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Abstract: Microservice architecture consists of a collection of loosely coupled, self-contained services
that can be deployed independently. Given the limited capacity of the resources for a large number
of services, the deployment of the services does not scale well and leads to operational complexity
and runtime overhead. This paper proposes a model-driven approach for the automated deployment
of microservices to minimize the execution cost and communication costs among the microservices.
The identification of the feasible deployment is defined at the architecture design level based on
the provided capacity of the resources and the collection of microservices. The corresponding tool
support using Eclipse Modeling Environment is described, and a case study on book shopping is
used to illustrate the approach.

Keywords: microservice architecture; model-driven architecture; eclipse modeling environment;
model-driven microservice development; automated deployment of microservices

1. Introduction

Microservice architecture is an architectural style that consists of single functionality
services adopting high cohesion and low coupling. The microservice architecture style
reduces the interdependence of microservices to facilitate independent deployment, scaling,
operation, and maintenance. Likewise, many practitioners and researchers adapt their
applications to this architectural style to take advantage of the benefits of microservice
architectures. Despite the benefits of microservice architectures, the efficient deployment of
thousands of services to limited capacity resources is critical regarding resource utilization
and deployment costs. Several industrial tools such as Kubernetes and Docker Swarm
have been introduced, but, unfortunately, these do not consider the microservices’ runtime
behaviors, such as resource consumption and intercommunication during deployment.
There are some overlay tools based on these management tools to improve deployment
architecture. However, these tools generally perform the deployment according to the con-
figuration file that is manually created by the user, which is a relatively slow, cumbersome,
and inefficient task. Moreover, it is difficult to determine the minimum and maximum
resources needed by microservices, such as CPU and memory requirements at runtime,
to configure the deployment cost-effectively. If generated deployment models are not
satisfactory, the deployment process is repeated by creating different configuration files.

For generating feasible deployment alternatives, it is necessary to efficiently minimize
the total amount of memory required by the services at runtime, the communication costs
among microservices, and the execution costs of the services on the existing nodes. Based
on the assumption that each node can accommodate a maximum polynomial amount of
microservices, this problem can be defined as an NP-complete problem that cannot be
solved in polynomial time. As such, near-optimal solutions can be produced in polynomial
time [1].
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Several studies in the literature have focused on model-driven development (MDD),
which is used for microservice architecture (MSA). So far, few studies have proposed the
usage of MDD for microservice-based architecture, and these studies focused mainly on
the deployment problem of microservices. For example, Rademacher et al. [2] explain how
MDD abstraction, model transformation, and modeling perspectives provide solutions to
MSA problems. The proposed MDD tools in the literature address various purposes, such
as documentation, recovery [3], architectural analysis, verification and resilience [4]. There
are also various studies in which CTAP (Capacitated Task Assignment Problem) algorithms
are applied to different areas [5,6]; however, there is a gap in the literature regarding the
implementation of CTAP at the design phase for microservice deployment.

Our previous study [2] focused on the deployment problem and proposed an MDD-
based approach to generate feasible microservice deployment models. The models are
presented by extracting many parameters such as the inter-service communication costs,
the execution costs of the services on the available nodes, the memory capacity of the
services and nodes. In this article, we elaborate on the practical tool challenges and discuss
the logical infrastructure of these models, model transformation process, Emfatic [7], and
Eugenia [8] plugins used in the architecture.

This paper is organized as follows. Section 2 introduces the Model-Driven Devel-
opment (MDD), and Section 3 describes the advantages and challenges of microservices
architecture. Section 4 presents the metamodels created for microservice-based architecture.
Section 5 describes the case study to validate proposed model-driven architecture. Section 6
evaluates the proposed approach for the case study in terms of total communication and
execution costs. Section 7 discusses the alternative frameworks to develop a model-driven
architecture for deploying microservices, and finally, Section 8 concludes the paper.

2. Model-Driven Development

Modeling is usually defined as a means for communication, analysis or guiding the
production process. Depending on the level of precision, a model can be considered a
sketch, blueprint, or executable. An executable is defined as a model that model compilers
can interpret to generate other artefacts. In model-driven development (MDD) the concept
of models can be considered as executable models [9]. The MDD approach serves docu-
mentation purposes and includes complex MDD methods such as model transformation
for design improvement and code generation [9]. Since the MDD approach is based on
transforming the application design to executable code, only the models are updated in
case of a requirement change. The application code is regenerated from the model instead
of changing both the application code and models. Thus, maintenance cost is significantly
reduced [10]. Stakeholder-specific models can be generated, such as for domain experts to
create domain-specific conceptual models at a higher abstraction level than developers, and
for developers to create models for software design. Thus, this approach is beneficial for
complex distributed software systems through dividing the system into concern-specific
modeling tasks [9].

