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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Technology is not sufficiently conquered 
yet: the big data 4Vs still pose substan-
tial challenges, even with top-notch 
technological facilities. 

• The majority of state-of-the-art use cases 
pursues a relatively modest technolog-
ical maturity level of the aspired 
solution. 

• To stakeholders, solutions should be 
affordable, make use of already owned 
datasets, and pay specific attention to 
clarity of inputs and results. 

• Big data solutions are not yet out-of-the- 
box and depend much on the domain. 
The transition to agriculture-specific 
solutions is emerging. 

• Successful big data solutions for prob-
lems in agriculture need both a practical 
engineering and a holistic systems- 
thinking perspective.  

A R T I C L E  I N F O   

Editor: Guillaume Martin  

Keywords: 
Big data solutions 
Precision Agriculture 
Case study 
Stakeholders 
Technological maturity level 
Mixed-method approach 

A B S T R A C T   

CONTEXT: Big data applications in agriculture evolve fast, as more experience, applications, good practices and 
computational power become available. Actual solutions to real-life problems are scarce. What characterizes the 
adoption of big data problems to solutions and to what extent is there a match between them? 
OBJECTIVE: We aim to assess the conditions of the adoption of big data technologies in agricultural applications, 
based on the investigation of twelve real-life practical use cases in the precision agriculture and livestock domain. 
METHODS: We use a mixed method approach: a case study research around the twelve use cases of Horizon 2020 
project CYBELE, varying from precision arable and livestock farming to fishing and food security, and a stake-
holder survey (n = 56). Our analysis focuses on four perspectives: (1) the drivers of change that initiated the use 
cases; (2) the big data characteristics of the problem; (3) the technological maturity level of the solution both at 
start and end of the project; (4) the stakeholder perspective. 
RESULTS AND CONCLUSIONS: Results show that the use cases’ drivers of change are a combination of data-, 
technology, research- and commercial interests; most have at least a research drive. The big data characteristics 
(volume, velocity, variety, veracity) are well-represented, with most emphasis on velocity and variety. Tech-
nology readiness levels show that the majority of use cases started at experimental or lab environment stage and 
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aims at a technical maturity of real-world small-scale deployment. Stakeholders’ main concern is cost, user 
friendliness and to embed the solution within their current work practice. 
The adoption of better-matching big data solutions is modest. Big data solutions do not work out-of-the-box when 
changing application domains. Additional technology development is needed for addressing the idiosyncrasies of 
agricultural applications. 
SIGNIFICANCE: We add a practical, empirical assessment of the current status of big data problems and solutions 
to the existing body of mainly theoretical knowledge. We considered the CYBELE research project as our labo-
ratory for this. Our strength is that we interviewed the use case representatives in person, and that we included 
the stakeholders’ perspective in our results. 
Large-scale deployments need effective interdisciplinary approaches and long-term project horizons to address 
issues emerging from big data characteristics, and to avoid compartmentalization of agricultural sciences. 
We need both an engineering perspective – to make things work in practice – and a systems thinking perspective 
– to offer holistic, integrated solutions.   

1. Introduction 

Today, big data is ubiquitous, machine learning applications are 
thriving, artificial intelligence appears in everyday conversations, 
internet of things is present even in household appliances. Businesses 
and organizations are increasingly managed through cloud computing 
and high performance computing is progressively accessible as a service 
(Rodríguez-Mazahua et al., 2016). Opportunities and benefits are 
becoming omnipresent, as we can organize operations more effectively 
by means of high computational power, and analyze huge amounts of 
data by means of tailored machine learning algorithms which result in 
profitable insights, patterns, and decisions. As high fidelity sensory de-
vices are becoming more accessible, data records are accumulated and 
open up opportunities for tackling food security problems more accu-
rately and inclusively (Nature Food, 2020). However, reality is not al-
ways cooperative. Seemingly unimportant irregularities may become 
practical obstacles that stand in the way of theoretical success. This 
article aims to look specifically at how far apart big data technologies 
and practical applications are from one another within the agricultural 
domain. 

Looking at agriculture, it is easy to imagine that technological de-
velopments can bring benefits not only to the sector, but to society as a 
whole (Chavas et al., 2010). Compared with other domains, the agri-
cultural sector is characterized by relatively low operational efficiency 
and small managerial power due to farm size limitations, a high level of 
uncertainty because of weather and environmental conditions, and a 
volatile balance between food supply and demand due to growing and 
breeding times of crops and livestock (Eurostat, 2018; Huirne, 2002; 
Kamble et al., 2020; Newton et al., 2020). This makes farming in general 
a risky endeavor (Allen and Lueck, 1998). More effective operations, 
reduced uncertainties, and real time decision-support could revolu-
tionize agriculture to a great extent (Cockburn, 2020). Food could be 
produced more efficiently, of higher nutritional quality, in more stable 
supplies, with less environmental damage, and likely with additional 
economic, social, and ecological benefits. 

