012. Intermittent warming during low temperature storage reduces tomato chilling injury. Postharvest Biol. Technol. 74, 71-78.
- Brandenburg, J. S. and Devon, Z., 2009. Modified and Controlled Atmosphere Packaging Technology and Applications. In: E. M. Yahia, ed. Modified and Controlled Atmosphere for the Storage, Transportation, and Packaging of Horticultural Commodities. Boca Raton: CRC Press, 73-91.
- Cao, S., Yang, Z., Cai, Y. and Zheng, Y., 2011. Fatty acid composition and antioxidant system in relation to susceptibility of loquat fruit to chilling injury. Food Chemistry. 127, 1777-1783. https://doi.org/10.1016/j.foodchem.2011.02.059.

- Chen, Q.F., Xu, L., Tan, W.J., Chen, L., Qi, H., Xie, L.J., Chen, M.X., Liu, B.Y., Yu, L.J., Yao, N. and Zhang, J.H., 2015. Disruption of the Arabidopsis defense regulator genes SAG101, EDS1, and PAD4 confers enhanced freezing tolerance, Molecular plant, 8,1536-1549. https://doi.org/10.1046/j.1365-3040.2002.00874.x.
- Chidtragool, S., Ketsa, S., Bowen, J., Ferguson, I.B. and van Doorn, W.G., 2011. Chilling injury in mango fruit peel: Cultivar differences are related to the activity of phenylalanine ammonia lyase. Postharvest Biology and Technology, 62, 59-63. https://doi.org/10.1016/j.postharvbio.2011.04.011.
- Chomchalow, S., El Assi, N.M., Sargent, S.A. and Brecht, J.K., 2002. Fruit maturity and timing of ethylene treatment affect storage performance of green tomatoes at chilling and nonchilling temperatures. HortTechnology. 12, 104-114.
- Chongchatuporn, U., Ketsa, S. and van Doorn, W.G., 2013. Chilling injury in mango (*Mangifera indica*) fruit peel: Relationship with ascorbic acid concentrations and antioxidant enzyme activities. Postharvest biology and technology. 86, 409-417. http://dx.doi.org/10.1016/j.postharvbio.2013.07.023.
- Cohen, E., Shapiro, B., Shalom, Y., and Klein, J. D. 1994. Water loss: a non-destructive indicator of enhanced cell membrane permeability of chilling-injured citrus fruit. Journal of the American Society for Horticultural Science. 119, 983-986. https://doi.org/10.21273/JASHS.119.5.983.
- Cozmuta, M.A., Cozmuta, L.M., Peter, A., Nicula, C., Vosgan, Z., Giurgiulescu, L., Vulpoi, A., Baia, M., 2016. Effect of monochromatic Far-Red light on physical-nutritional-microbiological attributes of red tomatoes during storage. Scientia Horticulturae. 211, 220-230. https://doi.org/10.1016/j.scienta.2016.08.031.
- Cruz-Mendívil, A., López-Valenzuela, J.A., Calderón-Vázquez, C.L., Vega-García, M.O., Reyes-Moreno, C. and Valdez-Ortiz, A., 2015. Transcriptional changes associated with chilling tolerance and susceptibility in 'Micro-Tom'tomato fruit using RNA-Seq. Postharvest biology and technology. 99, 141-151. https://doi.org/10.1016/j.postharvbio.2014.08.009.
- Cukrov, D., Brizzolara, S. and Tonutti, P., 2019. Physiological and biochemical effects of controlled and modified atmospheres. In Postharvest Physiology and Biochemistry of Fruits and Vegetables. 425-441. Woodhead Publishing.
- Demidchik, V., 2015. Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environmental and Experimental Botany. 109, 212-228.
- Dhakal, R. and Baek, K.H. 2014. Metabolic alternation in the accumulation of free amino acids and γ -aminobutyric acid in postharvest mature green tomatoes following irradiation with blue light. Horticulture, Environment, and Biotechnology. 55, 36-41. http://dx.doi.org/10.1007/s13580-014-0125-3.

- Di Mascio, P., Kaiser, S. and Sies, H., 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Archives of biochemistry and biophysics. 274, 532-538. https://doi.org/10.1016/0003-9861(89)90467-0.
- D'Souza, C., Yuk, H.G., Khoo, G.H. and Zhou, W., 2015. Application of light-emitting diodes in food production, postharvest preservation, and microbiological food safety. Comprehensive Reviews in Food Science and Food Safety. 14, 719-740.
- Ernesto Bianchetti, R., Silvestre Lira, B., Santos Monteiro, S., Demarco, D., Purgatto, E., Rothan, C., Rossi, M. and Freschi, L., 2018. Fruit-localized phytochromes regulate plastid biogenesis, starch synthesis, and carotenoid metabolism in tomato. Journal of experimental botany. 69, 3573-3586. https://doi.org/10.1093/jxb/ery145.
- Fagundes, C., Moraes, K., Pérez-Gago, M.B., Palou, L., Maraschin, M. and Monteiro, A.R., 2015. Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biology and Technology. 109, 73-81. https://doi.org/10.1016/j.postharvbio.2015.05.017.
- Fahmy, K. And Nakano, K., 2014. Optimal design of modified atmosphere packaging for alleviating chilling injury in cucumber fruit. Environmental Control in Biology. 52, 233-240. https://doi.org/10.2525/ecb.52.233
- FAO, 2011. Global Food Losses and Food Wastes, Rome: FAO.
- Farber, J. N. et al., 2003. Microbiological Safety of Controlled and Modofied Atmosphere Packaging of Fresh and Fresh-cut Produce. Comprehensive Review on Food Science and Safety. 143-160. https://doi.org/10.1111/j.1541-4337.2003.tb00032.x.
- Farneti, B., Schouten, R. E. and Woltering, E. J., 2012. Low temperature-induced lycopene degradation in red ripe tomato evaluated by remittance spectroscopy. Postharvest Biology and Technology. 73, 22–27. https://doi.org/10.1016/j.postharvbio.2012.05.008.
- Feigenson, G.W., 2007. Phase boundaries and biological membranes. Annu. Rev. Biophys. Biomol. Struct. 36, 63-77. https://doi.org/10.1146/annurev.biophys.36.040306.132721.
- Ferguson, I., Volz, R. and Woolf, A., 1999. Preharvest factors affecting physiological disorders of fruit. Postharvest Biology and Technology. 15, 255–262. https://doi.org/10.1016/S0925-5214(98)00089-1.
- Gartner, C., Stahl, W. and Sies, H., 1997. Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Am J Clin Nutr. 66, 116-122. https://doi.org/10.1093/ajcn/66.1.116.
- Ge, W., Zhao, Y., Kong, X., Sun, H., Luo, M., Yao, M., Wei, B. and Ji, S., 2020. Combining salicylic acid and trisodium phosphate alleviates chilling injury in bell pepper (*Capsicum annuum L.*) through enhancing fatty-acid desaturation efficiency and water retention. Food Chemistry. 327, 127057. https://doi.org/10.1016/j.foodchem.2020.127057.

- Gechev, T.S., Van Breusegem, F., Stone, J.M., Denev, I. and Laloi, C., 2006. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays. 28, 1091-1101. https://doi.org/10.1002/bies.20493.
- Gill, S.S. and Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry. 48, 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016.
- Gonzalez-Aguilar, G., Wang, C.Y. and Buta, G.J., 2004. UV-C irradiation reduces breakdown and chilling injury of peaches during cold storage. Journal of the Science of Food and Agriculture, 84, 415-422. https://doi.org/10.1111/j.1365-2621.2001.00522.x.
- González-Aguilar, G.A., Villegas-Ochoa, M.A., Martínez-Téllez, M.A., Gardea, A.A. and Ayala-Zavala, J.F., 2007. Improving antioxidant capacity of fresh-cut mangoes treated with UV-C. Journal of Food Science. 72, S197-S202. https://doi.org/10.1111/j.1750-3841.2007.00295.x.
- Gorny JR and Kader AA., 1996. Controlled-atmosphere Suppression of ACC Synthase and ACC Oxidase in 'Golden Delicious' Apples during Long-term Cold Storage. J. Amer. Soc. Hort. Sci. 121, 751-755.
- Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S. and Masmoudi, K., 2011. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signaling and Behavior. 6, 1503-1509. https://doi.org/10.4161/psb.6.10.17088.
- Hara, M., Terashima, S., Fukaya, T. and Kuboi, T., 2003. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta. 217, 290-298. https://doi.org/10.1007/s00425-003-0986-7.Sal
- Hariyadi, P. and Parkin, K.L., 1991. Chilling-induced oxidative stress in cucumber fruits. Postharvest Biology and Technology, 1, 33-45. https://doi.org/10.1016/0925-5214(91)90017-6
- Heymann, T., Heinz, P. and Glomb, M.A., 2015. Lycopene inhibits the isomerization of β-carotene during quenching of singlet oxygen and free radicals. Journal of agricultural and food chemistry. 63, 3279-3287. https://doi.org/10.1021/acs.jafc.5b00377.
- Hodges, D. M., Lester, G. E., Munro, K. D. and Toivonen, P. M., 2004. Oxidative Stress: Importance for Postharvest Quality. Hortscience. 39, 924-929. https://doi.org/10.1093/jexbot/51.344.645.
- Hodges, D.M., Forney, C.F. and Wismer, W.V., 2001. Antioxidant responses in harvested leaves of two cultivars of spinach differing in senescence rates. Journal of the American Society for Horticultural Science, 126, 611-617. https://doi.org/10.21273/JASHS.126.5.611.
- Hodges, D. M., and Forney, C. F., 2000. The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. J. Exp. Bot, 51(344), 645-655. https://doi.org/10.1093/jexbot/51.344.645.

- Hoehn E, Prange RK and Vigneault C, 2009. Storage Technology and Applications. In Modified and Controlled Atmospheres for the Storage, Transportation, and Packaging of Horticultural Commodities, 17 50 [EM Yahia, editor]. Boca Raton/London/New York: CRC Press.
- Hoffman, E. W., Miller, M., and Louw, E. L., 2015. The efficacy of LED lights and growth regulator sprays at controlling chilling injury in Leucospermum potted plants. In VIII International Symposium on New Ornamental Crops and XII International Protea Research Symposium 1097, 47-54. https://doi.org/10.17660/ActaHortic.2015.1097.5.
- Holtzapffel, R.C., Finnegan, P.M., Millar, A.H., Badger, M.R. and Day, D.A., 2002. Mitochondrial protein expression in tomato fruit during on-vine ripening and cold storage. Functional plant biology, 29, 827-834. https://doi.org/10.1071/pp01245.
- Hong, J. and Gross, K., 2001. Maintaining Quality of Fresh-cut Tomato Slices through Modified Atmosphere Packaging and Low Temperature Storage. Journal of Food Science. 66, 960-965. https://doi.org/10.1111/j.1365-2621.2001.tb08219.x.
- Imahori, Y., Bai, J., and Baldwin, E., 2016. Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments. Scientia Horticulturae. 198, 398-406. https://doi.org/10.1016/j.scienta.2015.12.006.
- İşeri, Ö.D., Körpe, D.A., Sahin, F.I. and Haberal, M., 2013. Hydrogen peroxide pretreatment of roots enhanced oxidative stress response of tomato under cold stress. Acta Physiologiae Plantarum. 35, 1905-1913. http://dx.doi.org/10.1007/s11738-013-1228-7.
- Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O. and Thomashow, M.F., 1998.
 Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science. 280, 104-106. DOI: 10.1126/science.280.5360.104.
- Jiang M., 2002. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany. 53, 2401–2410. https://doi.org/10.1093/jxb/erf090.
- Jing, Y., Fu, M.R., Zhao, Y.Y. and Mao, L.C., 2009. Reduction of chilling injury and ultrastructural damage in cherry tomato fruits after hot water treatment. Agricultural Sciences in China. 8, 304-310.
- Kader, A. A., 1986. Biochemical and Physiological basis for effects of controlled and modified atmospheres on fruit and vegetables. Food Technology. 40, 99-100; 102-104.
- Kader, A. A., 1987. Respiration and gas exchange in vegetables. In: J. Weichman, ed. Postharvest physiology of vegetables. New York: Marcel Dekker, 25-44.
- Kalaitzoglou, P., Van Ieperen, W., Harbinson, J., van der Meer, M., Martinakos, S., Weerheim, K., Nicole, C. and Marcelis, L.F., 2019. Effects of continuous or end-of-day far-red light on tomato plant growth, morphology, light absorption, and fruit production. Frontiers in plant science. 10, 322. doi:10.3389/fpls.2019.00322.

- Kanellis AK, Pietro Tonutti., and Pierdomenico Perata, 2009. Biochemical and Molecular aspect of Modified and Controlled Atmosphere. In Modified and Controlled Atmospheres for the Storage, Transportation, and Packaging of Horticultural Commodities, 553-568 [EM Yahia, editor]. Boca Raton: CRC Press
- Kang, H.M. and Saltveit, M.E., 2001. Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedling radicles. Physiologia Plantarum. 113, 548-556. https://doi.org/10.1034/j.1399-3054.2001.1130414.x
- Kawamura, Y. and Uemura, M., 2003. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. The Plant Journal. 36, 141-154. https://doi.org/10.1046/j.1365-313x.2003.01864.x.
- Khodakovskaya, M., McAvoy, R., Peters, J., Wu, H. and Li, Y., 2006. Enhanced cold tolerance in transgenic tobacco expressing a chloroplast ω -3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta. 223, 1090-1100. https://doi.org/10.1007/s00425-005-0161-4.
- Kim, H.J., Kim, Y.K., Park, J.Y. and Kim, J., 2002. Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in *Arabidopsis thaliana*. The Plant Journal. 29, 693-704. https://doi.org/10.1046/j.1365-313X.2002.01249.x.
- Knight, H., Zarka, D.G., Okamoto, H., Thomashow, M.F. and Knight, M.R., 2004. Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant physiology. 135, 1710-1717. https://doi.org/10.1104/pp.104.043562.
- Kondo, S., Tomiyama, H., Rodyoung, A., Okawa, K., Ohara, H., Sugaya, S., Terahara, N. and Hirai, N., 2014. Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night. Journal of plant physiology, 171, 823-829. https://doi.org/10.1016/j.jplph.2014.01.001.
- Kong, X., Wei, B., Gao, Z., Zhou, Y., Shi, F., Zhou, X., Zhou, Q. and Ji, S., 2018. Changes in membrane lipid composition and function accompanying chilling injury in bell peppers. Plant and Cell Physiology. 59, 167-178. https://doi.org/10.1093/pcp/pcx171.
- Koukalová, B., Kovar´ík, A., Fajkus, J. and S`iroký, J., 1997. Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress, FEBS letters. 414, 289-292. https://doi.org/10.1016/s0014-5793(97)01008-9.
- Lado, J., Rodrigo, M.J., Cronje, P., Zacarías, L., 2015a. Involvement of lycopene in the induction of tolerance to chilling injury in grapefruit. Postharvest Biol. Technol. 100, 176–186. https://doi.org/10.1016/j.postharvbio.2014.10.002.

- Larsson, C., Møller, I.M. and Widell, S., 1990. Introduction to the plant plasma membrane—Its molecular composition and organization. In The plant plasma membrane, 1-15. Springer, Berlin, Heidelberg.
- Li, B., Zhang, C., Cao, B., Qin, G., Wang, W. and Tian, S., 2012. Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids. 43, 2469-2480. https://doi.org/10.1007/s00726-012-1327-6.
- Liang, S.M., Kuang, J.F., Ji, S.J., Chen, Q.F., Deng, W., Min, T., Shan, W., Chen, J.Y. and Lu, W.J., 2020. The membrane lipid metabolism in horticultural products suffering chilling injury. Food Quality and Safety. 4, 9-14. https://doi.org/10.1093/fqsafe/fyaa001.
- Liu, H., Ouyang, B., Zhang, J., Wang, T., Li, H., Zhang, Y., Yu, C. and Ye, Z., 2012. Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress. PloS one. 7, e50785. https://doi.org/10.1371/journal.pone.0050785.
- Liu, C., Jahangir, M.M. and Ying, T., 2012. Alleviation of chilling injury in postharvest tomato fruit by preconditioning with ultraviolet irradiation. Journal of the Science of Food and Agriculture, 92, 3016-3022. https://doi.org/10.1002/jsfa.5717
- Liu, X., Zhou, Y., Xiao, J. and Bao, F., 2018. Effects of chilling on the structure, function and development of chloroplasts. Frontiers in plant science. 9, 1715. https://dx.doi.org/10.3389%2Ffpls.2018.01715.
- Llansola-Portoles, M.J., Redeckas, K., Streckaité, S., Ilioaia, C., Pascal, A.A., Telfer, A., Vengris, M., Valkunas, L. and Robert, B., 2018. Lycopene crystalloids exhibit singlet exciton fission in tomatoes. Physical Chemistry Chemical Physics. 20, 8640-8646. https://doi.org/10.1039/C7CP08460A.
- Los, D.A. and Murata, N., 1998. Structure and expression of fatty acid desaturases. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism. 1394, 3-15.
- Lu, J., Nawaz, M.A., Wei, N., Cheng, F. and Bie, Z., 2020. Suboptimal temperature acclimation enhances chilling tolerance by improving photosynthetic adaptability and osmoregulation ability in watermelon. Horticultural Plant Journal. 6, 49-60. https://doi.org/10.1016/j.hpj.2020.01.001
- Luengwilai, K., Beckles, D. M. and Saltveit, M. E., 2012. Chilling-injury of harvested tomato (*Solanum lycopersicum* L.) cv. Micro-Tom fruit. Postharvest Biology and Technology. 63, 123–128. https://doi.org/10.1016/j.postharvbio.2011.06.017
- Lukatkin, A.S., Brazaityte, A., Bobinas, C. and Duchovskis, P., 2012. Chilling injury in chilling-sensitive plants: a review. Agriculture. 99,111-124.
- Luo, Z., Li, D., Du, R. and Mou, W., 2015. Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. Scientia Horticulturae. 183, 144-151. http://dx.doi.org/10.1016/j.scienta.2014.12.021.

- Lurie, S. and Crissoto, C. H., 2005. Chilling injury in peach and nectarine. Postharvest Biology and Technology. 37, 195–208. https://doi.org/10.1016/j.postharvbio.2005.04.012.
- Lurie, S., 1998. Postharvest heat treatments (Review). Postharvest Biology and Technology. 14, 257–269. https://doi.org/10.1016/S0925-5214(98)00045-3
- Lyons JM. 1973. Chilling Injury in Plants. Annual Review of Plant Physiology 24, 445-466.
- Lyubushkina, I. V., Grabelnych, O. I., Pobezhimova, T. P., Stepanov, A. V., Fedyaeva, A. V., Fedoseeva, I. V., et al., 2014. Winter wheat cells subjected to freezing temperature undergo death process with features of programmed cell death. Protoplasma 251, 615–623. doi: 10.1007/s00709-013-0562-3
- Maa, Q. et al., 2014. Effect of hot water treatments on chilling injury and expression of anew C-repeat binding factor (CBF) in 'Hongyang' kiwifruit during low temperature storage. Postharvest Biology and Technology. 97, 102–110. https://doi.org/10.1016/j.postharvbio.2014.05.018.
- Maalekuu, K., Elkind, Y., Leikin-Frenkel, A., Lurie, S., and Fallik, E., 2006. The relationship between water loss, lipid content, membrane integrity and LOX activity in ripe pepper fruit after storage. Postharvest Biology and Technology. 42, 248-255. https://doi.org/10.1016/j.postharvbio.2006.06.012.
- Maibam, P., Nawkar, G.M., Park, J.H., Sahi, V.P., Lee, S.Y. and Kang, C.H., 2013. The influence of light quality, circadian rhythm, and photoperiod on the CBF-mediated freezing tolerance. International journal of molecular sciences. 14, 11527-11543. https://doi.org/10.3390/ijms140611527.
- Mangaraj, S., Goswani, T. and Mahajan, P., 2009. Application of Plastic Films for Modified Atmosphere Packaging of Fruits and Vegetables: A Review. Food Engineering Review. 1, 133-158. https://doi.org/10.1007/s12393-009-9007-3.
- Mantyla, E., Lang, V. and Palva, E.T., 1995. Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in *Arabidopsis thaliana*. Plant physiology. 107, 141-148. https://doi.org/10.1104/pp.107.1.141
- Marangoni, A.G., Palma, T. and Stanley, D.W., 1996. Membrane effects in postharvest physiology. Postharvest Biology and Technology. 7, 193-217. https://doi.org/10.1016/0925-5214(95)00042-9.
- Martínez-Romero, D. et al., 2003. Modified Atmosphere Packaging Maintains Quality of Table Grapes. Journal of Food Science. 68, 1838-1843. https://doi.org/10.1021/jp503227j.
- Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K. and Yamaguchi-Shinozaki, K., 2004. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. The Plant Journal. 38, 982-993. https://doi.org/10.1111/j.1365-313x.2004.02100.x.

- Mattila, H., Khorobrykh, S., Havurinne, V. and Tyystjärvi, E., 2015. Reactive oxygen species: Reactions and detection from photosynthetic tissues. Journal of Photochemistry and Photobiology B: Biology. 152, 176-214. https://doi.org/10.1016/j.jphotobiol.2015.10.001.
- Maul, F. et al., 2000. Tomato Flavor and Aroma Quality as Affected by Storage Temperature. Journal of Food Science. 65, 1228-1237. https://doi.org/10.1111/j.1365-2621.2000.tb10270.x.
- Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends in plant science. 79, 405-410. https://doi.org/10.1016/s1360-1385(02)02312-9.
- Murata, N. and Los, D.A., 1997. Membrane fluidity and temperature perception. Plant physiology. 115, 875. https://dx.doi.org/10.1104%2Fpp.115.3.875.
- Murata, N. and Nishida, I., 1990. Lipids in relation to chilling sensitivity of plants. Chilling injury of horticultural crops. 181-199.
- Murata, T., 1969. Physiological and biochemical studies of chilling injury in bananas. Physiologia Plantarum. 22, 401-411. https://doi.org/10.1111/j.1399-3054.1969.tb07392.x.
- Nair, S., Singh, Z. and Tan, S. C., 2003. Aroma volatiles emission in relation to chilling injury in 'Kensington Pride' mango fruit. Journal of horticultural science and biotechnology. 78, 866-873. https://doi.org/10.1080/14620316.2003.11511711.
- Neta-Sharir, I., Isaacson, T., Lurie, S. and Weiss, D., 2005. Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. The Plant Cell. 17, 1829-1838. https://doi.org/10.1105/tpc.105.031914.
- Nguyen, T.B.T., Ketsa, S. and van Doorn, W.G., 2004. Effect of modified atmosphere packaging on chilling-induced peel browning in banana. Postharvest Biology and Technology. 31, 313-317. https://doi.org/10.1016/j.postharvbio.2003.09.006.
- Nunes, M.C.N., Emond, J.P., 2003. Storage temperature. In: Bartz, J.A., Brecht, J.K. (Eds.), Postharvest Physiology and Pathology of Vegetables. Marcel Dekker, Inc, New York, 209–228O'Kane, D., Gill, V., Boyd, P. and Burdon, R., 1996. Chilling, oxidative stress and antioxidant responses in *Arabidopsis thaliana* callus. Planta. 198, 371-377. https://doi.org/10.1007/bf00620053.
- Pan, Y.G., Yuan, M.Q., Zhang, W.M. and Zhang, Z.K., 2017. Effect of low temperatures on chilling injury in relation to energy status in papaya fruit during storage. Postharvest Biology and Technology. 125, 181-187.
- Parkin, K.L., Marangoni, A., Jackman, R.L., Yada, R.Y. and Stanley, D.W., 1989. Chilling injury. A review of possible mechanisms. Journal of Food Biochemistry. 13, 127-153. https://doi.org/10.1111/j.1745-4514.1989.tb00389.x.
- Pegoraro, C., Santos, R.S.D., Krüger, M.M., Tiecher, A., Maia, L.C.D., Rombaldi, C.V. and Oliveira, A.C.D., 2012. Effects of hypoxia storage on gene transcript accumulation during tomato fruit

- ripening. Brazilian Journal of Plant Physiology. 24, 141-148. https://doi.org/10.1590/S1677-04202012000200007.
- Pesis, E., Aharoni, D., Aharon, Z. and Ben-Arie, R., 2000. Modified atmosphere and modified humidity packaging alleviates chilling injury symptoms in mango fruit. Postharvest Biology and Technology. 19, 93–101. https://doi.org/10.1016/S0925-5214(00)00080-6.
- Purvis, A.C. and Shewfelt, R.L., 1993. Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? Physiologia Plantarum. 88, 712-718. https://doi.org/10.1111/j.1399-3054.1993.tb01393.x.
- Raison, J.K. and Orr, G.R., 1986. Phase transitions in liposomes formed from the polar lipids of mitochondria from chilling-sensitive plants. Plant physiology, 81, 807-811. https://doi.org/10.1104/pp.81.3.807.
- Raison, J.K., Lyons, J.M., Mehlhorn, R.J. and Keith, A.D., 1971. Temperature-induced phase changes in mitochondrial membranes detected by spin labelling. Journal of Biological Chemistry. 246, 4036-4040.
- Roberts, W., 2006. Lycopene: From plants to humans. HortScience. 41, 1135-1144. http://dx.doi.org/10.21273/HORTSCI.41.5.1135.
- Rodriguez, S., Casóliba, R.M., Questa, A.G. and Felker, P., 2005. Hot water treatment to reduce chilling injury and fungal development and improve visual quality of two *Opuntia ficus indica* fruit clones. Journal of Arid Environments. 63, 366-378. https://doi.org/10.1016/j.jaridenv.2005.03.020.
- Ruelland, E., Vaultier, M.N., Zachowski, A. and Hurry, V., 2009. Cold signalling and cold acclimation in plants. Advances in botanical research. 49, 35-150. https://doi.org/10.1016/S0065-2296(08)00602-2.
- Rurek, M., Woyda-Ploszczyca, A.M. and Jarmuszkiewicz, W., 2015. Biogenesis of mitochondria in cauliflower (*Brassica oleracea* var. botrytis) curds subjected to temperature stress and recovery involves regulation of the complexome, respiratory chain activity, organellar translation and ultrastructure. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1847, 399-417. https://doi.org/10.1016/j.bbabio.2015.01.005.
- Sabban-Amin, R., Feygenberg, O., Belausov, E. and Pesis, E., 2011. Low oxygen and 1-MCP pretreatments delay superficial scald development by reducing reactive oxygen species (ROS) accumulation in stored 'Granny Smith'apples. Postharvest Biology and Technology. 62, 295-304. http://dx.doi.org/10.1016/j.postharvbio.2011.06.016.
- Saltveit, M.E., 2003. Is it possible to find an optimal controlled atmosphere? Postharvest Biology and Technology, 27, 3-13. http://dx.doi.org/10.1016/S0925-5214(02)00184-9.
- Schouten, R. E. et al., 2014. Quantifying lycopene synthesis and chlorophyll breakdown in tomatofruit using remittance VIS spectroscopy. Postharvest Biology and Technology. 96, 53–63. https://doi.org/10.1016/j.postharvbio.2014.05.007.

- Schouten, R. E., Huijben, T. P., Tijskens, L. and Kooten, O. v., 2007. Modelling the acceptance period of truss tomato batches. Postharvest Biology and Technology. 45, 307–316. https://doi.org/10.1016/j.postharvbio.2007.03.011.
- Sevillano, L., Sanchez-Ballesta, M.T., Romojaro, F. and Flores, F.B., 2009. Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. Journal of the Science of Food and Agriculture. 89, 555-573. https://doi.org/10.1002/jsfa.3468.
- Sharom, M., Willemot, C. and Thompson, J.E., 1994. Chilling injury induces lipid phase changes in membranes of tomato fruit. Plant Physiology, 105, 305-308. https://doi.org/10.1104/pp.105.1.305.
- Shewfelt, R. and del Rosario, B., 2000. The Role of Lipid Peroxidation in Storage Disorders of Fresh Fruit and Vegetables. Hortscience. 35, 575-579. https://doi.org/10.21273/HORTSCI.35.4.575.
- Shinozaki, K. and Yamaguchi-Shinozaki, K., 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signalling pathways. Current opinion in plant biology. 3, 217-223. https://doi.org/10.1016/S1369-5266(00)80068-0.
- Sozzi, G. O., Trinchero, G. D. and Fraschina, A. A., 1999. Controlled-atmosphere storage of tomato fruit: low oxygen or elevated carbon dioxide levels alter galactosidase activity and inhibit exogenous ethylene action. Journal of the Science of Food and Agriculture. Volume 79, 1065-1070. https://doi.org/10.1002/(SICI)1097-0010(199906)79:8%3C1065::AID-JSFA319%3E3.0.CO;2-U.
- Szarka, A., Tomasskovics, B. and Bánhegyi, G., 2012. The ascorbate-glutathione- α -tocopherol triad in abiotic stress response. International Journal of Molecular Sciences. 13, 4458-4483. https://doi.org/10.3390/ijms13044458.
- Tan, W.J., Yang, Y.C., Zhou, Y., Huang, L.P., Xu, L., Chen, Q.F., Yu, L.J. and Xiao, S., 2018. Diacylglycerol Acyltransferase and Diacylglycerol Kinase modulate triacylglycerol and phosphatidic acid production in the plant response to freezing stress. Plant physiology. 177, 1303-1318. https://doi.org/10.1104/pp.18.00402.
- Tijskens, L., Otma, E. and van Kouten, O., 1994. Photosystem II quantum yield as a measure of radical scavengers in chilling injury in cucumber fruits and bell peppers. Planta. 194, 478-486. https://doi.org/10.1007/BF00714459.
- Van Meer, G., Voelker, D.R. and Feigenson, G.W., 2008. Membrane lipids: where they are and how they behave. Nature reviews Molecular cell biology. 9, 112-124. https://doi.org/10.1038/nrm2330.
- Vicente, A.R., Pineda, C., Lemoine, L., Civello, P.M., Martinez, G.A. and Chaves, A.R., 2005. UV-C treatments reduce decay, retain quality and alleviate chilling injury in pepper. Postharvest Biology and Technology. 35, 69-78. https://doi.org/10.1016/j.postharvbio.2004.06.001.

- Vogg G, Heim R, Gotschy B, Beck E, Hansen J., 1998. Frost hardening and photosynthetic performance of Scots pine (*Pinussylvestris L.*). II. Seasonal changes in the fluidity of thylakoidmembranes. Planta, 204, 201–206. https://doi.org/10.1007/s004250050247.
- Wang, B. et al., 2008. Reduced chilling injury in mango fruit by 2,4-dichlorophenoxyacetic acid and the antioxidant response. Postharvest Biology and Technology. 48, 172–181. https://doi.org/10.1016/0098-8472(94)90025-6.
- Wang, C. Y. and Qi, L., 1997. Modified atmosphere packaging alleviates chilling injury in cucumbers. Postharvest Biology and Technology. 20, 195-200 https://doi.org/10.1016/S0925-5214(97)01405-1.
- Wang, C. Y. and Zuo, L. J., 1989. Effect of Low-Oxygen Storage on Chilling Injury and Polyamines in Zucchini Squash. Scientia Horticulturae. 39, 1-7. https://doi.org/10.1016/0304-4238(89)90031-9.
- Wang, C. Y., 1994. Chilling Injury of Tropical Horticultural Commodities. Hortscience. 29, 986-988. https://doi.org/10.21273/HORTSCI.29.9.86.
- Wang, C.Y., 1994. Combined treatment of heat shock and low temperature conditioning reduces chilling injury in zucchini squash. Postharvest Biology and Technology. 4, 65-73.
- Wang, F., Zhang, L., Chen, X., Wu, X., Xiang, X., Zhou, J., ... and Zhou, Y., 2019. SIHY5 integrates temperature, light, and hormone signaling to balance plant growth and cold tolerance. Plant physiology. 179, 749-760. https://doi.org/10.1104/pp.18.01140.
- Wang, Y., Luo, Z., Huang, X., Yang, K., Gao, S. and Du, R., 2014. Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Scientia Horticulturae, 168, 132-137. https://doi.org/10.1016/j.scienta.2014.01.022.
- Woolf, A., Bowen, H. and Ferguson, I., 1999. Preharvest exposure to the sun influences postharvest responses of 'Hass' avocado fruit. Postharvest Biologi and Technology. 5, 143 153. https://doi.org/10.1016/S0925-5214(98)00077-5.
- Xu, F., Shi, L., Chen, W., Cao, S., Su, X., and Yang, Z., 2014. Effect of blue light treatment on fruit quality, antioxidant enzymes and radical-scavenging activity in strawberry fruit. Scientia Horticulturae, 175, 181-186. https://doi.org/10.1016/j.scienta.2014.06.012.
- Yahia, E. M. and Singh, S., 2009. Tropical Fruits. In: E. M. Yahia, ed. Modified and Controlled Atmospheres for the Storage, Transportation, and Packaging of Horticultural Commodities. Boca Raton: CRC Press, pp. 397-444.
- Yanuriati, A., Savage, G.P. and Rowe, R.N., 1999. The effects of ethanol treatment on the metabolism, shelf life and quality of stored tomatoes at different maturities and temperatures. Journal of the Science of Food and Agriculture, 79, 995-1002. https://doi.org/10.1002/(SICI)1097-0010(19990515)79:7%3C995::AID-JSFA315%3E3.0.CO;2-D.

- Zainon, M. A., Lieng-Hong, C., Marimuthu, M. and Lazan, H., 2004. Low temperature storage and modified atmosphere packaging of carambola fruit and their effects on ripening, related texture changes, wall modification, related texture changes, wall modification, and Chilling Injury Symptoms. Postharvest Biology and Technology. 33, 181–192. https://doi.org/10.1016/j.postharvbio.2004.02.007.
- Zhang, J., Huang, W., Pan, Q., Liu, Y., 2005. Improvement of chilling tolerance and accumulation of heat shock proteins in grape berries (*Vitis vinifera* cv. Jingxiu) by heat pretreatment. Postharvest Biol. Technol. 38, 80–90. https://doi.org/10.1016/j.postharvbio.2005.05.008.
- Zhang, Y., Jin, P., Huang, Y., Shan, T., Wang, L., Li, Y., Zheng, Y., 2016. Effect of hot water combined with glycine betaine alleviates chilling injury in cold-stored loquat fruit. Postharvest Biology and Technology. 118, 141–147. https://doi.org/10.1016/j.postharvbio.2017.11.012.
- Zhang, Z. and Huang, R., 2013. Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling. Bio-protocol, 3, e817-e817. https://doi.org/10.21769/BioProtoc.817.
- Zhao, Y., Chen, J., Tao, X., Zheng, X. and Mao, L., 2014. The possible role of BAX and BI-1 genes in chilling-induced cell death in cucumber fruit. Acta Physiologiae Plantarum. 36, 1345-1351.
- Zhao, R., Sheng, J., Lv, S., Zheng, Y., Zhang, J., Yu, M. and Shen, L., 2011. Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit. Postharvest Biology and Technology, 62, 121-126. https://doi.org/10.1016/j.postharvbio.2011.05.013.
- Zhao, D.Y., Shen, L. Fan, B. Yu, M.M., Zheng, Y., Lv, S.N., Sheng J.P. 2009. Ethylene and cold participate in the regulation of LeCBF1 gene expression in postharvest tomato fruits FEBS Lett., 583, pp. 3329-3334. https://doi.org/10.1016/j.febslet.2009.09.029.
- Zhao, Y., Chen, J., Tao, X., Zheng, X. and Mao, L., 2014. The possible role of BAX and BI-1 genes in chilling-induced cell death in cucumber fruit. Acta Physiologiae Plantarum. 36, 1345-1351. http://dx.doi.org/10.1007%2Fs11738-014-1513-0.
- Zhou, Q., Zhang, C., Cheng, S., Wei, B., Liu, X. and Ji, S., 2014. Changes in energy metabolism accompanying pitting in blueberries stored at low temperature. Food chemistry, 164, 493-501. https://doi.org/10.1016/j.foodchem.2014.05.063.

Far-red light during cultivation induces postharvest cold tolerance in tomato fruit

Affandi, F.Y., Verdonk, J.C., Ouzounis, T., Ji, Y., Woltering, E.J. and Schouten, R.E.

Published as:

Abstract

We investigated the role of far-red LED light during cultivation on postharvest cold tolerance in tomato fruit (*Solanum lycopersicum* cv Moneymaker). Red and blue top LED light, providing 150 μ mol m⁻² s⁻¹ photo-synthetically active radiation (PAR) at plant height for 16 h daily, was combined with 0, 30 or 50 μ mol m⁻² s⁻¹ (non-PAR) far-red LED light. Tomatoes were harvested at the mature green or red stage and subjected to cold storage for 0, 5, 10, and 15 d at 4 °C, followed by 20 d shelf life at 20 °C.

Mature green harvested tomatoes, cultivated with additional far-red light, showed reduced weight loss, less pitting, faster red colour development during shelf life (when prior long cold stored), and less softening (when prior short or non-cold stored). FR lighting during cultivation likely protects the membrane integrity of MG tomatoes and thus allows uninterrupted lycopene synthesis. Red harvested tomatoes cultivated with additional far-red light were firmer at harvest, showed reduced weight loss and less decay during shelf life. Less red colouration was observed for red harvested fruits at the start of shelf life when fruits were prior cold stored, indicative of lycopene breakdown during cold storage. The improved cold tolerance of red harvested fruits grown under additional far-red light is likely due to higher firmness at the start of the shelf life period with lycopene acting as antioxidant during cold storage. In conclusion, additional far-red light during cultivation improved postharvest cold tolerance for tomatoes harvested at both the green and red maturity stage, and might therefore be suitable to prolong the storage potential of tomato at sub-optimal temperatures.

2.1. Introduction

Chilling injury (CI) is a physiological disorder induced by exposure to low, but above freezing temperatures. Chilling-sensitive crops are of tropical and subtropical origin and includes tomato (Lurie and Crisosto, 2005). CI is described as a reversible response to low temperature which causes a cascade of secondary effects that results in CI symptoms (Biswas et al., 2017). Symptoms of CI in tomato include uneven ripening, surface pitting, excessive softening and increased fungal decay. CI also affects quality properties, such as loss of colour and flavour (Biswas et al., 2012; Farneti et al., 2015; Zhang et al., 2016). These detrimental changes reduce consumer acceptance leading to substantial economic loss especially for fruit grown in tropical and sub-tropical regions due to inability to maximise the benefit of low temperature storage (Wang, 1994).

A major cause of CI is considered to be oxidative stress (Shewfelt and Del Rosario, 2000). Oxidative stress occurs when the generation of reactive oxygen species (ROS) exceeds the capacity of the fruit to maintain cellular redox homeostasis (Aghdam and Bodbodak, 2014). Oxidative stress results in lipid peroxidation and affects membrane integrity (Hodges et al., 2004) which results in visible CI signs (Malacrida et al., 2006). Farneti et al. (2012) found that red tomatoes experienced lycopene loss during cold storage, thereby indicating that lycopene might scavenge excess ROS (Gartner et al., 1997; Stahl and Sies, 2003). Cold tolerance is typically characterised by increased activity of antioxidant enzymes and lower ion leakage. Cold tolerance can be induced in tomato fruit by methyl jasmonate and methyl salicylate (Ding et al., 2001), gibberellin (Ding et al., 2015) and glycine betaine in pepper fruit applied as prechilling storage dips (Wang et al., 2016). Intermittent warming has been applied during cold storage and was effective in delaying CI symptoms in tomato, but was highly cultivar dependant (Biswas et al., 2012). Heat shock treatments by immersion of tomato fruit in 40 °C water for 7 min reduced CI of fruit stored for 14 d at 2.5 °C (Luengwilai et al., 2012). These treatments are all applied after harvest, and hardly any attention has been paid to growth conditions that may induce cold tolerance in tomato fruits.