MDD focuses on three key goals: (1) portability, (2) interoperability, and (3) reusabil-
ity, and the key abstraction term to achieve these goals is “architectural separation of
concerns” [11]. In the MDD approach, model transformations are used so that the target
system can be (semi)automatically derived from the model. The basic model transformation
methods can be summarized as follows:

• Model to model (M2M) transformation [12]: In this transformation method, a model
has transformed another model according to a certain purpose. It is often used
for automated transformation from Platform Independent Model (PIM) to Platform
Specific Model (PSM) [13].

• Model to text (M2T) transformation [14]: This approach is designed to meet require-
ments, such as automatic code generation for different target programming languages
(C++, Java, etc.), from the design model or for text generation for documentation
purposes.
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• Text to model (T2M) transformation: In T2M transformations, target models can be
generated from text files suitable for certain metamodels. XText [15] and Gra2Mol
(Grammar to Model Language) tools [16,17] are examples of environments that can be
used for T2M transformations.

2.1. EMF and GMF Model Transformation Process

In the proposed model-driven architecture for deploying microservices, EMF [18]
and GMF [19] modeling frameworks are used on the Eclipse Modeling Tool [20]. Eclipse
Modeling Framework (EMF) is a set of Eclipse plugins used to design the data model and
generate code and other outputs depending on the model. Graphical Modeling Framework
(GMF) is an Eclipse Modeling project that generates the necessary models for the use of
graphical tools.

Ecore metamodels represent the artifacts of models that can be created using EMF. An
overview of model transformations from Domain Model (Ecore metamodel) to graphical
Genmodel is shown in Figure 1. In the EMF part, an abstract syntax of the language is
determined using Ecore, and then Java code is generated from the Ecore model in two
phases using the EMF built-in code generator. The GMF part involves determining the
editor’s graphical syntax using a set of graphical syntax-specific GMF models in three
stages. Then, the GMF code generator is used to generate the concrete graphical editor.

Figure 1. EMF/GMF model transformation process.

The Ecore metamodel contains information about the defined classes. GenModel
converted from the Ecore metamodel specifies how the metamodel should be implemented
in Java. The model includes necessary information for code generation, such as path and
file information. GenModel also provides control parameters to ensure that the code is
generated correctly. Graphical DefModel is used to define shapes, nodes, and connections
on the diagram to be created. The graphical description created needs a template to
be usable. Tooling DefModel is a necessary model for creating graphical elements and
specifying operations such as palette, tool creation, actions. The combination of the Domain
Model, Graphical DefModel, and Tooling DefModel creates the Mapping Model. The
Mapping Model enables the determination of canvas tags required for drawing in the
Eclipse Modeling environment. In the last step, Diagram Editor GenModel, which should
be generated to present the drawing editor to the user, is derived from the Mapping Model.



Appl. Sci. 2021, 11, 9617 4 of 11

2.2. Emfatic

There are many Ecore tools such as Validation, Compare, Search, EEF, MWE (Modeling
Work Engine), Teneo, Texo, Emfatic, generators, etc., to create, edit and update Ecore
models [21]. Emfatic is a textual syntax that enables EMF Ecore models to be created
using software instead of being created in a visual environment [7]. Emfatic provides
convenience to the designer in model-driven development. While creating the model-
driven architecture for deploying microservices, we preferred Emfatic since it is a rich
text editor and it facilitates the transformation from Emfatic files to Ecore models or Ecore
models to Emfatic files. We used Emfatic as a plugin to design the metamodels required to
deploy microservices; the corresponding Ecore metamodels are automatically generated.
Each declaration in the emf file corresponds to Ecore constructs. For instance, each class
defined in an Emfatic file corresponds to a metamodel’s class and each attribute defined in
an emf class represents the properties of the Ecore class.

2.3. Eugenia

EMF and GMF are powerful frameworks for modeling, but many steps need to be
applied for model to model transformations (transition from Ecore metamodel to diagram
editor). These powerful frameworks bring some complexities, and they require manual
work to connect related models. In this study, an open-source tool named Eugenia [8] is
used as a plugin on Eclipse Modeling Tool, which enables the model transformations in
GMF more easily. Hereby, Domain GenModel, Graphical DefModel, and Tooling DefModel
models are created automatically by going through a single transformation performed by
Eugenia [8].