Big data technologies have been introduced already in agricultural 
applications (Astill et al., 2020; Cockburn, 2020; Ip et al., 2018; Kamble 
et al., 2020; Kamilaris et al., 2017; Lokers et al., 2016; Pylianidis et al., 
2021; Saiz-Rubio and Rovira-Mas, 2020; Verdouw et al., 2019; Wolfert 
et al., 2017). Kamilaris et al. (2017) reported thirty-four case studies 
covering a wide range of big data analytics applications within the 
sector. They concluded that, at that time, big data analysis had not yet 
been widely applied in agriculture, that it was still at an early devel-
opment stage. They reported also several barriers, including lack of 
human resources and expertise, limited availability of reliable infra-
structure (Sawant et al., 2016), and lack of standardization and gover-
nance related to agricultural data (Nandyala and Kim, 2016; Nativi 
et al., 2015). Next to the technological advancements, business models 
should be sufficiently attractive for solution providers and stakeholders 
(Kempenaar et al., 2016; Sonka, 2016). Big data applications in smart 
farming is also related to socio-economic challenges Wolfert et al. 

(2017). According to the aforementioned reviews, most big data appli-
cations had not been fully adopted by their intended users and were 
either in an early development stage or had a limited scope in the sense 
that they did not sufficiently address the risks related to agriculture. 

Since then, big data technologies have developed further, as more 
experience, algorithms, good practices and computational power 
become available (Oussous et al., 2018). Several new big data and 
artificial intelligence applications for the agricultural domain have been 
developed all over the world (Lezoche et al., 2020). The focus of this 
article is to study the conditions of the adoption of big data technologies 
in agricultural applications, based on the investigation of twelve real-life 
practical use cases in the precision agriculture and livestock sector. Are 
data-driven solutions effective in addressing the intrinsic characteristics 
of the agricultural applications? What level of maturity have big data 
solutions reached? Do end-users or stakeholders see the added-value to 
adopt them? 

There is no straightforward answer to these questions. “Big data 
technology” is not a well-defined concept, but rather an ecosystem of 
several technologies that may address various types of problems (Cui 
et al., 2020; Jagadish, 2015). Finding the match between enabling 
technologies and successful applications is by no means trivial, as recent 
review articles from various sectors demonstrate (Kuo and Kusiak, 2019; 
Saggi and Jain, 2018). 

1.1. Perspectives 

Therefore, to investigate the status of the adoption of big data so-
lutions in the agricultural domain and the challenges that go with it, we 
take on a pragmatic approach. We consider four perspectives to study 
twelve use cases of a specific research project on big data in agriculture. 
Together, these perspectives contribute to shape our understanding of 
this adoption within the scope of the research project. 

The first perspective focuses on identifying the drivers of change 
behind the application, or in other words, the motivations behind the 
choice for adopting a big data technology solution. When the initiative 
comes from the technology provider with a promising technology, 
looking for a suitable domain area to apply it to, the focus maybe more 
on the technology than on the problem itself. The resulting application 
may be more technology-oriented than practical for the end user. 
Alternatively, when the need originates from someone in the domain 
area itself, the leading goal is to obtain a suitable application to solve an 
existing problem, regardless of whether the technology of this applica-
tion is established or novel. Likewise, when researchers are involved, it 
is likely to assume that they are mainly interested in proof-of-principle 
solutions. A different outcome may be expected when there is a com-
mercial interest that requires a more profitable, hence practical appli-
cation. Therefore, the driver of change may have a different impact on 
the successfulness of the adoption and is worth investigating. 

The second perspective is to investigate the big data characteristics 
of the problem: volume, velocity, variety and veracity (Laney, 2001). 
Each of these 4 Vs has different associated challenges that may prohibit 
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the adoption of big data applications. For example, a volume-related 
data challenge can be addressed by improving the data storage and 
processing methods, which is mainly a technical issue that relates to 
availability and efficient use of infrastructure and processing power 
(Ang and Seng, 2016). The same holds for a velocity-related challenge, 
where processing speed is important to allow for real-time response, 
which is also primarily a technical issue. On the other hand, a variety- 
related data challenge needs a customized way of pre-processing the 
data which may concern semantic issues, for which domain expertise is 
needed, which makes it a content-related issue (Jagadish, 2015). The 
same is true for veracity, where also a domain expert should be involved 
to resolve issues related to data cleaning or interpretation. 

The third perspective assesses the maturity of the intended solution, 
or in other words, the ambition level of the developers in terms of 
practical applicability. This is partly related to the drivers of change: 
when the intention is to develop a prototype solution in a research 
context, then this will probably not qualify for a practical solution that 
will be adopted on a large scale. Likewise, when the intention is to find a 
solution for a real-world problem situation, then successful adoption of 
this solution is more likely. 

The fourth perspective concentrates not on the problem domain or 
the solution providers, but on end-users and stakeholders. This 
perspective is included to provide an additional viewpoint. The drivers 
of change, big data characteristics and maturity of the solution are 
investigated from the viewpoint of the application developers and 
domain experts. Stakeholders and end users cover a broader range, and 
may have a different opinion on what they consider a successful 
application. 