Far-red (FR) light during cultivation increased total plant dry mass, fruit yield, fruit number per plant, fruit weight per plant and average fruit weight (Zhang et al., 2018; Kalaitzoglou et al., 2019). Far-red light was shown to affect cold tolerance in tomato plants during cultivation. A low R/FR ratio stimulated ABA and JA biosynthesis leading to activation of the C-REPEAT BINDING FACTOR stress signalling pathway genes, leading to cold tolerance in tomato plants (Wang et al., 2016). It is unknown whether FR light can also induce cold tolerance in tomato fruit. We investigated whether additional FR LED lighting during cultivation affects cold tolerance of harvested tomato fruits. Tomato 'Moneymaker' plants were grown at three FR levels. Fruits from the three FR treatments were harvested at the same colour stage, either mature green (MG) or red (R). These tomatoes were subsequently stored for either 0, 5, 10, or 15 d at 4 °C followed by a shelf life period of 20 d at 20 °C. Chilling injury indices, weight loss, colour- and firmness behaviour were assessed during shelf life. We show that additional FR

light during cultivation induced CI tolerance. The physiological mechanisms involved, and benefits of applying FR lighting in the tomato supply chain are discussed.

2.2. Materials and methods

2.2.1. Plant material and growth conditions

Tomato (*Solanum lycopersicum* cv Moneymaker) seeds were sown on November 28^{th} , 2016 and germinated under natural light. Uniform seedlings were transplanted on December 15^{th} , 2016 into 7.5 litre pots and placed in a greenhouse compartment at Wageningen University (52° N, 6° E, Wageningen, the Netherlands). Day/night temperature was maintained at 22/18 °C until plants started flowering (35 days after transplanting). Thereafter, temperatures were adjusted to 20/16 °C to facilitate fruit set. Daily average relative humidity was maintained at $78 \pm 5\%$. The plants were irrigated with a nutrient solution (electrical conductivity 2.1 dS m⁻¹, pH 5.5). Further greenhouse management (fertigation, pollination) was according to commercial practises. Light treatments were separated by double sided, non-transparent, white reflective plastic sheets.

2.2.2. *Light treatments*

Supplementary lighting was provided by RB (Red+Blue) and FR LED modules (RB: GreenPower LED -TL-DR/B-150, FR: GreenPower LED -PM-FR-150, Philips, Eindhoven, the Netherlands). The height of the LED modules was adjusted weekly to maintain the desired photo-synthetically active radiation (PAR) at the top of the canopy to 150 µmol m⁻² s⁻¹, constant for all light treatments. When the LEDs reached the maximal height of the greenhouse, the top of the canopy was lowered weekly, as is usual in a high wire cultivation system. A spectroradiometer was used to ensure that both light intensity and the phytochrome photo equilibrium (PSS) values were kept constant. The intensity of the (non-PAR) FR LED light consisted of additional 30 (FR30) or 50 µmol m⁻² s⁻¹ (FR50), next to a control with no additional FR light (FR0). The treatments affected the PSS values from 0.88 (FR0) to 0.84 (FR30) and 0.80 (FR50). Photoperiod was set to 16 hours. On average, solar photosynthetically active radiation (PAR) contributed 12% to the total PAR integral during the whole experiment at canopy level, indicating that the LED light provided the majority of the incident PAR to the tomato plants. The spectral composition of the light treatments is shown in Figure 1.

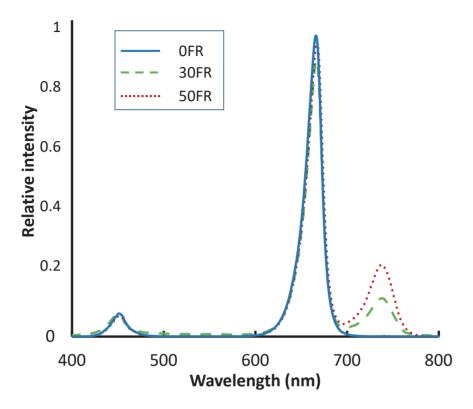


Figure 1. Spectral distribution of the light treatments: 150 μ mol m⁻² s⁻¹ Red and Blue LED light (FR0), 150 μ mol m⁻² s⁻¹ Red and Blue LED light with 30 μ mol m⁻² s⁻¹ FR LED light (FR30) and 150 μ mol m⁻² s⁻¹ Red and Blue LED light with 50 μ mol m⁻² s⁻¹ FR LED light (FR50).

2.2.3. Fruit selection, colour measurements and storage conditions

Mature green (MG) and red (R) tomato fruits were harvested on April 18, 2017. Directly after harvest, colour was measured on three equatorial positions of each tomato by a hand-held photodiode array spectrophotometer (Pigment Analyzer PA1101, CP, Germany). Remittance was assessed at 570 (R570), 660 (R660) and 780 (R780) nm by calculating the normalised anthocyanin index (NAI) (Eq. 1) and normalised difference vegetation index (NDVI) (Eq. 2) which are both normalized value between -1 and 1 (Schouten et al., 2014).

$$NAI = \frac{R780 - R570}{R780 + R570} \tag{1}$$

$$NDVI = \frac{R780 - R660}{R780 + R660} \tag{2}$$

Per light treatment and per maturity stage, twenty tomatoes were selected that showed NAI values between -0.7 and -0.5 for MG and between 0.3 and 0.5 for R tomatoes, in total 120

tomatoes. Tomatoes were subsequently marked on two positions on the equator for repeated colour and firmness measurements over time. Twenty tomatoes per light treatment and maturity stage were randomly assigned to assess the quality attributes at harvest. Five randomly assigned tomatoes per light and maturity stage were stored for either 5, 10 or 15 d at 4 $^{\circ}$ C in the dark followed by 20 d at 20 $^{\circ}$ C. Firmness and colour measurements were started immediately after the cold period and were carried out approximately every two days during shelf life. In addition, weight and two CI indices were assessed approximately every two days during shelf life.

2.2.4. Firmness measurements

Non-destructive stiffness was measured using a commercial acoustic firmness tester (AFS, AWETA, Nootdorp, the Netherlands) with the tick power of the plunger set to 15. The AFS combines the single tomato resonant frequency (f in Hz) and mass (m, in kg), measured by an inbuild balance, into a FI (firmness index, Eq. 3) (Schotte et al., 1999; Schouten et al., 2018).

$$FI = \frac{f^2 m^{2/3}}{10^4} \tag{3}$$

2.2.5. CI indices and weight loss

Vega-García et al. (2010) introduced a chilling injury index that included uneven ripening, surface pitting and decay. We have adapted this chilling injury index into a pitting and a decay index. This was done as MG tomatoes were only affected by surface pitting and red tomatoes were only affected by decay symptoms, such as the presence of fungal infections or skin lesions. Both indices were visually assessed with the percentage of the affected tomato surface assigned to five classes (0= no injury, 1=<10%, 2=11-25%, 3=26-40%, 4=>40%). Tomato weight loss was expressed as the percentage weight loss (WL) with Wo the initial weight (in g) and Wt the weight (in g) at time t (Eq. 4).

$$WL = \frac{W_0 - W_1}{W_0} \cdot 100 \tag{4}$$

2.2.6. Statistical analysis

Data measured at harvest were subjected to one-way ANOVA and data obtained during shelf life were subjected to mixed ANOVA, applying SPSS ver.21 (SPSS, Chicago, USA) at P < 0.05. Mixed ANOVA was applied with light treatment and cold duration as between subject factors and shelf life days as within subject factor. Normality of the variables was tested applying the Shapiro-Wilk test. Mauchly's test of sphericity was carried out to test whether variances of the differences between all possible pairs of within-subject conditions were equal. If the sphericity assumption was not fulfilled, Greenhouse-Geisser's correction was applied to calculate the

degrees of freedom. In case of a significant interaction, a pairwise comparison was carried out for each shelf life day with LSD (Least Significant Difference) values estimated.

2.3. Results

Two chilling injury indices, colour, firmness and weight loss data of tomatoes, gathered during a shelf life period of 20 d that had been prior cold stored for either 0, 5, 10 or 15 days are shown here. Data are presented for twenty MG and R tomatoes at harvest or five MG and R tomatoes measured repeatedly during shelf life.

2.3.1. Additional far-red light during cultivation lowered chilling induced pitting in mature green tomatoes during shelf life

MG tomatoes that were not cold stored showed minor pitting development during shelf life (Figure 2A). Pitting was slightly higher for MG tomatoes that were prior cold stored for five days (Figure 2B). Prolonged cold storage (10 and 15 d) resulted in high pitting index values for MG tomatoes at the start of shelf life with lower values for FR50 tomatoes. Remarkably, the pitting index decreased during shelf life, irrespective of light treatment. Following prolonged cold storage, the pitting index values during shelf life were always lower for FR50 compared to FR0 tomatoes (Figure 2C, D).

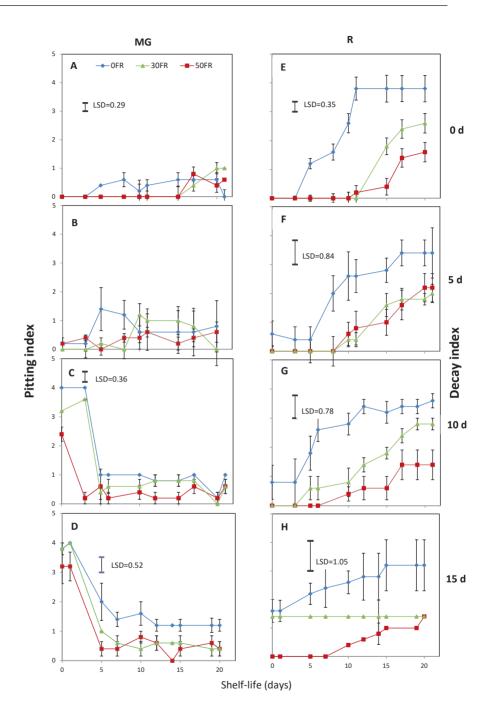


Figure 2. Pitting index for mature green (MG) harvested and decay index for red (R) harvested tomatoes during shelf life expressed for three light treatments: without (FR0) and with either 30 (FR30) or 50 μ mol m-2 s-1 (FR50) additional FR light. The average pitting index with indicated standard error is shown for

five MG tomatoes during shelf life at 20 °C (A) and after a cold storage at 4 °C for 5 d (B), 10 d (C) or 15 d (D). The average decay index with indicated standard errors is shown for five R tomatoes during shelf life at 20 °C (E) and after a cold storage at 4 °C for 5 d (F), 10 d (G) or 15 d (H). LSD values (P < 0.05) are indicated per plot. Absence of LSD bars is indicative of no significant differences between light treatments.

2.3.2. Additional far-red light during cultivation lowered chilling induced decay in red tomatoes during shelf life

With no cold storage applied, the decay index for R tomatoes started to increase after 5 d of shelf life in tomatoes cultivated with no additional far-red light (FR0) whereas the first decay symptoms for tomatoes cultivated with far-red light started after ten days (Figure 2E, F). Red tomatoes that were prior cold stored for 10 d and cultivated at the highest far-red intensity (FR50) showed consistently lower decay values during shelf life (Figure 2G). The longest cold storage duration (15 d) resulted in no decay for FR50 tomatoes while FR0 and FR30 R tomatoes started with decay index values between 1 and 2 at the start of shelf life. These FR50 lighted R tomatoes showed the first signs of decay only after seven days (Figure 2H).

2.3.3. Tomatoes grown with additional far-red light during cultivation showed lower weight loss during shelf life

Small differences in weight loss behaviour were encountered between MG and R tomatoes during shelf life. The longer the cold storage, the higher the weight loss at the start of shelf life (P < 0.001), independent of the maturity stage at harvest. Lower weight loss for FR50 tomatoes was already present at day 10 for 15 d cold stored MG and R tomatoes (data not shown). In all cases tomatoes cultivated with no additional far-red lighting (FR0) showed the highest average weight loss during shelf life. In almost all cases tomatoes cultivated at the highest far-red intensity (FR50) showed the lowest average weight loss during shelf life. Differences in weight loss for tomatoes cultivated at FR0 and FR50 became larger when the cold storage duration was longer (Figure 3A-D).

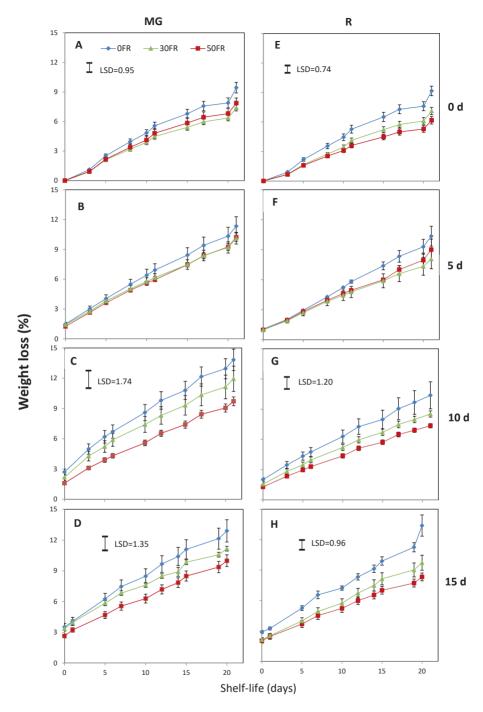


Figure 3. Weight loss of mature green (MG) and red (R) tomatoes during shelf life expressed for three light treatments: without FR (FR0) and with either 30 (FR30) or 50 μ mol m⁻² s⁻¹ (FR50) additional FR light. Average weight loss with indicated standard errors is shown for 20 MG tomatoes during shelf life

at 20 °C (A) and five MG tomatoes after cold storage at 4 °C for 5 d (B), 10 d (C) or 15 d (D). The average weight loss with indicated standard error is shown for five R tomatoes during shelf life at 20 °C (E) and five R tomatoes after cold storage at 4 °C for 5 d (F), 10 d (G) or 15 d (H). LSD values (P < 0.05) are indicated per plot. Absence of LSD bars is indicative of no significant differences between light treatments.

2.3.4. Additional far-red light during cultivation showed faster colour development for prior cold stored mature green tomatoes during shelf life

All MG tomatoes showed normal red colouration (NAI values) and green colour loss (NDVI values) at the end of shelf life, irrespective of the light treatment and duration of cold storage (Figure 4A-D). At harvest and during cold storage no differences in NAI and NDVI values between light treatments were observed for both MG and R tomatoes (data not shown). However, red colour development was faster for MG tomatoes that were prior cold stored for 10 and 15 d cultivated at the highest FR intensity (FR50) (Figure 4C,D). No clear red and green colour change was observed for R tomatoes during shelf life, but the longer the prior cold storage, the lower the NAI values at the start of shelf life (P < 0.001) (Figure 4E-H). MG tomatoes showed lower NAI values at the end of shelf life when the prior cold storage period was longer (Figure 4A-D, P < 0.001). Longer cold storage resulted in lower NDVI values (P < 0.001) at the start of shelf life period for MG tomatoes (Figure 5A) and lower NAI values (P < 0.001) for R tomatoes (Figure 5B).

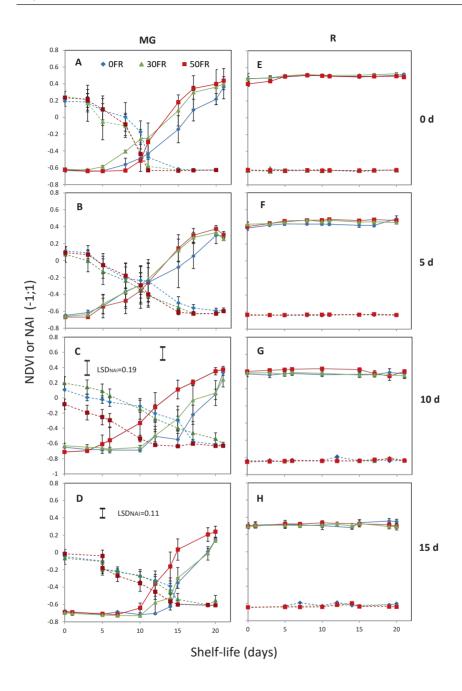


Figure 4. Colour development, expressed as average NAI values (solid lines) and NDVI values (dashed lines) with indicated standard error, during shelf life for mature green (MG) tomatoes and red (R) tomatoes for three light treatments: without FR (FR0) and with either 30 (FR30) or 50 μ mol m⁻² s⁻¹ (FR50) additional FR light. Colour development is shown for five MG tomatoes during shelf life at 20 °C (A) and after cold storage at 4 °C for 5 d (B), 10 d (C) or 15 d (D). The average colour development with

indicated standard errors is shown for five R tomatoes during shelf life at 20 $^{\circ}$ C (E) and after cold storage at 4 $^{\circ}$ C for 5 d (F), 10 d (G) or 15 d (H).

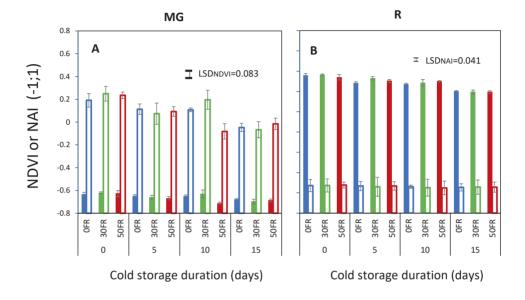


Figure 5. Average NDVI (open bars) and NAI (closed bars) values for five MG (A) and five R (B) tomatoes per cold storage duration. LSD values (P < 0.05) are indicated per plot. Absence of LSD bars is indicative of no significant differences between light treatments.

2.3.5. Additional far-red light during cultivation increased firmness of red tomatoes and delayed softening of MG tomatoes at harvest

Firmness at harvest (Figure 6F, P < 0.001) and at the start of shelf life (Figure 6G-I, P < 0.05) was higher with more additional FR lighting during cultivation. Firmness at harvest for MG tomatoes was unaffected by FR lighting during cultivation (Figure 6A). During cold storage no differences in firmness between light treatments were observed for both MG and R tomatoes (data not shown). However, longer cold storage decreased the firmness for both MG (P < 0.001) and R (P < 0.001) tomatoes at the start of the shelf life period, indicative of softening during cold storage (Figure 6). Mature green tomatoes cultivated at the highest FR intensity (FR50) that were not cold stored (0 d) or prior cold stored for a short period (5 d) showed higher firmness values halfway the shelf life period.

Far-red cultivation affected both tomato colour and firmness development. MG tomatoes cultivated at the highest far-red intensity (FR50) initiated colour development when fruit were firmer compared to the other light treatments. This effect was strongest for non-cold stored MG tomatoes (Figure 7A-D).

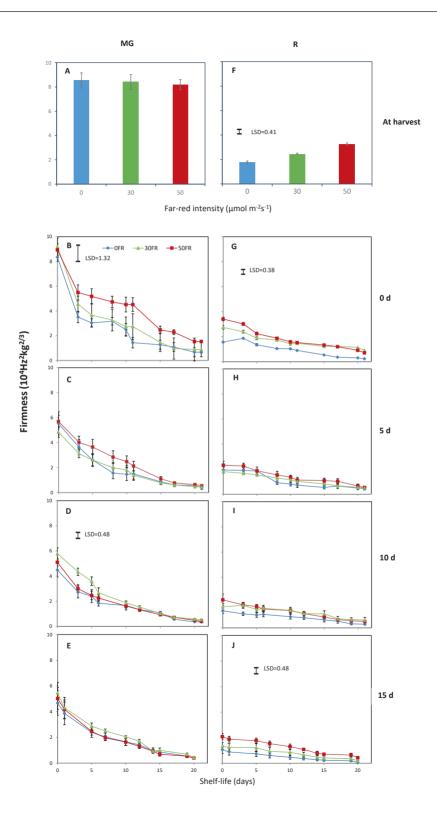


Figure 6. Firmness development during shelf life for mature green (MG) tomatoes and red (R) tomatoes for three light treatments: without (FR0) and with either 30 (FR30) or 50 μ mol m² s¹ (FR50) additional FR light. The average firmness with indicated standard error is shown for twenty MG tomatoes at harvest (A) and five MG tomatoes during shelf life at 20 °C (B) and after cold storage at 4 °C for 5 d (C), 10 d (D) or 15 d (E). The average firmness with indicated standard error is shown for twenty R tomatoes at harvest (F) and five R tomatoes during shelf life at 20 °C (G) after cold storage at 4 °C for 5 d (H), 10 d (I) or 15 d (J). LSD values (P < 0.05) are indicated per plot. Absence of LSD bars is indicative of no significant differences between light treatments.

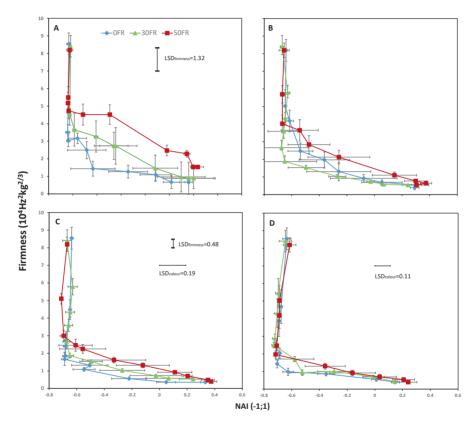


Figure 7. Firmness and colour synchronisation during shelf life for mature green (MG) tomatoes for three light treatments: without (FR0) and with either 30 (FR30) or 50 μ mol m-2 s-1 (FR50) additional FR light. Average firmness and colour values with indicated standard error are shown for five MG tomatoes during shelf life at 20 °C (A) and after cold storage at 4 °C for 5 d (B), 10 d (C) or 15 d (D). LSD values (P < 0.05) are indicated per plot. Absence of LSD bars is indicative of no significant differences between light treatments.

2.4. Discussion

2.4.1. Cold storage impairs lycopene synthesis and causes lycopene breakdown in 'Moneymaker' tomatoes

Non-destructively measured NAI and NDVI values are closely related to destructively measured lycopene and chlorophyll levels in the tomato pericarp, respectively (Schouten et al., 2014). Cold storage was shown to lower NAI values and induce lycopene degradation (Farneti et al., 2012). Longer cold storage resulted in lower NAI values at the start of shelf life for R tomatoes (Figure 5B). This indicates that lycopene degradation took place during cold storage. Another indication that lycopene degradation took place is that the synchronisation between lycopene synthesis (as indicated by the NAI values) and chlorophyll degradation (NDVI values) was affected by the cold treatments as faster red colour development was not accompanied by faster chlorophyll breakdown (Figure 4B-D). Lycopene might be involved in ROS scavenging to maintain a favourable oxidative status and prevent loss of membrane integrity (Lado et al., 2015a; 2016). All MG green tomatoes developed red colour during shelf life with no blotchiness, even after 15 d of prior cold storage (Figure 4D), contrary to what was found by Biswas et al. (2014). However, longer cold storage resulted in lower NAI values reached after 20 d of shelf life for MG tomatoes (Figure 4A-D). This might indicate lycopene precursor breakdown during cold storage (Schouten et al., 2014). This would indicate that cold stored 'Moneymaker' tomatoes suffer from both lycopene precursor breakdown and lycopene breakdown, and are therefore quite sensitive to cold storage with regard to colour behaviour.

2.4.2. Additional FR light during cultivation might induce cold tolerance due to increased cuticle wax biosynthesis

Cozmuta et al. (2016) reported that red tomatoes, exposed to one month of postharvest FR lighting at 10 °C, showed higher firmness, less weight loss and lower levels of mould and yeasts due to FR induced cuticle wax biosynthesis. This resulted in a tighter cuticle-wax adhesion and enhanced barrier properties against transpiration. This effect of postharvest FR lighting on wax features might also be present in tomatoes grown with additional FR. R tomatoes were firmer at harvest if they had received additional FR lighting (Figure 4F). In addition, the decay index (Figure 4A-D) and weight loss (Figure 3A-D) during shelf life were also lower in FR treated fruit. Although firmness at harvest for MG tomatoes was not affected by FR lighting (Figure 6A), high pitting index values were observed after longer (10 and 15 d) periods of cold storage (Figure 2C, D). Remarkably, most of the pitting disappeared after 5 d of shelf life resulting in lower pitting index values for FR lighted tomatoes. Surface pitting is caused by collapse of parenchymal cells (Wang, 1990) that might be masked by increased wax biosynthesis (Cozmuta et al., 2016).

2.4.3. Cold tolerance induced by additional FR light during cultivation might benefit long tomato supply chains

Faster red colour development was observed after longer storage periods for MG tomatoes subjected to preharvest FR lighting. At the same time, less softening was found for preharvest FR lighted MG tomatoes that were either non-stored or only shortly cold stored (Figure 6A, B). This indicates that FR during cultivation affected the colour-firmness synchronization (Schouten et al., 2007; Biswas et al., 2014) of MG tomatoes during shelf life, that persisted even after 15 d of prior cold storage (Figure 7A-D). Faster red colouring due to lycopene synthesis was found for grapefruit grown inside the tree canopy (Lado et al., 2015b) which is characterised by a lower R/FR ratio (Casal, 2013). This phenomenon was also found when grapefruit where bagged during cultivation due to an accelerated chloroplast to chromoplast transition without upregulation of carotenoid genes (Lado et al., 2015b). Fruit-localized phytochromes might be involved in the colour-firmness synchronisation for MG tomatoes. Alba et al. (2000) found that light-induced accumulation of lycopene in tomato is regulated by phytochromes that do not affect pericarp softening.

FR lighting during cultivation not only increases fruit yield (Kalaitzoglou et al., 2019) but also increased cold tolerance of both MG and R tomatoes. MG tomatoes cultivated at higher FR intensities showed less pitting (Figure 2) and less weight loss (Figure 3) during shelf life. This indicates that preharvest FR lighting for MG tomatoes would benefit tomato supply chains that include long distance transport at low temperatures. For R tomatoes, FR light during cultivation resulted in higher firmness at harvest (Figure 6F), less decay (Figure 2E-H) and less weight loss (Figure 3E-H) during shelf life. This would benefit long distance transport at cold temperatures also for R tomatoes. FR lighting during cultivation might favour export as tomatoes would better withstand refrigeration during handling, transport and storage (Wang, 1994). For example, Indonesia has a tomato production surplus of about 400.000 tons (FAO, 2019), but exports only a fraction of this amount (Kementan RI, 2014) because of a lack of proper temperature management during transport (Kusumaningrum et al., 2015).

2.5. Conclusion

The aim of the research was to find out whether additional FR lighting during cultivation improves cold tolerance of R and MG tomatoes. Tomato plants received different levels of FR light during cultivation; were subsequently stored for different periods at 4 °C and thereafter chilling injury symptoms were studied during shelf life at 20 °C. Additional FR light during cultivation resulted in faster red colour development for prior long cold stored MG tomatoes, and less softening for prior short or non-cold stored MG tomatoes during shelf life. In addition, MG tomatoes showed less weight loss and less pitting during shelf life with additional FR during cultivation. For R tomatoes, additional FR light during cultivation resulted in higher firmness at harvest, less weight loss and less decay during shelf life. Taken together, these results show that FR light, applied during cultivation, induced cold tolerance in both MG and R tomatoes during cold storage. This might be caused by FR induced cuticle wax biosynthesis

with lycopene acting as antioxidant during cold storage. FR lighting during tomato cultivation might have an important role in facilitating long distance transport at low temperatures.

Acknowledgements

F.Y Affandi acknowledges the Indonesian Endowment Fund for Education (LPDP) for financial support during his PhD degree. This research is part of the 'LED it be 50%' programme and is supported by LTO Glaskracht, Nunhems (BASF), Rijk Zwaan, Signify, WUR Greenhouse Horticulture and the Netherlands Organisation for Scientific Research (NWO), and which is partly funded by the Dutch Ministry of Economic Affairs. We also thank BSc student Inge Derks for helping during the experiment.

References

- Aghdam, M.S., Bodbodak, S., 2014. Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables. Food and Bioprocess Technology7, 37-53. https://doi.org/10.1007/s11947-013-1207-4.
- Biswas, P., East, A.R., Hewett, E.W., Heyes, J.A., 2017. Chilling injury in tomato fruit. In: Janick, J. (Ed.), Horticultural Reviews. John Wiley and Sons Inc., Hoboken, pp. 229–278.
- Biswas, P., East, A., Hewett, E., Heyes, J., 2014. Interpreting textural changes in low temperature stored tomatoes. Postharvest Biology and Technology. 87, 140–143. https://doi.org/10.1016/j.postharvbio.2013.08.018.
- Biswas, P., East, A.R., Brecht, J.K., Hewett, E.W., Heyes, J.A., 2012. Intermittent warming during low temperature storage reduces tomato chilling injury. Postharvest Biology and Technology. 74, 71-78. https://doi.org/10.1016/j.postharvbio.2012.07.002.
- Casal, J. J., 2013. Photoreceptor signaling networks in plant responses to shade. Annual Review of Plant Biology 64, 403-427. https://doi.org/10.1146/annurev-arplant-050312-120221.
- Cozmuta, M.A., Cozmuta, L.M., Peter, A., Nicula, C., Vosgan, Z., Giurgiulescu, L., Vulpoi, A., Baia, M., 2016. Effect of monochromatic Far-Red light on physical-nutritional-microbiological attributes of red tomatoes during storage. Scientia Horticulturae. 211, 220-230. https://doi.org/10.1016/j.scienta.2016.08.031.
- Ding, C.-K., Wang, C.Y., Gross, K.C., Smith, D.L., 2001. Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate. Plant Sci. 161, 1153-1159. https://doi.org/10.1016/S0168-9452(01)00521-0.
- Ding, Y., Sheng, J., Li, S., Nie, Y., Zhao, J., Zhu, Z., Wang, Z., Tang, X., 2015. The role of gibberellins in the mitigation of chilling injury in cherry tomato (*Solanum lycopersicum L.*) fruit. Postharvest Biology and Technology. 101, 88–95. https://doi.org/10.1016/j. postharvbio.2014.12.001.

- FAO, 2019. Food and agriculture data. http://www.fao.org/faostat/en/#data/QC. (accessed March 2019).
- Farneti, B., Alarcón, A.A., Papasotiriou, F.G., Samudrala, D., Cristescu, S.M., Costa, G., Harren, F.J.M., Woltering, E.J., 2015. Chilling-Induced Changes in Aroma Volatile Profiles in Tomato. Food and Bioprocess Technology, 1442-1454. https://doi.org/10.1007/s11947-015-1504-1.
- Farneti, B., Schouten, R.E., Woltering, E.J., 2012. Low temperature-induced lycopene degradation in red ripe tomato evaluated by remittance spectroscopy. Postharvest Biology and Technology. 73, 22–27. https://doi.org/10.1016/j.postharvbio.2012.05.008.
- Hodges, D. M., Lester, G.E., Munro, K.D., Toivonen, P.M., 2004. Oxidative stress: importance for postharvest quality. HortScience. 39, 924-929. https://doi.org/10.21273/HORTSCI.39.5.924.
- Gärtner. W., Stahl, W., Sies, H., Lycopene is more bioavailable from tomato paste than from fresh tomatoes. 1997. American Journal of Clinical Nutrition, 66,116–122. https://doi.org/10.1093/ajcn/66.1.116.
- Kalaitzoglou, P., Van Ieperen, W., Harbinson, J., van der Meer, M., Martinakos, S., Weerheim, K., Nicole, C., Marcelis, L. 2019. Effects of continuous or end-of-day far-red light on tomato plant growth, morphology, light absorption and fruit production. Frontiers in Plant Science, in press. doi:10.3389/fpls.2019.00322.
- Kementan RI (Ministry of agriculture Republic of 3Indonesia), 2014. Outlook komoditi tomat. http://epublikasi.setjen.pertanian.go.id/epublikasi/outlook/2014/outlook_horti/06Tomat 2014/files/assets/downloads/publication.pdf (accessed March 2019).
- Kusumaningrum, D., S.-H. Lee, W.-H. Lee, C. Mo, B.-K. Cho. 2015. A review of technologies to prolong the shelf life of fresh tropical fruits in Southeast Asia. Journal of Biosystem Engineering, 40, 345-358. https://doi.org/10.5307/JBE.2015.40.4.345.
- Lado, J., Rodrigo, M.J., Cronje, P., Zacarías, L., 2015a. Involvement of lycopene in the induction of tolerance to chilling injury in grapefruit. Postharvest Biology and Technology, 100, 176–186. https://doi.org/10.1016/j.postharvbio.2014.10.002.
- Lado, J., Cronje, P., Alquézar, B., Page, A., Manzi, M., Gómez-Cadenas, A., Stead, A.D., Zacarías, L., Rodrigo, M.J., 2015b. Fruit shading enhances peel color, carotenes accumulation and chromoplast differentiation in red grapefruit. Physioligia Plantarum, 154, 469-484. https://doi.org/10.1111/ppl.12332.
- Lado, J., Rodrigo, M.J., López-Climent, M., Gómez-Cadenas, A., Zacarías, L., 2016. Implication of the antioxidant system in chilling injury tolerance in the red peel of grapefruit. Postharvest Biology and Technology, 111, 214–223. https://doi.org/10.1016/j.postharvbio.2015.09.013.
- Luengwilai, K., Beckles, D.M., Saltveit, M.E., 2012. Chilling-injury of harvested tomato (*Solanum lycopersicum* L.) cv. Micro-Tom fruit is reduced by temperature pre-treatments. Postharvest Biology and Technology, 63, 123-128. https://doi.org/10.1016/j.postharvbio.2011.06.017.

- Lurie, S., Crisosto, C.H., 2005. Chilling injury in peach and nectarine. Postharvest Biology and Technology, 37, 195–208. https://doi.org/10.1016/j.postharvbio.2005.04.012.
- Malacrida, C., Valle, E.M., Boggio, S.B., 2006. Postharvest chilling induces oxidative stress response in the dwarf tomato cultivar Micro-Tom. Physiologia Plantarum, 127, 10-18. https://doi.org/10.1111/j.1399-3054.2005.00636.x.
- Schouten, R.E., Huijben, T.P., Tijskens, L.M.M., van Kooten, O., 2007. Modelling quality attributes of truss tomatoes: linking colour and firmness maturity. Postharvest Biology and Technology, 45, 298-306. https://doi.org/10.1016/j.postharvbio.2007.03.011.
- Schouten, R.E., Farneti, B., Tijskens, L.M.M., Alarcón, A.A., Woltering, E.J., 2014. Quantifying lycopene synthesis and chlorophyll breakdown in tomato fruit using remittance VIS spectroscopy. Postharvest Biology and Technology, 96, 53-63. https://doi.org/10.1016/j.postharvbio.2014.05.007.
- Schouten, R.E., Fan, S., Verdonk, J.C., Wang, Y., Kasim, N.F.M., Woltering, E.J., Tijskens, L.M.M., 2018. Mango firmness modeling as affected by transport and ethylene treatments. Frontiers in Plant Science, 9, 1647. https://dx.doi.org/10.3389%2Ffpls.2018.01647.
- Schotte, S., De Belie, N., De Baerdemaeker, J., 1999. Acoustic impulse-response technique for evaluation and modelling of firmness of tomato fruit. Postharvest Biology and Technology, 17, 105-115. https://doi.org/10.1016/S0925-5214(99)00041-1.
- Shewfelt, R. and Del Rosario, B., 2000. The role of lipid peroxidation in storage disorders of fresh fruits and vegetables. HortScience 35. 575-579. https://doi.org/10.21273/HORTSCI.35.4.575.
- Stahl, W., Sies, H. 2003. Antioxidant activity of carotenoids. Molecular Aspects of Medicine, 24, 345-351. https://doi.org/10.1016/S0098-2997(03)00030-X.
- Vega-García, M. O., López-Espinoza, G., Ontiveros, J. C., Caro-Corrales, J. J., Vargas F. D., and. López-Valenzuela, J. A., 2010. Changes in Protein Expression Associated with Chilling Injury in Tomato Fruit. Journal of the American Society for Horticultural Science, 135, 83-89. https://doi.org/10.21273/JASHS.135.1.83.
- Wang, C.Y., 1990. Chilling Injury of Horticultural Crops. CRC Press, Boca Raton, FL, pp. 74.
- Wang, C. Y., 1994. Chilling injury of tropical horticultural commodities. HortScience. 29, 986-988. https://doi.org/10.21273/HORTSCI.29.9.986.
- Wang, F., Guo, Z., Li, H., Wang, M., Onac, E., Zhou, J., Xia, X., Shi, K., Yu, J., Zhou, Y., 2016.
 Phytochrome A and B Function Antagonistically to Regulate Cold Tolerance via Abscisic Acid-Dependent Jasmonate Signaling. Plant Physiology, 170, 459-471.
 https://dx.doi.org/10.1104%2Fpp.15.01171.

- Zhang, Y., Zhang, Y., Yang, Q., Li, T., 2019. Overhead supplemental far-red light stimulates tomato growth under intra-canopy lighting with LEDs. Journal of Integrative Agriculture 17, 62–69. https://doi.org/10.1016/S2095-3119(18)62130-6.
- Zhang, Y., Jin, P., Huang, Y., Shan, T., Wang, L., Li, Y., Zheng, Y., 2016. Effect of hot water combined with glycine betaine alleviates chilling injury in cold-stored loquat fruit. Postharvest Biology and Technology. 118, 141–147. https://doi.org/10.1016/j.postharvbio.2017.11.012.

Additional blue light during cultivation induces cold tolerance in tomato fruit, but only to an optimum

Affandi, F.Y., Prayoga, T., Ouzounis, T., Giday, H., Verdonk, J.C., Woltering, E.J., Schouten, R.E.

Abstract

We examined the role of preharvest blue LED lighting (BL) to induce postharvest cold tolerance in 'Foundation' tomatoes. Blue and red supplemental LED light was applied to achieve either 0, 12, or 24% additional BL (0B, 12B, and 24B). Mature green (MG) or red (R) tomatoes were harvested and cold stored at 4 °C for 0, 5, 10, 15 and 20 d and thereafter stored for 20 d at 20 °C (shelf life). Chilling injury (CI) indices, colour, firmness, hydrogen peroxide, malondialdehyde, ascorbic acid and catalase activity were characterised during storage and shelf life. R fruits harvested from the 12B lighting showed increased loss of red colour during chilling and showed less CI symptoms during subsequent shelf life than R fruit from other light treatments. This indicates that R fruit from 12B acquired increased cold tolerance. MG-tomatoes showed no CI symptoms, regardless of the preharvest lighting. No effects of light treatments were found on the antioxidant capacity indicators of both tomatoes. The red colour, as measured by remittance VIS spectroscopy, is closely related to the lycopene concentration. We hypothesize that lycopene present in 12B tomatoes, compared to that of the other BL treatments, is a more efficient antioxidant, mitigating CI.

3.1. Introduction

Tomato (*Solanum lycopersicum* L.) is one of the most popular consumer fruits often stored at low temperature to extend shelf life. Unknown to many consumers and producers, tomato is a cold-sensitive fruit that suffers from chilling injury (CI). Exposure to temperatures below 12 °C followed by storage at higher temperatures will result in reduced keeping quality, reduced flavour life and negative consumer appreciation (Biswas et al., 2012; Farneti et al., 2015). CI is caused by a sequence of events, starting with an increase in cell membrane micro viscosity, followed by increases in reactive oxygen species (ROS) causing further membrane malfunctioning (lipid peroxidation), protein oxidation, enzymatic activity inhibition and, finally, damage occurring to DNA and RNA (Sevillano et al., 2009).

Cold tolerance in tomato is mainly determined by the antioxidant capacity (Aghdam and Bodbodak, 2014). The extent of oxidative stress can be indicated by the level of malondialdehyde (MDA) which is a product of membrane lipid peroxidation (Hodges et al., 1999). Ascorbic acid (AsA), catalase (CAT) are part of the antioxidant system in tomato (Imahori et al., 2016) and are known to scavenge H₂O₂, a major ROS with a long half-life (Foyer and Noctor, 2011). One of tomato CI symptoms is lycopene degradation in red ripe tomato which does not only reduce tomato nutritional value, but also decreases its visual quality (Schouten et al., 2007). Furthermore, lycopene is considered the most efficient quencher of ROS among carotenoids (Stahl and Sies, 2003).

Recently, the role of far-red LED lighting during cultivation to induce chilling tolerance was examined. In prior long cold stored MG-tomatoes cultivated with additional far-red LED light, reduced weight loss, less pitting and faster red colour development during shelf life was observed. Red harvested tomatoes, cultivated with additional far-red, light were firmer at harvest, showed reduced weight loss and less decay during shelf life after prior cold storage (Affandi et al., 2020). Far-red LED light (non-photosynthetically active radiation) during cultivation therefore induces postharvest cold tolerance in tomato. Our aim was to investigate whether photosynthetically active radiation during cultivation is also able to induce chilling tolerance.