3. Microservice Architectures

Microservice architectures (MSA) is a novel paradigm for developing and deploying
service-oriented software systems [22]. The architectural building blocks of MSA are
software components consisting of services. These software components can be created as
(i) loosely coupled with minimizing dependency with other components, (ii) conforming
to predefined contracts for their interactions, and (iii) performing coarse-grained tasks [23].

The most important difference of MSA from other software architectures is that it
emphasizes the independence principle specific to the services in terms of functionality,
technological and organizational aspects [23,24]. Thus, a microservice is created to be
responsible for only one business need or technical functionality. Moreover, service interac-
tions are based on (i) the two most widely used communication protocols (synchronous
and asynchronous), (ii) choreography as the standard model for architectural internal
interactions, and (iii) lightweight API gateways for architectural-third party external sys-
tem interactions with service consumers [25]. MSA encourages service teams with a high
level of independence at the organizational level by keeping a separate team responsible
for developing each service and its operation [24]. Adaptation to the MSA approach is
expected to increase (i) the adaptability of a service, (ii) the quality and security of services,
and (iii) the productivity of development teams [25].

Although adaptation to microservices brings many advantages, deployment chal-
lenges arise in transitioning from a monolith to microservice-based architecture. While
a monolithic application can be deployed at one-time to the servers behind a load bal-
ancer, microservices consisting of multiple runtime instances must be deployed after the
configuration process [1]. While this configuration process can be done manually in a
microservice-based application consisting of a few services, it becomes challenging to
create a cost-effective deployment model manually, as the number of services increases.
Therefore, systematic approaches that support automatic deployment are required for
microservices. In addition, representing the deployment process on a model and reporting
the deployment result in detail ensures the easier management of a microservice-based
software. In our previous study, the process steps for deriving feasible deployment alterna-
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tives are explained in a case study [1]. In the following section, the logical infrastructure of
the developed metamodels is described in detail.

4. Logical Infrastructure of the Generated Metamodels

This study describes the logical infrastructure of the proposed model-driven architec-
ture [1] to derive feasible deployment models for microservices at the early design phase.
Some critical information is needed to conduct the deployment process, such as (i) defining
microservices, (ii) determining communication patterns between microservices, (iii) iden-
tifying the memory capacities and processors for each available node, and (iv) defining
runtime execution configuration parameters for microservices. In the following subsections,
generated metamodels that allow the determination of these properties are explained as
concrete activities.

4.1. Microservice Data Exchange Metamodel

Microservice Data Exchange Metamodel includes data type definitions and the size
of each element that is used for calculating communication costs among microservices.
Although microservices are created independently, services need data exchange to form
an application. This metamodel is designed to model data types and object sizes that
microservices exchange between them. Different communication infrastructures such as
Restful services, gRPC, etc., can be used for microservices. When we assess the level of
datatype definition detail of alternative communication protocols, we see that the most
comprehensive communication protocol in terms of data types is gRPC [26]. Since the
gRPC protocol includes data types rich enough to model data exchange for all alterna-
tive communication patterns used for microservices, the data types belonging to gRPC
proto3 [27] are used as the data type design foundation within the scope of this study.

gRPC proto3 [27] covers many data types such as message, scalar value, nested, any,
oneOf, etc. There are fifteen types of scalar value types such as double, float, byte, string,
fixed32, int32, etc., and message type includes these scalar values. In addition to any, oneOf
and maps data types can be used for unknown fields that the parser cannot recognize.
As well as its comprehensive data types, gRPC is often preferred for microservices com-
munication since it uses HTTP/2 transfer protocol and Protobuf encoding for efficient
communication.

4.2. Microservice Definition and Communication Metamodel

Microservice Definition and Communication Metamodel enables defining microser-
vices and creating communication patterns among microservices. This model includes
four different classes named REST, graphQL, gRPC, publish/subscribe, and these are the
communication protocols used for microservices. Enum classes such as graphQLEnum,
PubSubTypeEnum, gRPCEnum, etc., are used for defining selection properties (e.g., for
publish/subscribe communication: publish = 1, subscribe = 2) belong to communication
protocols. To clarify the data exchanged by microservices, source microservice and target
data should be selected through the developed tool. Target data is determined using the
Microservice Data Exchange Metamodel described in the previous section. A sample Em-
fatic language written to establish a publish/subscribe relationship between microservices
is shown in Algorithm 1.