In strawberry, blue light (BL) illumination during postharvest storage increased the activity of antioxidant enzymes as well as the content of antioxidants such as AsA and tocopherol (Xu et al., 2014). We hypothesized that the addition of BL during tomato cultivation induces higher antioxidant capacity to protect tomato fruit against chilling induced oxidative stress. We show that supplemental BL light, up to an optimum, induced chilling tolerance in red harvested tomatoes.

3.2. Materials and methods

3.2.1. Plant material and growth conditions

Tomato (*Solanum lycopersicum* 'Foundation') seeds were sown on November 20th, 2016. Fourteen days after germination, uniform seedlings were transplanted. On February 10, 43 d after sowing, plants (34 cm tall) were transferred to the experimental glasshouse compartment of Wageningen University, the Netherlands, and treatments started. Plants were grown on rockwool slabs in a double row 'high wire' system. Climate set points were as follows: temperature 22/16 °C (day/night) and a relative humidity of 78%. The plants were irrigated with a nutrient solution (12.4 mM NO₃-, 7.2 mM K+, 4.1 mM Ca²⁺, 3.3 mM SO₄-, 1.8 mM Mg²⁺, 1.2 mM NH₄+, 1.1 mM PO₄-, 30 μ M BO₃-, 25 μ M Fe³⁺, 10 μ M Mn²⁺, 5 μ M Zn²⁺, 0.75 μ M Cu⁺, and 0.5 μ M MoO₄-; Yara Benelux B.V., Vlaardingen, Netherlands). Electrical conductivity (2.1 dS m⁻¹) and pH (5.5) of the irrigation solution were monitored and adjusted daily. Further details of the greenhouse management are described in Kaiser et al. (2019).

3.2.2. Light treatments

Three combinations of blue and red supplemental light were obtained by combining several LED light sources, resulting in 0, 12, and 24% additional BL in a red-light background (referred to as 0B, 12B, and 24B) while keeping the total photosynthetically active radiation constant. Overhead supplemental lighting was provided by Greenpower PM-B150LO, Greenpower TL-DRBLBHO and Greenpower TLDRBMBHO modules (Philips, Eindhoven, the Netherlands) and intracanopy lighting was provided by Greenpower PMB150LO, Greenpower PM-DR150 and Greenpower interlighting DR/B modules (Philips). Once plants reached a threshold distance below overhead LED (38 cm), their stems were lowered weekly to keep their apices at a constant distance from the lamps. Overhead and intracanopy lamps were switched on 16 h before sunset, and switched off at sunset. Additionally, lamps were switched off when global radiation outside the greenhouse exceeded 450 W m⁻², and switched on when below 250 W m⁻². All side walls of the greenhouse compartment were closed off using a reflective screen, to prevent light pollution from neighbouring compartments. Light treatments were separated by white/black/white double plastic screens. Further details of the light treatments are provided in Kaiser et al. (2019).

3.2.3. Fruit selection, storage conditions and sample preparation

Sufficiently large and uniform coloured mature green (MG) and red (R) tomato fruits from all light treatments were harvested on June 19, 2017. Directly after harvest, tomatoes were randomly assigned for destructive or non-destructive analysis. The effect of the light treatments at harvest was characterised by randomly selecting 25 MG and 25 R-tomatoes per light treatment. Five randomly assigned tomatoes per light treatment and maturity stage were taken for non-destructive measurements during shelf life after dark storage for either 0, 5, 10, 15 or 20 d at 4 °C, in total 75 MG and 75 R-tomatoes. Five randomly assigned tomatoes per light treatment and maturity stage were taken for destructive analysis, four times during cold

storage. Tomatoes were dark stored for either 0, 5, 10 or 20 d at 4 °C, in total 240 MG and 240 R-tomatoes.

All tomatoes were marked on two positions on the equator for repeated colour and firmness measurements over time on the same tomatoes approximately every two days during shelf life. In addition, fresh weight and three chilling indices were assessed approximately at the same interval. Individual fruits, assigned for destructive measurements, were cut into small pieces and quickly frozen in liquid nitrogen and later ground to a fine powder for chemical analyses.

3.2.4. Colour and firmness measurements

Colour was assessed non-destructively by a hand-held photodiode array spectrophotometer (Pigment Analyzer PA1101, CP, Germany). Remittance was assessed at 570 (R570) and 780 (R780) nm by calculating the normalised anthocyanin index (NAI) (Eq. 1) which is normalized value between –1 and 1 (Schouten et al., 2014).

$$NAI = \frac{R780 - R570}{R780 + R570} \tag{1}$$

Non-destructive stiffness was measured using a commercial acoustic firmness tester (AFS, AWETA, Nootdorp, the Netherlands) with the tick power of the plunger set to 15. The AFS combines the single tomato resonant frequency (f in Hz) and mass (m, in kg), measured by an inbuild balance, into a FI (firmness index, Eq. 2) (Schouten et al., 2018).

$$FI = \frac{f^2 m^{2/3}}{10^4} \tag{2}$$

3.2.5. CI indices and weight loss

CI was assessed by three indices, a pitting index and uneven ripening index in MG-tomatoes, and a decay index in R-tomatoes according to Vega-García et al. (2010) with slight modifications. All indices were visually assessed by the same person with the percentage of the affected tomato surface assigned to five classes (0= no injury, 1 = < 10%, 2 = 11-25%, 3 = 26-40%, 4 = > 40%). Assessments were carried out after randomisation of the samples. Tomato weight loss was expressed as the percentage weight loss over time.

3.2.6. Total ascorbic acid measurement

AsA was measured according to the method by Davey et al. (2003) with modifications. Approximately 300 mg frozen and ground tissue per tomato was extracted with 1.5 mL ice-cold 3.3% meta-phosphoric acid (MPA) and thawed on ice. The solution was vortexed for 20 s and placed in ultrasonic bath at 0 °C for 10 min in darkness. After centrifugation (25000 g, 4 °C, 10 min) 1 mL extract was used for HPLC analysis of AsA. 100 μ l extract was mixed with 50 μ l of 5 mM dithiothreitol (DTT, in 400mM Tris base) for converting dehydroascobic acid (DHA)

into AsA. After 15 minutes incubation in darkness and room temperature, 50 μ l of 8.5% ophosphoric acid was added into the mix to stop the reaction.

The concentration of AsA was analysed using a HPLC equipped with a P580 pump (Dionex, Sunnyvale, CA, USA), a Dionex 340S UV-VIS detector and a MIDAS autosampler (Spark, Emmen, the Netherlands) equipped with a ProntoSIL 120-3 C18 AQ, 250 x 3 mm column (Knauer, Berlin, Germany). The column was eluted at a flow rate of 0.35 ml min⁻¹ with 400 ul L⁻¹ H₃PO4 + 2.5 ml L⁻¹ MeOH + 0.1 mM EDTA in miliQ followed by a wash step with 30% acetonitrile. AsA was detected at 243 nm. The system was calibrated with a standard AsA solution (Sigma Aldrich) prepared in 3% MPA, stabilized with 2.5 mM DTT. Total AsA concentration was calculated as the sum of measured AsA and the AsA converted from DHA.

3.2.7. Catalase (CAT) measurement

Catalase activity was determined according to Nukuntornprakit et al. (2015) with a few modifications. An extraction buffer was made with 50 mM potassium phosphate at pH 7.4, 0.1 mM EDTA and 1% Triton X-100. Five hundred milligram frozen and ground tissue per tomato was homogenized with 1 mL extraction buffer at 4 °C, then centrifuged (21.100 g, 4 °C, 15 min) and 0.1 mL supernatant was added to 2.9 mL of reaction mixture. Reaction mixture consisted of 50 mM potassium phosphate at pH 7.0 with 15 mM H₂O₂ and 0.1 mM EDTA. The decrease in absorbance was measured for 10 min at 240 nm (25 °C) with a Varian CARY 4000 spectrophotometer (Agilent, Santa Clara, USA). One enzymatic unit (U) is defined as 0.01 absorbance decrease per minute and CAT activity expressed as U min⁻¹ g fresh weight⁻¹.

3.2.8. Hydrogen peroxide (H2O2) measurement

 $\rm H_2O_2$ was quantified via a colorimetric method, following Junglee et al. (2014). Briefly, 300 mg sample frozen and ground tissue per tomato was extracted in 3 mL of 0.75 mL 0.1% (w/v) trichloroacetic acid (TCA), 0.75 mL 10 mM PBS (pH 7) and 1.5 mL 1 M KI. The homogenate was centrifuged (15.000 g, 4 $^{\rm o}$ C, 15 min) and the supernatant held for 20 minutes, before obtaining the absorbance at 390 nm using a Varian CARY 4000 spectrophotometer. The absorbances were converted into $\rm H_2O_2$ concentrations based on linear calibration curve.

3.2.9 Malondialdehyde (MDA) measurement

MDA was quantified via the thiobarbituric acid reactions (TBARS) method according to Zhang et al. (2016). Three hundred mg frozen tissue per tomato was homogenised with 0.9 mL 1% (w/v) TCA and centrifuged (10.000 g, 4 °C, 5 min). Later 250 μ L supernatant was mixed with 750 μ L of 0.5% thiobarbituric acid in 20% TCA+0.01% butylated hydroxytoluene. The mixture was incubated mixture at 96 °C for 30 minutes and cooled in ice for 5 minutes followed by another centrifugation (10000 g, 4 °C, 5 min) only to clarify suspension. Absorbance was determined at 532 nm and 600 nm for non-specific absorbance using an MDA molar extinction coefficient of 155 mmol L⁻¹ cm⁻¹ (Zhao et al., 2009).

3.2.10. Statistical analysis

Data measured at harvest were subjected to two-way ANOVA (P < 0.05) with either cold storage duration and light treatment or maturity and light treatment as factors. Data obtained during shelf life was subjected to mixed ANOVA, using SPSS 21 (SPSS, Chicago, USA) at P < 0.05. Mixed ANOVA was applied with light treatment and cold duration as between subject factors and shelf life days as within subject factor. Normality of the variables was tested applying the Shapiro-Wilk test. Mauchly's test of sphericity was carried out to test whether variances of the differences between all possible pairs of within-subject conditions were equal. If the sphericity assumption was not fulfilled, Greenhouse-Geisser's correction was applied to calculate the degrees of freedom. In case of a significant interactions, a pairwise comparison was carried out for each shelf life day with LSD (Least Significant Difference) values estimated.

3.3. Results

3.3.1. Effect of light treatments on CI in R and MG fruit

Increased chilling duration resulted in a higher decay index for R-tomatoes at the start of shelf life (P < 0.001) and overall higher decay index values during shelf life (Figure 1). Severe decay occurred in R-tomatoes after a shelf life of 20 d when prior cold-stored for 20 d. The decay index during shelf life for cold-stored R-tomatoes was consistently lower for 12B cultivated tomatoes compared to the other light treatments (Figure 1B-D). This indicates that chilling tolerance was induced for 12B cultivated R-tomatoes. In MG-tomatoes, chilling symptoms (pitting, uneven coloration) were observed only after 20 d of cold storage with no effects of light treatments (data not shown).

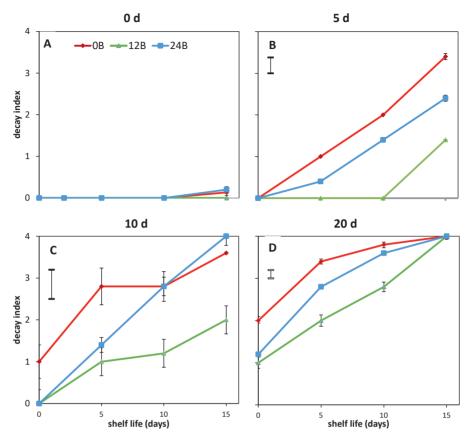
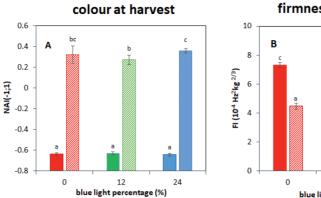



Figure 1. Average decay index with indicated standard error during shelf life (20 °C) for five red (R) tomatoes per cold storage duration. Red, green and blue symbols indicate cultivation at 0, 12 and 24% additional blue light, respectively. Tomatoes were either non-stored (A) or cold-stored at 4 °C for 5 d (B), 10 d (C) or 20 d (D). LSD values, when present, are indicated per panel.

3.3.2. Light treatments affected the colour and firmness at harvest in R-tomatoes

At harvest, R-tomatoes cultivated at 12B, showed lower NAI values compared to tomatoes cultivated at 24B (Figure 2A) and higher FI index values compared to tomatoes cultivated at 0B (Figure 2B). At harvest, no differences in NAI and FI values were observed for MG-tomatoes with regard to the light treatments (Figure 2).

Figure 2. Average colour at harvest (A), expressed as normalised anthocyanin index (NAI) and (B) firmness, expressed as FI index, at harvest of twenty-five MG (solid bars) and R-tomatoes (dashed bars) with indicated standard error, respectively. Colours indicate tomatoes cultivated at 0 (red bars), 12 (green bars) and 24% (blue bars) additional blue light. Different letters in each panel indicate significant differences between light treatment.

3.3.3. Effect of light treatments and cold storage on coloration and softening of MG fruit

Non-chilled MG-tomatoes cultivated at 12B showed a delayed increase in NAI values (Figure 3A) compared to fruit from the other light treatments, but this effect was not observed during shelf life after cold storage (Figure 3B-D). Softening of MG-tomatoes was affected by the cold duration. Longer cold duration resulted in lower firmness at the start of the shelf life period and a lower apparent softening rate during the shelf life. Regardless of the cold storage duration, no effect of BL was observed on the softening in MG-tomatoes during storage and during shelf life (Figure 3E-H). In MG fruit, long cold storage (10 and 20 d) resulted in lower weight loss in fruits cultivated at 12B compared to fruits of the other treatments (Figure 3KL).

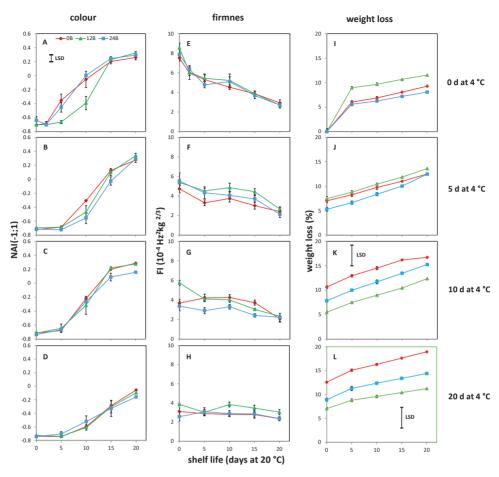


Figure 3. Average colour, firmness and weight loss development of five MG-tomatoes during shelf life at 20 °C after cold storage at 4 °C for 0 d (A,E,I) 5 d (B,F,J), 10 d (C,G,K) or 20 d (D,H,L) with indicated standard error, respectively. Colours indicate tomato cultivation at 0 (red symbols), 12 (green symbols) and 24% (blue symbols) additional blue light. LSD values, when present, are indicated per panel.

3.3.4. Cold stored R-tomatoes showed colour and firmness loss

Non chilled R-tomatoes showed constant NAI values, indicating a constant red colour during shelf life, irrespective of the light treatment (data not shown). Cold stored R-tomatoes showed lower NAI values and lower FI values the longer the duration of cold storage (Figure 4). The loss of red coloration was higher in R-tomatoes cultivated at 12B compared to the other light treatments (Figure 4A). Firmness loss during cold storage was independent of light treatments (P = 0.177, Figure 4B). Longer cold storage duration resulted in lower FI values at the start of the shelf life for R-tomatoes. No difference in softening rate during shelf life was observed for R-tomatoes when the light treatments were compared for all cold storage durations (Figure S1).

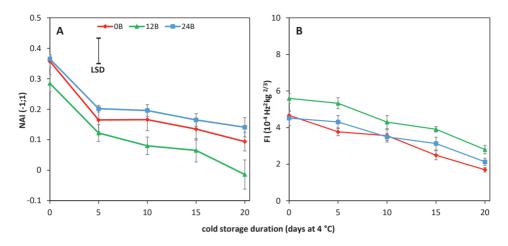


Figure 4. Average colour development, expressed as NAI values (A), and average firmness development, expressed as FI index (B), for five red tomatoes during cold storage (4 °C), with indicated standard error. Red, green and blue symbols indicate cultivation at 0, 12 and 24% additional blue light, respectively. The LSD value in panel A indicates the presence of significant differences between light treatments.

3.3.5. AsA, CAT activity, H₂O₂ and MDA content were unaffected by BL treatments

Total AsA, CAT activity, H₂O₂ and MDA contents at harvest and during cold storage were affected by the maturity at harvest. Significant differences were found between MG and R-tomatoes, with lower AsA (Figure 5A) content in MG-tomatoes compared R-tomatoes at harvest. AsA content in MG-tomatoes increased during cold storage until the same level as in R-tomatoes. Higher CAT activity (Figure 5B) but lower H₂O₂ (Figure 5C) and MDA (Figure 5D) content was observed at harvest and during cold storage for MG compared to R-tomatoes. Levels of these compounds at harvest and during cold storage were not affected by the light treatments. This indicates that the antioxidant status as indicated by these compounds is not affected by the light treatments.

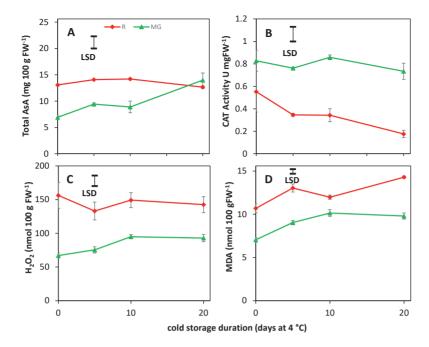


Figure 5. Changes in total AsA (A), CAT activity (B), H_2O_2 (C), and MDA (D) content at harvest and cold storage (4 °C) for fifteen MG (green symbols) and fifteen R-tomatoes (red symbols). Light treatment affects were not significant and therefore values are shown only per maturity. LSD values are indicated per panel.

3.4. Discussion

3.4.1. Cold tolerance might be related to lower lycopene levels at harvest that allow for more lycopene loss for R-tomatoes

Red tomatoes showed a higher loss of red colour when cold stored, with lower NAI values the longer the cold duration, especially for 12B cultivated tomatoes (Figure 4A). Farneti et al. (2012) and Schouten et al. (2014) showed that low temperature induced lycopene degradation in red ripe tomato could be assessed accurately by remittance spectroscopy as NAI values. There was a close relation between the NAI values and lycopene levels measured in the tomato pericarp. This might indicate that the higher cold tolerance for 12B cultivated R fruit (Figure 1) is related to a more pronounced lycopene loss during cold storage, also as no effect of light treatments were observed for AsA, CAT activity, H₂O₂ and MDA levels (Figure 5).

R-tomatoes cultivated at 12B showed higher firmness at harvest compared to 0B (Figure 2B). Higher cold tolerance of 12B R fruit (Figure 1) could be related to the higher firmness at harvest. Increased cold tolerance for R-tomatoes cultivated with additional far red was mainly linked to higher firmness at harvest that resulted in less softening during cold storage (Affandi et al., 2020). However, light treatment effects were not observed during shelf life, regardless of the cold storage duration (Figure S1). Another option is that the higher cold-tolerance for

12B cultivated fruit is linked to the lower red colour at harvest (Figure 2A). This might indicate that 12B R fruit, although having lower lycopene levels at harvest, have an increased ability to lose lycopene during cold storage (Figure 4A). The scavenging activity of lycopene is reported to be inversely correlated with its concentration (Liu et al., 2008; Kotíková et al., 2011) which suggests that more lycopene degradation provides a higher scavenging activity, perhaps due to a higher lycopene accessibility, and thus lower CI symptoms during cold storage. The cultivation of tomatoes with increased cold tolerance through increased lycopene loss during cold storage might, however, not be desirable from both a perceived quality viewpoint (Schouten et al., 2007) and a nutritional viewpoint (Salehi et al., 2019).

3.4.2. Tomato shows high variation in cold tolerance induction pathways

Lower decay values were observed for 12B R-tomatoes, but not for MG-tomatoes at any of the light treatments (Figure 1). 12B MG-tomatoes might have a small increase in chilling tolerance as lower weight loss for long stored fruits was observed (Figure 3KL) and weight loss was previously linked to chilling tolerance (Affandi et al., 2020). Nevertheless, the higher cold tolerance of R-tomatoes cultivated at 12B appears mainly late during tomato development when tomatoes were already red coloured. Analysis of the tomato plants cultivated in this BL experiment showed decreased biomass accumulation for 0B and 24B compared to 12B cultivated plants, likely caused by decreased photosynthetic light use (0B) or lower canopy light interception (24B) (Kaiser et al., 2019). It might be hypothesized that the increased chilling tolerance for 12B cultivated tomatoes is due to increased plant biomass accumulation, but this did not result in higher antioxidant capacity indicators (Figure 5) or higher fruit dry weight percentage (data not shown).

Higher cold tolerance and antioxidant capacity have been linked repeatedly. In red 'Sanibel' tomatoes, lower CAT activity, increased MDA and AsA levels were observed after cold storage for 5 d at 5 °C (Imahori et al., 2016). In the same study, cold storage for 4 d also resulted in increased H₂O₂ levels, but without CI symptoms. Induction of antioxidant related defence pathways was also shown by postharvest dips (Ding et al., 2015) or induction of heat shocks proteins (Luengwilai et al., 2012). MG-tomatoes treated with blue light during postharvest storage showed increased levels of the stress mitigator GABA and delayed colouration (Dhakal and Baek, 2014). GABA application resulted in decreased chilling injury symptoms in banana, and peach (Wang et al., 2014; Aghdam et al., 2016). This indicates multiple options to mitigate CI symptoms in tomato fruit. Our results indicate that the ability to lose lycopene or its accessibility to ROS may have increased cold tolerance. Taken together, this points to significant variation in defence pathways that are activated in response to cold storage. Investigations into gene clusters that are activated in response to cold storage might be the way forward to understand which genotypes or treatments, either applied during cultivation or after harvest, are most suitable to mitigate CI related symptoms in tomato.

3.5. Conclusion

We hypothesized that the addition of BL during tomato cultivation induces higher antioxidant capacity to protect tomato fruit against chilling induced oxidative stress. Chilling tolerance of red harvested tomato fruit was improved only by moderate blue light addition (12%) on top of a red background during cultivation. This improved cold tolerance for R fruit was not due to differences in CAT activity, total ascorbic acid, H₂O₂ and MDA levels, but due to a lower red colour at harvest and faster discolouration during cold storage. The red colour measurement, measured by remittance spectroscopy, is closely related to the lycopene concentration. It is hypothesized that the lower lycopene content of R fruit cultivated at moderate blue light levels allows for more lycopene loss during cold storage, thereby creating higher cold tolerance.

Acknowledgements

F.Y Affandi acknowledges the Indonesian Endowment Fund for Education (LPDP) for financial support during his PhD training. This research was executed within the framework of the Carbon LED project (Carbon footprint reduction via LED based production systems), funded by Climate KIC. We thank Signify for designing the light plan, Nunhems Netherlands for providing the tomato seeds and Joke Oosterkamp for technical assistance. The help of Arjen van de Peppel with the HPLC measurements is highly appreciated.

References

- Affandi, F. Y., Verdonk, J. C., Ouzounis, T., Ji, Y., Woltering, E. J., and Schouten, R. E., 2020. Farred light during cultivation induces postharvest cold tolerance in tomato fruit. Postharvest Biology and Technology, 159, 111019. https://doi.org/10.1016/j.postharvbio.2019.111019.
- Aghdam, M.S., and Bodbodak, S., 2014. Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables. Food and Bioprocess Technology. 7,37-53. http://dx.doi.org/10.1007/s11947-013-1207-4.
- Aghdam, M. S., Naderi, R., Sarcheshmeh, M. A. A., and Babalar, M., 2015. Amelioration of postharvest chilling injury in anthurium cut flowers by γ-aminobutyric acid (GABA) treatments. Postharvest Biology and Technology, 110, 70-76. https://doi.org/10.1016/j.postharvbio.2015.06.020.
- Biswas, P., East, A. R., Brecht, J. K., Hewett, E. W., and Heyes, J. A., 2012. Intermittent warming during low temperature storage reduces tomato chilling injury. Postharvest Biology and Technology, 74, 71-78. https://doi.org/10.1016/j.postharvbio.2012.07.002.
- Davey, M. W., Dekempeneer, E., and Keulemans, J., 2003. Rocket-powered high-performance liquid chromatographic analysis of plant ascorbate and glutathione. Analytical biochemistry, 316, 74-81. https://doi.org/10.1016/s0003-2697(03)00047-2.

- Dhakal, R. and Baek, K.H., 2014. Metabolic alternation in the accumulation of free amino acids and γ-aminobutyric acid in postharvest mature green tomatoes following irradiation with blue light. Horticulture, Environment, and Biotechnology, 55, 36-41. https://doi.org/10.1007/s13580-014-0125-3.
- Ding, Y., Sheng, J., Li, S., Nie, Y., Zhao, J., Zhu, Z., Wang, Z., and Tang, X., 2015. The role of gibberellins in the mitigation of chilling injury in cherry tomato (*Solanum lycopersicum* L.) fruit. Postharvest Biology and Technology, 101, 88-95. https://doi.org/10.1016/j.postharvbio.2014.12.001.
- Farneti, B., Schouten, R.E., and Woltering, E.J., 2012. Low temperature-induced lycopene degradation in red ripe tomato evaluated by remittance spectroscopy. Postharvest Biology and Technology. 73, 22–27. https://doi.org/10.1016/j.postharvbio.2012.05.008.
- Farneti, B., Alarcón, A.A., Papasotiriou, F.G., Samudrala, D., Cristescu, S.M., Costa, G., Harren, F.J.M., and Woltering, E.J., 2015. Chilling-Induced Changes in Aroma Volatile Profiles in Tomato. Food Bioprocess Technology. 8, 1442-1454. https://doi.org/10.1007/s11947-015-1504-1
- Foyer, C. H., and Noctor, G., 2011. Ascorbate and glutathione: the heart of the redox hub. Plant Physiology, 155, 2-18. https://dx.doi.org/10.1104%2Fpp.110.167569.
- Hodges, D. M., DeLong, J. M., Forney, C. F., and Prange, R. K., 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604-611. https://doi.org/10.1007/s0042_50050524.
- Imahori, Y., Bai, J., and Baldwin, E., 2016. Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments. Scientia Horticulturae, 198, 398-406. https://doi.org/10.1016/j.scienta.2015.12.006.
- Junglee, S., Urban, L., Sallanon, H. and Lopez-Lauri, F., 2014. Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide. American Journal of Analytical Chemistry, 5, 730. http://dx.doi.org/10.4236/ajac.2014.511081.
- Kaiser, E., Ouzounis, T., Giday, H., Schipper, R., Heuvelink, E., and Marcelis, L. F., 2019. Adding blue to red supplemental light increases biomass and yield of greenhouse-grown tomatoes, but only to an optimum. Frontiers in plant science, 9. https://doi.org/10.3389/fpls.2018.02002.
- Kotíková, Z., Lachman, J., Hejtmánková, A. and Hejtmánková, K., 2011. Determination of antioxidant activity and antioxidant content in tomato varieties and evaluation of mutual interactions between antioxidants. LWT-Food Science and Technology, 44, 1703-1710. https://doi.org/10.1016/j.lwt.2011.03.015.
- Liu, D., Shi, J., Ibarra, A. C., Kakuda, Y., and Xue, S. J., 2008. The scavenging capacity and synergistic effects of lycopene, vitamin E, vitamin C, and β-carotene mixtures on the DPPH

- free radical. LWT-Food Science and Technology, 41, 1344-1349. https://doi.org/10.1016/j.lwt.2007.08.001.
- Luengwilai, K., Beckles, D. M., and Saltveit, M. E., 2012. Chilling-injury of harvested tomato (*Solanum lycopersicum L.*) cv. Micro-Tom fruit is reduced by temperature pretreatments. Postharvest Biology and Technology, 63, 123-128. https://doi.org/10.1016/j.postharvbio.2011.06.017.
- Nukuntornprakit, O. A., Chanjirakul, K., van Doorn, W. G., and Siriphanich, J., 2015. Chilling injury in pineapple fruit: Fatty acid composition and antioxidant metabolism. Postharvest biology and technology, 99, 20-26. https://doi.org/10.1016/j.postharvbio.2014.07.010.
- Salehi, B., Sharifi-Rad, R., Sharopov, F., Namiesnik, J., Roointan, A., Kamle, M., and Sharifi-Rad, J., 2019. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition, 62, 201-208. https://doi.org/10.1016/j.nut.2019.01.012.
- Schouten, R.E., Huijben, T.P., Tijskens, L.M.M., van Kooten, O., 2007. Modelling quality attributes of truss tomatoes: linking colour and firmness maturity. Postharvest Biology and Technology. 45, 298-306. https://doi.org/10.1016/j.postharvbio.2007.03.011.
- Schouten, R.E., Farneti, B., Tijskens, L.M.M., Alarcón, A.A., and Woltering, E.J., 2014. Quantifying lycopene synthesis and chlorophyll breakdown in tomato fruit using remittance VIS spectroscopy. Postharvest Biology and Technology, 96, 53-63. https://doi.org/10.1016/j.postharvbio.2014.05.007.
- Schouten, R.E., Fan, S., Verdonk, J.C., Wang, Y., Kasim, N.F.M., Woltering, E.J., and Tijskens, L.M.M., 2018. Mango firmness modeling as affected by transport and ethylene treatments. Frontiers in Plant Science, 9, 1-16. https://dx.doi.org/10.3389%2Ffpls.2018.01647.
- Sevillano, L., Sanchez-Ballesta, M. T., Romojaro, F., and Flores, F. B., 2009. Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. Journal of the Science of Food and Agriculture, 89, 555-573. https://doi.org/10.1002/jsfa.3468.
- Stahl, W., and Sies, H., 2003. Antioxidant activity of carotenoids. Molecular aspects of medicine, 24, 345-351. https://doi.org/10.1016/s0098-2997(03)00030-x.
- Vega-García, M. O., López-Espinoza, G., Ontiveros, J. C., Caro-Corrales, J. J., Vargas F. D., and López-Valenzuela, J. A., 2010. Changes in Protein Expression Associated with Chilling Injury in Tomato Fruit. Journal of the American Society for Horticultural Science. 135, 83-89. https://doi.org/10.21273/JASHS.135.1.83.
- Wang, Y., Luo, Z., Huang, X., Yang, K., Gao, S., and Du, R., 2014. Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Scientia Horticulturae, 168, 132-137. https://doi.org/10.1016/j.scienta.2014.01.022.

- Xu, F., Shi, L., Chen, W., Cao, S., Su, X., and Yang, Z., 2014. Effect of blue light treatment on fruit quality, antioxidant enzymes and radical-scavenging activity in strawberry fruit. Scientia Horticulturae, 175, 181-186. https://doi.org/10.1016/j.scienta.2014.06.012.
- Zhang, Y., Jin, P., Huang, Y., Shan, T., Wang, L., Li, Y., and Zheng, Y., 2016. Effect of hot water combined with glycine betaine alleviates chilling injury in cold-stored loquat fruit. Postharvest Biology and Technology. 118, 141–147. https://doi.org/10.1016/j.postharvbio.2016.04.010.

Supplementary materials

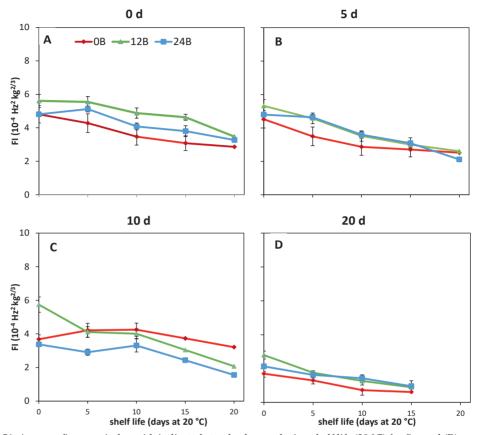


Figure S1. Average firmness index with indicated standard error during shelf life (20 $^{\circ}$ C) for five red (R) tomatoes per cold storage duration. Red, green and blue symbols indicate cultivation at 0, 12 and 24% additional blue light, respectively. Tomatoes were either non-stored (A) or cold-stored at 4 $^{\circ}$ C for 5 d (B), 10 d (C) or 20 d (D). LSD values, when present, are indicated per panel.

Growth temperature affects postharvest quality properties and chilling tolerance of green harvested dwarf tomatoes

Abstract

Effects of cultivation temperature during the phase of flowering and fruit development on tomato quality were investigated. Plants of two dwarf tomato cultivars 'Ponchi Re' and 'Tarzan', were subjected to three different growth temperatures: 16, 22 or 28 °C, starting at the flowering phase. Mature green fruit was harvested and subjected to shelf life at 20 °C for twenty days or first stored at 4 °C for fifteen days, and then placed under shelf life conditions. Fruit quality was determined through red colour development, soluble solid content (SSC), softening, weight loss, and chilling tolerance. Higher cultivation temperature increased development and production of fruit. Deviation from the 22 °C growth temperature led to increased soluble solid content in both cultivar, and smaller fruit diameter in one cultivar. Fruit grown at lower temperature had delayed colour development during shelf life, and this was further delayed by prior cold storage. 'Tarzan' showed more chilling injury (CI) symptoms than 'Ponchi Re'. In our experiment, we show that SSC can be manipulated by cultivation temperature, but that it is not associated with CI tolerance. Delayed colour formation at the lowest growth temperature demonstrated in 'Ponchi Re' tomatoes likely limited the protection lycopene offers against chilling injury (CI). For 'Tarzan' tomatoes, higher firmness at harvest, less softening and lower weight loss during cold storage in fruit from the lowest cultivation temperature likely induced increased membrane integrity, resulting in increased CI tolerance. This indicates that CI incidence depends on growth temperature and is cultivar dependent in dwarf tomato fruit.

4.1. Introduction

Tomato quality is a complex trait, governed by numerous processes at the plant and fruit level, which depend on the interplay between cultural practices, genetic, and environmental factors (Farneti et al., 2013). Tomato fruit quality is determined by colour, texture, flavour, and absence of shrivelling (Gautier et al., 2008). Those quality attributes are represented by lycopene content, firmness, volatile composition, the sugar to acid ratio, and weight loss (Bertin and Génard, 2018). Riga et al. (2008), found tomato quality properties depend more on the cumulative temperature over the course of the last 45 days before harvest than on photosynthetically active radiation (PAR). Growth temperature may also affect chilling tolerance of tomato. Chilling injury (CI) symptoms in tomato fruit are mostly visible during shelf life after prior storage below a certain, non-freezing temperature (Crisosto et al., 1999; Lurie and Crisosto, 2005; Liu et al., 2012; Biswas et al., 2016). Examples of CI symptoms are pitting, shrivelling, mealiness, uneven or delayed ripening, water-soaked areas, and higher susceptibility to bacterial and fungal rot (Ferguson et al., 1999; Lurie and Crisosto, 2005; Biswas et al., 2016). These symptoms considerably lower fruit quality and reduce its market value (Albornoz et al., 2019).

Moderate stresses such as high/low temperature, shortage or excess of water, or stresses related to the intensity and/or quality of light perceived during cultivation, trigger plants to react by initiating immediate protection against the stressor (Sabehat et al., 1998; Neta-Sharir, 2005). Exposing plants to sub-optimal growth temperatures between 10 – 20 °C during seven to ten days induced chilling tolerance in tomato plants (Barrero-Gil et al., 2016); watermelon (Lu et al., 2020) and sweet pepper (Ferguson, 1999). Acquired chilling tolerance in plants exposed to low growth temperature is contributed to expression of C-repeat-binding factors (CBF) genes (Singh et al., 2011). In addition, accumulation of small heat shock proteins (Sabehat et al., 1996, 1998; Luengwilai et al., 2012) and/or abscisic acid (Daie and Campbell, 1981; Wang and Buta, 1994; Chen and Li, 2002) may induce tolerance to low temperatures. Elevated growth temperatures, particularly close to or at harvest, may also induce tolerance to low temperatures in fruits. Cucumber fruit grown at elevated greenhouse temperatures (32 °C) showed improved tolerance to chilling compared to fruit grown at standard growing temperature, due to maintenance of higher firmness and enhanced activity of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) (Kang et al., 2001). Therefore, it seems that deviation from preferred cultivation temperatures increases CI tolerance.

Tomato has become a model crop for both quality and CI research (Campos et al., 2010). Dwarf tomato cultivars offer benefits for studying preharvest to postharvest relations due its compact size, short live cycle, and uniformity of the harvested fruit in terms of age and size (Meissner et al., 1997; Malacrida et al., 2006; Luengwilai et al., 2012; Tao et al., 2014). Mature green (MG) tomatoes are considered more sensitive to CI than red (R) tomatoes (Biswas et al., 2016). CI

symptoms in MG tomatoes may appear as complete colour inhibition after storage > 10 d (Hobson, 1981; Whitaker, 1991; Lurie and Sabehat, 1997). To test the effect of cultivation temperature on tomato quality attributes, we cultivated two dwarf tomato genotypes at three temperatures (16, 22 or 28 °C). The fruit of these plants were analysed for shelf life, with and without prior cold storage on quality properties, such as size, soluble solid content (SSC), colour, firmness, weight loss, and chilling tolerance of green harvested fruit. We show that low growth temperature induced cold tolerance in one of the dwarf tomato cultivars, but we found the opposite in the other cultivar. We discuss physiological mechanisms that might explain how growth temperature affects quality properties and chilling tolerance during cold storage and subsequent shelf life.

4.2. Material and methods

4.2.1. Greenhouse climate conditions

'Ponchi Re' and 'Tarzan' dwarf tomato plants were grown from seeds bought from Prudac (Enkhuizen, The Netherlands) in a greenhouse compartment of Wageningen University and Research in Wageningen, The Netherlands. Seeds were sown on September 11th, 2017 in a greenhouse with a photoperiod of 16 hours per day with temperature settings at 21 °C (day and night), and a relative humidity of 75%. When daylight was insufficient, additional artificial lighting (Philips 400 watt Son-T natrium lamps, Eindhoven, The Netherlands). Plants were watered manually and supported with a plastic peg for stability during fruiting. Fertiliser was applied according to commercial growth practices.

4.2.2. Climate chamber conditions and fruit harvest

When plants were fully flowering, all flowers were removed, and the temperature treatments were started. The plants were divided randomly and placed in three climate cabinets (HPS1500S, Weiss Technik, Germany) set to either 16, 22 and 28 °C. For each temperature treatment, a corresponding relative humidity was set as to ensure a constant vapor pressure difference of 0.8 kPa for all treatments (Table 1). Every week, the position of the plants within a chamber was randomised. MG tomatoes were harvested twice, one week apart. Forty five MG tomatoes per cultivar were selected in each harvest and transported within 10 minutes to the HPP lab for further storage. Per temperature/cultivar combination, six extra tomatoes were harvested for immediate destructive measurements. Tomatoes of the first harvest were stored first at 4 °C for 15 d and then placed at 20 °C for 20 days (shelf life), whereas tomatoes from the second harvest were stored immediately at shelf life condition.

16° C 22° C 28° C Temperature (°C) 15.9 ± 0.1 22.0 ± 0.1 28.0 ± 0.1 Relative humidity (% RH) 55.2 ± 1.2 70.1 ± 0.3 79.4 ± 0.6 Number of 'Ponchi Re' plants Number of 'Tarzan' plants 5 5 5 Number of harvested 'Ponchi Re' fruits 106 136 118 Number of harvested 'Tarzan' fruits 111 120 160

Table 1. Environmental conditions, number of plants and harvested fruits per climate chamber

4.2.3. Soluble solid content

The SSC was measured using a digital refractometer (Atago refractometer PR- 32α , Fukaya-Shi, Saitama, Japan). Six tomatoes were measured for each treatment. The tomatoes were cut in half. Using one half per tomato, the juice was squeezed out and used to determine the SSC (°Brix) using the refractometer. The other half of the fruit was used for dry matter content measurement. The refractometer and the knife used for cutting were cleaned with distilled water before each individual measurement. Results were expressed in °Brix.

4.2.4. Dry matter content

The remaining halves of tomatoes from SSC measurement were weighed after cutting (fresh weight), and oven-dried at $70\,^{\circ}$ C until constant weight (24-48 hours). Fresh and dry weight (in g) were measured using a balance (Mettler PM 480, Mettler- Toledo, Leicester, UK) and subsequently expressed as the percentage fresh to dry weight.

4.2.5. Fruit diameter

The fruit size was determined by measuring the diameter (in mm) of the tomato along the equator, using a digital calliper.

4.2.6. Colour measurement

Colour was assessed non-destructively by a hand-held photodiode array spectrophotometer (Pigment Analyzer PA1101, CP, Germany). Remittance was assessed at 570 (R570) and 780 (R780) nm by calculating the normalised different vegetative index (NDVI, Eq.1) and normalised anthocyanin index (NAI, Eq. 2) which are normalized value between –1 and 1 (Affandi et al., 2020).

$$NDVI = \frac{R_{780} - R_{660}}{R_{780} + R_{660}} \tag{1}$$

$$NAI = \frac{R_{780} - R_{570}}{R_{780} + R_{570}} \tag{2}$$

The measurement head of the pigment analyser was adapted by adding a small plastic cup on top of the measurement head to collect light for colour measurements of dwarf tomatoes.

4.2.7. Firmness

Firmness was measured using a Zwick Z2.5/TS1S materials testing machine (Ulm, Germany). A probe (diameter 0.8 cm) was placed on the skin of the tomato and compressed the tomato 0.5 mm with the maximum force recorded and regarded as tomato firmness (Schouten et al., 2007). Each tomato was measured twice, and the average was taken. Measurement were taken on the equator of the fruit. After the first measurement the tomato was turned 45° for the second measurement. Results were expressed in Newton.

4.2.8. CI indices and weight loss

Each tomato was judged for the degree of CI using the chilling injury index (CII) (Vega-García et al. 2010). Three CI symptoms were measured; uneven ripening and colour development (U), pitting (P), and decay (D). The severity of each symptom is based on the percentage of affected tissue (0 = No injury 1 = < 10%, 2 = 11 - 25%, 3 = 26 - 40%, 4 => 40%) with the CII score calculated as CII = (U+P+D)/3. Tomato weight loss over time was expressed as the percentage weight loss compared to the initial weight.

4.2.9. Data analysis

Data measured at harvest were subjected to one-way ANOVA and data obtained over the course of shelf life were subjected to mixed ANOVA, applying SPSS ver.21 (SPSS, Chicago, USA) at P < 0.05. Mixed ANOVA was applied with growth temperature treatment and storage temperature as between subject factors and shelf life days as within subject factor. Normality of the variables was tested applying the Shapiro-Wilk test. Mauchly's test of sphericity was carried out to test whether variances of the differences between all possible pairs of within-subject conditions were equal. If the sphericity assumption was not fulfilled, Greenhouse-Geisser's correction was applied to calculate the degrees of freedom. In case of a significant interaction, a pairwise comparison was carried out for each shelf life day with LSD (Least Significant Difference) values estimated.

4.3. Results

4.3.1. Growth temperature affected plant size and start of the fruiting period

Tomato plants were fully flowering seven weeks after sowing. At this moment, they were transferred from the greenhouse compartment to the climate cabinet. Plant morphology was affected by the growth temperature: higher growth temperature during cultivation resulted in larger and darker leaves compared to plants grown at 22 °C. Whereas plants grown at 16 °C were smaller than that of 22 °C (Supplementary Figure 1). The fruiting period was also affected; tomatoes were ready to be harvested at mature green (MG) at 12 (28 °C), 13 (22 °C) and 14 (16 °C) weeks after sowing. A higher growth temperature also correlated with increased fruit production (data not shown).

4.3.2. Growth temperature affected soluble solid contents and diameter

A growth temperature of 16 °C and 28 °C resulted in higher SSC (°Brix) values at harvest for both 'Ponchi Re' and 'Tarzan' tomatoes, compared with tomatoes cultivated at 22°C. (Figure 1A). No differences with respect to growth temperature were found for fruit fresh weight and fruit dry matter content (data not shown). Diameter of the MG tomatoes was not affected by growth temperature for 'Ponchi Re' tomatoes. 'Tarzan' tomatoes grown at 22 °C, had a larger diameter than those grown at both 28 °C and 16 °C (Figure 1B).

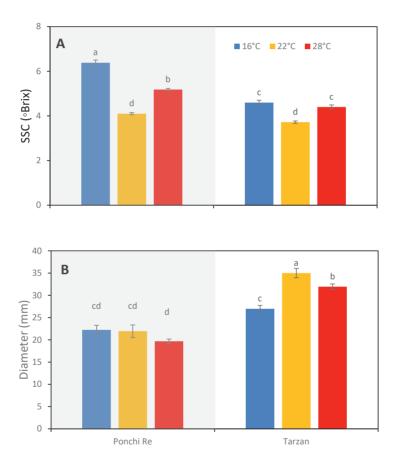


Figure 1. SSC (A) and diameter (B) of tomato grown at 16 °, 22 ° and 28 °C for 'Ponchi Re' and 'Tarzan' tomatoes at harvest. Error bars indicate standard error (n=6). Different letters indicate significant different at P < 0.05.

4.3.3. Low growth temperature resulted in a delay in red colour formation after harvest

After harvest all green harvested tomatoes matured to red ripe, values were measured nondestructively by the pigment analyser (Fig 2). NAI and NDVI values are representative for lycopene and chlorophyll levels in the tomato pericarp, respectively (Schouten et al., 2014). The point in time where the NAI and NDVI values cross, (cross point, CP), is an indication of the synchronisation of the chlorophyll decay and lycopene formation. In 'Ponchi Re, the CP was approximately 14, 12, and 3 d after the start of shelf life without cold storage for tomatoes cultivated at 16, 22 and 28 °C, respectively. For prior cold stored 'Ponchi Re', the CP was 17, 9, and 7 d (Figure 2A-F). For non-cold stored 'Tarzan' tomatoes the delay in colour formation due to growth temperature was less pronounced (Fig 2-G-L): 10, 8, and 5 d without storage, and 12, 7, and 9 days with prior cold storage for cultivation at 16, 22 and 28 °C, respectively. 'Ponchi Re' tomatoes showed a difference in the CP of approximately 11 d between the lowest and highest growth temperature without cold storage (Figure 2A-C). This difference is approximately only 5 d for 'Tarzan' tomatoes (Table.2). In fruit cultivated at 16 °C and 28 °C, prior cold storage resulted in a delay in the start of colour development. This delay is about 2-4 d for tomatoes of both cultivars (Figure 2). Interestingly the CP was shorter for prior cold stored compared to non-cold stored tomatoes for especially 'Ponchi Re' tomatoes (3 d) when cultivated at 22 °C (Figure 2BE).

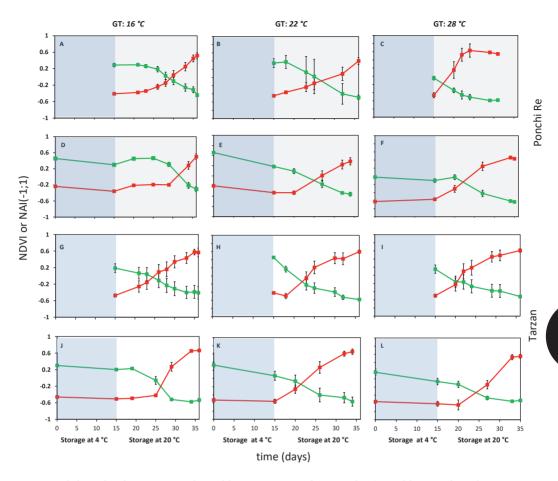


Figure 2. Colour development as indicated by NDVI (green lines) and NAI (red lines) values during cold storage at 4 $^{\circ}$ C (blue area) and during shelf life (white area) of 'Ponchi Re' (A-F) and 'Tarzan'(G-L) tomatoes cultivated at a GT (growth temperature) of 16 $^{\circ}$, 22 $^{\circ}$ and 28 $^{\circ}$ C. Error bars indicate standard error (n=15).

Table 2. Crossing points (CP) in days during shelf life at 20 $^{\circ}$ C of cold stored and without cold storage 'Ponchi Re' and 'Tarzan' tomatoes

		Growth temperature		
Cultivar	Storage treatment	16° C	22° C	28° C
Ponchi Re	without cold storage	14	12	3
	cold stored	17	9	7
Tarzan	without cold storage	10	8	5
	cold stored	16	6	9

4.3.4. Growth temperature affects firmness at harvest and subsequent softening behaviour

Firmness at harvest was lower for tomatoes cultivated at 22 °C (Figure 3AB). Cold storage resulted in less softening for tomatoes cultivated at 16 °C. (Figure 3CD). Softening during shelf life without prior cold storage was faster for 'Ponchi Re' tomatoes cultivated at 28 °C than tomatoes cultivated at 16 and 22 °C (Figure 3A). Softening for non-cold stored 'Tarzan' tomatoes was not affected by growth temperature (Figure 3B). Cold storage had no effect on the speed of softening in Ponchi Re. However, the reduced softening of Tarzan fruit grown at 16° C during cold storage was compensated by an increased softening during shelf life, to end at the same firmness as the other fruit, after 20 d of shelf life.

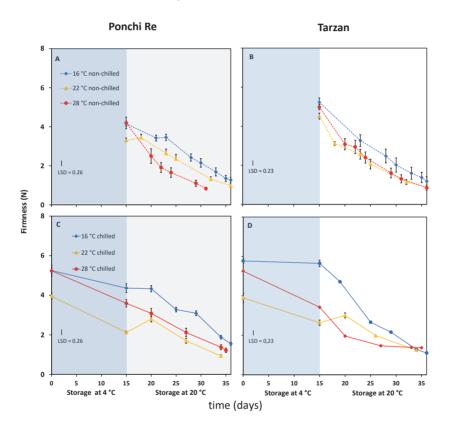


Figure 3. Firmness (N) values during cold storage at 4 °C (blue area) and during shelf life (white area) of 'Ponchi Re' (A,C) and 'Tarzan' (B,D) tomatoes cultivated at a GT (growth temperature) of 16 °, 22 ° and 28 °C. Error bars indicate standard error (n=15).

4.3.5. Lower growth temperature reduced weight loss

Weight loss during storage and shelf life was generally correlated with cultivation temperature. Weight loss was lowest at 16 °C, and increased for tomatoes of both cultivars cultivated at 22, and 28 °C (Figure 4). Weight loss during shelf life of prior cold stored tomatoes was similar as for non-cold stored tomatoes, with the exception of 'Ponchi Re' fruit cultivated

at 22 °C (Figure 4C). Reduced weight loss for 'Ponchi Re' grown at 16 and 28 compared with 22, could be considered a positive effect of cultivation stress on quality.

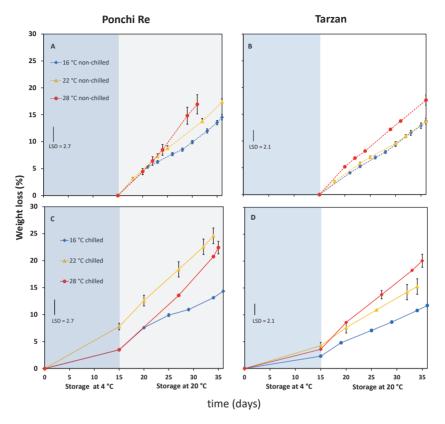


Figure 4. Weight loss percentage values during cold storage at 4 $^{\circ}$ C (blue area) and during shelf life (white area each plot) of 'Ponchi Re' (A,C) and 'Tarzan'(B,D) tomatoes cultivated at a GT (growth temperature) of 16 $^{\circ}$, 22 $^{\circ}$ and 28 $^{\circ}$ C. Error bars indicate standard error (n=15).

4.3.6 Growth temperature affected chilling injury incidence depending on cultivar

Chilling injury can be judged by three symptoms; uneven ripening and colour development, pitting, and decay (Affandi et al., 2020), For 'Ponchi Re' tomatoes, increasing growth temperature resulted in lower CI incidence (P < 0.0001) while the opposite occurred for 'Tarzan' tomatoes (Figure 5AB). 'Tarzan' tomatoes, cultivated at 28 °C, experienced higher CI index values due to higher decay and pitting. In contrast, CI index of 'Ponchi Re' cultivated at 16 °C was mainly due to higher uneven colouring and decay (data not shown).

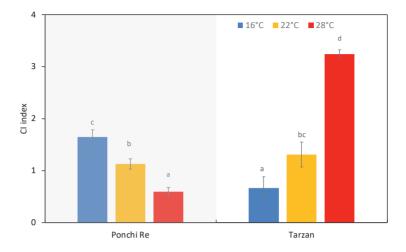


Figure 5. CI index of tomato grown at 16 $^{\circ}$, 22 $^{\circ}$ and 28 $^{\circ}$ C for 'Ponchi Re' and 'Tarzan' tomatoes at the end of shelf life following storage at 4 $^{\circ}$ C for 15 d. Error bars indicate standard error (n=15). Different letters in each plot indicates significant differences at P < 0.05.

4.4. Discussion

4.4.1. Higher SSC is not always associated with chilling tolerance

A lower (16 °C) than optimum growth temperature increased SSC of 'Ponchi Re' tomatoes (Figure 1). This is in line with the findings of Klopotek and Kläring (2014), who found increased accumulation of soluble sugars when tomato plants are exposed to growth temperature between 14-16 °C. Increased levels of soluble sugars, especially glucose, induce the ascorbate–glutathione cycle that scavenges H₂O₂ (Shao et al., 2012). Soluble sugars are also thought to act as osmoprotectant that confers freezing tolerance in plants (Ruelland et al. 2009). In addition, higher soluble sugars are associated with better cold tolerance such as in tomato (Liu et al., 2012; Zhang et al., 2019), loquat (Shao et al., 2012) and nectarines (Zhao et al., 2019). Higher SSC at harvest for 16 °C cultivated 'Ponchi Re' tomatoes was, however, associated with higher CI incidence (Figure 5). This indicates that SSC is here likely not associated with chilling tolerance. In addition, higher SCC values for 16 °C cultivated 'Ponchi Re' tomatoes softened at the same rate, indicating that this higher SSC was not related to difference in developmental stage. On the contrary, firmness at harvest was generally higher for 16 °C cultivated 'Ponchi Re' tomatoes (Figure 3). It is possible that a higher SSC may have an osmotic effect resulting in increased water containment causing higher firmness (Shackel et al., 1991; Farneti et al., 2013; Lahaye et al., 2013). 'Ponchi Re' fruits cultivated at higher than optimum (28 °C) also had higher SSC, and in this case, a lower CI index was observed. Plants cultivated at the lowest growth temperature showed smaller plants and less number of fruit and leaves

(Figure S1), it is likely that the plants grown at 16 °C were able to allocate more assimilates to fruit which caused higher SSC (Heuvelink, 1997; Beckles, 2012).

4.4.2. Low growth temperature delayed red colour development, especially for 'Ponchi Re' tomatoes

The crossing point (CP) indicates the level of synchronisation of pigment degradation and synthesis. Cold storage was reported to delay and reduce lycopene accumulation in MG tomatoes despite uninterrupted chlorophyll degradation during shelf life (Affandi et al., 2020). The CP could therefore be regarded as indicator of chilling sensitivity. 'Ponchi Re' tomatoes showed a larger difference in CP between the lowest and highest growth temperature with or without cold storage than 'Tarzan' tomatoes (Figure 2). This indicates that colour development is delayed by lower growth temperatures for especially 'Ponchi Re' tomatoes. NAI and NDVI behaviour is highly synchronised by growth temperature, with and without cold storage. This might indicate that a system that synchronises chlorophyll decay and lycopene synthesis is dependent on growth temperature. Such a system might be under the regulation SGR (STAY-GREEN) protein. SGR genes induces chlorophyll breakdown and simultaneously blocks lycopene synthesis until SGR levels decrease to a threshold that allows synthesis of lycopene to start (Hu at al., 2011; Luo et al., 2013; Sánchez-González et al., 2016). Possibly, synthesis and breakdown of SGR in 'Ponchi Re' tomatoes is more temperature dependent than in 'Tarzan' tomatoes.

Prior cold stored showed a similar delay with the non-cold stored tomatoes in the start of the colour development for both cultivars when cultivated at 16 or 28 °C (Figure 2). The opposite was shown for tomatoes cultivated at 22 °C. This means that cold storage benefitted the start of colour development for tomatoes when cultivated at 22 °C. Likely, cold storage induced the accumulation of lycopene precursors, but only when cultivated at 22° C. It is currently unclear why this happens. But it is clear that growth temperature affects colour development. For instance, Hernandez et al. (2015) showed that a high (32 °C) growth temperature decreased and later increased the lycopene content when the number of days of high temperature exposure was increased.

4.4.3. Cold tolerance might be related to membrane integrity, whereas cold sensitivity might be related to lack of ROS scavenging capacity

A lower growth temperature resulted in less softening during cold storage for both cultivars (Figure 3CD). In addition, tomatoes cultivated at 16 °C showed less weight loss in general (Figure 4). Firmness retention during chilling and shelf life is associated with higher structural cell wall integrity and reduced decay (Mirdehghan et al., 2007; Rodoni et al., 2010; Gang et al., 2015). Lower weight loss is thought to be related to higher membrane integrity leading to less decay (Saphiro and Cohen, 1994; Ali et al., 2019; Ahmed et al., 2021). Finally, a higher SSC could also lead to increased osmolarity, retaining more water resulting in higher firmness (Shackel et al., 1991; Farneti et al., 2013; Lahaye et al., 2013).

Higher firmness retention and lower weight loss in low temperature cultivated 'Tarzan' tomatoes than the control and higher temperature was associated with lower CI incidence (Figure 5). This might indicate that the cold tolerance of 'Tarzan' from low temperature cultivation is, at least partly, based on increased membrane integrity. Increased cold tolerance in terms of ability to restore development after prior exposure to low temperature (4 °C) was also found in tomato plants (Barrero-Gil et al., 2016), watermelon (Lu et al., 2020) and sweet pepper (Ferguson, 1999) when cultivated at lower temperatures. There could also be a genetic component. It is possible that 'Tarzan' may have a better regulation of the components of the chilling tolerance inducing CBF pathway (Singh et al., 2011) or produce small heat shock proteins (Luengwilai et al., 2012) when cultivated at lower cultivation temperatures.

The delay in lycopene formation in 'Ponchi Re' tomatoes cultivated at the lowest growth temperatures (Figure 2) is probably associated with the increased CI incidence at lowest growth temperature (Figure 5). Reduced lycopene formation might result in less ROS scavenging capacity as lycopene and lycopene precursors, such as phytoene and phytofluene, scavenge singlet oxygen and peroxyl radicals generated by chilling stress (Engelmann et al., 2012; Lado et al., 2016; Rey et al., 2021). This delay might trigger a cascade of oxidative processes that lead to chilling damage (Hodges et al., 2004; Martínez et al., 2014). Cold stored 'Tarzan' tomatoes cultivated at 16 °C, also experienced a delay in colour development, although to a lesser extent (Figure 2). However, this delay did not result in more CI symptoms (Figure 5). This implies that the development of CI symptoms depends not only on the ROS scavenging capacity but also on other factors, undoubtedly dependent on genotypical differences between the two cultivars used in this study, such as membrane integrity, cell wall integrity and transpiration rate of the fruit (Saphiro and Cohen, 1994; Rodoni et al., 2010; Gang et al., 2015).

4.5. Conclusion

This study assessed the effect of growth temperature during fruiting on quality properties such as SSC, colour, firmness, weight loss, and chilling injury development in two dwarf tomato cultivars. Results obtained have shown that cultivation at low temperature delayed colour development in 'Ponchi Re' and to a lesser extent in 'Tarzan' tomatoes. This delay probably contributed to the higher incidence of chilling injury symptoms in 'Ponchi Re' compared to tarzan. The lack of lycopene formation presumably results in less ROS scavenging capacity and more CI symptoms in 'Ponchi Re'. Our study also demonstrated that low growth temperature increased firmness at harvest and decreased softening during cold storage in both cultivars. This could possibly be attributed to increased membrane integrity and higher osmolarity. Because 'Tarzan' tomatoes had higher chilling tolerance when cultivated at the lowest growth temperature, it is likely that higher membrane integrity was a component

inducing higher chilling tolerance. This indicates that chilling injury incidence depends on growth temperature and genotype in the fruit of dwarf tomato plants.

References

- Affandi, F. Y., Verdonk, J. C., Ouzounis, T., Ji, Y., Woltering, E. J., and Schouten, R. E., 2020. Farred light during cultivation induces postharvest cold tolerance in tomato fruit. Postharvest Biology and Technology, 159, 111019. https://doi.org/10.1016/j.postharvbio.2019.111019.
- Ahmed, Z.F., Alblooshi, S.S., Kaur, N., Maqsood, S. and Schmeda-Hirschmann, G., 2021. Synergistic Effect of Preharvest Spray Application of Natural Elicitors on Storage Life and Bioactive Compounds of Date Palm (*Phoenix dactylifera L.*, cv. Khesab). Horticulturae, 7, 145. https://doi.org/10.3390/horticulturae7060145.
- Albornoz, K., Cantwell, M.I., Zhang, L. and Beckles, D.M., 2019. Integrative analysis of postharvest chilling injury in cherry tomato fruit reveals contrapuntal spatio-temporal responses to ripening and cold stress. Scientific reports, 9, 1-14. https://doi.org/10.1038/s41598-019-38877-0.
- Ali, S., Khan, A.S., Anjum, M.A., Nawaz, A., Naz, S., Ejaz, S. and Hussain, S., 2019. Aloe vera gel coating delays post-cut surface browning and maintains quality of cold stored lotus (*Nelumbo nucifera* Gaertn.) root slices. Scientia Horticulturae, 256, 108612. https://doi.org/10.1016/j.scienta.2019.108612.
- Barrero-Gil J, Huertas R, Rambla JL, Granell A, Salinas J. 2016. Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments. Plant Cell and Environment 39, 2303–2318. https://doi.org/10.1111/pce.12799.
- Beckles, D.M., 2012. Factors affecting the postharvest soluble solids and sugar content of tomato (*Solanum lycopersicum L.*) fruit. Postharvest Biology and Technology, 63, 129-140. https://doi.org/10.1016/j.postharvbio.2011.05.016.
- Bertin, N. and Génard, M., 2018. Tomato quality as influenced by preharvest factors. Scientia Horticulturae, 233, 264-276. https://doi.org/10.1016/j.scienta.2018.01.056.
- Biswas P, East AR, Hewett EW, Heyes JA., 2016. Chilling injury in Tomato fruit. Horticultural Reviews 44, 229–278.
- Br¨uckner, B., Krumbein, A., Schwarz, D., and Kl¨aring, P., 2004. Temperature Effects on Tomato Quality. IX International Symposium on Soilless Culture and Hydroponics, Almeria, Spain, 14–19 November, 2004. Book of summary, 173.
- Campos, M.L., Carvalho, R.F., Benedito, V.A., Peres, L.E.P., 2010. Small and remarkable. Plant Signaling and Behavior 5, 267–270. https://doi.org/10.4161/psb.5.3.10622.

- Chen, W.P., and Li, P.H., 2002. Membrane stabilization by abscisic acid under cold aids proline in alleviating chilling injury in maize (*Zea mays L.*) cultured cells. Plant, Cell and Environment 25, 955–962. https://doi.org/10.1046/j.1365-3040.2002.00874.x.
- Cohen, E., Shapiro, B., Shalom, Y. and Klein, J.D., 1994. Water loss: a nondestructive indicator of enhanced cell membrane permeability of chilling-injured citrus fruit. Journal of the American Society for Horticultural Science, 119, 983-986. https://doi.org/10.21273/JASHS.119.5.983.
- Crisosto, C.H., Mitchell, F.G., Ju Z. 1999. Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortScience 34, 1116–1118. https://doi.org/10.21273/HORTSCI.34.6.1116.
- Daie, J. and Campbell, W.F., 1981. Response of tomato plants to stressful temperatures: increase in abscisic acid concentrations. Plant Physiology, 6, 26-29. https://doi.org/10.1104/pp.67.1.26.
- Engelmann, N.J., Clinton, S.K. and Erdman Jr, J.W., 2012. Nutritional Aspects of Phytoene and Phytafluene, Carotenoid Precursors to Lycopene (vol 2, pg 51, 2010). Advances In Nutrition, 3(2), 255-255. https://doi.org/10.3945/an.110.000075.
- Farneti B, Schouten RE, Woltering EJ. 2012. Low temperature-induced lycopene degradation in red ripe tomato evaluated by remittance spectroscopy. Postharvest Biology and Technology 73, 22–27. https://doi.org/10.1016/j.postharvbio.2012.05.008.
- Farneti, B., Schouten, R.E., Qian, T., Dieleman, J.A., Tijskens, L.M.M. and Woltering, E.J., 2013. Greenhouse climate control affects postharvest tomato quality. Postharvest biology and technology, 86, 354-361. https://doi.org/10.1016/j.postharvbio.2013.07.004.
- Ferguson I, Volz R, Woolf A. 1999. Preharvest factors affecting physiological disorders of fruit. Postharvest Biology and Technology 15, 255–262. https://doi.org/10.1016/S0925-5214(98)00089-1.
- Gang, C., Li, J., Chen, Y., Wang, Y., Li, H., Pan, B. and Odeh, I., 2015. Synergistic effect of chemical treatments on storage quality and chilling injury of honey peaches. Journal of Food Processing and Preservation, 39, 1108-1117. https://doi.org/10.1111/jfpp.12325.
- Gautier, H., Diakou-Verdin, V., Bénard, C., Reich, M., Buret, M., Bourgaud, F., Poëssel, J.L., Caris-Veyrat, C. and Génard, M., 2008. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance?. Journal of agricultural and food chemistry, 56, 1241-1250. https://doi.org/10.1021/jf072196t.
- Gonzalez C, Ré MD, Sossi ML, Valle EM, Boggio SB. 2015. Tomato cv. 'Micro-Tom' as a model system to study postharvest chilling tolerance. Scientia Horticulturae 184, 63–69. https://doi.org/10.1016/j.scienta.2014.12.020.
- Hernandez, V., Hellín, P., Fenoll, J. and Flores, P., 2015. Increased temperature produces changes in the bioactive composition of tomato, depending on its developmental stage. Journal of agricultural and food chemistry, 63, 2378-2382. https://doi.org/10.1021/jf505507h.

- Heuvelink, E., 1997. Effect of fruit load on dry matter partitioning in tomato. Scientia Horticulturae, 69, 51-59. https://doi.org/10.1016/S0304-4238(96)00993-4.
- Hobson, G.E., 1981. The short-term storage of tomato fruit. Journal of Horticultural Science, 56, 363-368. https://doi.org/10.1080/00221589.1981.11515014.
- Hodges DM, Lester GE, Munro KD, Toivonen PMA. 2004. Oxidative stress: Importance for postharvest quality. HortScience 39, 924–929. http://dx.doi.org/10.13140/2.1.3929.1526.
- Hu, Z.L., Deng, L., Yan, B., Pan, Y., Luo, M., Chen, X., Hu, T., Chen, G., 2011. Silencing of the LeSGR1 gene in tomato inhibits chlorophyll degradation and exhibits a stay-green phenotype. Biol. Plant 55, 27–34. https://doi.org/10.1007/s10535-011-0004-z.
- Kang, H.M., Park, K.W. and Saltveit, M.E., 2002. Elevated growing temperatures during the day improve the postharvest chilling tolerance of greenhouse-grown cucumber (*Cucumis sativus*) fruit. Postharvest Biology and Technology, 24, 49-57. https://doi.org/10.1016/S0925-5214(01)00129-6.
- Klopotek, Y. and Kläring, H.P., 2014. Accumulation and remobilisation of sugar and starch in the leaves of young tomato plants in response to temperature. Scientia Horticulturae, 180, 262-267. https://doi.org/10.1016/j.scienta.2014.10.036.
- Lado, J., Rodrigo, M.J., López-Climent, M., Gómez-Cadenas, A. and Zacarías, L., 2016. Implication of the antioxidant system in chilling injury tolerance in the red peel of grapefruit. Postharvest Biology and Technology, 111, 214-223. https://doi.org/10.1016/j.postharvbio.2015.09.013.
- Lahaye, M., Devaux, M.F., Poole, M., Seymour, G.B. and Causse, M., 2013. Pericarp tissue microstructure and cell wall polysaccharide chemistry are differently affected in lines of tomato with contrasted firmness. Postharvest Biology and Technology, 76, 83-90. https://doi.org/10.1016/j.postharvbio.2012.09.009.
- Liu C, Jahangir MM, Ying T. 2012. Alleviation of chilling injury in postharvest tomato fruit by preconditioning with ultraviolet irradiation. Journal of the Science of Food and Agriculture 92, 3016–3022. https://doi.org/10.1002/jsfa.5717.
- Luengwilai K, Beckles DM, Saltveit ME. 2012. Chilling-injury of harvested tomato (*Solanum lycopersicum L.*) cv. Micro-Tom fruit is reduced by temperature pre-treatments. Postharvest Biology and Technology 63, 123–128. https://doi.org/10.1016/j.postharvbio.2011.06.017.
- Lu, J., Nawaz, M.A., Wei, N., Cheng, F. and Bie, Z., 2020. Suboptimal temperature acclimation enhances chilling tolerance by improving photosynthetic adaptability and osmoregulation ability in watermelon. Horticultural Plant Journal, 6, 49-60. https://doi.org/10.1016/j.hpj.2020.01.001.
- Luo, Z., Zhang, J., Li, J., Yang, C., Wang, T., Ouyang, B., Li, H., Giovannoni, J.J., Ye, Z.,2013. A STAY-GREEN protein SISGR1 regulates lycopene and \(\mathcal{B}\)-caroteneaccumulation by

- interacting directly with SIPSY1 during ripening processes in tomato. New Phytol. 198, 442–452. https://doi.org/10.1111/nph.12175.
- Lurie, S. and Sabehat, A., 1997. Prestorage temperature manipulations to reduce chilling injury in tomatoes. Postharvest Biology and Technology, 11, 57-62. https://doi.org/10.1016/S0925-5214(97)01411-7
- Lurie S, Crisosto CH. 2005. Chilling injury in peach and nectarine. Postharvest Biology and Technology 37, 195–208. https://doi.org/10.1016/j.postharvbio.2005.04.012.
- Lurie S, Klein JD. 1991. Acquisition of Low-temperature Tolerance in Tomatoes by Exposure to High-temperature Stress. J. AMER. Soc. HORT. SCI. Acquisition 116, 1007–1012. https://doi.org/10.21273/JASHS.116.6.1007.
- Liu, C., Jahangir, M.M. and Ying, T., 2012. Alleviation of chilling injury in postharvest tomato fruit by preconditioning with ultraviolet irradiation. Journal of the Science of Food and Agriculture, 92, 3016-3022. https://doi.org/10.1002/jsfa.5717.
- Lyons JM. 1973. Chilling Injury in Plants. Annual Review of Plant Physiology 24, 445–466. https://ci.nii.ac.jp/lognavi?name=crossrefandid=info:doi/10.1146/annurev.pp.24.060173.002 305.
- Lyons, J.M. and Asmundson, C.M., 1965. Solidification of unsaturated/saturated fatty acid mixtures and its relationship to chilling sensitivity in plants. Journal of the American Oil Chemists' Society, 42, 1056-1058. https://doi.org/10.1007/BF02636905.
- Malacrida, C., Valle, E.M. and Boggio, S.B., 2006. Postharvest chilling induces oxidative stress response in the dwarf tomato cultivar Micro-Tom. Physiologia Plantarum, 127, 10-18. https://doi.org/10.1111/j.1399-3054.2005.00636.x.
- Martínez, A., Stinco, C.M. and Melendez-Martinez, A.J., 2014. Free radical scavenging properties of phytofluene and phytoene isomers as compared to lycopene: a combined experimental and theoretical study. The Journal of Physical Chemistry B, 118, 9819-9825. https://doi.org/10.1021/jp503227j.
- Meissner, R., Jacobson, Y., Melamed, S., Levyatuv, S., Shalev, G., Ashri, A., Elkind, Y. and Levy, A., 1997. A new model system for tomato genetics. The Plant Journal, 12, 1465-1472. https://doi.org/10.1046/j.1365-313x.1997.12061465.x.
- Mirdehghan, S.H., Rahemi, M., Martínez-Romero, D., Guillén, F., Valverde, J.M., Zapata, P.J., Serrano, M. and Valero, D., 2007. Reduction of pomegranate chilling injury during storage after heat treatment: role of polyamines. Postharvest biology and technology, 44, 19-25. https://doi.org/10.1016/j.postharvbio.2006.11.001.
- Neta-Sharir I. 2005. Dual Role for Tomato Heat Shock Protein 21: Protecting Photosystem II from Oxidative Stress and Promoting Color Changes during Fruit Maturation. THE PLANT CELL ONLINE. https://doi.org/10.1105/tpc.105.031914.

- Rey, F., Zacarías, L. and Rodrigo, M.J., 2020. Carotenoids, Vitamin C, and Antioxidant Capacity in the Peel of Mandarin Fruit in Relation to the Susceptibility to Chilling Injury during Postharvest Cold Storage. Antioxidants, 9, 1296. https://doi.org/10.3390/antiox9121296.
- Riga, P., Anza, M. and Garbisu, C., 2008. Tomato quality is more dependent on temperature than on photosynthetically active radiation. Journal of the Science of Food and Agriculture, 88, 158-166. https://doi.org/10.1002/jsfa.3065.
- Rodoni, L., Casadei, N., Concellon, A., Chaves Alicia, A.R. and Vicente, A.R., 2010. Effect of short-term ozone treatments on tomato (*Solanum lycopersicum L.*) fruit quality and cell wall degradation. Journal of Agricultural and Food Chemistry, 58, 594-599. https://doi.org/10.1021/jf9029145.
- Ruelland E., Vaultier M.-N., Zachowski A. and Hurry V. 2009. Cold signalling and cold acclimation in plants. Advances in Botanical Research 49, 35–150. https://doi.org/10.1016/S0065-2296(08)00602-2.
- Sabehat A, Lurie S, Weiss D. 1998. Expression of small heat-shock proteins at low temperatures. A possible role in protecting against chilling injuries. Plant physiology 117, 651–658. https://doi.org/10.1104/pp.117.2.651.
- Sabehat A, Weiss D, Lurie S., 1996. The Correlation between Heat-Shock Protein Accumulation and Persistence and Chilling Tolerance in Tomato Fruit'. Plant Physiol 79961, 531–537. https://doi.org/10.1104/pp.110.2.531.
- Sánchez-González, M.J., Schouten, R.E., Tijskens, L.M.M., Sánchez-Guerrero, M.C., Medrano, E., del Rio-Celestino, M. and Lorenzo, P., 2016. Salinity and ripening on/off the plant effects on lycopene synthesis and chlorophyll breakdown in hybrid Raf tomato. Scientia Horticulturae, 211, 203-212. https://doi.org/10.1016/j.scienta.2016.08.030.
- Shackel, K.A., Greve, C., Labavitch, J.M. and Ahmadi, H., 1991. Cell turgor changes associated with ripening in tomato pericarp tissue. Plant Physiology, 97, 814-816. https://doi.org/10.1104/pp.97.2.814.
- Schouten RE, Huijben TPM, Tijskens LMM, van Kooten O., 2007. Modelling quality attributes of truss tomatoes: Linking colour and firmness maturity. Postharvest Biology and Technology 45, 298–306. https://doi.org/10.1016/j.postharvbio.2007.03.011.
- Shao, X., Zhu, Y., Cao, S., Wang, H. and Song, Y., 2013. Soluble sugar content and metabolism as related to the heat-induced chilling tolerance of loquat fruit during cold storage. Food and Bioprocess Technology, 6, 3490-3498. https://doi.org/10.1007/s11947-012-1011-6.
- Singh S, Rathore M, Goyary D, Singh RK, Anandhan S, Sharma DK, Ahmed Z. 2011. Induced ectopic expression of At-CBF1 in marker-free transgenic tomatoes confers enhanced chilling tolerance. Plant Cell Reports 30, 1019–1028. https://doi.org/10.1007/s00299-011-1007-0.
- Suslow T V, Cantwell M. 2014. Tomato: Recommendations for Maintaining Postharvest Quality. , 8–10.

- Tao, F., Zhang, L., McCarthy, M.J., Beckles, D.M. and Saltveit, M., 2014. Magnetic resonance imaging provides spatial resolution of Chilling Injury in Micro-Tom tomato (*Solanum lycopersicum L.*) fruit. Postharvest Biology and Technology, 97, 62-67. https://doi.org/10.1016/j.postharvbio.2014.06.005.
- Vega-García MO, López-Espinoza G, Chávez Ontiveros J, Caro-Corrales JJ, Delgado Vargas F, López-Valenzuela JA. 2010. Changes in protein expression associated with chilling injury in tomato fruit. Journal of the American Society for Horticultural Science 135, 83–89. https://doi.org/10.21273/JASHS.135.1.83.
- Wang CY and Buta JG. 1994. Methyl jasmonate reduces chilling injury in Cucurbita pepo through its regulation of abscisic acid and polyamine levels. Environmental and Experimental Botany 34, 427–432. https://doi.org/10.1016/0098-8472(94)90025-6.
- Wang CY. 1990. Chilling Injury of Horticultural Crops. Chilling Injury of Horticultural Crops.328.
- Whitaker, B.D., 1991. Changes in lipids of tomato fruit stored at chilling and non-chilling temperatures. Phytochemistry, 30, 757-761. https://doi.org/10.1016/0031-9422(91)85247-W.
- Zhang, W.F., Gong, Z.H., Wu, M.B., Chan, H., Yuan, Y.J., Tang, N., Zhang, Q., Miao, M.J., Chang, W., Li, Z. and Li, Z.G., 2019. Integrative comparative analyses of metabolite and transcript profiles uncovers complex regulatory network in tomato (*Solanum lycopersicum L.*) fruit undergoing chilling injury. Scientific reports, 9, 1-13. https://doi.org/10.1038/s41598-019-41065-9.
- Zhao, H., Jiao, W., Cui, K., Fan, X., Shu, C., Zhang, W., Cao, J. and Jiang, W., 2019. Near-freezing temperature storage enhances chilling tolerance in nectarine fruit through its regulation of soluble sugars and energy metabolism. Food chemistry, 289, 426-435. https://doi.org/10.1016/j.foodchem.2019.03.088.

Supplementary figure 1

Figure S1. Example of temperature effect on plant morphology. All three plants shown are from the same cultivar, at 20 weeks old (fully grown). Plants were grown during fruiting in 16,22 and 28 °C, from left to right, respectively.

Exploring the role of low oxygen storage to reduce chilling injury in tomato

- 5.1 Low oxygen storage alleviates chilling injury in cherry tomatoes
- 5.2 Low oxygen storage improves tomato postharvest cold tolerance, especially for tomatoes cultivated with far-red led light

5.1. Low oxygen storage alleviates chilling injury in cherry tomatoes

Abstract

Tomato (Solanum lycopersicum) fruits are susceptible to chilling injury (CI) at temperatures below 12 °C and consequently, have limited possibility to benefit from low temperature storage to prolong shelf life and maintain quality. Controlled atmosphere storage likely inhibits CI by restricting oxygen availability for peroxidation of cell membrane lipids and maintaining low oxidative stress. We aimed to find oxygen concentrations that reduces CI after low temperature storage. To achieve this cherry tomatoes of two maturities (mature green, MG; and red, R) were stored at 2.5, 5 and 21 kPa O2 combined with 0 kPa CO2 for 14 days at 2 °C, followed by shelf life of 14 days at 20 °C. As a control, tomatoes were also stored at 12 °C under regular atmosphere. To assess the extent of chilling injury, tomatoes were evaluated for colour development, firmness behaviour and decay during shelf life. Effects of CA storage were more beneficial for MG tomatoes, showing less decay compared to non-chilled and chilled MG tomatoes stored at 21 kPa O2. MG tomatoes stored at 5 kPa O2 showed the best results: delayed softening (about ten days) and red coloration (about 5 days) compared to nonchilled tomatoes with no decay during shelf life. R tomatoes stored at 5 kPa O2 showed the least decay and softening. In conclusion, chilling tolerance can be induced by CA storage at 5 kPa O2, resulting in low decay while allowing for delayed softening but full colouration of MG tomatoes during shelf life.