Algorithm 1 Sample Emfatic language for defining publish/subscribe relation.

@gmf.link(source = “source”, target = “target”, target.decoration = “arrow”,label =
“pubSubType”)
1: class PubSubRelation {
2: ref Microservice [1] source;
3: attr PubSubTypeEnum [1] pubSubType;
4: ref microDataExchangeModel.ObjectModelElement [1] target;
5: }
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The PubSubRelation class, defined as a relation on the metamodel, determines the data
published or subscribed by a microservice. Hence, it refers to Microservice class as a source
link and ObjectModelElement class as a target link. For instance, in a microservice-based
e-commerce application, suppose that the Order service subscribes to the UserInfo object,
and this object is published by the Customer service. In this case, the source is selected
as Order service, pubSubType type is selected as subscribe, and the target object derived
from the ObjectModelElement class is selected as UserInfo. In the case that a source class is
selected as Customer service, pubSubType is changed as publish.

4.3. Microservice Infrastructure Metamodel

In the Microservice Infrastructure Metamodel, the processing power, memory ca-
pacity, and LAN/WAN connection types of the existing resources are determined. This
metamodel is entirely independent of software business components created for the auto-
matic deployment of microservices. Therefore, the Microservice Infrastructure Metamodel
activity can be developed in parallel by different teams with the other metamodels.

4.4. Microservice Runtime Execution Configuration Metamodel

The necessary infrastructure is created to define microservices, create inter-service
communication patterns, and design physical resources using the metamodels described
up to this stage. Thus, the structural attributes of the proposed model-driven architecture
for the deployment of microservices can be created using these metamodels. In addition
to the structural characteristics of the system, information about the system’s runtime
behavior is also needed to be able to deploy microservices in a cost-effective manner. In the
Microservice Runtime Execution Configuration Metamodel, runtime attributes, such as
how many services are available in the architecture, the update rates of each data element
for each publisher service (updateRate), and the execution costs of the services on physical
resources (nodes), are defined.

4.5. Microservice Deployment Metamodel

Microservice Deployment Metamodel enables the deployment of microservices to
related nodes. This model includes Member’s and Node’s classes. A Member contains one
or more microservice instances that needs to be deployed on one of the Nodes defined in the
Microservice Infrastructure Model. The overall model-driven architecture and relationships
of the models are shown in Appendix A. All metamodels are explained in more detail in
our previous study [1].

5. Case Study—Online Book Shopping

In this section, a case study related to online book shopping is adopted using the
proposed model-driven architecture to validate the efficient microservice deployment
approach. Four types of microservices, consisting of Account, Order, Book Inventory, and
Shipping, are designed. The number of microservice instances and required memories for
each instance are listed in Table 1.

Table 1. Sample scenario for an online book shopping system using number of microservice in-stances
and required memory per microservice.

Microservice Name Number of Instances Required Memory (MB) per Instance

AccountService 300 20
BookInventoryService 200 10

OrderService 250 40
ShippingService 320 15

Total 1070 22.800



Appl. Sci. 2021, 11, 9617 7 of 11

These services exchange various data such as User, Customer, Seller, CardDetails,
Cancellation, CCDetails, PaymentSystem and Transaction. While calculating the communi-
cation costs among microservices, an automatic system using algorithmic approaches is
critical to deploy microservices at the minimum total communication cost. To evaluate the
total communication cost according to algorithmic approaches, the relations of these data
designed in Microservice Data Exchange Metamodel and services defined in Microservice
Definition and Communication Metamodel are defined as shown in Table 2.

Table 2. Publish/subscribe relation schema for the case study.

Microservice Name Publishes Publish Rate (Hz) Subscribes

AccountService User 5 -
Seller 3 -

Customer 3 -
BookInventoryService Cancellation 4 Transaction

OrderService CardDetails 2 PaymentSystem
ShippingService Transaction 2 Cancellation

6. Evaluation

In this section, we demonstrate the validation of the case study since the process steps
of the proposed approach for the efficient deployment of microservices are covered in our
previous work [1]. The metamodels described in the previous sections appear as diagrams
to the designer at runtime. While the definition of microservices and communication
patterns among them are carried out using the Microservice Definition and Communication
Metamodel, the nodes required for allocating services to physical resources are designed
using the Microservice Infrastructure Metamodel. After these structural features of the
proposed model-driven architecture are completed, the runtime execution configuration
parameters of the system are also defined using the Microservice Execution Configuration
Metamodel. The aim is to obtain the total minimum cost by assigning the services that
are in frequent communication with each other to the same node, taking into account
the execution costs of the services on the nodes. Therefore, a genetic algorithm proposed
in [28] is implemented to consider communication and execution costs for microservices.
Figure 2 shows a sample deployment alternative generated from the proposed model-
driven architecture.