Published as:

Affandi, FY., Shiri, M., Woltering, EJ., Schouten, RE., Low Oxygen Storage Alleviates Chilling Injury in Cherry Tomatoes. Acta Horticulturae (2021). *In press*

5.1.1. Introduction

Chilling injury is a set of disorders encountered by chilling sensitive fruit species during exposure to low but above freezing temperatures (Luengwilai et al., 2012; Aghdam and Bodbodak 2014). Tomatoes (*Solanum lycopersicum*) suffer chilling injury manifested as surface pitting, failure to develop colour, fast firmness loss, loss of aroma volatiles, increased susceptibility to infections with symptoms usually appearing after cold exposure at temperatures below 12 °C (Malacrida et al., 2005; Zhao et al., 2009; Imahori et al., 2016). However, storage or transportation of tomatoes at above 12 °C will promote senescence (Toor and Savage 2005). Therefore, to be able to store or transport tomatoes for longer durations at reasonably low temperature it is necessary to find alternative ways of reducing or delaying the impact of CI (Kusumaningrum, 2015).

A major cause of CI is considered to be oxidative stress (Shewfelt and Del Rosario, 2000). Low O₂ (controlled atmosphere, CA) storage limits the availability of substrate for oxidation and it also reduces oxidative respiration in the mitochondria which is a main source of electrons used to activate molecular O₂ to reactive oxygen species (ROS) (Hodges and Forney 2000). Low oxygen also reduces ethylene sensitivity of climacteric fruits (Beaudry, 2000). Low oxygen storage also increases the antioxidant pool by retaining water and lipid soluble antioxidants (Gonzalez-Aguilar et al., 2010).

CI depends on the ripening stage as levels of ROS increases throughout ripening (Hodges et al., 2004). As the fruit ripens the activity of enzymatic antioxidants increases in response to increasing ROS to maintain a balanced cellular homeostasis. Coupled with cold storage, elevated ROS levels during ripening might present an increased challenge to the fruit (Malacrida et al., 2006; Imahori et al., 2016). In tomatoes, ripening is accompanied by an increase in lycopene which is a major antioxidant, making red tomatoes more tolerant to CI (Farneti et al., 2012). Here, we explore the role of low O2 storage and its interaction with ripening stage in reducing chilling injury in tomato.

5.1.2. Material and methods

5.1.2.1. Fruit sampling and experimental setup

Two hundred tomatoes from cherry tomato cultivar (genotype 2-003) were harvested at mature green (MG) and red (R) stage. Upon arrival the fruits were sorted on size (~2 cm diameter) and colour uniformity. Colour uniformity was assessed using a hand held pigment analyser by a green (Normalized Difference Vegetation Index (NDVI) and a red colour index (Normalised Anthocyanin Index (NAI). Green tomatoes were selected as those with NAI values between -0.50 and -0.40 and NDVI values between 0.20 and 0.45. Red tomatoes were selected having NAI values between 0.35 and 0.60 and NDVI values between -0.25 and -0.5. Fruits were left at room temperature for 24 h and then subjected to 14 days cold storage at 2 °C and 95% RH under three oxygen levels (2.5, 5 and 21 kPa) with

0 kPa carbon dioxide. As non-chilled control, tomatoes were stored at 21 kPa under regular atmosphere. Desired oxygen conditions were achieved flushing humidified gas mixtures at a flow rate of 500 mL min⁻¹ with tomatoes stored in 67 L steel containers. Following cold storage, fruit were transferred to shelf life at 20 °C and 85% RH at regular atmosphere for 14 d. Repeated non-destructive measurement on colour, firmness and disorder index took place at the start of the experiment, at the last day of CA storage and during five-day intervals until day 30.

5.1.2.2. Disorder index and weight loss

Chilling injury symptoms were visually assessed with the percentage of the affected tomato surface assigned to five classes (0= no injury, 1 = < 10%, 2 = 11-25%, 3 = 26-40%, 4 = > 40%) of a disorder index. Tomato weight loss was expressed as the percentage weight loss over time.

5.1.2.3. Colour development

Colour was measured on three equatorial positions of each tomato by a hand-held photodiode array spectrophotometer (Pigment Analyzer PA1101, CP, Germany) as expressed as average. Remittance was assessed at 570 (R570), 660 (R660) and 780 (R780) nm by calculating the normalised anthocyanin index (NAI) (Eq. 1) and normalised difference vegetation index (NDVI) (Eq. 2) which are both normalized value between –1 and 1 (Schouten et al., 2014).

$$NAI = \frac{R780 - R570}{R780 + R570} \tag{1}$$

$$NDVI = \frac{R780 - R660}{R780 + R660} \tag{2}$$

5.1.2.4. Firmness

Individual fruit firmness was measured at two orthogonal selected spots using a Zwick Z2.5/TS1S materials testing machine (Ulm, Germany) with a cylindrical probe (Ø 15 mm). To keep the tomatoes upright during measurement, tomatoes were placed on hard plastic ring. Firmness was determined as the maximum force needed to compress the tomato 1 mm at 50 mm min⁻¹, after lowering the probe until the tomato skin was touched (Farneti et al., 2013).

5.1.3. Results And Discussion

5.1.3.1. Low oxygen limits chilling injury incidence

In general, all chilled tomatoes showed chilling injury symptoms after 6 d in shelf life, except for MG tomatoes stored at 2.5 and 5 kPa O₂, even after shelf life of 15 d (Figure 1A). This result is consistent with findings that low O₂ reduced CI incidence in fruit (Fagundes et al., 2015; Pesis et al., 2000). The same trend also holds for R tomatoes (Figure 4.1.1B). Control MG and R fruits also showed decay, but this was related to overripening.

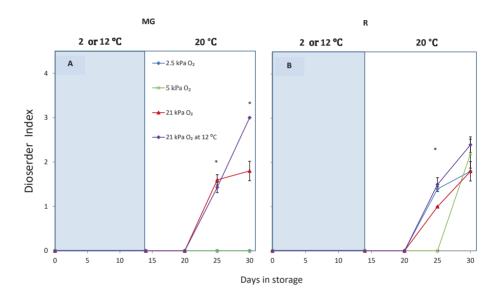


Figure 1. Chilling injury symptoms as indicated by the disorder index of MG (A) and R (B) tomatoes during cold storage at 2 or 12 °C under regular atmosphere (blue area) and subsequent shelf life at 20 °C (white area). Blue, green, red and purple lines and symbols indicate 2.5, 5, 21 kPa O₂ (low oxygen control) applied during storage at 2 °C and 21 kPa O₂ at 12 °C (temperature control), respectively. The average decay index with indicated standard error is shown for five tomatoes. Stars (*) indicate significant differences between oxygen levels at given sampling time (Fisher protected LSD, α = 0.05). Decay in MG fruit was determined by average score of pitting and uneven ripening index; decay in R fruit was determined by the average decay incidence.

5.1.3.2. Colour and firmness development

MG chilled tomatoes showed a delay in red coloration, as indicated by the increase of NAI values, of about 5 d compared to non-chilled tomatoes (Figure 2A). The chilled tomatoes stored at 2.5 and 21 kPa O_2 showed a longer delay before red colouration than the chilled tomatoes stored at 5 kPa O_2 (P < 0.001). The latter showed the same red colour as the non-chilled tomatoes, indicative of the ability to fully colour after chilling, perhaps even reaching higher levels when the shelf life period would have been extended. Interestingly,

Xianquan et al., 2005 found that exclusion of oxygen in storage led to better lycopene stability and reported that in the presence of oxygen during tomato processing lycopene breakdown was three times higher than in the absence of oxygen. In contrast to MG tomatoes, R tomatoes did not show any significant change in colour during and after cold storage (Figure 2B).

MG Fruit previously stored at 2.5 kPa O_2 maintained higher firmness during subsequent shelf life (P < 0.001). The effect of low oxygen on firmness retention is more pronounced in MG tomatoes than in R tomatoes (P < 0.05) with MG tomatoes stored at 5 and 21 kPa O_2 showing delayed softening of about 10 days compared to non-chilled tomatoes (Figure 3A, B). Akbudak et al.. (2009) also described that low oxygen storage result in higher firmness throughout storage.

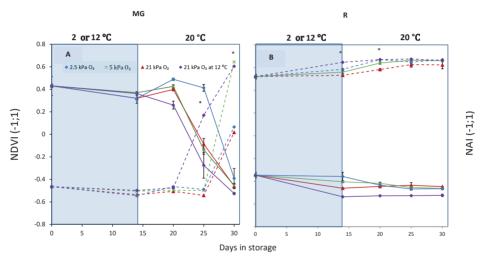


Figure 2. Colour as indicated by NDVI (dotted lines) and NAI (full lines) index of MG (A) and R (B) tomatoes during cold storage at 2 or 12 °C (blue area) and subsequent shelf life at 20 °C (white area). Blue, green, red and purple lines and symbols indicate 2.5, 5, 21 kPa O₂ (low oxygen control) applied during storage at 2 °C and 21 kPa O₂ at 12 °C (temperature control), respectively. The NDVI or NAI with indicated standard error is shown for five individual tomatoes (repeated measure over times). Stars (*) indicate significant differences between oxygen levels at given sampling time (Fisher protected LSD, α = 0.05).

When colour and firmness behaviour is shown expressed against each other (Figure 4) it appears that tomatoes stored at 2.5 kPa O₂ experienced a lack of ripening both in colour and firmness development while tomatoes stored at 5 kPa O₂ only encountered a delay in firmness development. In view of the need to store tomatoes or transport tomatoes for long distances at reasonably low temperatures in especially tropical countries, the creation of MAP packaging where tomatoes are kept at 5 kPa O₂ should be explored.

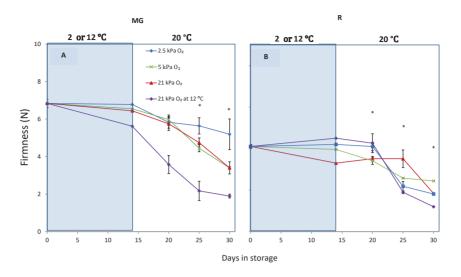


Figure 3. Firmness (N) of MG (A) and R (B) tomatoes during cold storage at 2 or 12 °C (blue area) and subsequent shelf life at 20 °C (white area). Blue, green, red and purple lines and symbols indicate 2.5, 5, 21 kPa O_2 (low oxygen control) applied during storage at 2 °C and 21 kPa O_2 at 12 °C (temperature control), respectively. The average firmness index with indicated standard error is shown for five tomatoes. Stars (*) indicate significant differences between oxygen levels at given sampling time (Fisher protected LSD, α = 0.05).

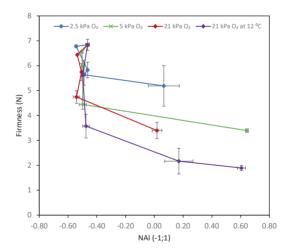


Figure 4. Firmness and colour synchronisation during cold storage and shelf life for MG and R tomatoes. Data are presented as means with indicated SE for 5 tomatoes.

5.1.4. Conclusions

Low oxygen storage (5 kPa O₂) improved chilling tolerance of cherry '2-003' tomato fruit of especially at the mature green stage through lowering decay and facilitating normal ripening.

Acknowledgements

The first author wants to thank the Indonesian Endowment Fund for Education (LPDP) for financial support. Raquel Rosales Lopez is acknowledged for sharing tomatoes and assistance during experiments and data analysis.

References

- Aghdam, M.S., Bodbodak, S., 2014. Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables. Food and Bioprocess Technology 7, 37-53. https://doi.org/10.1007/s11947-013-1207-4.
- Akbudak, B., Ozer, M.H., Erturk, U. and Cavusoglu, S., 2009. Response Of 1-Methylcyclopropene Treated "Granny Smith" Apple Fruit To Air And Controlled Atmosphere Storage Conditions. J Food Quality, 32(1), 18-33. https://doi.org/10.1111/j.1745-4557.2008.00233.x
- Beaudry, R. M., 1999. Effect of O₂ and CO₂ partial pressure on selected phenomena affecting fruit and vegetable quality. Postharvest Biol. Technol, 15(3), 293-303. https://doi.org/10.1016/S0925-5214(98)00092-1.
- Fagundes, C., Moraes, K., Pérez-Gago, M. B., Palou, L., Maraschin, M., and Monteiro, A. R., 2015.
 Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes.
 Postharvest Biol. Technol, 109, 73-81.
 https://doi.org/10.1016/j.postharvbio.2015.05.017.
- Farneti, B., Schouten, R.E., Woltering, E.J., 2012. Low temperature-induced lycopene degradation in red ripe tomato evaluated by remittance spectroscopy. Postharvest Biol. Technol. 73, 22–27.https://doi.org/10.1016/j.postharvbio.2012.05.008.
- Farneti, B., Schouten, R.E., Quian, T., Dieleman, J.A., Tijskens, L.M.M., Woltering, E.J., 2013. Greenhouse climate control affects postharvest tomato quality. Postharvest Biol. Technol. 86, 354–361.
- Gonzalez-Aguilar, G.A., Villa-Rodriguez, J.A., Ayala-Zavala, J.F., and Yahia, E.M., 2010. Improvement of the antioxidant status of tropical fruits as a secondary response to some postharvest treatments. Trends in Food Science and Technology, 21, 475-482. https://doi.org/10.1016/j.tifs.2010.07.004.
- Hodges, D. M., and Forney, C. F., 2000. The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. J. Exp. Bot, 51(344), 645-655. https://doi.org/10.1093/jexbot/51.344.645.

- Hodges, D. M., Lester, G. E., Munro, K. D., and Toivonen, P. M., 2004. Oxidative stress: importance for postharvest quality. HortScience, 39, 924-929. https://doi.org/10.21273/HORTSCI.39.5.924.
- Imahori, Y., Bai, J., and Baldwin, E., 2016. Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments. Scientia Horticulturae, 198, 398-406. https://doi.org/10.1016/j.scienta.2015.12.006.
- Kusumaningrum, D., S.-H. Lee, W.-H. Lee, C. Mo, B.-K. Cho., 2015. A review of technologies to prolong the shelf life of fresh tropical fruits in Southeast Asia. J. Biosyst. Eng. 40, 345-358. https://doi.org/10.5307/JBE.2015.40.4.345.
- Luengwilai, K., Beckles, D.M., Saltveit, M.E., 2012. Chilling-injury of harvested tomato (Solanum lycopersicum L.) cv. Micro-Tom fruit is reduced by temperature pre-treatments. Postharvest Biol. Technol. 63, 123-128. https://doi.org/10.1016/j.postharvbio.2011.06.017.
- Malacrida, C., Valle, E.M., Boggio, S.B., 2006. Postharvest chilling induces oxidative stress response in the dwarf tomato cultivar Micro-Tom. Physiol. Plantarum 127, 10-18. https://doi.org/10.1111/j.1399-3054.2005.00636.x.
- Pesis, E., Marinansky, R., Zauberman, G., and Fuchs, Y., 1994. Prestorage Low-oxygen Atmosphere Treatment Reduces Chilling Injury Symptoms inFuerte'Avocado Fruit. HortScience, 29(9), 1042-1046. https://doi.org/10.21273/HORTSCI.29.9.1042.
- Toor, R. K., and Savage, G. P., 2005. Antioxidant activity in different fractions of tomatoes. Food. Res.Int, 38(5), 487-494. https://doi.org/10.1016/j.foodres.2004.10.016.
- Yahia, E. M., 2009. Introduction. In Modified and Controlled Atmospheres for the Storage, Transportation, and Packaging of Horticultural Commodities (pp. 18-33). CRC press.
- Xianquan, S., Shi, J., Kakuda, Y., and Yueming, J., 2005. Stability of lycopene during food processing and storage. J.Med.Food, 8(4), 413-422. https://doi.org/10.1089/jmf.2005.8.413.

5.2. Low oxygen storage improves tomato postharvest cold tolerance, especially for tomatoes cultivated with far-red led light

Abstract

We investigated the effects of low oxygen storage on chilling injury development, colour development, respiration and H₂O₂ levels of 'Merlice' tomatoes cultivated with and without Far-red (FR) LED lighting during 20 days of shelf life. Mature green (MG) and red (R) tomatoes were stored at 2 °C in combination with 0.5, 2.5, 5 and 21 kPa O₂ for 15 days (experiment 1). MG tomatoes cultivated under either white LED or white LED light with FR LED light were stored at 2 °C in combination with 1, 5 and 21 O₂ kPa for 14 days (experiment 2). Chilled MG and R tomatoes from experiment 1 showed decay, firmness loss and higher weight loss during shelf life which were reduced under low oxygen conditions. FR during cultivation improved chilling tolerance of MG tomatoes. Fastest colour development and lowest respiration rate during shelf life were observed for MG fruit cultivated with FR lighting prior to storage at 1 kPa O₂/0 kPa CO₂. H₂O₂ levels during the shelf life were not affected during cold storage. The improved cold tolerance of MG tomatoes cultivated with FR lighting is likely due to lower oxygen uptake that led to both higher lycopene synthesis and less softening.

Published as:

Affandi, F.Y., Verschoor, J.A., Paillart, M.J.M., Verdonk, J.C., Woltering, E.J. and Schouten, R.E., Low Oxygen Storage Improves Tomato Postharvest Cold Tolerance, Especially for Tomatoes Cultivated with Far-Red LED Light. Foods 10 (2021) 1699 (https://doi.org/10.3390/foods10081699)

5.2.1. Introduction

Tomato (*Solanum lycopersicum*) is a chilling sensitive fruit that will develop a disorder called chilling injury (CI) when exposed to low, but above freezing temperatures (Albornoz et al., 2019). Chilling stress disrupts metabolic processes and causes alterations in membrane fluidity, followed by an increase in reactive oxygen species (ROS) production. In addition, low enzymatic activity causes reduced ROS scavenging, which promotes development of CI symptoms (Hodges et al., 2004; Aghdam and Bodbodak, 2013; Imahori et al., 2013). CI symptoms in tomatoes include surface pitting, interrupted pigment (lycopene) synthesis, rapid softening, loss of aroma and production of off-flavours, as well as increased susceptibility to fungal infection (Maul et al., 2000; Bai et al., 2011). CI symptoms usually become visible during a shelf life period after fruits have been exposed to chilling temperatures (Maul et al., 2000; Bai et al., 2011; Zhang et al., 2013).

Controlled atmosphere (CA) storage and Modified Atmosphere Packaging (MAP) have been shown to reduce CI in mango, Japanese plum, guava, avocado and persimmon (Pesis et al., 2000; Singh, 2008; Sing and Singh, 2012; Alamar et al., 2017; de Almeida et al., 2018; Zhao et al., 2020). Low oxygen reduces respiration rate, and in addition, it may decrease ethylene production and ethylene sensitivity. CA storage downregulated the expression of Aminocyclopropane-1-carboxylic acid (ACC)-synthase and ACC-oxidase genes, responsible for ethylene synthesis (Esanhueza et al., 2014). It may also limit ROS production, which could alleviate chilling injury symptoms (Singh, 2008; Beaudry, 2000; Hodges et al., 2000). CA storage induced activation of antioxidant scavenger enzymes such as catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) in Japanese plum, apple and litchi (Singh, 2008; Sabban-Amin et al., 2011; Ali et al., 2016), reducing ROS, often represented by lower hydrogen peroxide (H2O2) levels. H2O2 is both a toxic metabolite and signaling molecule (Suzuki et al., 2006; Gough and Cotter, 2011). Storage under CA slowed down the activities of cell wall degrading enzymes involved in lignification and softening (Gonzalez-Aguilar et al., 2010; Mditshwa et al., 2017). In addition, low oxygen storage stabilised group VII of ethylene response factors (ERFVIIs) and transported these to the nucleus which induced expression of hypoxia-responsive genes. Hypoxia-responsive genes encode enzymes involved in sucrose catabolism (β-amylase, sucrose synthase and phosphofructokinase), fermentative metabolism (pyruvate decarboxylase, dehydrogenase and alcohol dehydrogenase) and ROS scavenging (SOD, APX and CAT) (Cukrov et al., 2016; Pucciariello et al., 2017; Cukrov et al., 2019).

The severity of CI symptoms depends on the ripening stage of the fruits; mature green (MG) tomatoes are more sensitive to CI than red (R) tomatoes (Biswas et al., 2012). Comparing the responses of R and MG fruit to chilling stress is expected to provide insights into the mechanism of how low oxygen alleviates CI in sensitive tomatoes (Whitaker, 1991; Lurie and Sabehat, 1997; Biswas et al., 2012). We showed that addition of far-red (FR) lighting during cultivation alleviated CI in tomato. In MG fruit, additional FR lighting reduced weight loss,

pitting and enhanced red colour development during shelf life after prior cold storage. R fruit cultivated with additional far-red light were firmer at harvest and demonstrated reduced weight loss and less decay during shelf life after prior cold storage (Affandi et al., 2020). In the current study we investigated the effect of varying low oxygen levels on CI occurrence in mature green (MG) and red (R) tomatoes during postharvest storage. In addition, we investigated the effect of FR lighting during cultivation on CI tolerance after prior low oxygen storage.

5.2.2. Materials and methods

We carried out two experiments. In experiment 1, mature green (MG) and red (R) tomatoes were stored for 15 d at 2 °C either under regular atmosphere (21 kPa O₂, RA) or under 0.5, 2.5 and 5 kPa O₂, followed by a shelf life period of 15 d at 20 °C. In experiment 2, MG tomatoes cultivated with or without FR were harvested and stored either under RA or under 1 and 5 kPa O₂ followed by a shelf life period of 15–20 d at 20 °C. In both experiments, decay index, colour and firmness, respiration rate and hydrogen peroxide (H₂O₂) level were determined at harvest, during cold storage and during subsequent shelf life.

5.2.2.1. Plant material and growth conditions

For the first experiment, mature green (MG) and red (R) 'Merlice' tomatoes were harvested from a commercial greenhouse in Bleiswijk, the Netherlands in November 2016. The colour stage of the fruit was assessed using the NAI index (see Section 2.5). MG tomatoes were defined as tomatoes with a NAI value between -0.77 and -0.6 at harvest. R tomatoes were defined as having NAI values between 0.25 and 0.55 at harvest. For the second experiment, MG 'Merlice' tomatoes were harvested from a greenhouse at Wageningen University in May 2019 of plants grown under white LED lighting (WL) or WL with 8.3 µmol m⁻² s⁻¹ FR lighting, with a peak at 730 nm. For the FR treatment, 6% of the photons in the red region were replaced with FR. This resulted in 13 µmol m⁻² s⁻¹ FR in the FR treatment and hence this treatment was called WL + 13FR and the photon flux density was kept constant at 215 μ mol m⁻² s⁻¹. The greenhouse compartment was divided into four plots. The light intensity was 215 µmol m⁻² s⁻¹ at the top of the canopy. In this experiment, VYPRx PLUS modules (Fluence, TX, USA) were used as top lighting. For each of the plots there were six modules installed. Overhead lamps were switched on 16 h before sunset and switched off at sunset. Additionally, LED lighting was automatically switched off when the incoming sunlight exceeded 300 µmol m⁻² s⁻¹. The spectral composition of the light treatments is shown in Figure S1. Light treatments were separated by double sided, non-transparent, white reflective plastic sheets. At harvest, uniform MG fruits were selected with a NAI value between -0.77 and -0.6. Further greenhouse management (fertigation, pollination) was conducted according to standard commercial practice.

5.2.2.2. Experimental setup

In experiment 1, MG and R tomatoes were randomly assigned into five tomatoes per maturity per CA treatment at harvest, at the end of CA storage for 15 d at 2 °C and during subsequent shelf life at 5, 10 and 15 d. This amounts to 125 MG and 125 R tomatoes. At harvest, colour and firmness was measured for all tomatoes. At each sampling point, colour, firmness and CI indices measurements were carried out. In experiment 2, the effect of far red illumination at harvest was characterised by randomly selecting 40 MG tomatoes per light treatment. Eight tomatoes per light treatment per CA treatment were assigned as a replicate of four tomatoes for repeated non-destructive measurement at harvest, after 7 and 14 d of CA storage, and after 4, 7, 10, 14 and 21 d of subsequent shelf life. Prior to sampling during at 7 d CA storage, the CA was stopped and tomatoes were taken out to be analysed. Eight randomly assigned tomatoes per light treatment and per CA treatment were taken for destructive analysis at 7 and 14 d of CA storage and after 7, 14 and 21 d of shelf life. In total 240 FR and 240 non-FR cultivated MG tomatoes were selected for this experiment.

Tomatoes were individually marked on three positions on the equator for repeated colour and firmness measurements during shelf life. In addition, fresh weight and three chilling indices were assessed approximately every 3 d during shelf life. Individual fruits, assigned for destructive measurements, were cut into small pieces and quickly frozen in liquid nitrogen and later ground into a fine powder for H₂O₂ measurements.

5.2.2.3. CA storage conditions

Tomatoes were stored at 2 °C and 95% relative humidity (RH) under low oxygen conditions followed by subsequent shelf life at 20 °C in darkness. Desired oxygen conditions were achieved by flushing humidified gas mixtures at a flow rate of 500 mL min⁻¹ through 70 L stainless steel containers filled with tomatoes with an average weight of 5.15 ± 0.25 kg per container. In both experiments, tomatoes stored at RA and 2 °C served as low oxygen control whereas tomatoes stored at 12 °C and 95% RH under RA served as temperature control. All control treatment were carried out in identical containers and flow rate with the low oxygen treatments.

In experiment 1, MG and R tomatoes were subjected to low oxygen conditions of 0.5 kPa, 2.5 and 5 kPa O₂ combined with 0 kPa CO₂ (completed with balanced N₂) for 15 d. Following cold storage, fruit were transferred to shelf life conditions at 20 °C and 85% RH for 15 d. In experiment 2, MG tomatoes were subjected to low oxygen storage at 1 and 5 kPa O₂ with 0 kPa CO₂ (completed with balanced N₂). During CA storage, respiration measurements were conducted. After 14 d of cold storage, tomatoes were exposed to shelf life condition at 20 °C and 95% RH for 21 d.

5.2.2.4. Respiration measurements

In experiment 2, respiration measurements were carried out according to method previously described by our group (Schouten et al., 2007). Analysis was carried out using an Interscience Compact GC system (Interscience, Breda, NL, USA) equipped with an RT-QBond column for detecting CO₂ at the back channel and a MolSieve 5A coupled with a back pressure column type RT-QBond for the detection of O₂ at the front channel. Helium with a constant pressure of 60 and 80 kPa was used as carrier gas for the back and front channel, respectively. Each column was connected to a Thermal Conductivity Detector (TCD) set at 110 °C. CGCeditor software (v1.5.5, 2008) was used to control the setting of the CompactGC. GC was continuously connected to the samples via tubing connected to a VICI valve (model EMTMA-CE). Valve and CompactGC were coordinated by EZChrom Elite software (v3.32 SP2).

Gas measurement were conducted directly from the container. Before measurement took place, the flow through the container was stopped to allow accumulation of CO₂ and depletion of O₂ and the first GC measurement was carried out. The second measurement was carried out at the end of the incubation period. The accumulation period was approximately 5 h. The difference in gas partial pressure between the first and second GC measurements was converted into consumption and production rates according to ideal gas law methods (Bulens et al., 2011). The measurement was carried out at day 4, 6, 10 and 12 during CA storage.

5.2.2.5. Colour and firmness measurement

Colour was assessed non-destructively by a hand-held photodiode array spectrophotometer (Pigment Analyzer PA1101, CP, Ibbenbüren, Germany). Remittance was assessed at 570 (R570) and 780 (R780) nm by calculating the normalised different vegetative index (*NDVI*, Equation (1)) and normalised anthocyanin index (*NAI*, Equation (2)) which are normalised value between –1 and 1 (Schouten et al., 2014).

$$NDVI = \frac{R_{780} - R_{660}}{R_{780} + R_{660}} \tag{1}$$

$$NAI = \frac{R_{780} - R_{570}}{R_{780} + R_{570}} \tag{2}$$

Firmness was measured non-destructively using a commercial acoustic firmness tester (AFS, AWETA, Nootdorp, the Netherlands) with the tick power of the plunger set to 15. The AFS combines the single tomato resonant frequency (f in Hz) and mass (m, in kg), measured by an inbuild balance, into a FI (firmness index) (Schouten et al., 2018) (Equation (3)).

$$FI = \frac{f^2 m^{2/3}}{10^4} \tag{3}$$

5.2.2.6. Disorder index and weight loss

CI was assessed by three indices, a pitting index and uneven ripening for MG fruit, and a decay index for R tomatoes according to the previously described method (Affandi et al., 2020).

All indices were visually assessed with the percentage of the tomato surface assigned to five classes (0 = no injury, 1 = < 10%, 2= 11–25%, 3= 26–40%, 4 = > 40% affected area). The average score of pitting and uneven ripening index for MG, and decay index tomatoes were termed general disorder index. Tomato weight loss over time was expressed as the percentage weight loss (WL, in%) with W_0 the initial weight (in g) and W_t the weight (in g) according to Equation (4).

$$WL = \frac{W_0 - W_t}{W_0} \times 100 \tag{4}$$

5.2.2.7. Hydrogen peroxide (H2O2) measurement

 $\rm H_2O_2$ was quantified via a colorimetric method (Junglee et al., 2014). Briefly, a 300 mg sample of frozen and ground tissue per tomato was extracted in a solution containing of 0.75 mL 0.1% (w/v) trichloroacetic acid (TCA), 0.75 mL 10 mM phosphate buffer (pH 7) and 1.5 mL 1 M KI. The homogenate was centrifuged (15,000× g, 4 °C, 15 min) and the supernatant transferred to a new tube and allowed to sit at RT for 20 min before obtaining the absorbance at 390 nm using a Varian CARY 4000 spectrophotometer (Agilent, Santa Clara, CA, USA). Measured absorbances were converted into $\rm H_2O_2$ concentrations using a calibration curve constructed with a commercial $\rm O_2$ solution (Sigma Aldrich, St. Louis, MI, USA).

5.2.2.8. Statistical analysis

Data obtained during shelf life were subjected to mixed ANOVA, applying SPSS ver.21 (SPSS, Chicago, IL, USA) at P < 0.05. Data from the first experiment were analysed by mixed ANOVA with oxygen level and maturity as between subject factors and days in storage as within subject factor. For the second experiment, mixed ANOVA was carried out with oxygen level and FR as between subject factor and days in storage as within subject factor. Normality of the variables was tested applying the Shapiro-Wilk test. Mauchly's test of sphericity was carried out to test whether variances of the differences between all possible pairs of within-subject conditions were equal. If the sphericity assumption was not fulfilled, Greenhouse-Geisser's correction was applied to calculate the degrees of freedom. In case of a significant interaction, a pairwise comparison was carried out for each shelf life day with LSD (Least Significant Difference) values estimated.

5.2.3. Results

5.2.3.1. Experiment 1: effects of low oxygen conditions on CI indices, weight- and firmness loss

In the first experiment, typical CI symptoms such as pitting, uneven colouring and decay were observed for both MG and R tomatoes during low oxygen storage and shelf life. Storage at 0.5 kPa oxygen resulted in necrosis, fungal infection and rotting and were therefore omitted from this study. In MG tomatoes there were generally no visible CI symptoms observed during cold storage, except for tomatoes stored at 5 kPa O₂ (Figure 1A). During the shelf life, fruit (MG and R), prior stored at 2.5 kPa O₂, showed the lowest, and RA the highest disorder (Figure 1). MG

tomatoes from the temperature control (12 °C) also developed some pitting, comparable to the tomatoes stored at 2.5 kPa O₂. R tomatoes stored at 12 °C (temperature control) developed the least decay. At 2 °C, the R tomatoes stored at 2.5 kPa showed the least decay while the fruit stored at RA developed the highest disorder after 20 d of shelf life which prevented further measurements. On the other hand, R tomatoes from the temperature control (21 kPa at 12 °C) developed the lowest decay (P < 0.0001). This indicated that the storage at 12 °C also resulted in a small amount of CI symptoms. In general, MG tomatoes developed slower pitting than R tomatoes, indicating that R tomatoes were surprisingly more sensitive to cold storage than MG tomatoes.

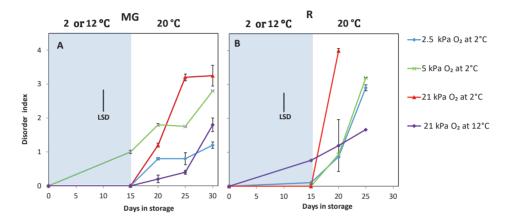


Figure 1. Chilling injury symptoms as indicated by the disorder index of MG (A) and R (B) tomatoes during cold storage at 2 or 12 $^{\circ}$ C (blue area) and subsequent shelf life at 20 $^{\circ}$ C (white area). Blue, green, red and purple lines and symbols indicate 2.5, 5, 21 kPa O₂ (low oxygen control) applied during storage at 2 $^{\circ}$ C and 21 kPa O₂ at 12 $^{\circ}$ C (temperature control), respectively. The average decay index with indicated standard error is shown for five tomatoes. LSD values (P < 0.05) are indicated per panel. Disorder in MG fruit was determined by averaging the values of the pitting and uneven ripening index; disorder in R fruit was determined by the average decay incidence.

Weight loss was higher for MG compared to R tomatoes (Figure 2). Fruit stored at 12 $^{\circ}$ C showed highest weight loss. The lowest weight loss for both MG and R tomatoes was observed in fruit that had been stored at 2 $^{\circ}$ C and 2.5 kPa O₂ (P< 0.005). Fruit stored at 12 $^{\circ}$ C and stored at 2.5 or 5 kPa O₂ at 2 $^{\circ}$ C showed less softening compared to fruit stored at 2 $^{\circ}$ C and 21 kPa O₂ (Figure 3).

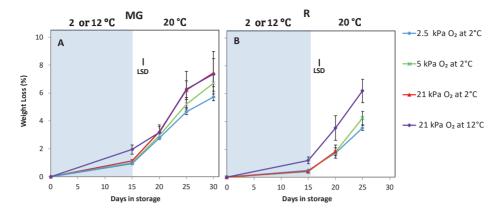


Figure 2. Weight loss of MG (A) and R (B) tomatoes during cold storage at 2 or 12 °C (blue area) and subsequent shelf life at 20 °C (white area). Blue, green, red and purple lines and symbols indicate 2.5, 5, 21 kPa O₂ (low oxygen control) applied during storage at 2 °C and 21 kPa O₂ at 12 °C (temperature control), respectively. The average weight loss with indicated standard error is shown for five tomatoes. LSD values (P < 0.05) are indicated per panel.

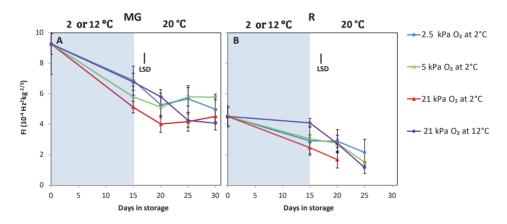


Figure 3. Firmness index of MG (**A**) and R (**B**) tomatoes during cold storage at 2 or 12 °C (blue area) and subsequent shelf life at 20 °C (white area). Blue, green, red and purple lines and symbols indicate 2.5, 5, 21 kPa O_2 (low oxygen control) applied during storage at 2 °C and 21 kPa O_2 at 12 °C (temperature control), respectively. The average firmness index with indicated standard error is shown for five tomatoes. LSD values (P < 0.05) are indicated per panel.

5.2.3.2. Experiment 1: effects of low oxygen conditions on tomato colour development

Red colour formation for MG fruit, as indicated by NAI values, was limited for all fruit that had been stored at 2 °C, independent of the oxygen level. Fruit stored at 12 °C showed colouration during subsequent shelf life at 20 °C. (Figure 4A). During low oxygen storage, more chlorophyll breakdown was observed with increasing oxygen levels. In R tomatoes, all treatments, except for the tomatoes in the temperature control, showed a reduction in the NAI

values during cold storage. During shelf life, fruit from all treatments showed increasing NAI values, except for the RA control (Figure 4B).

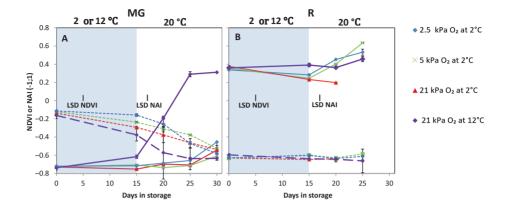


Figure 4. Colour as indicated by NDVI (dotted lines) and NAI (full lines) index of MG (**A**) and R (**B**) tomatoes during cold storage at 2 or 12 °C (blue area) and subsequent shelf life at 20 °C (white area). Blue, green, red and purple lines and symbols indicate 2.5, 5, 21 kPa O₂ (low oxygen control) applied during storage at 2 °C and 21 kPa O₂ at 12 °C (temperature control), respectively. The NDVI or NAI with indicated standard error is shown for five individual tomatoes (repeated measure over times). LSD values (P < 0.05) are indicated per panel.

5.2.3.3. Experiment 2: effects of low oxygen storage of mature green tomatoes cultivated with and without FR lighting on CI symptoms, weight- and firmness loss

Tomatoes cultivated without far red lighting during cultivation showed CI symptoms during shelf life. The lowest pitting index was observed for MG tomatoes stored at 1 kPa O₂, the highest for the low oxygen control (Figure 5A). MG tomatoes cultivated with far-red lighting demonstrated reduced CI compared with tomatoes grown without FR lighting. In fact, no CI symptoms were observed for all low oxygen treatments, even after 3 weeks of shelf life (Figure 5B). There were no chilling symptoms in fruit stored at 12 °C, and no differences were observed in terms of weight loss (Figure S2).

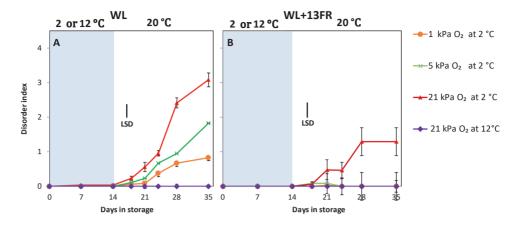


Figure 5. Chilling injury symptoms as indicated by the disorder index of MG tomatoes cultivated under white LED light (WL) without far red lighting (A) or with far red lighting during cultivation (B) during storage (blue area) at 2 or 12 °C and shelf life at 20 °C (white area). Orange, green, red and purple lines and symbols indicate 1, 5 and 21 kPa O₂ (low oxygen control) applied during storage at 2 °C, and 21 kPa O₂ at 12 °C (temperature control), respectively. The average disorder index with indicated standard error is shown for two replicates of four tomatoes (n = 2); (repeated measure over times). LSD values (P < 0.05) are indicated per panel.

Firmness at harvest was similar for MG tomatoes cultivated with or without FR lighting (P > 0.05). Softening during storage at 2 °C for was faster for MG tomatoes that were cultivated without- compared to those with FR lighting (P < 0.05) (Figure 6). Softening of tomatoes cultivated without FR was similar during storage and shelf life independent of the storage oxygen concentration. Tomatoes cultivated without FR from the temperature control treatment showed no softening during storage (Figure 6A), but tomatoes cultivated with FR showed similar softening for all treatments (Figure 6B).

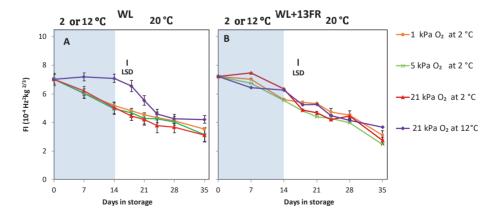


Figure 6. Firmness as indicated by firmness index (FI) of MG tomatoes cultivated under white LED light (WL) without far red lighting (**A**) or with far red lighting during cultivation (**B**) during cold storage (blue area) at 2 or 12 °C and subsequent shelf life at 20 °C (white area). Orange, green, red and purple

lines and symbols indicate 1, 5 and 21 kPa O_2 (low oxygen control) applied during storage at 2 °C, and 21 kPa O_2 at 12 °C (temperature control), respectively. The average firmness index with indicated standard error is shown for two replicates of four tomatoes (n = 2); (repeated measure over times). LSD values (P < 0.05) are indicated per panel.

5.2.3.4. Effects of low oxygen conditions on colour development of mature green tomatoes cultivated with and without FR lighting

During cold storage red colour development was blocked, as indicated by the constant NAI values, irrespective of low oxygen treatments for both MG fruit cultivated with and without FR lighting. Colour development for the temperature control tomatoes started immediately, although faster for the MG tomatoes cultivated with FR lighting (Figure 7). During shelf life, colour development was similar for the different low temperature oxygen storage treatments in fruit without FR lighting. Fruit cultivated with FR lighting reached higher NAI values in fruit prior stored at the low oxygen concentrations (P < 0.001) (Figure 7B). NDVI values were not significantly affected by oxygen level nor FR treatment.

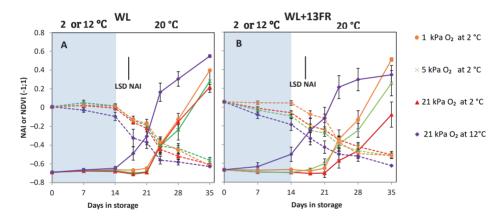


Figure 7. Colour indicated by NDVI (dotted lines) or NAI (full lines) values of MG tomatoes cultivated under white LED light (WL) without far red lighting (**A**) or with far red lighting during cultivation (**B**) during cold storage (blue area) at 2 or 12 °C and subsequent shelf life at 20 °C (white area). Orange, green, red and purple lines and symbols indicate 1, 5 and 21 kPa O₂ (low oxygen control) applied during storage at 2 °C, and 21 kPa O₂ at 12 °C (temperature control), respectively. The average NDVI and NAI values with indicated standard error are shown for two replicates of four tomatoes (n = 2). LSD values (P < 0.05) are indicated per panel.

5.2.3.5. Effects of low oxygen conditions on respiration and H_2O_2 production of mature green tomatoes cultivated with and without FR lighting

Respiration rate measurements were carried out from the fourth day onwards to allow time to achieve the set low oxygen conditions. The O₂ consumption rate at 2 °C was observed to be lower for MG tomatoes stored at lower oxygen levels (Figure 8A,B). At 12 °C, both CO₂ production and O₂ consumption was higher than at 2 °C. The CO₂ production rate, however,

was similar at the low oxygen levels (Figure 8C,D). The oxygen consumption rate over time was lower for MG fruits cultivated with FR lighting and stored at 1 kPa O₂.

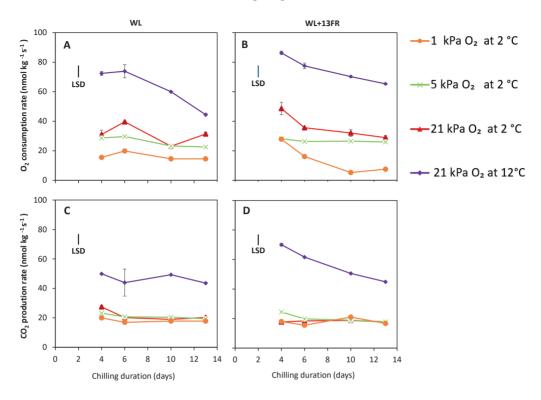


Figure 8. Respiration MG tomatoes cultivated under white LED light (WL) without- (\mathbf{A} , \mathbf{C}) or with far red lighting during cultivation (\mathbf{B} , \mathbf{D}) indicated as oxygen consumption (\mathbf{A} , \mathbf{B}) or CO₂ production (\mathbf{C} , \mathbf{D}) measured during cold storage at 2 or 12 °C. Orange, green, red and purple lines and symbols indicate 1, 5 and 21 kPa O₂ (low oxygen control), and 21 kPa O₂ at 12 °C (temperature control), respectively. The average O₂ or CO₂ production rates with indicated standard error are shown for two replicates from each respective container (n = 2) during cold storage at 2 °C or 12 °C. LSD values (P < 0.05) are indicated per panel.

 H_2O_2 levels were stable during cold storage and steadily increased in all treatments during subsequent shelf life (P < 0.0001, Figure S3). Varying oxygen levels during cold storage showed similar patterns of H_2O_2 production during subsequent shelf life.

5.2.4. Discussion

5.2.4.1. Low oxygen storage alleviated CI in tomato which might be related to lower oxygen uptake and improved lycopene synthesis

When low temperature was combined with reduced oxygen concentrations, lower decay and lower weight loss was observed during shelf life for both MG and R tomatoes (Figure S1 and S2). Our results showed that O2 consumption decreased with lower oxygen levels while CO2 production rates were similar (Figure 8). Low oxygen storage is reported to suppress respiration and ethylene production (Klieber et al., 1996; Beaudry, 2000). Low oxygen uptake might reduce O₂ availability for ROS production, such as singlet oxygen (1O₂) and superoxide anions (O2-) (Fahmy and Nakano, 2014). O2- is dismutated into H2O2 by the action of SOD (Fahmy and Nakano, 2014; Imahori et al., 2016; Malacrida et al., 2016). Lower levels of O₂⁻are expected to yield lower levels of H2O2. However, we did not observe a lower level of H2O2 in the low oxygen stored fruit (Figure S3), perhaps indicating that low oxygen did not suppress oxidative stress initiated by the presence of O2-. As tomato stored under low oxygen showed further red colouration close to or even higher than the non-chilled control (Figure 4B) and faster red colouration (Figure 7) after transfer to 20 °C, we hypothesise that lycopene acted directly to quench ¹O₂. Carotenoids are able to quench ¹O₂ due to its high number of conjugated double bonds, whereas lycopene and its precursors, are the most effective 1O2 quencher (Di Mascio et al., 1989; Min and Boff, 2002; Lado et al., 2016; Farneti et al., 2012). Quenching of ¹O₂ by lycopene or its precursors might have resulted in delayed lycopene synthesis or lycopene degradation (Schouten et al., 2014; Farneti et al., 2014). Therefore, uninterrupted colour synthesis might indicate that low oxygen prevents lycopene degradation as well as preserving the lycopene biosynthetic machinery during cold storage allowing new lycopene synthesis during shelf life (Gartska et al., 2007; Yang et al., 2009; Skupien et al., 2017).

The lowest oxygen concentration to delay or prevent CI symptoms was 1 kPa (Figure 7). A lower oxygen level (0.5 kPa) resulted in necrosis and fungal infection (data not shown), probably because of excessive fermentation. It was reported that MG 'Bermuda' tomatoes stored at 22 °C under 0.5 kPa O₂ developed identical symptoms after three d of storage (Klieber et al., 1996).

5.2.4.2. Effects of low oxygen is larger to prevent CI related symptoms when tomatoes are cultivated with FR

Tomatoes cultivated with FR during cultivation and kept at 1 kPa O₂ during cold storage were shown to completely alleviate CI symptoms (Figure 5B) in MG fruit. This confirmed our previous findings that FR addition during cultivation suppressed CI incidence (Affandi et al., 2020). It was observed that MG tomatoes cultivated with FR initiated colour development at higher firmness (Affandi et al., 2020). It means that tomato cultivated with FR, although they had the same firmness as those cultivated without FR at harvest, maintained higher firmness

during cold storage (Figure 6). Excessive firmness loss during cold storage and during shelf life is often regarded as one of the main symptoms of CI in tomato with firmness retention associated with lower decay and higher membrane integrity (Mirdehghan et al., 2007; Rodoni et al., 2010). Improved cold tolerance of FR cultivated tomatoes might also be attributed to thicker cuticle wax layers (Cozmuta et al., 2016) which in turn might lower the oxygen consumption rate (Figure 8). On contrary, no significant difference was on weight loss (Figure S3). This might be attributed to comparably high relative humidity during the shelf life (> 95% RH) which suppress weight loss induced-transpiration from the fruit (Bhowmik et al., 1992).

Our findings suggests that when low oxygen storage is applied to accompany long cold storage or transport, higher CI tolerance will result in shelf life extension when tomatoes are grown with FR in greenhouses or grown in the field characterised by a low red to far-red ratio.

5.2.5. Conclusions

This study assessed the application of low oxygen either alone or in combination with far-red cultivated tomatoes on CI development. Results obtained showed the efficacy of low oxygen in minimising CI in tomato. CI tolerance is improved when low oxygen storage of MG tomatoes is combined with FR lighting during cultivation, especially when stored at 2 °C. This is likely due to lower oxygen uptake that allowed for to uninterrupted lycopene production and less softening during shelf life for prior cold stored MG tomatoes kept at 1 kPa O₂ and 0 kPa CO₂.

References

- Affandi, F. Y., Verdonk, J. C., Ouzounis, T., Ji, Y., Woltering, E. J., and Schouten, R. E., 2020. Farred light during cultivation induces postharvest cold tolerance in tomato fruit. Postharvest Biology and Technology, 159, 1-10. https://doi.org/10.1016/j.postharvbio.2019.111019.
- Aghdam, M.S., and Bodbodak, S., 2014. Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables. Food and Bioprocess Technology, 7, 37-53. http://dx.doi.org/10.1007/s11947-013-1207-4.
- Alamar, M.C., Collings, E., Cools, K. and Terry, L.A., 2017. Impact of controlled atmosphere scheduling on strawberry and imported avocado fruit. Postharvest Biology and Technology, 134, 76-86. https://doi.org/10.1016/j.postharvbio.2017.08.003.
- Albornoz, K., Cantwell, M.I., Zhang, L. and Beckles, D.M., 2019. Integrative analysis of postharvest chilling injury in cherry tomato fruit reveals contrapuntal spatio-temporal responses to ripening and cold stress. Scientific reports, 9, 1-14.
- Ali, S., Khan, A.S., Malik, A.U. and Shahid, M., 2016. Effect of controlled atmosphere storage on pericarp browning, bioactive compounds and antioxidant enzymes of litchi fruits. Food Chemistry, 206, 18-29.

- Bai, J., Baldwin, E.A., Imahori, Y., Kostenyuk, I., Burns, J. and Brecht, J.K., 2011. Chilling and heating may regulate C6 volatile aroma production by different mechanisms in tomato (*Solanum lycopersicum*) fruit. Postharvest Biology and Technology, 60, 111-120 https://doi.org/10.1016/j.lwt.2014.12.062.
- Beaudry, R.M., 2000. Responses of horticultural commodities to low oxygen: limits to the expanded use of modified atmosphere packaging. HortTechnology, 10, 491-500. https://doi.org/10.21273/Horttech.10.3.491.
- Bhowmik, S.R. and Pan, J.C., 1992. Shelf life of mature green tomatoes stored in controlled atmosphere and high humidity. Journal of Food Science, 57, 948-953.
- Biswas, P., East, A. R., Brecht, J. K., Hewett, E. W., and Heyes, J. A., 2012. Intermittent warming during low temperature storage reduces tomato chilling injury. Postharvest Biology and Technology, 74, 71-78. https://doi.org/10.1016/j.postharvbio.2012.07.002.
- Bulens, I., Van de Poel, B., Hertog, M.L., De Proft, M.P., Geeraerd, A.H. and Nicolaï, B.M., 2011. Protocol: an updated integrated methodology for analysis of metabolites and enzyme activities of ethylene biosynthesis. Plant Methods, 7, 1-10.
- Cozmuta, M.A., Cozmuta, L.M., Peter, A., Nicula, C., Vosgan, Z., Giurgiulescu, L., Vulpoi, A., Baia, M., 2016. Effect of monochromatic far-red light on physical-nutritional-microbiological attributes of red tomatoes during storage. Scientia Horticulturae, 211, 220–230.https://doi.org/10.1016/j.scienta.2016.08.031.
- Cukrov, D., Brizzolara, S. and Tonutti, P., 2019. Physiological and biochemical effects of controlled and modified atmospheres. In Postharvest Physiology and Biochemistry of Fruits and Vegetables (425-441). Woodhead Publishing.
- Cukrov, D., Zermiani, M., Brizzolara, S., Cestaro, A., Licausi, F., Luchinat, C., 2016. Extreme hypoxic conditions induce selective molecular responses and metabolic reset in detached apple fruit. Front. Plant Sci. 7. https://doi.org/10.3389/fpls.2016.00146.
- de Almeida Teixeira, G., Santos, L., Cunha Júnior, L., and Durigan, J. 2018. Effect of carbon dioxide (CO₂) and oxygen (O₂) levels on quality of 'Palmer' mangoes under controlled atmosphere storage. Journal of Food Science and Technology, 55, 145-156. https://dx.doi.org/10.1007%2Fs13197-017-2873-4.
- Di Mascio, P., Kaiser, S. and Sies, H., 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Archives of biochemistry and biophysics, 274, 532-538. https://doi.org/10.1016/0003-9861(89)90467-0.
- Fahmy, K. And Nakano, K., 2014. The Individual and Combined Influences of Low Oxygen and High Carbon Dioxide on Chilling-injury Alleviation in Cucumber Fruit. Environmental Control in Biology, 52, 149-153.

- Farneti, B., Schouten, R.E. and Woltering, E.J., 12. Low temperature-induced lycopene degradation in red ripe tomato evaluated by remittance spectroscopy. Postharvest Biology and Technology, 73, 22-27. https://doi.org/10.1016/j.postharvbio.2012.05.008.
- Garstka, M., Venema, J., Rumak, I., Gieczewska, K., Rosiak, M., Koziol-Lipinska, J., . . . Mostowska, A. 2007. Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: Plants with a different susceptibility to non-freezing temperature. Planta, 226, 1165-1181. https://doi.org/10.1007/s00425-007-0562-7.
- Gonzalez-Aguilar, G. A., Villa-Rodriguez, J. A., Ayala-Zavala, J. F., and Yahia, E. M., 2010. Improvement of the antioxidant status of tropical fruits as a secondary response to some postharvest treatments. Trends in Food Science and Technology, 21, 475-482. https://doi.org/10.1016/j.tifs.2010.07.004.
- Gough, D.R. and Cotter, T.G., 2011. Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell death and disease, 2, e213-e213. https://doi.org/10.1038/cddis.2011.96
- Hodges, D. M., Lester, G. E., Munro, K. D., and Toivonen, P. M., 2004. Oxidative stress: importance for postharvest quality. HortScience, 39, 924-929. https://doi.org/10.21273/HORTSCI.39.5.924.
- Hodges1, D., and Forney, C. 2000. The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. Journal of Experimental Botany, 51, 545-555. https://doi.org/10.1093/jexbot/51.344.645.
- Imahori, Y., Bai, J., and Baldwin, E., 2016. Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments. Scientia Horticulturae, 198, 398-406. https://doi.org/10.1016/j.scienta.2015.12.006.
- Jing, Y., Fu, M.R., Zhao, Y.Y. and Mao, L.C., 2009. Reduction of chilling injury and ultrastructural damage in cherry tomato fruits after hot water treatment. Agricultural Sciences in China, 8(3), 304-310. https://doi.org/10.1016/S1671-2927(08)60213-8.
- Junglee, S., Urban, L., Sallanon, H. and Lopez-Lauri, F., 2014. Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide. American Journal of Analytical Chemistry, 5, 730. http://dx.doi.org/10.4236/ajac.2014.511081.
- Klieber, A., Ratanachinakorn, B. and Simons, D.H., 1996. Effects of low oxygen and high carbon dioxide on tomato cultivar 'Bermuda' fruit physiology and composition. Scientia horticulturae, 65, 251-261. https://doi.org/10.1016/0304-4238(96)00881-3.
- Lado, J., Rodrigo, M.J., López-Climent, M., Gómez-Cadenas, A. and Zacarías, L., 2016. Implication of the antioxidant system in chilling injury tolerance in the red peel of grapefruit. Postharvest Biology and Technology, 111, 214-223. https://doi.org/10.1016/j.postharvbio.2015.09.013.
- Lurie, S. and Sabehat, A., 1997. Prestorage temperature manipulations to reduce chilling injury in tomatoes. Postharvest Biology and Technology, 11, 57-62. https://doi.org/10.1016/S0925-5214(97)01411-7.

- Malacrida, C., Valle, E.M., Boggio, S.B., 2006. Postharvest chilling induces oxidative stress response in the dwarf tomato cultivar Micro-Tom. Physiol. Plantarum 127, 10-18. https://doi.org/10.1111/j.1399-3054.2005.00636.x.
- Martínez, A., Stinco, C.M. and Melendez-Martinez, A.J., 2014. Free radical scavenging properties of phytofluene and phytoene isomers as compared to lycopene: a combined experimental and theoretical study. The Journal of Physical Chemistry B, 118, 9819-9825. https://doi.org/10.1021/jp503227j.
- Maul, F., Sargent, S.A., Sims, C.A., Baldwin, E.A., Balaban, M.O. and Huber, D.J., 2000. Tomato flavor and aroma quality as affected by storage temperature. Journal of Food Science, 65, 1228-1237. https://doi.org/10.1111/j.1365-2621.2000.tb10270.x.
- Mditshwa, A., Fawole, O., Vries, F., van der Merwe, K., Crouch, E., and Opara, U., 2017. Impact of dynamic controlled atmospheres on reactive oxygen species, antioxidant capacity and phytochemical properties of apple peel (cv. Granny Smith). Scientia Horticulturae, 216, 169-176. https://doi.org/10.1016/j.scienta.2017.01.011.
- Min, D.B. and Boff, J.M., 2002. Chemistry and reaction of singlet oxygen in foods. Comprehensive reviews in food science and food safety, 1, 58-72. https://doi.org/10.1111/j.1541-4337.2002.tb00007.x.
- Mirdehghan, S.H., Rahemi, M., Martínez-Romero, D., Guillén, F., Valverde, J.M., Zapata, P.J., Serrano, M. and Valero, D., 2007. Reduction of pomegranate chilling injury during storage after heat treatment: role of polyamines. Postharvest biology and technology, 44, 19-25. https://doi.org/10.1016/j.postharvbio.2006.11.001.
- Pesis, E., Aharoni, D., Aharon, Z., Ben-Arie, R., Aharoni, N. and Fuchs, Y., 2000. Modified atmosphere and modified humidity packaging alleviates chilling injury symptoms in mango fruit. Postharvest biology and technology, 19, 93-101. https://doi.org/10.1016/S0925-5214(00)00080-6.
- Pucciariello, C. and Perata, P., 2017. New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants. Plant, Cell and Environment, 40, 473-482. https://doi.org/10.1111/pce.12715.
- Rodoni, L., Casadei, N., Concellon, A., Chaves Alicia, A.R. and Vicente, A.R., 2010. Effect of short-term ozone treatments on tomato (*Solanum lycopersicum L.*) fruit quality and cell wall degradation. Journal of Agricultural and Food Chemistry, 58, 594-599. https://doi.org/10.1021/jf9029145.
- Sabban-Amin, R., Feygenberg, O., Belausov, E., and Pesis, E., 2011. Low oxygen and 1-MCP pretreatments delay superficial scald development by reducing reactive oxygen species (ROS) accumulation in stored 'Granny Smith' apples. Postharvest Biology and Technology, 62, 295-304. https://doi.org/10.1016/j.postharvbio.2011.06.016.

- Sanhueza, D., Vizoso, P., Balic, I., Campos-Vargas, R. and Meneses, C., 2015. Transcriptomic analysis of fruit stored under cold conditions using controlled atmosphere in *Prunus persica* cv. "Red Pearl". Frontiers in plant science, 6, 788. https://doi.org/10.3389/fpls.2015.00788.
- Schotte , N., and Mittler, R., 2006. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia plantarum, 126, 45-51. https://doi.org/10.1111/j.0031-9317.2005.00582.x.
- Schouten, R.E., Fan, S., Verdonk, J.C., Wang, Y., Kasim, N.F.M., Woltering, E.J., Tijskens, L.M.M., 2018. Mango firmness modeling as affected by transport and ethylene treatments. Front. Plant. Sci. 9, 1647. https://dx.doi.org/10.3389%2Ffpls.2018.01647.
- Schouten, R.E., Farneti, B., Tijskens, L.M.M., Alarcón, A.A., Woltering, E.J., 2014. Quantifying lycopene synthesis and chlorophyll breakdown in tomato fruit using remittance VIS spectroscopy. Postharvest Biol. Technol. 96, 53-63. https://doi.org/10.1016/j.postharvbio.2014.05.007.
- Schouten, R.E., Zhang, X., Verschoor, J.A., Otma, E.C., Tijskens, L.M.M. and van Kooten, O., 2009. Development of colour of broccoli heads as affected by controlled atmosphere storage and temperature. Postharvest Biology and Technology, 51, 27-35.
- Singh, S., and Pal, R. 2008, 3. Controlled atmosphere storage of guava (*Psidium guajava L.*) fruit. Postharvest Biology and Technology, 47(3), 296-306.
- Singh, S., and Singh, Z. 2013. Controlled and modified atmospheres influence chilling injury, fruit quality and antioxidative system of Japanese plums (*Prunus salicina Lindell*). International Journal of Food Science and Technology, 48(2), 363-374. https://doi.org/10.1111/j.1365-2621.2012.03196.x.
- Skupień, J., Wójtowicz, J., Kowalewska, Ł., Mazur, R., Garstka, M., Gieczewska, K., and Mostowska, A., 2017. Dark-chilling induces substantial structural changes and modifies galactolipid and carotenoid composition during chloroplast biogenesis in cucumber (*Cucumis sativus L.*) cotyledons. Plant Physiology and Biochemistry, 111, 107-118. https://doi.org/10.1016/j.plaphy.2016.11.022.
- Whitaker, B.D., 1991. Changes in lipids of tomato fruit stored at chilling and non-chilling temperatures. Phytochemistry, 30, 757-761. https://doi.org/10.1016/0031-9422(91)85247-W.
- Zhang, X., Shen, L., Li, F., Meng, D. and Sheng, J., 2013. Arginase induction by heat treatment contributes to amelioration of chilling injury and activation of antioxidant enzymes in tomato fruit. Postharvest biology and technology, 79, 1-8. https://doi.org/10.1016/j.postharvbio.2012.12.019.
- Zhao, Q., Jin, M., Guo, L., Pei, H., Nan, Y., and Rao, J. 2020. Modified atmosphere packaging and 1-methylcyclopropene alleviate chilling injury of 'Youhou' sweet persimmon during cold storage. Food Packaging and Shelf life, 24, 1-9. https://doi.org/10.1016/j.fpsl.2020.100479.

Supplementary figures

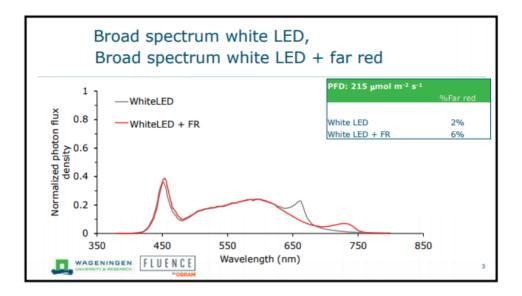


Figure S1. Spectra of the PhysioSpec Greenhouse lamp (A) with white LED light and far-red light and the spectra of the PhysioSpec Greenhouse lamp (B) with only white LED light. Total light intensity in μ mol m⁻² s⁻¹. Light intensity far-red light (A) = 12,6 μ mol m⁻² s⁻¹. Light intensity far-red light (B) = μ mol m⁻² s⁻¹. PPF = photonsynthetic photon flux. YPF = yield photon flux. PPE = photosynthetic photon efficacy. R (625 – 700 nm) /FR (700 – 820 nm) = ratio between red and far red light.

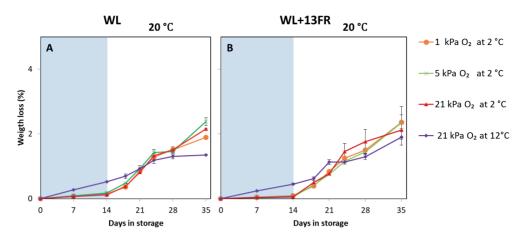


Figure S2. Weight loss percentage of MG (A) and R (B) tomatoes during cold storage at 2 $^{\circ}$ C (blue area) and subsequent shelf life at 20 $^{\circ}$ C (white area). Orange, green, red, and purple lines and symbols indicate 1 kPa, 5 kPa, 21 kPa O2 (low oxygen control) applied during cold storage at 2 $^{\circ}$ C , and 21 kPa O2 at 12 $^{\circ}$ C (temperature control), respectively. The average weight loss percentage with indicated standard error is shown for two replicates of four tomatoes (n=2)

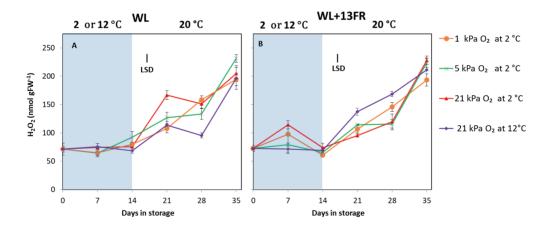


Figure S3. Hydrogen peroxide (H_2O_2) production of MG tomatoes cultivated under white LED light (WL) without far red lighting (A) or with additional far red lighting during cultivation (B) during cold storage (blue area) at 2 °C and subsequent shelf life at 20 °C (white area). Orange, green, red, and purple lines and symbols indicate 1 kPa, 5 kPa, 21 kPa O₂ (low oxygen control) applied during storage at 2 °C, and 21 kPa O₂ at 12 °C (temperature control), respectively. The average H_2O_2 production with indicated standard error is shown for two replicates of four tomatoes (n=2); (repeated measure over times). LSD values (P < 0.05) are indicated per panel.

CHAPTER

General discussion

Due to chilling injury (CI), tomato fruit do not benefit from low temperature storage to prolong shelf life, maintain fruit quality, and reduce postharvest losses. Tomato and several other fruit grown in tropical or sub-tropical origin are chilling sensitive as a result of their genetic makeup and growing conditions (light, temperature, water status, and relative humidity). Chilling sensitivity at harvest i.e. the risk of developing disorder due to low temperature may develop into CI problems in the postharvest stage. Therefore, a variety of postharvest techniques and treatments intended to prevent CI have been described (Parkin et al., 1989; Wang, 1993; Sevillano et al., 2009; Luengwilai et al., 2012; Aghdam and Bodbodak, 2014; Jannatizadeh et al., 2019). However, the mechanism that is responsible for sensitivity developing into CI has not been elucidated. Recently, the idea was proposed that preharvest conditions could also be of importance to reduce CI. To our knowledge, there is very little information on how cultivation circumstances affect chilling sensitivity. In addition, the interaction of postharvest treatments with chilling sensitivity, has not been systematically investigated.

The work presented in this thesis is intended to enrich current knowledge and understanding on the role of pre- and postharvest factors in chilling injury development in tomato. This work focused in particular on factors that have not yet been described:

- The role of preharvest light treatment (Far-red and blue LED) on chilling sensitivity (Chapter 2 and chapter 3)
- The effect of growing temperature on postharvest quality including the sensitivity and tolerance to cold storage (Chapter 4)
- The effect of low oxygen storage and its interaction with preharvest FR lighting in limiting CI (Chapter 5)

Results outlined in the chapters of this thesis demonstrate that CI symptoms in green and red tomatoes have some commonalities but are most of the time different. Observed CI symptoms in mature green (MG) tomatoes are uneven ripening, pitting, increased weight loss and faster softening. In red (R) tomatoes, the main CI symptoms are loss of red colouration, weight loss, and faster decay. Our findings agree with previous findings on CI in tomato (Lurie and Sabehat, 1997, Lurie and Crisosto, 2005; Farneti et al., 2012; Biswas et al., 2016; Albornoz et al., 2019). We investigated the effects of preharvest and postharvest factors on chilling injury development in both MG and R tomato. The effect of those treatments on a number of physiological processes associated with quality deterioration and CI defence mechanisms in tomato such as colour development, cellular integrity and defence against oxidative stress are discussed. The mechanisms behind some of the findings are currently not fully understood, and are interesting targets for future research.

6.1. The effect of preharvest conditions on tomato CI development might be explained by fruit physicochemical properties

Our LED light and temperature experiments revealed the importance of fruit physicochemical properties such as firmness and colour. Higher firmness at harvest may explain how moderate BL and additional FR induced cold tolerance on R tomatoes (Chapter 2 and Chapter 3). Reduced growth temperature improved chilling tolerance of dwarf MG tomatoes (Chapter 5). Even though a delay in red colour development indicated by a delay in crossing point (CP) was observed, an appreciable and uniform red colour was achieved after rewarming (Chapter 5). Improved cold tolerance of tomatoes grown at a reduced temperature was also associated with higher firmness at harvest and better firmness retention throughout cold storage and shelf life. The effects of each preharvest treatment and possible mechanisms underlying cold tolerance induced by those treatment will be discussed below.

6.1.1. Are the effects of preharvest light conditions on postharvest cold tolerance in R tomatoes mediated by fruit firmness?

Reduced softening and water loss may play an important role with regard to cold tolerance. Higher firmness at harvest acquired by FR and BL cultivated R tomatoes was maintained during postharvest storage under chilling temperature. Weight loss, colour, and decay index measurements indicated that tomatoes with higher firmness at harvest performed better during chilling and subsequent shelf life (Chapter 2, 3 and 5). Because CI aggravates the risk of fungal infections (Efiuvwevwere et al.,1988; Artes and Escriche, 1994; Mejía-Torres et al., 2009) and softening is contributed by reduced cell wall strength leads to infection (Wei et al., 2018), a treatment that retains firmness implies the cell walls are intact and less susceptible for infections (Sabban-Amin et al., 2011).

Firmness retention and reduced water loss of FR-treated fruit is presumably mediated by stimulation of wax biosynthesis in the cuticle, resulting in a tighter cuticle-wax adhesion and enhanced barrier properties against transpiration (Cozmuta et al., 2016). Softening in tomato is mainly contributed by catabolism of cell wall components and reduction in cellular turgor pressure (Saladie et al., 2007; Rugkong et al., 2011; Biswas et al., 2014). Increased firmness at harvest (Chapter 2), as well as a delayed softening during chilling and subsequent shelf life (Chapter 2 and Chapter 4) of FR cultivated tomatoes indicates that FR decreases the softening rate during tomato chilling, although previous reports mentioned the opposite (Alba et al., 2000). A low R:FR ratio or illumination of tomato seedlings with extra FR light induced the expression of the genes that play role in the metabolism of cell wall carbohydrates and in auxin responses (Cagnola et al., 2012). In tomato, auxin has been found to affect fruit firmness by regulating pectin structure and tissue architecture, although the molecular mechanism is unknown (Guillon et al., 2008). In addition, Wang et al. (2016) reported that FR and red light perceived by phytochrome A (phyA) and phytochrome B (phyB) regulate abscisic acid (ABA) and jasmonic acid (JA) signaling. FR also regulates CBF genes that further regulate the expression levels of cold responsive (COR) genes which convers chilling tolerance in plants by

stabilising the membranes during cold stress (Shi et al., 2017; Rihan et al., 2017). Most of these features which show FR effects on cold tolerance have not been studied in fruit. We therefore hypothesize that the effects of FR light during cultivation on chilling tolerance of red fruit postharvest may be due to changes in hormonal status and subsequent changes in cell wall properties.

Our result show that addition of BL during cultivation resulted in better cold tolerance. A moderate addition of 12% BL was the optimum level to induce cold tolerance. In addition, high intensity of preharvest BL (24%), showed sensitivity to cold storage, but to a lower extent than without added BL (0%). Interestingly, apart from differences in firmness and colour, none of the BL treatments resulted in higher ROS scavenging properties at harvest. Instead, differences in redox status indicators such as ascorbic acid (AsA), catalase (CAT), malondialdehyde (MDA) and dehydroascorbic acid (DHA) were affected by maturity but not by the preharvest BL conditions. In addition, the redox status indicators showed little changes throughout cold storage and shelf life independent of BL treatment. Postharvest BL treatments on detached fruit or vegetables were found to successfully enhance accumulation of the antioxidant pool (Li and Kubota, 2009; Avercheva et al., 2014; Shi et al., 2014; Xu et al., 2014; Naznin et al., 2016). Perhaps if the BL treatment would have been added during postharvest, our tomatoes would also show similar responses and convers more protection to chilling stress.

The reason for the lack of added BL during cultivation on antioxidant properties in our study is not clear and requires follow up research. A possible explanation could be attributed to lower overall light intensity in our experiment (175 µmol s-²). Zushi et al. (2020), concluded that a higher intensity of BL (230 m-² s-¹) is necessary to increase AsA accumulation *in vitro*. The spectrum is also an important factor. Ntagkas et al. (2019), reported that added BL light increased the antioxidant (AsA) accumulation in tomato fruit more than other light (including FR) did. We demonstrate that both BL and FR lighting induced a certain degree of cold tolerance (Chapter 2 and 3). Lower weight loss and continued colour development were observed for MG and R fruit cultivated with additional FR and only (partially) observed for R tomatoes cultivated with additional BL. This basically suggests that enhancement of antioxidants or the redox status at harvest is not the only factor determining chilling sensitivity. Instead, results from our study indicated that physiological maturity and physicochemical properties at harvest play a more important role in governing chilling tolerance compared to antioxidant properties.

6.1.2. De-synchronisation of colour and firmness is a typical CI symptom in MG tomatoes

It is widely accepted that green tomatoes are more chilling susceptible than red tomatoes (Autio and Bramlage, 1986; Lurie and Sabehat, 1997; Chomcalow et al., 2000; Biswas et al., 2012). However, this thesis demonstrated that MG tomatoes have less severe CI symptoms than R tomatoes (Chapter 3 and 5). This thesis also show that one common symptoms in MG tomatoes is de-synchronisation of colour development and firmness loss (Chapter 2, 4, 5). De-

synchronisation was indicated by rapid softening and continuous chlorophyll degradation and a lack of red colour development, leading to a delay in colouring. Red colour in tomato is mainly contributed by lycopene (Brandt et al., 2006).

FR and BL treatments did not result in higher firmness at harvest for MG tomatoes (Chapter 2 and 3). Nevertheless, cold tolerance of FR and BL tomatoes was characterised by higher firmness during cold storage and subsequent shelf life. Conflicting results were reported regarding the effect of chilling on the activities of cell wall degradation enzymes (Biswas, 2014). Chilling retarded activity of PG, β -galactosidase and pectate lyase (PL), but not PME (Jackman et al., 1992). It was also reported that enhanced softening during shelf life of tomatoes was not correlated with PG activity; instead, it was associated with PME activity (Marangoni et al., 1995). On contrary, Rugkong et al. (2011) did not find that cold storage retard PME activity in tomato. Results in this thesis outlined that softening of MG tomatoes already occurred during chilling (Chapter 2, 4 and 5) which might point to loss of turgor pressure playing a bigger role in softening during chilling than dissolution of cell wall components. Lower weight loss experienced by chilled MG tomatoes might be related to this. Turgor pressure in fruit is determined by the water status within the fruit and the degree of bound and free water inside the cell (Shackel et al., 1991; Jackman et al., 1992; Song et al., 2009). In tomato, increase in water mobility can be associated with cellular damage and increased membrane permeability (Albornoz et al., 2019). CI induced membrane breakdown resulted in higher water mobility leading to softening in persimmon (Clarck and Forbes, 1994), cherry fruit (Zhu et al., 2018), and bell pepper (Kong et al., 2018).

The chloroplast might be the first organelle suffering from CI that may lead to inhibition of colour development (Garstka et al., 2007; Skupień et al., 2017). Therefore, it is likely that uninterrupted lycopene synthesis depicted by chilling tolerant MG tomatoes from our FR, BL, growth temperature, and low oxygen experiments (Chapter 2, 3, 4 and 5) indicated a better chloroplast integrity enabling the transition from chloroplast to chromoplast (Yang et al., 2009; Skupień et al., 2017). Treatments that showed cold tolerance (Chapter 2, 3, 4 and 5) also maintained synchronisation between firmness loss and colour development throughout cold storage and subsequent shelf life. This thesis demonstrated that softening, weight loss, and colouring delay are interconnected and represent typical CI symptoms in MG tomatoes.

This thesis showed that some biochemical processes are not completely stopped during chilling. MG tomato either beefsteak type cultivars or dwarf cultivars, chilled at 4 °C for 15 d are still able to develop colour upon rewarming at 20 °C (Chapter 4, 5). This indicates that pigment synthesis is severely inhibited under low temperature but is reactivated upon rewarming. During cold storage, enzyme activities are low and enzymes involved in lycopene synthesis might be broken down that need to be resynthesized upon rewarming which causes delayed red colour formation (Chapter 5). The importance of lycopene and lycopene precursor synthesis is demonstrated by the fact that mature green tomato with delayed lycopene formation showed less CI symptoms (Chapter 2, 3 and 5). Precursors of lycopene, i.e. phytoene

and phytofluene, exhibit antioxidant capacity due their high number of conjugated double bonds (Martinez et al., 2014; Engelmann et al., 2012). It is therefore likely that delayed red colour synthesis also occur because of disruption of lycopene synthesis as lycopene or lycopene precursor are involved in scavenging excess ROS.

6.2. Critical reflection on oxidative stress a major cause of CI

Oxidative stress has long been considered as the key event preceding the onset of CI symptoms (Hariyadi and Parkin, 1991; Hodges et al., 2004; Valenzuela et al., 2019). Chilling stress provokes the imbalance between ROS production and ROS scavenging which leads to alterations in membrane structure and composition, membrane dysfunction, disruption of metabolic processes which finally results in the development of CI symptoms (Mittler, 2002; Demidchik, 2015).

Superoxide anion or oxygen radicals (O₂⁻) and singlet oxygens (¹O₂) are ROS resulting from chilling stress which trigger oxidative stress (Watkins et al., 2017). The discussion on the relation between oxidative stress and chilling injury so far focused on oxidative stress triggered by the superoxide anion (Hodges et al., 2004; Sevilano et al., 2009; Singh et al., 2013). Cold stress causes an oxidative burst and activates NADPH oxidases in order to produce O₂-which is then dismutated to H₂O₂ by super oxidase dismutase (SOD) (Das, and Roychoudhury, 2014). The role of H₂O₂ is important because it activates several antioxidants enzymes such as CAT, glutathione peroxidase (GPX) and ascorbate peroxidase (APX), or non-enzymatic antioxidants such as AsA (Gough and Cotter, 2011). Regeneration of AsA involves many enzymes such as monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) (Steffens et al., 2008; Imahori et al., 2016). Up-regulation of enzymatic or non-enzymatic antioxidants are perceived as a common denominator for chilling tolerance (Fig. 6.1). An association between up-regulation, accumulation of antioxidants and CI incidence has been established (Sevillano et al., 2009; Singh et al., 2013; Aghdam and Bodbodak, 2014; Valenzuela et al., 2017).

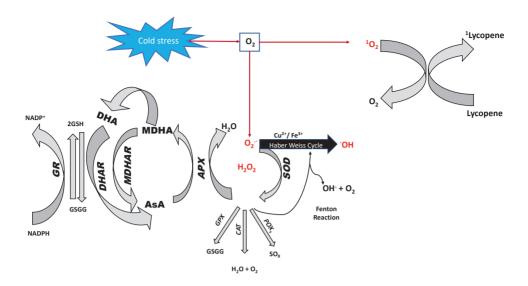


Figure 6.1. The generation of ROS and ROS scavenging compounds either enzymatic or non-enzymatic in tomato fruit. Chilling is thought to induce O_2 or 1O_2 . The formation of O_2 may trigger production of H_2O_2 facilitated by SOD. Production of H_2O_2 trigger activation of antioxidant defence mechanisms such as AsA, APX, CAT, GR, MDHAR, DHAR and GSSG. The final ROS formed from this cascade of reaction is the most reactive ROS, OH. In our research none of the events preceded by generation of O_2 seemed to be associated with chilling injury and it is hypothesized that an alternative pathway involving 1O_2 may be at play (adapted from Singh and Tuteja, 2010).