To validate the approach using the online book-shopping case study, two different
CTAP [29] methods were evaluated concerning the total execution and communication
cost metrics. Many algorithms suitable for the CTAP can be easily adapted as plugins
to this architecture. This architecture generates efficient deployment alternatives using
an algorithmic approach and is also suitable for manual deployment. Thus, the designer
can manually deploy microservices, and the system enables comparison of manual and
algorithmic approaches.

As seen in Table 3, total execution and communication costs vary among different
algorithmic approaches. The genetic algorithm performs better than the Minimum Nodes
algorithm in terms of execution cost by 14.3%. On the other hand, the Minimum Nodes
algorithm has the lowest communication cost by 23% compared to the genetic algorithm.
The improvement rate in terms of the communication cost is reasonable because the
communication cost among services allocated on the same node is calculated as zero
according to the CTAP [29]. The algorithm aims to allocate each service to the minimum
number of nodes. Therefore, this algorithm utilizes all memory of a node, then starts to
assign microservices on the other node until the node’s memory is full.
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Figure 2. Generated sample deployment alternative for 1070 microservices on three nodes using a genetic algorithm.

Table 3. Total execution and communication costs according to Genetic and Minimum Nodes
algorithm.

Algorithm Communication Cost (Mbytes/s) Execution Cost (Unit)

Genetic 17.711853 21,240
Minimum Nodes 13.634338 24,290

When we examined the processing time of the proposed algorithm for generating
feasible deployment of microservices [30], we saw that the performance of the deployment
process depended on the applied CTAP algorithm and the number of microservices. There-
fore, the communication and execution cost for each microservice instance was calculated
according to the CTAP solution. When we analyzed the formulation of CTAP problem [30],
the time complexity of the total cost could be represented by O(n3) in a worst-case scenario.

7. Discussion

Model-driven engineering (MDE) enables designing software models close to the
executable model at the early design phase by using the simplified abstractions of the
structures in the application. The visual artifacts in MDE show the business need and ways
to solve technical problems.

In this study, the logical infrastructure of the model-driven architecture developed to
deploy microservices to limited capacity resources, the frameworks and the plugins used
are explained. To develop the model-driven architecture for microservice deployment, we
used EMF and GMF software tools in Eclipse Modeling Tools. In addition to EMF and GMF,
many software tools, such as Acceleo [31], JetBrains MPS [32], Simulink [33], Sirius [34], etc.,
can be used for MDE. Among these models, Sirius [34] allows the user to create a complex
graphic modeling workbench by using EMF [18] and GMF [19] modeling frameworks.
Although this model provides a rich modeling experience, it requires the designer to create
all the necessary components to use the tool. Thus, the designer needs deep knowledge
about Sirius components. On the other hand, our model-driven architecture developed by
using EMF, GMF and Emfatic offers a simple framework to the designer, but it requires
more code generation and a more complex structure on the developer side. In this context,
EMF, GMF and Emfatic stack still can be considered more advantageous than the other
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alternative software tools for the designer. The Sirius tool is still promising, but it needs
Emfatic-like automation overlays to define complex metamodels.

8. Conclusions

Deriving feasible deployment alternatives for microservice-based applications in
the early design phase enables the efficient use of cloud resources. Current industrial
management tools rely on manually created configuration files. When the generated
deployment model using these tools is not satisfactory, the user needs to re-create the
configuration file. This process is time-consuming, and there is no guarantee that the
created deployment model will yield an efficient cost. The developed model-driven
architecture allows a microservice-based application to be designed with all the details, and
it permits organization of the case study in a feasible way at the beginning of the project life
cycle. In addition, it enables selecting the efficient deployment model in terms of resource
usage by comparing the models generated by various algorithmic approaches. Using EMF
and GMF software tools, the proposed model-driven architecture allows the end-user to
design microservice-based applications easily and derive efficient deployment alternatives.
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Appendix A

Figure A1. The overall model-driven architecture for deploying microservices.
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