We could not find a clear relation between the level of non-enzymatic and enzymatic antioxidants such as vitamin C, CAT (Chapter 3) and SOD (data not shown), lipid peroxidation products such as MDA (Chapter 3) and ROS (Chapter 5) on the one hand with severity of CI on the other hand. Increased MDA levels or ion leakage, which is normally considered as a sign of the loss of membrane integrity due to lipid peroxidation, took place after 17 d storage at 4 °C (Sanchez-Bell et al., 2012; Biswas et al., 2012). In our research, however, 20 d cold stored (4 °C) tomato fruit - which showed complete inhibition of colouration - did not show an increased level of MDA. Even after an additional 15 d at post storage shelf life conditions, no clear increases in MDA were observed (Chapter 3). BL did not result in AsA accumulation at harvest and also no increase was found in response to postharvest chilling (Chapter 3). CAT activity decreased during chilling which indicates that CAT did not response to the chilling stress. Higher levels of H2O2 were not observed (Chapter 3). Absence of these redox status indicators during chilling may indicate oxidative stress initiated by singlet oxygen plays a more important role in CI development observed in our research. Unlike superoxide anion, the involvement of oxidative stress induced by singlet oxygen in chilling injury development has not been studied extensively.

6.3. Does low oxygen storage suppress CI in tomato due to lowering the presence of singlet oxygen?

The role of ¹O₂ as a trigger for oxidative stress has not been elaborated in literature as it is unlikely to be produced during dark storage of fruit (Wise and Naylor, 1987; Lado et al., 2016). Singlet oxygen presence is associated with inefficient light energy dissipation in the presence of chlorophyll (Demidchik, 2015). Nevertheless, several reports mention that singlet oxygen is also detected in darkness in non-photosynthetic tissue under multiple stresses, such as drought and therefore might also be present due to temperature stress (Mor et al., 2014; Dmitrieva et al., 2020). O2- induced oxidative stress causes damage to the cell through a cascade of reactions involving intermediate compounds such as H2O2, as well as scavenging antioxidants such as SOD, CAT, APX, AsA, GR and GSSH (Hossain et al., 2015). The final ROS resulted from this cascade is hydroxyl radical (OH) via Haber-Weiss cycle under the presence of Cu or Fe ions (Fig. 6.1). Unlike the superoxide anion, singlet oxygen induces oxidative stress more directly, similar with the action of OH (Fig. 6.2). The unpaired electron of singlet oxygen makes it highly reactive and able to diffuse over several hundred nanometres causing direct damage to important biomolecules such as proteins, unsaturated fatty acids, and DNA, causing cell death that eventually leads to CI symptoms (Fischer et al., 2013; Pospišil and Prasad, 2014; Lado et al., 2016). Recently, the work of Lado et al. (2016) and Rey et al. (2020) showed that singlet oxygen and the fruits capacity to scavenge this radical species plays an important role in chilling susceptibility in carotenoid-rich fruit. However, the mechanisms of how chilling stress induced singlet oxygen production and its consequences on CI development is not elaborated by the authors.

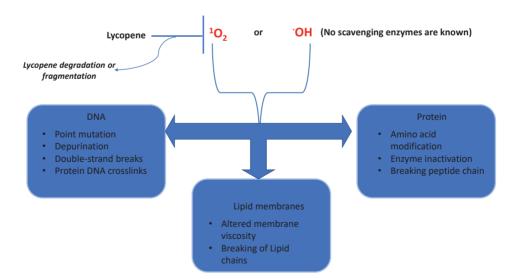


Figure 6.2. Various singlet oxygen and hydroxyl radical targets. Both ROS are able to create damage to DNA, lipid membranes and protein (adapted from Das and Roychoudhury, 2014).

The source of ${}^{1}O_{2}$ production in darkness could be hydroperoxides of fatty acids produced by lipoxygenase (LOX) from linoleic acid (Miyamoto et al., 2003; Miyamoto et al., 2013; Prado et al., 2020) (Fig. 6.3). Membrane rigidification as an initial response due to prolonged chilling may increase activity of phospholipase D (PLD) and LOX (Mao et al., 2007; Canone et al., 2011). Increase of LOX activity was reported to initiate CI in cucumber, and maize seedlings (Pinhero et al., 1998; Mao et al., 2007). Oxidation of linoleic acid in tomato by LOX resulting in the production of hydroperoxides may eventually lead to the production of singlet oxygen according to Russel's mechanism in which two peroxyl radicals combine via an intermediate tetraoxide, generating an alcohol, a ketone, and singlet oxygen (Pospisil et al., 2011; Dmitrieva et al., 2021).

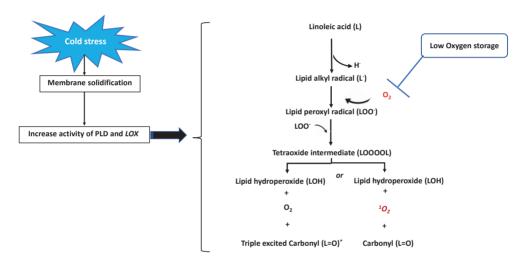


Figure 6.3. Possible explanation of singlet oxygen ($^{1}O_{2}$) generation by cold stress and how low oxygen storage may limit the generation of $^{1}O_{2}$ (adapted from Canone et al., 2011; Miyamoto et al., 2013).

Low oxygen storage decreased CI incidence in both MG and R tomatoes of round or cherry types (Chapter 5). It was shown that an atmosphere containing 2.5 kPa O₂ reduced chilling associated weight loss and decay in MG-, and prevented lycopene degradation in R tomatoes. Furthermore, we showed that even a lower oxygen level (1 kPa O₂) was more effective in alleviating visual CI symptoms. In terms of preventing lycopene degradation in red tomato, the effect of low oxygen storage is stronger than the applied preharvest light treatments such as FR (Chapter 2) and BL treatment (Chapter 3). In those light treatments, lycopene degradation upon chilling was still present, despite observable differences in other CI indicators. It was reported that heat shock treatment, which lead to the enhancement of ROS scavenging systems, applied to pink tomato, could not prevent lycopene degradation due to cold storage (Farneti et al., 2012). Lado et al. (2016) pointed out that increase in lycopene

content and not the activity of other antioxidant components contributed to better chilling tolerance of grapefruit.

Lycopene is a strong quencher of singlet oxygen, and the quenching takes place either by physical or chemical quenching (Ruth and Truscott, 2018). Physical quenching of ¹O₂ by lycopene is based on energy transfer reactions. High energy level 1O2 transfers its energy to the lycopene molecule to reach an excited state. Consequently, lycopene returns to its ground state by dissipating thermal energy to the surrounding or by isomerization. On the other hand, chemical quenching of ¹O₂ or peroxyl radical by lycopene is responsible for cleaving long chain carbon skeleton of lycopene at one or both fragments resulting in lycopene derivatives such as apo-carotenals or carotenoid endoperoxides (Min and Boff, 2011; Wang, 2015; Heymann et al., 2015). Although chemical quenching of ¹O₂ is less likely to occur than physical quenching (Heymann et al., 2015), it might still take place in our experiment. Subsequently, quenching of ¹O₂ by lycopene potentially delays lycopene accumulation or leads to lycopene degradation to prevent further oxidative stress (Figure 6.3). This might explain why higher loss in red colouration of R tomatoes correlates with a lower degree of CI (Chapter 3). In addition, chilled storage under low oxygen led to less lycopene degradation in R tomatoes and sustained lycopene formation in MG tomatoes. This is presumably because of the suppression of chilling-induced singlet oxygen formation under low oxygen conditions (Chapter 5).

6.4. The ability to restore normal ripening after prior cold storage is an important feature of any treatment intended to alleviate CI

In MG tomatoes, apart from pitting, weight loss, and excessive firmness loss, the lack or delay in colouration during subsequent shelf life is one of the major chilling symptoms. This thesis highlighted that several preharvest treatments improved the chilling tolerance as reflected in the restoration of coloration (Chapter 2, 3, and 5). However, the outcome from the temperature experiment in which tomatoes were grown at other than the standard growing temperature demonstrated that chilling tolerance in terms of lower weight loss, less pitting and firmness retention can also be accompanied by delayed red colour formation (Chapter 4).

Since inability to ripen properly (full colour formation, synchronisation between colour development and firmness loss, flavour and aroma development, and biosynthesis of primary or secondary metabolites) is one of the important symptoms of CI, careful evaluation must be carried out to determine if any particular treatment sufficiently induces chilling tolerance. Slowing down ripening is the ultimate goal of many postharvest techniques. Delayed colour formation of MG tomato is often associated with longer storage and shelf life. In papers on CI in tomato, a delay of colouring was sometimes reported as a positive effect (Cantwell et al., 2009; Fagundes et al., 2015; Park et al., 2018). However, the inability to develop full red colour is one of main CI symptoms in tomato. It might be possible that the tomatoes experience delay in colour development will never fully become red. Therefore, delay in colouring in tomato must be interpreted more carefully.

The ability to restore normal ripening is an important feature of any postharvest treatment intended to reduce CI. Normal ripening of MG tomato is usually characterised by high synchronisation between colour development and firmness loss (Schouten et al., 2007; Saladié et al., 2014). Hence, any deviation from the normal ripening pathway in chilled MG tomatoes indicates CI. Consequently, chilling tolerance may be indicated by the closest possible colour development and firmness pattern to the normal ripening pattern. MG tomatoes suffering from CI usually show inability to develop sufficient colour accompanied by excessive softening. This results in poor ripeness at the end of shelf life (Albornoz et al., 2019). Therefore, treatments that restore colour formation for fairly firm tomatoes might indicate that tomatoes have potential to ripen (Chapter 2 and 3). From a practical point of view, treatments that alleviate CI and resulted in colour development retardation accompanied by firmness retention have the potential to withstands long transport to extended distribution ranges and attain full colour and desirable firmness at the end of the chain (Chapter 5). For shorter chains, chilling tolerance accompanied by faster colouration and firmness breakdown (Chapter 2, 3, and 4) is desired to allow for immediate marketing to reduce storage and inventory cost.

6.5. The role of low oxygen on lycopene metabolism at chilling conditions

The finding that low oxygen storage prevents lycopene degradation in red tomato during cold storage needs to be elucidated further. Several authors mentioned lycopene degradation as one symptom of CI in red tomato whereas in green tomato failure to synthesize red colour is mainly considered as the main CI symptom (Mejía-Torres et al., 2009; Farneti et al., 2012; Schouten et al., 2014). However, the reason and mechanism how postharvest cold stress causes lycopene degradation in red tomato is not clear. Lycopene breakdown is thought to be caused by scavenging of singlet oxygen or peroxyl radicals by lycopene. Low oxygen may affect production of these ROS (Figure 6.3). Therefore, more detailed studies which involve measurement of O2- and 1O2 as a function of low oxygen levels needs to be carried out to examine the role of low oxygen in inhibiting initiation of oxidative stress. Another option to measure 1O2 would be to measure singlet oxygen absorbance capacity (SOAC) which assesses the total quenching activity of singlet oxygen by fruit or foods product (Ouchi et al., 2010; Iwasaki et al., 2015; Lado et al., 2016). Higher SOAC value might therefore point to higher singlet oxygen quenching power of lycopene. Comparing SOAC values with the activity of other antioxidants for tomatoes stored under low oxygen would clarify which ROS (102 and/or O₂-) is involved in CI and which defence pathways operate under low oxygen conditions.

The benefit of applying controlled atmosphere (CA) storage for tomatoes relies on its ability to prolong the shelf life under favourable temperature conditions and to alleviate chilling symptoms under chilling conditions. In this way CA can either be applied to replace the need for low temperature storage or to alleviate chilling symptoms when fruit need to be stored together with chilling tolerant commodities at low temperatures. CA or modified atmosphere (MAP) applications in tomato are usually carried out at temperatures above CI threshold (Klieber et al., 1996; Sozi et al., 1999; D'Aquino et al., 2016). So far, a number of studies reported

that altering the storage atmosphere delayed or partially reduced CI symptoms in tomatoes (Forney and Lipton, 1990; Suparlan and Itoh, 2003; Cantwell et al., 2009; Cantwell and Saltveit, 2012; Fagundes et al., 2015; Deltsidis et al., 2018; Park et al., 2018). Unlike the mentioned studies, which applied oxygen level above 2.5 kPa, this thesis reported ultra-low oxygen (ULO) of 1 kPa can also effectively be used to reduce the adverse effect of chilling in tomatoes. Considering the effect of CA on ripening, this thesis revealed that low oxygen application during chilling may even accelerate colour development during shelf life of previously chilled MG tomatoes. This thesis hypothesised that reduction of CI in low oxygen storage is mainly due to suppression of singlet oxygen associated oxidative stress. Nevertheless, the known effect of CA on fruit physiology in general such as maintenance of higher level of antioxidant enzymes (Singh and Singh, 2013; Mditshwa et al., 2017) increased level of heat shock protein and ethanol (Sabban-Amin et al., 2011) and reduction of ethylene sensitivity (Orihuel-Iranzo et al., 2010) may synergistically induce chilling tolerance (Chapter 5).

6.6. Conclusions and future outlook

The work in this thesis gained insight into how preharvest factors such as light and temperature affect chilling sensitivity. We also investigated how low oxygen storage reduces CI symptoms. The main advancement provided by this thesis is that CI is also determined by the fruit's physicochemical properties (i.e., ability to retain firmness and restore colour and firmness synchronisation) which are greatly influenced by light and temperature during cultivation. The importance of lycopene and lycopene synthesis in CI mitigation is also highlighted. This thesis also indicated that one important feature of CA storage is avoidance of lycopene degradation, a distinct CI symptom in R tomato which cannot be alleviated by preharvest treatments. However, further studies are necessary to explore the physiological mechanisms at play when discussing light and temperature effects on chilling sensitivity and CI occurrence. This thesis also implied the existence of different pathways that mitigate CI in tomatoes. Identification of genes and induced pathways by preharvest and postharvest treatments, will advance our understanding on the underlying mechanisms that determine chilling sensitivity. Some other recommendation based on finding of this thesis are described below.

1. Tomato fruit cultivated in the greenhouse or a region characterized by low R:FR ratios will likely have a higher firmness at harvest and can be used for long distance transport or longer storage periods. The FR effect persists despite differences in light background (Chapter 2, Chapter 5). Since FR cultivated tomatoes can withstand cold storage (Chapter 2) or even can be cold stored longer under low oxygen storage (Chapter 5), it is a possibility to extent the marketing area. The applicability of this approach in tomato cultivation can be achieved especially in tomato grown in intercropping systems that are widely practiced in e.g. Indonesia. An intercropping system might be characterized by low R:FR ratio. For instance, it is now widely practiced to grow tomato plants under a chili pepper (*Capsicum annum*) crop, and it is reported that it gives higher yield (Rosliany and Setiawati, 2019).

- However, to our knowledge, there are no reports on the performance of tomato harvested from this intercropping system during the postharvest phase, especially in the cold chain.
- 2. This thesis reveals that 1 kPa O2 cold storage induced chilling tolerance in tomato. In general, an oxygen concentration below 2.5 kPa is not recommended (Cantwell and Suslow, 2002). Too low oxygen will shift respiration to fermentation which is a less efficient energy production route and may lead to production of unfavourable compounds such as ethanol and acetaldehyde. Therefore, research on CA or MAP application to mitigate CI in tomato usually evolve around safe oxygen level that avoid fermentation. However, chilling tolerance induced by CA storage might be due to the accumulation of low levels of ethanol and acetaldehyde, which might act as antioxidants. Chanjirakul et al. (2007) reported that fruit storage under ethanol vapour increased the radical scavenging capacity in strawberries and blackberries. Recently, ethanol treatment, either in the form of vapour or applied as a coating material was reported to alleviate CI symptoms such as internal browning in plums (Steffens et al., 2021) and astringency in persimmon (Fathi-Najafabdi et al., 2021). Therefore, we suggest further study into the effect of different ULO regimes on fermentative metabolism and redox status of the fruit. Comparing characteristic responses of tomato under hypoxia in combination with cold storage will provide insight on how fermentation is induced by ULO and which level of induced fermentation effectively suppresses CI.
- 3. Further study on lycopene metabolism under the combination of low temperature and low oxygen needs to be carried out. Measurement of lycopene breakdown products and lycopene precursors as well as enzyme activities in the carotenoid pathway will clarify whether lycopene degradation occurs or that the perceived lycopene degradation is merely an imbalance between lycopene synthesis and isomerisation to e.g., β -Carotene. Studying the activity of enzymes involved in lycopene degradation will also shed more light on the mechanism of low O2 storage in preventing lycopene degradation.
- 4. The impact of CI on volatile profiles of tomato is widely mentioned in literature (Deltsidis et al., 2013; Farneti et al., 2015; Wang et al., 2015). However, this thesis has not addressed this issue. The dynamics in tomato volatile production during postharvest cold storage can be used to characterise tomato chilling injury. Volatile biosynthesis is affected by low temperature storage, and lower volatile emissions after cold storage have been reported (Bai et al., 2011; Farneti et al., 2015). During cold storage, tomato volatiles from lipid peroxidation pathways decrease whereas volatiles derived from carotenoid biosynthetic pathway tend to increase (Farneti et al., 2014). For instance, 6-methyl-5-hepten-2-one increased and it is likely related to decreased lycopene synthesis (Deltsidis et al., 2013). Volatile biosynthesis is mostly regulated at the transcript level (Verdonk et al., 2005), and many volatile biosynthetic genes have been characterized (Speirs et al., 1998; Chen et al., 2004; Simkin et al., 2004; Klee and Tieman, 2013; Shen et al., 2014; Goulet et al., 2015). These volatiles and genes might be used as CI markers. These markers can then be used to screen tomato genotypes for their suitability to benefit from CA or MAP storage.

References

- Aghdam, M.S., and Bodbodak, S. 2014. Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables. Food and Bioprocess Technology, 7, 37-53. http://dx.doi.org/10.1007/s11947-013-1207-4.
- Alba, R., Cordonnier-Pratt, M. M., and Pratt, L. H., 2000. Fruit-Localized Phytochromes Regulate Lycopene Accumulation Independently of Ethylene Production in Tomato. Plant Physiology, 123, 363–370, https://doi.org/10.1104/pp.123.1.363.
- Albornoz, K., Cantwell, M.I., Zhang, L. and Beckles, D.M., 2019. Integrative analysis of postharvest chilling injury in cherry tomato fruit reveals contrapuntal spatio-temporal responses to ripening and cold stress. Scientific reports, 9, 1-14. https://doi.org/10.1038/s41598-019-38877-0.
- Almeida, D.P. and Huber, D.J., 2008. In vivo pectin solubility in ripening and chill-injured tomato fruit. Plant Science, 174, 174-182. https://doi.org/10.1016/j.plantsci.2007.11.001
- Artes, F. and Escriche, A.J., 1994. Intermittent warming reduces chilling injury and decay of tomato fruit. Journal of Food Science, 59, 1053-1056. http://dx.doi.org/10.1111/j.1365-2621.1994.tb08188.x.
- Autio, W.R. and Bramlage, W.J., 1986. Chilling sensitivity of tomato fruit in relation to ripening and senescence. Journal of the American Society for Horticultural Science, 111, 201-204.
- Avercheva, O., Berkovich, Y.A., Smolyanina, S., Bassarskaya, E., Pogosyan, S., Ptushenko, V., Erokhin, A. and Zhigalova, T., 2014. Biochemical, photosynthetic and productive parameters of Chinese cabbage grown under blue–red LED assembly designed for space agriculture. Advances in space research, 53, 1574-1581. doi:10.1016/j.asr.2014.03.003.
- Ayala, A., Muñoz, M.F. and Argüelles, S., 2014. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity, 2014. https://doi.org/10.1155/2014/360438.
- Bai, J., Baldwin, E.A., Imahori, Y., Kostenyuk, I., Burns, J. and Brecht, J.K., 2011. Chilling and heating may regulate C6 volatile aroma production by different mechanisms in tomato (Solanum lycopersicum) fruit. Postharvest Biology and Technology, 60, 111-120. https://doi.org/10.1016/j.postharvbio.2010.12.002.
- Barrero-Gil J, Huertas R, Rambla JL, Granell A, Salinas J. 2016. Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments. Plant Cell and Environment 39, 2303–2318. https://doi.org/10.1111/pce.12799
- Biswas, P., East, A. R., Brecht, J. K., Hewett, E. W., and Heyes, J., A. 2012. Intermittent warming during low temperature storage reduces tomato chilling injury. Postharvest Biology and Technology, 74, 71-78. https://doi.org/10.1016/j.postharvbio.2012.07.002.

- Biswas, P., East, A.R., Hewett, E.W. and Heyes, J.A., 2014. Interpreting textural changes in low temperature stored tomatoes. Postharvest biology and technology, 87, 140-143. https://doi.org/10.1016/j.postharvbio.2013.08.018.
- Brandt, S., Pék, Z., Barna, É., Lugasi, A. and Helyes, L., 2006. Lycopene content and colour of ripening tomatoes as affected by environmental conditions. Journal of the Science of Food and Agriculture, 86, 568-572. https://doi.org/10.1002/jsfa.2390.
- Cagnola, J.I., Ploschuk, E., Benech-Arnold, T., Finlayson, S.A. and Casal, J.J., 2012. Stem transcriptome reveals mechanisms to reduce the energetic cost of shade-avoidance responses in tomato. Plant physiology, 1602, 1110-1119. https://doi.org/10.1104/pp.112.201921.
- Canonne, J., Froidure-Nicolas, S. and Rivas, S., 2011. Phospholipases in action during plant defense signaling. Plant signaling and behavior, 6, 13-18. https://dx.doi.org/10.4161%2Fpsb.6.1.14037.
- Cantwell, M. and Saltveit, M., 2013, June. Tolerance of grape tomatoes to controlled atmospheres at low temperature. In XI International Controlled and Modified Atmosphere Research Conference 1071, 627-634. https://doi.org/10.17660/ActaHortic.2015.1071.82.
- Cantwell, M. and T. Suslow. 2002. Tomato: Recommendations for Maintaining Postharvest Quality.

 http://postharvest.ucdavis.edu/Commodity_Resources/Fact_Sheets/Datastores/Vegetables
 _English/?uid=36andds=799. Accessed: 15 Mei 2021
- Cantwell, M., Nie, X. and Hong, G., 2009, April. Impact of storage conditions on grape tomato quality. In 6th ISHS postharvest symposium, Antalya, Turkey (Vol. 8).
- Chanjirakul, K., Wang, S.Y., Wang, C.Y. and Siriphanich, J., 2007. Natural volatile treatments increase free-radical scavenging capacity of strawberries and blackberries. Journal of the Science of Food and Agriculture, 871, 1463-1472. https://doi.org/10.1002/jsfa.2841.
- Chen, G., Hackett, R., Walker, D., Taylor, A., Lin, Z. and Grierson, D., 2004. Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant physiology, 136, 2641-2651. https://doi.org/10.1104/pp.104.041608.
- Chomchalow, S., El Assi, N.M., Sargent, S.A. and Brecht, J.K., 2002. Fruit maturity and timing of ethylene treatment affect storage performance of green tomatoes at chilling and Nonchilling temperatures. HortTechnology, 12, 104-114. https://doi.org/10.21273/HORTTECH.12.1.104.
- Clark, C. J. and Forbes, S. K., 1994. Nuclear magnetic resonance imaging of the development of chilling injury in 'Fuyu' persimmon (*Diospyros kaki*), 22 (2), 209-215, doi: 10.1080/01140671.1994.9513827
- Cozmuta, M.A., Cozmuta, L.M., Peter, A., Nicula, C., Vosgan, Z., Giurgiulescu, L., Vulpoi, A., Baia, M., 2016. Effect of monochromatic far-red light on physical-nutritional-microbiological

- attributes of red tomatoes during storage. Scientia Horticulturae 211, 220–230.https://doi.org/10.1016/j.scienta.2016.08.031.
- D'Aquino, S., Mistriotis, A., Briassoulis, D., Di Lorenzo, M.L., Malinconico, M. and Palma, A., 2016. Influence of modified atmosphere packaging on postharvest quality of cherry tomatoes held at 20 °C. Postharvest Biology and Technology, 115, 103-112.
- Das, K. and Roychoudhury, A., 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in environmental science, 2, 53. https://doi.org/10.3389/fenvs.2014.00053.
- Deltsidis, A. I., Pliakoni, E. D., Baldwin, E. A., Bai, J., Plotto, A., and Brecht, J. K. 2013. Tomato flavor changes at chilling and non-chilling temperatures as influenced by controlled atmospheres. XI International Controlled and Modified Atmosphere Research Conference 1071, 703-709.
- Deltsidis, A.I., Sims, C.A. and Brecht, J.K., 2018. Ripening recovery and sensory quality of pink tomatoes stored in controlled atmosphere at chilling or nonchilling temperatures to extend shelf life. HortScience, 53, 1186-1190. https://doi.org/10.21273/HORTSCI12745-18.
- Demidchik, V., 2015. Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environmental and experimental botany, 109, 212-228. https://doi.org/10.1016/j.envexpbot.2014.06.021.
- Dmitrieva, V.A., Tyutereva, E.V. and Voitsekhovskaja, O.V., 2020. Singlet oxygen in plants: Generation, detection, and signaling roles. International journal of molecular sciences, 21, 3237. https://doi.org/10.3390/ijms21093237.
- Edge, Ruth, and T. G. Truscott., 2018. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids—A Review. Antioxidants 7, 1-15. https://doi.org/10.3390/antiox7010005
- Efiuwwevwere, B.J. and Thorne, S.N., 1988. Development of chilling injury symptoms in stored tomato fruit (Lycopersicon esculentum Mill). Journal of the Science of Food and Agriculture, 44, 215-226. https://doi.org/10.1002/jsfa.2740440303.
- Engelmann, N.J., Clinton, S.K. and Erdman Jr, J.W., 2012. Nutritional Aspects of Phytoene and Phytafluene, Carotenoid Precursors to Lycopene (vol 2, pg 51, 2010). Advances In Nutrition, 3, 255-255. https://doi.org/10.3945/an.110.000075.
- Fagundes, C., Moraes, K., Pérez-Gago, M.B., Palou, L., Maraschin, M. and Monteiro, A.R., 2015.
 Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biology and Technology, 109, 73-81.
 https://doi.org/10.1016/j.postharvbio.2015.05.017.
- Farneti, B., Alarcón, A.A., Papasotiriou, F.G., Samudrala, D., Cristescu, S.M., Costa, G., Harren, F.J.M., Woltering, E.J., 2015. Chilling-Induced Changes in Aroma Volatile Profiles in Tomato. Food and Bioprocess Technology. 8, 1442-1454. https://doi.org/10.1007/s11947-015-1504-1.

- Farneti, B., Schouten, R.E., Woltering, E.J., 2012. Low temperature-induced lycopene degradation in red ripe tomato evaluated by remittance spectroscopy. Postharvest Biology and Technology, 73, 22–27. https://doi.org/10.1016/j.postharvbio.2012.05.008.
- Fathi-Najafabadi, A., Besada, C., Gil, R., Tormo, D., Navarro, P. and Salvador, A., 2021. Application of a new wax containing ethanol as a method to remove persimmon astringency during cold storage. Journal of Food Science and Technology, 1-11. https://doi.org/10.1007/s13197-021-05011-w.
- Fischer, B.B., Hideg, E. and Krieger-Liszkay, A., 2013. Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxidants and redox signaling, 18, 2145-2162. https://doi.org/10.1089/ars.2012.5124.
- Forney, C.F. and Lipton, W.J., 1990. Influence of controlled atmospheres and packaging on chilling sensitivity. Chilling Injury of Horticultural Crops. CRC Press, Boca Raton, Fla, 257-268.
- Garstka, M., Venema, J.H., Rumak, I., Gieczewska, K., Rosiak, M., Koziol-Lipinska, J., Kierdaszuk, B., Vredenberg, W.J. and Mostowska, A., 2007. Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll–protein complexes in pea and tomato: plants with a different susceptibility to non-freezing temperature. Planta, 226, 1165-1181. https://doi.org/10.1007/s00425-007-0562-7.
- Gill, S.S. and Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48, 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
- Gough, D.R. and Cotter, T.G., 2011. Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell death and disease, 2, e213-e213. https://doi.org/10.1038/cddis.2011.96.
- Goulet, C., Kamiyoshihara, Y., Lam, N.B., Richard, T., Taylor, M.G., Tieman, D.M. and Klee, H.J., 2015. Divergence in the enzymatic activities of a tomato and *Solanum pennellii* alcohol acyltransferase impacts fruit volatile ester composition. Molecular plant, 8, 153-162. https://doi.org/10.1016/j.molp.2014.11.007.
- Guillon, F., Philippe, S., Bouchet, B., Devaux, M.F., Frasse, P., Jones, B., Bouzayen, M. and Lahaye, M., 2008. Down-regulation of an Auxin Response Factor in the tomato induces modification of fine pectin structure and tissue architecture. Journal of experimental botany, 59, 273-288. https://doi.org/10.1093/jxb/erm323.
- Hariyadi, P. and Parkin, K.L., 1991. Chilling-induced oxidative stress in cucumber fruits. Postharvest Biology and Technology, 1, 33-45. https://doi.org/10.1016/0925-5214(91)90017-6.
- Heymann, T., Heinz, P. and Glomb, M.A., 2015. Lycopene inhibits the isomerization of β -carotene during quenching of singlet oxygen and free radicals. Journal of agricultural and food chemistry, 63, 3279-3287. https://doi.org/10.1021/acs.jafc.5b00377

- Hodges D., and Forney, C. 2000. The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. Journal of Experimental Botany, 51, 545-555. https://doi.org/10.1093/jexbot/51.344.645.
- Hodges, D.M., Lester, G.E., Munro, K.D. and Toivonen, P.M., 2004. Oxidative stress: importance for postharvest quality. HortScience, 39, 924-929. https://doi.org/10.21273/HORTSCI.39.5.924.
- Hossain, M.A., Bhattacharjee, S., Armin, S.M., Qian, P., Xin, W., Li, H.Y., Burritt, D.J., Fujita, M. and Tran, L.S.P., 2015. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Frontiers in plant science, 6, 420. https://doi.org/10.3389/fpls.2015.00420.
- Imahori, Y., Bai, J., and Baldwin, E. 2016. Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments. Scientia Horticulturae, 198, 398-406. https://doi.org/10.1016/j.scienta.2015.12.006.
- Iwasaki, Y., Takahashi, S., Aizawa, K. and Mukai, K., 2015. Development of singlet oxygen absorption capacity (SOAC) assay method. 4. Measurements of the SOAC values for vegetable and fruit extracts. Bioscience, biotechnology, and biochemistry, 79, 280-291. https://doi.org/10.1080/09168451.2014.972329.
- Jackman, R.L., Gibson, H.J. and Stanley, D.W., 1992. Effects of chilling on tomato fruit texture. Physiologia Plantarum, 86, 600-608. https://doi.org/10.1111/j.1399-3054.1992.tb02176.x.
- Jannatizadeh, A., Aghdam, M.S., Luo, Z. and Razavi, F., 2019. Impact of exogenous melatonin application on chilling injury in tomato fruits during cold storage. Food and bioprocess technology, 12, 741-750. https://doi.org/10.1007/s11947-019-2247-1.
- Klee, H.J. and Tieman, D.M., 2013. Genetic challenges of flavor improvement in tomato. Trends in Genetics, 29257-262. https://doi.org/10.1016/j.tig.2012.12.003.
- Lado, J., Rodrigo, M.J., López-Climent, M., Gómez-Cadenas, A. and Zacarías, L., 2016. Implication of the antioxidant system in chilling injury tolerance in the red peel of grapefruit. Postharvest Biology and Technology, 111, 214-223. https://doi.org/10.1016/j.postharvbio.2015.09.013.
- Li, Q. and Kubota, C., 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67, 59-64. https://doi.org/10.1016/j.envexpbot.2009.06.011.
- Luengwilai, K., Beckles, D.M. and Saltveit, M.E., 2012. Chilling-injury of harvested tomato (Solanum lycopersicum L.) cv. Micro-Tom fruit is reduced by temperature pre-treatments. Postharvest Biology and Technology, 63, 123-128. https://doi.org/10.1016/j.postharvbio.2011.06.017.
- Lum, G. B., Shelp, B. J., DeEll, J. R., and Bozzo, G. G., 2016. Oxidative metabolism is associated with physiological disorders in fruits stored under multiple environmental stresses. Plant Science, 245, 143-152. https://doi.org/10.1016/j.plantsci.2016.02.005.

- Lurie S, and Crisosto, CH., 2005. Chilling injury in peach and nectarine. Postharvest Biology and Technology 37, 195–208. https://doi.org/10.1016/j.postharvbio.2005.04.012.
- Lurie, S. and Sabehat, A., 1997. Prestorage temperature manipulations to reduce chilling injury in tomatoes. Postharvest Biology and Technology, 11, 57-62. https://doi.org/10.1016/S0925-5214(97)01411-7.
- Mao, L., Pang, H., Wang, G. and Zhu, C., 2007. Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress. Postharvest Biology and Technology, 44, 42-47. https://doi.org/10.1016/j.postharvbio.2006.11.009.
- Marangoni, A.G., Jackman, R.L. And Stanley, D.W., 1995. Chilling-associated softening of tomato fruit is related to increased pectinmethylesterase activity. Journal of food science, 60, 1277-1281. https://doi.org/10.1111/j.1365-2621.1995.tb04572.x.
- Martínez, A., Stinco, C.M. and Melendez-Martinez, A.J., 2014. Free radical scavenging properties of phytofluene and phytoene isomers as compared to lycopene: a combined experimental and theoretical study. The Journal of Physical Chemistry B, 118, 9819-9825. https://doi.org/10.1021/jp503227j. https://doi.org/10.1016/j.jphotobiol.2015.10.001.
- Mditshwa, A., Fawole, O., Vries, F., van der Merwe, K., Crouch, E., and Opara, U., 2017. Impact of dynamic controlled atmospheres on reactive oxygen species, antioxidant capacity and phytochemical properties of apple peel (cv. Granny Smith). Scientia Horticulturae, 216, 169-176. https://doi.org/10.1016/j.scienta.2017.01.011
- Mditshwa, A., Fawole, O.A., Vries, F., van der Merwe, K., Crouch, E. and Opara, U.L., 2017. Minimum exposure period for dynamic controlled atmospheres to control superficial scald in 'Granny Smith'apples for long distance supply chains. Postharvest Biology and Technology, 127, 27-34. https://doi.org/10.1016/j.postharvbio.2016.12.009.
- Mejía-Torres, S.I.L.V.I.A., Vega-García, M.I.S.A.E.L., Valverde-Juárez, J.A.V.I.E.R., López-Valenzuela, J.O.S.É. And Caro-Corrales, J.O.S.É., 2009. Effect of wax application on the quality, lycopene content and chilling injury of tomato fruit. Journal of food quality, 32, 735-746. https://doi.org/10.1111/j.1745-4557.2009.00284.x.
- Min, D.B. and Boff, J.M., 2002. Chemistry and reaction of singlet oxygen in foods. Comprehensive reviews in food science and food safety, 1, 58-72. https://doi.org/10.1111/j.1541-4337.2002.tb00007.x.
- Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7, 405-410. https://doi.org/10.1016/s1360-1385(02)02312-9.
- Miyamoto, S., Martinez, G.R., Medeiros, M.H. and Di Mascio, P., 2003. Singlet molecular oxygen generated from lipid hydroperoxides by the Russell mechanism: studies using ¹⁸O-labeled linoleic acid hydroperoxide and monomol light emission measurements. Journal of the American Chemical Society, 12, 6172-6179. https://doi.org/10.1016/j.jphotobiol.2014.03.028.

- Miyamoto, S., Martinez, G.R., Medeiros, M.H. and Di Mascio, P., 2014. Singlet molecular oxygen generated by biological hydroperoxides. Journal of photochemistry and photobiology B: Biology, 139, 24-33. https://doi.org/10.1016/j.jphotobiol.2014.03.028.
- Mondal K, Sharma NS, Malhotra SP, Dhawan K, Singh R., 2004. Antioxidant systems in ripening tomato fruits. Biologia Plantarum 48, 49–53. s. In VIII International Symposium on Light in Horticulture 1134,223-230. http://dx.doi.org/10.1023/B:BIOP.0000024274.43874.5b.
- Mor, A., Koh, E., Weiner, L., Rosenwasser, S., Sibony-Benyamini, H. and Fluhr, R., 2014. Singlet oxygen signatures are detected independent of light or chloroplasts in response to multiple stresses. Plant Physiology, 165, 249-261. https://doi.org/10.1104/pp.114.236380.
- Muñoz, P. and Munné-Bosch, S., 2018. Photo-oxidative stress during leaf, flower and fruit development. Plant Physiology, 176, 1004-1014. https://doi.org/10.1104/pp.17.01127.
- Naznin, M.T., Lefsrud, M., Gravel, V. and Hao, X., 2016, May. Different ratios of red and blue LED light effects on coriander productivity and antioxidant properties. In VIII International Symposium on Light in Horticulture 1134, 223-230. https://doi.org/10.17660/ActaHortic.2016.1134.30.
- Ntagkas, N., Woltering, E., Nicole, C., Labrie, C. and Marcelis, L.F., 2019. Light regulation of vitamin C in tomato fruit is mediated through photosynthesis. Environmental and Experimental Botany, 158, 180-188. https://doi.org/10.1016/j.envexpbot.2018.12.002.
- Orihuel-Iranzo, B., Miranda, M., Zacarías, L. and Lafuente, M.T., 2010. Temperature and ultra low oxygen effects and involvement of ethylene in chilling injury of 'Rojo Brillante' persimmon fruit. Food science and technology international, 16, 159-167. https://doi.org/10.1177%2F1082013209353221.
- Ouchi, A., Aizawa, K., Iwasaki, Y., Inakuma, T., Terao, J., Nagaoka, S.I. and Mukai, K., 2010. Kinetic study of the quenching reaction of singlet oxygen by carotenoids and food extracts in solution. Development of a singlet oxygen absorption capacity (SOAC) assay method. Journal of agricultural and food chemistry, 58, 9967-9978. https://doi.org/10.1021/jf101947a.
- Park, M.H., Sangwanangkul, P. and Choi, J.W., 2018. Reduced chilling injury and delayed fruit ripening in tomatoes with modified atmosphere and humidity packaging. Scientia Horticulturae, 231, 66-72. https://doi.org/10.1016/j.scienta.2017.12.021.
- Parkin, K.L., Marangoni, A., Jackman, R.L., Yada, R.Y. and Stanley, D.W., 1989. Chilling injury. A review of possible mechanisms. Journal of Food Biochemistry, 13, 127-153. https://doi.org/10.1111/j.1745-4514.1989.tb00389.x.
- Pegoraro, C., Santos, R.S.D., Krüger, M.M., Tiecher, A., Maia, L.C.D., Rombaldi, C.V. and Oliveira, A.C.D., 2012. Effects of hypoxia storage on gene transcript accumulation during tomato fruit ripening. Brazilian Journal of Plant Physiology, 24, 141-148. https://doi.org/10.1590/S1677-04202012000200007.

- Pinhero, R.G., Paliyath, G., Yada, R.Y. and Murr, D.P., 1998. Modulation of phospholipase D and lipoxygenase activities during chilling. Relation to chilling tolerance of maize seedlings.
 Plant Physiology and Biochemistry, 36, 213-224. https://doi.org/10.1016/S0981-9428(97)86878-7.
- Pospíšil, P. and Prasad, A., 2014. Formation of singlet oxygen and protection against its oxidative damage in Photosystem II under abiotic stress. Journal of Photochemistry and Photobiology B: Biology, 137, 39-48. https://doi.org/10.1016/j.jphotobiol.2014.04.025.
- Prado, F.M., Scalfo, A.C., Miyamoto, S., Medeiros, M.H. and Di Mascio, P., 2020. Generation of Singlet Molecular Oxygen by Lipid Hydroperoxides and Nitronium Ion. Photochemistry and photobiology, 96, 560-569. https://doi.org/10.1111/php.13236.
- Pucciariello, C., Banti, V., and Perata, P., 2012. ROS signaling as common element in low oxygen and heat stresses. Plant Physiology and Biochemistry, 59, 3-10. https://doi.org/10.1016/j.plaphy.2012.02.016.
- Rey, F., Zacarías, L. and Rodrigo, M.J., 2020. Carotenoids, Vitamin C, and Antioxidant Capacity in the Peel of Mandarin Fruit in Relation to the Susceptibility to Chilling Injury during Postharvest Cold Storage. Antioxidants, 9, 1296. https://doi.org/10.3390/antiox9121296.
- Rigoulet, M., Yoboue, E.D. and Devin, A., 2011. Mitochondrial ROS generation and its regulation: mechanisms involved in H2O2 signaling. Antioxidants and redox signaling, 14, 459-468. https://doi.org/10.1089/ars.2010.3363.
- Rihan, H.Z., Al-Issawi, M. and Fuller, M.P., 2017. Advances in physiological and molecular aspects of plant cold tolerance. Journal of Plant Interactions, 12, 143-157. https://doi.org/10.1080/17429145.2017.1308568
- Rogiers SY, Kumar GNM, Knowles R. 1998. Maturation and Ripening of Fruit of Amelanchier alnifolia Nuttare Accompanied by Increasing Oxidative Stress. Annals of Botany 81, 203–211. http://www.jstor.org/stable/42765053.
- Rosliany, R. and Setiawati, W., 2019. Interaksi Tanaman pada Sistem Tumpangsari Tomat dan Cabai di Dataran Tinggi. Jurnal Hortikultura 13, 1-5 (in Bahasa Indonesia). http://dx.doi.org/10.21082/jhort.v13n4.2003.p244-250.
- Rugkong, A., McQuinn, R., Giovannoni, J.J., Rose, J.K. and Watkins, C.B., 2011. Expression of ripening-related genes in cold-stored tomato fruit. Postharvest Biology and Technology, 61(1), 1-14. https://doi.org/10.1016/j.postharvbio.2011.02.009.
- Sabban-Amin, R., Feygenberg, O., Belausov, E., and Pesis, E., 2011. Low oxygen and 1-MCP pretreatments delay superficial scald development by reducing reactive oxygen species (ROS) accumulation in stored 'Granny Smith' apples. Postharvest Biology and Technology, 62, 295-304. https://doi.org/10.1016/j.postharvbio.2011.06.016.
- Saladié, M., Matas, A.J., Isaacson, T., Jenks, M.A., Goodwin, S.M., Niklas, K.J., Xiaolin, R., Labavitch, J.M., Shackel, K.A., Fernie, A.R. and Lytovchenko, A., 2007. A reevaluation of the

- key factors that influence tomato fruit softening and integrity. Plant Physiology, 144, 1012-1028. https://doi.org/10.1016/j.plantsci.2016.05.013.
- Sanchez-Bel, P., Egea, I., Sanchez-Ballesta, M.T., Sevillano, L., del Carmen Bolarin, M. and Flores, F.B., 2012. Proteome changes in tomato fruits prior to visible symptoms of chilling injury are linked to defensive mechanisms, uncoupling of photosynthetic processes and protein degradation machinery. Plant and Cell Physiology, 53, 470-484. https://doi.org/10.1093/pcp/pcr191.
- Schouten, R.E., Farneti, B., Tijskens, L.M.M., Alarcón, A.A., Woltering, E.J., 2014. Quantifying lycopene synthesis and chlorophyll breakdown in tomato fruit using remittance VIS spectroscopy. Postharvest Biol. Technol. 96, 53-63. https://doi.org/10.1016/j.postharvbio.2014.05.007.
- Schouten, R.E., Huijben, T.P., Tijskens, L.M.M., van Kooten., O. 2007. Modelling quality attributes of truss tomatoes: linking colour and firmness maturity. Postharvest Biology and Technology. 45, 298-306. https://doi.org/10.1016/j.postharvbio.2007.03.011.
- Sevillano, L., Sanchez-Ballesta, M. T., Romojaro, F., and Flores, F. B. 2009. Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. Journal of the Science of Food and Agriculture, 89, 555-573. https://doi.org/10.1002/jsfa.3468.
- Shackel, K.A., Greve, C., Labavitch, J.M. and Ahmadi, H., 1991. Cell turgor changes associated with ripening in tomato pericarp tissue. Plant Physiology, 97, 814-816. https://doi.org/10.1104/pp.97.2.814.
- Shen, J., Tieman, D., Jones, J.B., Taylor, M.G., Schmelz, E., Huffaker, A., Bies, D., Chen, K. and Klee, H.J., 2014. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. Journal of experimental botany, 65, 419-428. https://dx.doi.org/10.1093%2Fjxb%2Fert382.
- Shewfelt R. 2000. The role of lipid peroxidation in storage disorders of fresh fruits and vegetables. HortScience 35, 575–579. https://doi.org/10.21273/HORTSCI.35.4.575.
- Shi, L., Cao, S., Chen, W. and Yang, Z., 2014. Blue light induced anthocyanin accumulation and expression of associated genes in Chinese bayberry fruit. Scientia Horticulturae, 179, 98-102. https://doi.org/10.1016/j.scienta.2014.09.022.
- Shi, Y., Huang, J., Sun, T., Wang, X., Zhu, C., Ai, Y. and Gu, H., 2017. The precise regulation of different COR genes by individual CBF transcription factors in *Arabidopsis thaliana*. Journal of integrative plant biology, 59, 118-133. https://doi.org/10.1111/jipb.12515.
- Simkin, A.J., Schwartz, S.H., Auldridge, M., Taylor, M.G. and Klee, H.J., 2004. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β -ionone, pseudoionone, and geranylacetone. The Plant Journal, 40882-892. https://doi.org/10.1111/j.1365-313x.2004.02263.x.

- Singh, S., and Singh, Z. 2013. Controlled and modified atmospheres influence chilling injury, fruit quality and antioxidative system of Japanese plums (*Prunus salicina Lindell*). International Journal of Food Science and Technology, 48(2), 363-374. https://doi.org/10.1111/j.1365-2621.2012.03196.x.
- Skupień, J., Wójtowicz, J., Kowalewska, Ł., Mazur, R., Garstka, M., Gieczewska, K. and Mostowska, A., 2017. Dark-chilling induces substantial structural changes and modifies galactolipid and carotenoid composition during chloroplast biogenesis in cucumber (*Cucumis sativus L.*) cotyledons. Plant Physiology and Biochemistry, 111, 107-118.https://doi.org/10.1016/j.plaphy.2016.11.022
- Song, L., Gao, H., Chen, H., Mao, J., Zhou, Y., Chen, W. and Jiang, Y., 2009. Effects of short-term anoxic treatment on antioxidant ability and membrane integrity of postharvest kiwifruit during storage. Food Chemistry, 114, 1216-1221. https://doi.org/10.1016/j.foodchem.2008.10.080.
- Sozzi, G.O., Trinchero, G.D. and Fraschina, A.A., 1999. Controlled-atmosphere storage of tomato fruit: low oxygen or elevated carbon dioxide levels alter galactosidase activity and inhibit exogenous ethylene action. Journal of the Science of Food and Agriculture, 79, 1065-1070. https://doi.org/10.1002/(SICI)1097-0010(199906)79:8%3C1065::AID-JSFA319%3E3.0.CO;2-U.
- Speirs, J., Lee, E., Holt, K., Yong-Duk, K., Scott, N.S., Loveys, B. and Schuch, W., 1998. Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols. Plant Physiology, 117, 1047-1058. https://dx.doi.org/10.1104%2Fpp.117.3.1047.
- Steffens, C.A., do Amarante, C.V.T., Espindola, B.P., Hendges, M.V., Heinzen, A.S., Pikart, F.C. and Santana, G.R.O., 2021. Ethanol vapor, initial low O2, and high CO2 stresses in the storage of Laetitia Plums. Journal of Food Processing and Preservation, e15525. https://doi.org/10.1111/jfpp.15525.
- Stevens, R., Page, D., Gouble, B., Garchery, C., Zamir, D. and Causse, M., 2008. Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant, cell and environment, 31, 1086-1096. https://doi.org/10.1111/j.1365-3040.2008.01824.x
- Suparlan, and Itoh, K. 2003. Combined Effects of Hot Water Treatment (HWT) and Modified Atmosphere Packaging (MAP) on Quality of Tomatoes. Packaging Technology and Science, 16, 171-178. https://doi.org/10.1002/pts.626
- Valenzuela, J.L.; Manzano, S.; Palma, F.; Carvajal, F.; Garrido, D.; Jamilena, M. 2017. Oxidative Stress Associated with Chilling Injury in Immature Fruit: Postharvest Technological and Biotechnological Solutions. Int. J. Mol. Sci., 18, 1467. https://doi.org/10.3390/ijms18071467.

- Verdonk, J.C., Haring, M.A., Van Tunen, A.J. and Schuurink, R.C., 2005. ODORANT1 regulates fragrance biosynthesis in petunia flowers. The Plant Cell, 17, 1612-1624. https://doi.org/10.1105/tpc.104.028837.
- Wang, C.Y., 1989. Chilling injury of fruits and vegetables. Food reviews international, 5, 209-236. https://doi.org/10.1080/87559128909540850.
- Wang, L., Baldwin, E.A., Zhao, W., Plotto, A., Sun, X., Wang, Z., Brecht, J.K., Bai, J. and Yu, Z., 2015. Suppression of volatile production in tomato fruit exposed to chilling temperature and alleviation of chilling injury by a pre-chilling heat treatment. LWT-Food Science and Technology, 62, 115-121. https://doi.org/10.1016/j.lwt.2014.12.062.
- Wang, F., Guo, Z., Li, H., Wang, M., Onac, E., Zhou, J., Xia, X., Shi, K., Yu, J., Zhou, Y., 2016.
 Phytochrome A and B Function Antagonistically to Regulate Cold Tolerance via Abscisic Acid-Dependent Jasmonate Signaling. Plant Physiology, 170, 459-471.
 https://dx.doi.org/10.1104%2Fpp.15.01171.
- Wei, Y., Zhou, D., Wang, Z., Tu, S., Shao, X., Peng, J., Pan, L. and Tu, K., 2018. Hot air treatment reduces postharvest decay and delays softening of cherry tomato by regulating gene expression and activities of cell wall-degrading enzymes. Journal of the Science of Food and Agriculture, 98, 2105-2112. https://doi.org/10.1002/jsfa.8692.
- Wise, R.R. and Naylor, A.W., 1987. Chilling-enhanced photooxidation: evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiology, 83, 278-282. https://doi.org/10.1104/pp.83.2.278.
- Xu, F., Shi, L., Chen, W., Cao, S., Su, X., and Yang, Z., 2014. Effect of blue light treatment on fruit quality, antioxidant enzymes and radical-scavenging activity in strawberry fruit. Scientia Horticulturae, 175, 181-186. https://doi.org/10.1016/j.scienta.2014.06.012.
- Yang, H., Wu, F. and Cheng, J., 2011. Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food chemistry, 127, 1237-1242. https://doi.org/10.1016/j.foodchem.2011.02.011.
- Zhu, D., Liang, J., Liu, H., Cao, X., Ge, Y. and Li, J., 2018. Sweet cherry softening accompanied with moisture migration and loss during low-temperature storage. Journal of the Science of Food and Agriculture, 98, 651-3658. https://doi.org/10.1002/jsfa.8843.
- Zushi, K., Suehara, C. and Shirai, M., 2020. Effect of light intensity and wavelengths on ascorbic acid content and the antioxidant system in tomato fruit grown in vitro. Scientia Horticulturae, 274, 109673. https://doi.org/10.1016/j.scienta.2020.109673.

Summary

One of the major challenges faced by fresh produce from tropical origin is chilling injury (CI). Because of CI, the benefit of low temperature storage to maintain freshness and quality along the chain cannot be maximized. Alleviating CI will not only assure good performance of fruit and vegetable in the chain but also reduce postharvest loss and preserve nutritional sources for individuals, especially in developing countries. Therefore, efforts and studies are devoted to tackle CI in numerous fresh produce. Tackling CI problems needs synergistic approach that encompasses preharvest and postharvest factors. This thesis emphasis preharvest factors determining chilling sensitivity and postharvest factors that induce or alleviate CI.

Chapter 1 describes the state of the art with respect to the possible role of preharvest factors such as lighting and temperature in chilling sensitivity in tomato. The aim of this thesis, to explore multiple pathways involved in CI and the influence of preharvest and postharvest factors is discussed.

Chapter 2 describes the role of preharvest far-red (FR) LED light on postharvest cold tolerance in 'Moneymaker' tomato cold stored for maximally fifteen days followed by shelf life conditions for twenty days. Preharvest FR light induced cold tolerance in both MG and R tomatoes. In MG tomatoes, additional far-red light resulted in reduced weight loss, less pitting and faster red colour development during shelf life (when prior long cold stored), and less softening (when prior short or non-cold stored). We hypothesised that FR lighting during cultivation protects the membrane integrity of MG tomatoes which allows uninterrupted lycopene synthesis. In R tomatoes, preharvest FR lead to firmer fruit at harvest, and this contributed to reduced weight loss and less decay during shelf life. The study showed that induced cold tolerance by FR light applied during cultivation, might be related to FR induced cuticle wax biosynthesis and the action of lycopene as an antioxidant during cold storage. Finally, we envisage that FR lighting during tomato cultivation might have an important role in facilitating long distance transport at low temperatures.

Chapter 3 describes how preharvest blue LED lighting (BL) induces postharvest cold tolerance in 'Foundation' tomatoes. In this study chilling injury indices and important quality properties such as colour, firmness, hydrogen peroxide, malondialdehyde, ascorbic acid and catalase activity were characterised during cold storage at 4 °C for different durations followed by shelf life of twenty days. Acquired cold tolerance of R fruits harvested from the 12B lighting conditions was related to its ability to loose red colour, presumably in favour of the scavenging

of ROS. MG-tomatoes showed no CI symptoms, regardless of the preharvest lighting. No effects of light treatments were found on several antioxidant capacity indicators of both tomatoes. The red colour, as measured by remittance VIS spectroscopy, is closely related to the lycopene concentration. The idea that lycopene in 12B tomatoes is a more efficient antioxidant compared to that of the other BL treatments is put forward. It was also revealed that improved cold tolerance for R fruit was not due to differences in redox statues indicators (CAT activity, total ascorbic acid, H₂O₂ and MDA levels) but due to a lower red colour at harvest and faster discolouration during cold storage. Here we again showed that through an extensive cold storage experiment, the chilling injury syndrome can be assessed by quality properties behaviour analysis during the (after cold storage) shelf life employing non-destructive techniques.

Chapter 4 describes The effect of varying growth temperature (16, 22, 26 °C) on evolution of quality properties and CI development in dwarf cultivars (Ponchi Re and Tarzan) tomatoes grown in climate chambers. It is revealed that the lowest growth temperature (16 °C) performed better during shelf life and the effect of low growth temperature has a genetic component. We showed that low growth temperature delays the onset of red colour development during shelf life and the delay was more pronounced when fruit were first stored at low temperature. Cultivation at the lowest growth temperature resulted in fruit firmness retention during cold storage and shelf life and this was also corroborated with lower weight loss. Growth temperature affects CI development differently in the 2 genotypes. 'Ponchi Re' tomatoes showed less CI symptoms during after storage shelf life with higher growth temperatures, whereas the opposite was observed for 'Tarzan' tomatoes. We hypothesised that the delay in the start of the red colouration for 'Ponchi Re' tomatoes grown at 16 °C exposed the tomatoes (at chilling temperatures) to ROS without proper scavenging capacity provided by lycopene. For 'Tarzan' tomatoes higher CI tolerance of tomatoes cultivated at 16 °C might be induced by higher firmness at harvest and lower weight loss during storage. Taken together our study indicates that cold tolerance depends on growth temperature and cultivar in dwarf tomato fruit.

Chapter 5 describes the role of low oxygen storage in limiting CI development in tomatoes. The effect of low oxygen on cold tolerance were consistent in different tomato types. In Chapter 5.1. fruit from Cherry type cultivars were cold stored at 2 °C at varying oxygen levels. Applying low oxygen (down to 0.5 kPa) during cold storage was beneficial for cold tolerance of MG tomatoes. 5 kPa O₂ showed the best results for both MG and R tomatoes in terms of delayed softening, less decay and full colouration (MG) during the after storage shelf life. In Chapter 5.2 the combination of FR and low oxygen-induced cold tolerance was tested. Depending on the experiment we investigated the role of low oxygen (0.5, 2.5 and 5 kPa O₂) in

limiting CI in round tomato cultivar for MG and R stage. Next we applied low oxygen (1 and 5 kPa O₂) storage on tomato cultivated under additional FR. Low oxygen induced cold tolerance in MG and R tomatoes. We showed that decay, firmness loss and weight loss during were reduced under influence of low oxygen. Red colour degradation of R tomatoes (a CI symptom) was suppressed under low oxygen. The effect of low oxygen was greater when applied to MG tomatoes that had been cultivated under additional FR due to a lower respiration rate that might resulted in low singlet oxygen formation. No clear relation was found between H₂O₂ level and the extent of CI. Therefore, we propose the idea that oxidative stress initiated by singlet oxygen and not superoxide anion plays a more pronounced role in inducing CI in tomato. Furthermore, we hypothesised that the formation of singlet oxygen was suppressed by low oxygen.

In **Chapter 6** the new understanding of the effect of pre- and postharvest conditions on tomato fruit postharvest CI development described in chapter 2-5 is discussed. Attention is given to the possible role of the fruit's physical properties in establishment of cold tolerance. New insight on oxidative stress as an important CI inducer is also discussed. That is, the role of singlet oxygen as oxidative stress initiator and the ability of lycopene to scavenge singlet oxygen is thought to be important for cold tolerance in lycopene rich fruit like tomatoes. Furthermore, the limitation of the studies presented in this thesis as well as consequences of the main findings and further research recommendations are discussed.

Ringkasan

Salah satu tantangan terbesar yang dihadapi oleh produk buah dan sayur tropis adalah *chilling injury* (CI) atau cedera karena pendinginan. Karena CI manfaat dari pendinginan untuk mempertahankan kesegaran dan kualitas produk sepanjang rantai pasok tidak dapat diraih secara maksimal. Upaya mengurangi CI tidak hanya akan menjaga mutu buah dan sayur tetapi juga mengurangi susut pascapanen dan mempertahankan sumber gizi yang terjangkau, terutama di negara berkembang. Karena itu, dalam upaya dan studi untuk mengatasi CI pada banyak produk, upaya sinergis yang mengintegrasikan faktor-faktor pra dan pascapanen sangat diperlukan. Disertasi ini memberikan penekanan pada faktor prapanen yang berpengaruh pada sensitivitas pendinginan dan faktor pasca panen yang mempercepat terjadinya CI.

Bab 1 memaparkan peranan faktor prapanen seperti pencahayaan dan suhu terhadap sensitivitas pendinginan buah tomat ditilik dari perkembangan riset terkini di bidang fisiologi tanaman. Bab ini juga mendiskusikan tujuan tesis ini untuk mengeksplorasi jalur-jalur reaksi yang terlibat dalam CI.

Bab 2 menjelaskan tentang peranan pencahayaan sinar far-red (FR) saat prapanen dalam menginduksi toleransi terhadap suhu dingin untuk tomat kultivar Moneymaker yang disimpan selama maksimal 15 hari diikuti penyimpanan shelf life (pada suhu 20 °C) selama 20 hari. Kami menemukan bahwa pencahayaan prapanen dengan sinar FR membuat tomat hijau maupun merah lebih tahan suhu dingin. Pada tomat hijau ketahanan ini ditunjukkan dengan susut bobot dan perlubangan yang lebih rendah seiring dengan perubahan warna menuju merah yang lebih cepat (setelah tomat didinginkan pada durasi yang lama) dan ketegaran yang tetap terjaga (setelah pendinginan pada durasi singkat atau tanpa pendinginan). Hipotesis kami, sinar FR melindungi integritas membran pada tomat hijau yang memungkinkan sintesis likopen yang tidak terputus. Pada tomat merah, sinar FR prapanen menghasilkan tomat dengan ketegaran yang lebih tinggi saat panen yang berkontribusi positif bagi rendahnya susut bobot dan pembusukan selama shelf life. Studi ini menunjukkan bahwa peningkatan toleransi akibat sinar FR dapat disebabkan oleh perubahan kimiawi pada kutikula tomat dan aktivitas likopen sebagai antioksidan selama pendinginan. Akhirnya, kami memaparkan kemungkinan bahwa pencahayaan FR selama budidaya tomat mungkin memiliki peran penting dalam memfasilitasi transportasi jarak jauh pada suhu rendah.

Bab 3 menjelaskan bagaimana pencahayaan prapanen dengan lampu LED biru (BL) menginduksi toleransi dingin pascapanen pada tomat 'Foundation'. Dalam studi ini, indeks cedera dingin dan parameter mutu penting seperti warna, ketegaran, hidrogen peroksida, malondialdehid, vitamin C, dan aktivitas katalase dikarakterisasi selama penyimpanan dingin

pada suhu 4 °C untuk durasi yang berbeda diikuti oleh penyimpanan shelf life selama dua puluh hari. Buah tomat merah yang dipanen dari kondisi pencahayaan 12B lebih toleran terhadap suhu dingin yang terkait dengan kemampuannya untuk menetralisir Reactive Oxygen Species (ROS) yang ditunjukkan dengan kehilangan warna merah. Tomat hijau tidak menunjukkan gejala CI, terlepas dari pencahayaan prapanen. Tidak terdapat efek perlakuan pencahayaan terhadap beberapa indikator kapasitas antioksidan dari kedua tomat. Warna merah, yang diukur dengan spektroskopi VIS remitansi, terkait erat dengan konsentrasi likopen. Kami juga menawarkan hipotesis bahwa likopen dalam tomat 12B merupakan antioksidan yang lebih efisien daripada tomat pada perlakuan BL lainnya. Juga terungkap bahwa peningkatan toleransi dingin untuk tomat merah tidak disebabkan oleh perbedaan indikator redoks (aktivitas CAT, total asam askorbat, kadar H2O2 dan MDA) tetapi karena warna merah yang lebih rendah saat panen dan perubahan warna yang lebih cepat selama penyimpanan dingin. Di sini kami sekali lagi menunjukkan bahwa melalui eksperimen penyimpanan dingin yang ekstensif, gejala CI dapat dinilai dengan analisis karakteristik kualitas selama masa simpan (setelah penyimpanan dingin) menggunakan teknik nondestruktif.

Bab 4 menjelaskan pengaruh pelbagai suhu pertumbuhan (16, 22, 26 °C) terhadap mutu dan CI pada tomat kultivar kerdil (Ponchi Re dan Tarzan) yang ditanam di climate chamber. Terungkap bahwa tomat dari suhu terendah (16 °C) menunjukan performa lebih baik selama shelf life dan efek suhu pertumbuhan ini dipengaruhi oleh unsur genetis. Kami menunjukkan bahwa suhu pertumbuhan yang rendah menyebabkan perlambatan sintesis warna merah selama shelf life dan penundaan ini menjadi lebih signifikan ketika buah terlebih dahulu disimpan pada suhu rendah. Budidaya tomat kerdil pada suhu 16 °C menunda pelunakan dan susut bobot tomat. Dua genotip dalam eksperimen ini menunjukan respon berbeda terhadap suhu pertumbuhan. Tomat 'Ponchi Re' menunjukkan gejala CI yang lebih rendah apabila ditanam pada suhu pertumbuhan yang lebih tinggi berkebalikan dengan tomat 'Tarzan'. Kami berhipotesis bahwa tertundanya sintesis warna merah pada 'Ponchi Re' yang ditanam pada 16 °C membuat tomat terpapar ROS selama pendinginan tanpa aktivitas antioksidan yang cukup dari likopen. Untuk tomat 'Tarzan', toleransi suhu dingin yang lebih tinggi dari tomat yang dibudidayakan pada 16 °C mungkin disebabkan oleh kekerasan yang lebih tinggi saat panen dan susut bobot yang lebih rendah selama penyimpanan. Penelitian kami menunjukkan bahwa toleransi suhu dingin pada tomat kerdil dipengaruhi oleh suhu pertumbuhan dan faktor genetis.

Bab 5 menjelaskan peran penyimpanan pada ruangan beroksigen rendah dalam menghambat perkembangan CI pada tomat. Pengaruh oksigen terhadap toleransi suhu dingin ini konsisten pada jenis tomat yang berbeda. Dalam Sub-bab 5.1. tomat *cherry* didinginkan pada suhu 2 °C

pada beberapa tingkat oksigen yang berbeda. Penerapan oksigen rendah (hingga 0,5 kPa oksigen) selama penyimpanan dingin berpengaruh positif terhadap tomat hijau. Penyimpanan pada oksigen 5 kPa menunjukkan hasil terbaik untuk tomat hijau maupun merah ditinjau dari terjaganya ketegaran buah, pembusukan yang melambat dan warna merah yang maksimal pada akhir masa penyimpanan. Pad Sub-bab 5.2, kami menguji efek kombinasi antara FR dan oksigen rendah terhadap toleransi suhu dingin. Pada percobaan awal kami menginyestigasi peranan oksigen rendah (0,5, 2,5 dan 5 kPa O2) dalam menghambat CI pada tomat berukuran besar baik tomat merah maupun hijau. Selanjutnya kami menerapkan penyimpanan oksigen rendah (1 dan 5 kPa O₂) pada tomat yang dibudidayakan dengan FR. Kami menunjukkan bahwa pembusukan, pelunakan dan susut bobot jauh berkurang selama penyimpanan jauh berkurang pada kondisi oksigen rendah. Degradasi warna merah yang merupakan gejala khas CI pada tomat merah dapat ditekan pada kondisi oksigen rendah. Pengaruh oksigen rendah akan lebih besar apabila diterapkan pada tomat hijau yang telah dibudidayakan dengan tambahan sinar FR. Hal ini dapat diakibatkan tingkat respirasi yang lebih rendah yang berpotensi menekan pembentukan oksigen singlet. Kami tidak dapat menemukan hubungan yang jelas antara tingkat H2O2 dan keparahan CI. Oleh karena itu, kami berhipotesis bahwa pada tomat stres oksidatif yang disebabkan oleh oksigen singlet memainkan peranan yang lebih penting dalam perkembangan CI daripada stres oksidatif akibat anion superoksida.

Bab 6 membahas pemahaman baru tentang pengaruh kondisi pra dan pascapanen terhadap perkembangan CI pada pascapanen buah tomat yang dijelaskan dalam Bab 2-5. Disertasi ini juga mengemukakan wacana tentang pentingnya peranan sifat fisik buah terhadap toleransi suhu dingin. Perspektif baru tentang stres oksidatif sebagai penginduksi CI juga mendapatkan perhatian. Kami menilai bahwa peranan oksigen singlet sebagai inisiator stres oksidatif dan kemampuan likopen untuk menetralisirnya lebih penting tehadap toleransi suhu dingin pada buah kaya likopen seperti tomat. Selanjutnya, kami juga membahas keterbatasan studi yang disajikan dalam tesis ini serta konskuensi dan kemungkinan penerapan dari beberapa temuan penting dari disertasi ini.

Acknowledgements

My PhD journey is almost reach it ends. During this endeavour, I have been blessed with the opportunity to acquire new knowledge, develop my scientific skills and meet wonderful people that have crafted me to become a person I am now. It would not have been possible to finalize this thesis without the help and support of the kind people around me, to some of whom it is possible to give particular mention here.

I would like to express my deepest gratitude to Ernst Woltering my promoter, for not only for opening the window to the world of postharvest research to me but also for being patient and kind during some difficult moments in my PhD endeavour. Ernst, at the beginning I was always feel nervous when I discussed with you. But time shows that you truly nurture your student with your open mindedness and positivity. Having you around during my scientific meeting always creates positive vibes.

This thesis would not have been possible without the help, support and encouragement of my supervisor, Rob Schouten. Rob, I am grateful for the way you encourage and support me. Sometimes we had some challenging discussion especially in the beginning of my PhD. But throughout the time, we developed better understanding and respect of each other and discussions came to be more fruitful. Your attention and criticism to some meticulous details of my work are highly appreciated. Without which I will never become a scientist the way currently I am.

I would also send my gratitude to Julian Verdonk, my supervisor for his help and supervision. Julian, thank you for your constructive support and guidance especially during the writing processes.

I would like to expand my gratitude to all HPP colleagues. To Leo Marcelis, the HPP chair group who provided me with the needed facilities and excellent support. To Pol, my PhD advisor who has radiated me with his never ending interest to understand 'the processes underlying any postharvest behaviour'. Thanks to Arjen van de Peppel and Joke Oosterkamp, who helped me with my lab work. To all HPP professors, Wim van Ieperen, Jeremy Harbinson, Sander van Delden and Elias Kaiser thanks for sharing your great knowledge with me. Special thanks to Epp Heuvelink, who offers me possibility to interact beyond academic life. I would like to thank my PhD fellows, Hua, who always shares her passion for postharvest with me; Xixi, for the nice and warm discussion during the early times of my PhD; Alejandro who always been so helpful, Ana, for giving some 'serumpun' atmosphere in HPP; Yutaka, Yongran, Dorthe, Falina, Priscilla, Maarten, Arian, Rachel, Evelien, Ning Yi, Sara, Cristy, Sara, and others, my big thanks for creating a warm and friendly atmosphere in HPP.

I also would like to thanks my MSc students, Teddy, Charlotte and Mejury as well as my BSc student Inge for their dedicated work, it was my pleasure to become your supervisor.

My special thanks for my Paranymphs, Ayu and Ying for all the help and assistance during the preparation for my PhD defence. My PhD ceremony would not have been this memorable without your support.

A big thank you also for people from WUR Food & Biobased Research (FBR) who provided some assistance and support during my experiments. To Maxence and Jan Verschoor, thank you for sharing your immense knowledge on CA and MAP technology, my biggest interest and actually the reason why I come to Wageningen. Many thanks to Raquel from PBR who helped me with my first experiment in my PhD.

My deepest gratitude to Indonesian communities in Wageningen and the Netherlands. Some of them provide countless and beyond imaginable support and presence which expel away the feeling of loneliness and helpless. Yasin Taklim Wageningen and PCINU Belanda family were undoubtedly a sanctuary for my exhausted soul: KH. Nurhasyim Subadi, my Kiai, Mas Firin, Teh Windi, Ikrom, Iqbal, Lisa, Yitno, Raushan, Isna, Atina, Pak Eko n Mbak Andra, Bang Alim n Mbak Ayu, Mas Dikky n Mbak Lia, Ikbar & Pipit, Mas Nove and family, Salwa, Kukuh, Mas Sunu, Mbak Puspi and many others. Special thanks to Mas Fachrizal my 'twin' who introduced me to meet wonderful people of PCINU Belanda, Mas Fauzi, Mas Syahril Siddik, Mas Ibnu Fikri, Mas Shohib, Mbak Yus, Mas Advan, Mas Afnan & Mbak Zaimah, Mas Dawam, Mas Adrian, Mbak Jamilah, Mas Karim, Mbak Isma, Bib As'ad, Mas Azam, Bang Yance, and all the Kiais, KH. Ahmad Hambali Maksum, KH. Naf'an Sulchan, Ustadz Ade Syihabudin, Ustadz Budi Santoso, Ustadz Nur Fatah, Ustdz Idris and Ustadz Ishak. My big thank you also goes to Indonesian PhD & Postdoc and family in Wageningen, for the insightful discussion, Mbak Nila-Mas Anto, Bang Emil, Mas Fajar-Teh Nurul, Mbak Atik, Mbak Afif, Mbak Titis, Kang Indra-Teh Novi, Mbak Nadya and Kang Darmanto, Belinda, Mas Taufik, Gumi-Gendis, Kang Yuda, Pak Ery, Pak Yo, Mbak Metta, Mas Farid-Mbak Vina, Koh Sony, Nuning, Mas Danny-Mbak Rika, Mbak Ana, Mbak Uma, Mas Margi, Mbak Erlinda, Mbak Ita. Thanks to OBS de Tarthorst family, Mas Sahri and Mbak Amik, Uni Eli and Uda Zukri, Mbak Eva Johan-Kang Hardi, Kang Dadan, Bli Gede-Mbak Nima, Mbak Uun and Mas Antok, Edo-Gitta, Mas Fiky n Mbak Nurul, Mas Hary. Also thanks to Keluarga Alumni Gadjah Mada (KAGAMA) Netherlands for the nice time and events that we enjoy together.

I would like to thank the senior and colleagues at Universitas Gadjah Mada, KH. Prof. Dr. Mochammad Maksum, for his immense support and encouragement, Pak Dr. Wahyu Supartono, who inspired me to pursue my study in Europe, Pak Affan, Anggoro and all colleagues at Agorindustry department, Ratih, Wildan, Anjar, Ajik, Luluk, Fika, Iman,

Bhirawa, Wija, Ika, Ditya, Nindi, Linda, Mbak Nia, Galuh, Saksa and Rini. My appreciation to big family of THV department for their support and kindness. Thanks to Mbak Sani for her patience and kindness in helping me dealing with all administrative stuffs.

I would like to dedicate this thesis to my parents and family for their endless love, care and support. To my late father Endang Affandi. Bapak, I always remember all those inspiring conversation when you taught me moral principles, share your dreams and hope without me feeling that you were teaching me. You are the person who always determined that I will be able to pursue my dreams. May Allah grant you the best place besides Him in Paradise. Ibu Ngesti Wahyuningsih, I know that my mere expression of thanks will never suffice your love, pray, and dedication that raises me to be the person currently I am. *Ibu*, your blessing shed the light for me now and forever. To my brother Alif and my sister Ika and their family (Fika, Dodo and the kids), thank for your love and kindness, wo provided great back up during my struggle. My biggest thanks for caring Ibu when I am thousands miles away. To my parents in law, Bapak Subarkah and Ibu Hermuryani, and my sister and brother in law Dina and Rofik whose their immense support and love made my hard times easier and my happy times merrier. I would like to express my deepest gratitude to my beloved wife, Zulfia Listyani and my sons A'iz Bilhuda Muhammad, Althaf Muqtada Muhammad and Ashfa Buwana Affandi for their unequivocal love, wholehearted support and enormous acceptance of my up and down during my PhD endeavour. Thanks for your willingness to accompany me here in Netherlands where we share tons of memories, *Are we ready for the next journey?*

About the Author

Fahrizal Yusuf Affandi was born in Yogyakarta on 26 October 1981. Fahrizal obtained a bachelor degree in Agroindustrial technology from Universitas Gadjah Mada, Indonesia in 2005. After which he worked as a site manager in national project on reducing postharvest losses on crop and horticulture product until 2008. On 2009, he was awarded a fellowship from Vlir-Uos Belgium to pursue a master study in Food Technology at KU Leueven and Ghent University, Belgium. He successfully finished his master degree with specialisation in food preservation and postharvest technology. His master thesis title was 'Comparing Dynamic Controlled Atmosphere (DCA) Strategies for long time storage

of Apple'. After finishing his master study, Fahrizal works as a lecturer in agroindustry department vocational college Universitas Gadjah Mada, Indonesia. He taught some subject related to food preservation technology, such as unit operation, engineering properties of agriculture product and postharvest technology of horticultural product. On 2015 Fahrizal was awarded a fellowship from Indonesian Endowment Fund for Education (LPDP) to conduct a PhD study in Wageningen University, the Netherlands. His research interest is postharvest physiology of fruit with focus on chilling injury of tomato, controlled atmosphere and relation between preharvest and postharvest factors on chilling injury development. Fahrizal is a member of International Society for Horticultural Science (ISHS) and Association of Agroindustrial Technologist (APTA, Indonesian). During his doctoral study, Fahrizal was highly involved in the special branch of Nahdlatul Ulama for the Netherlands where he was appointed as general secretary from 2017-2021.

PE&RC Training and Education Statement

With the training and education activities listed below the PhD candidate has complied with the requirements set by the C.T. de Wit Graduate School for Production Ecology and Resource Conservation (PE&RC) which comprises of a minimum total of 32 ECTS (= 22 weeks of activities)

The C.T. De Wit Graduate School PEERC ECOLOGY & RESOURCE CONSERVATION

Review of literature (4.5 ECTS)

 The role of preharvest factors and low oxygen storage on development of chilling injury in tomato

Writing of project proposal (4.5 ECTS)

- Minimizing chilling sensitivity and chilling injury in tomato

Post-graduate courses (6.1 ECTS)

- Basic statistics; PE&RC (2016)
- Design of experiments; PE&RC/WIAS (2016)
- Reaction kinetics in food; VLAG (2018)
- Metabolomics; Institute of Biology Leiden University (2019)
- Introduction to data science with R and Rstudio; PE&RC (2019)

Laboratory training and working visits (0.3 ECTS)

- Postharvest technology course excursion; Nedcool, Prominent, Ripening Center (2018)

Deficiency, refresh, brush-up courses (6 ECTS)

- Product quality measurements & analysis; HPP-WUR (2016)

Competence strengthening / skills courses (2.5 ECTS)

- Efficient writing strategies; WGS (2019)
- Ethics in plant and environmental science; WGS (2019)
- Scientific integrity; WGS (2020)

PE&RC Annual meetings, seminars and the PE&RC weekend (1.2 ECTS)

- PE&RC Day (2017, 2019)
- PE&RC Last year weekend (2019)

Discussion groups / local seminars or scientific meetings (5.7 ECTS)

- FLOP: Frontier Literature on Plant Physiology (2016-2019)
- Postharvest seminar with WUR Food and Biobased Research (FBR) (2018-2020)

International symposia, workshops and conferences (5.4 ECTS)

- Wageningen Indonesia scientific exposure (2017, 2021)
- Postharvest loss symposium-international horticultural congress (2018)
- XIIIth International Controlled and Modified Atmosphere Research Conference (2021)

Lecturing / supervision of practical's / tutorials (6 ECTS)

- Postharvest physiology practical (2016, 2017)

MSc thesis supervision

- Effect of preharvest blue LED on CI in tomato
- The role of water and temperature stress on tomato cold tolerance
- Finding optimum low oxygen concentration to minimise CI in tomato

List of Publications

Paper published in refereed journals

Affandi, F.Y., Verdonk, J.C., Ouzounis, T., Ji, Y., Woltering, E.J. and Schouten, R.E., 2020. Farred light during cultivation induces postharvest cold tolerance in tomato fruit. Postharvest Biology and Technology, 159, 111019.

Affandi, F.Y.; Verschoor, J.A.; Paillart, M.J.M.; Verdonk, J.C.; Woltering, E.J.; Schouten, R.E., 2021.Low Oxygen Storage Improves Tomato Postharvest Cold Tolerance, Especially for Tomatoes Cultivated with Far-Red LED Light. Foods, 10, 1699. https://doi.org/10.3390/foods10081699.

Affandi, FY., Shiri, M., Woltering, EJ., Schouten, RE., 2021. Low Oxygen Storage Alleviates Chilling Injury in Cherry Tomatoes. Acta Horticulturae, *In press*

Paper submitted or in preparation

Affandi, FY., Prayoga, T., Ouzounis, T., Giday, H., Verdonk, JC., Woltering, EJ., Schouten, RE., Additional blue light during cultivation induces cold tolerance in tomato fruit, but only to an optimum. (*submitted*)

Affandi, FY., Pijnenburg, C., Verdonk, JC., Woltering, EJ., Schouten, RE., Growth temperature affects postharvest quality properties and chilling tolerance of green harvested dwarf tomatoes.

The research described in this thesis was financially supported by Indonesian Endowment Fund for Education (LPDP), Ministry of Finance the Republic of Indonesia. Financial support from Wageningen University for printing this thesis is gratefully acknowledged.						
Cover design by Fahrizal Affandi and Proefschriftmaken Printed by Proefschriftmaken						