We investigate these four perspectives applying a mixed method 
approach around the twelve use cases developed by the CYBELE project 
(Perakis et al., 2020). CYBELE is an EU-funded H2020 project in which 
an interdisciplinary consortium of partners in the fields of high- 
performance computing, big data, cloud computing, and internet of 
things co-develop big data solutions for real-world use cases related to 
several facets of agriculture: from precision arable and livestock 
farming, to fishing and food security. CYBELE can be considered a lab-
oratory in which the potential of big data solutions is examined by 
investigating to what extent big data solutions can be tailored to solve 
actual problems in agriculture, as both domain experts and technical 
providers are actively collaborating to deploy practical solutions. Our 
mixed-method approach consists of a case study research and a survey. 
For the case study research, we interviewed in-person the use case 
representatives of the CYBELE project. The survey addressed a broad 
network of stakeholders and end users. This mixed-method approach 
was selected to provide a more in-depth and timely understanding of the 
dynamics in this field, rather than a literature review. 

1.2. Research steps 

The research focus of this article is to assess the conditions of the 
adoption of big data technologies in agricultural applications. We make 
this assessment by means of the four perspectives introduced above, 
each highlighting a different aspect of the adoption conditions. There-
fore, the research steps are (1) to identify the drivers of change behind 
the use case applications; (2) to identify the big data characteristics of 
the use case applications; (3) to identify the maturity level of the 
intended solutions for the use case applications; and (4) to identify 
stakeholders’ considerations for adopting big data solutions. 

The remainder of this article is organized as follows. Section 2 ex-
plains the mixed-method approach in further detail. Section 3 presents 
the results. Section 4 discusses our findings, and Section 5 is the 
conclusion. 

2. Methods 

Our mixed method approach consists of a case study research and a 

survey. The relationship between perspectives and how they are oper-
ationalized is presented in Fig. 1, and explained in the subsequent 
subsections. The first three perspectives center around the use case 
problems and intended solutions themselves and are studied by means of 
a case study research. The last perspective concentrates on the stake-
holders’ considerations, and is studied by means of a survey. 

In the remainder of this section, we explain the methodological de-
tails of the case study research (2.1), the survey (2.2), and the four 
perspectives (2.3). We also present a short overview of the twelve 
CYBELE use cases (2.4). 

2.1. Case study research 

The case study research consisted of the following steps. First, we 
studied the use case documentation as available within the CYBELE 
project. We then carried out semi-structured interviews with each use 
case representative concerning both the existing problem situation and 
current solution (if available), the expected future big data solution, and 
how this is assumed to change the problem situation. By ‘use case rep-
resentatives’ we mean representatives from the project partners who 
had brought the use cases to the project. The representatives were either 
directly from the respective company or organization, or researchers 
with close connections there. 

We conducted a semi-structed interview with each use case repre-
sentative, by means of Skype, or live where possible (once) in March- 
May 2019. For every interview, one or two representatives from the 
same use case were present. During each interview, workflow diagrams 
were discussed and drawn together through a shared screen. The result 
was a set of at least two workflow diagrams (the current problem situ-
ation and the desired big data solution), or more when appropriate. For 
each workflow diagram, also the people involved, and their roles and 
tasks were discussed. All interviews were recorded (audio and screen 
recordings, for the live interview audio only). The resulting interview 
documents and workflow diagrams were further commented and revised 
by the use case representatives in order to correct any mistakes or to 
clarify issues. All interview data and resulting diagrams are extensively 
documented in a public CYBELE project report (Athanasiadis et al., 
2020). 

We then performed a three-stage analysis and assessed (1) the drivers 
of change, (2) the big data characteristics and (3) the technological 
readiness level of each use case. These analyses were based on the au-
thors’ interpretation of the use case descriptions and of the interviews in 
which they were discussed. The results were presented at subsequent 
project meetings where they could be verified and further refined. 

2.2. Stakeholder survey 

We carried out a survey among the stakeholders that are part of 
CYBELE’s extended network, in order to analyze the stakeholder 
perspective. These stakeholders form a wider group than the intended 
end users of CYBELE applications, aimed at intermediary service pro-
viders. Note that we asked the stakeholders’ opinions during the CYBELE 
project, not afterwards, as the project is still ongoing. 

The stakeholder survey was constructed and distributed among 
relevant stakeholders and possible future users of CYBELE, contacted 
through CYBELE’s extended network. The survey ran between 19th of 
November and 17th of December 2019 and had 61 respondents. The 
survey consisted of seven close-ended Likert-scale questions, with 
additional options for open responses. The survey questions elaborated 
on what stakeholders consider a reason to adopt a solution, which re-
lates to (their) drivers of change. They were asked to evaluate factors 
that can potentially improve productivity or profit within a domain. 
Those factors were related to the big data 4 Vs. They were also asked for 
critical success factors and to mention factors that hinder adoption. 
These questions relate to the maturity level of a solution. 

The survey questions are presented in Appendix 1. For the analysis of 
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the stakeholder survey, we used standard statistical indicators. The full 
survey questions and analysis can be found in Athanasiadis et al. (2020) 
and is also discussed in Mouzakitis et al. (2020). 

2.3. Perspectives 

The methods and argumentation used for each of the perspectives is 
presented in the next four subsections. 

2.3.1. Drivers of change 
The first perspective is concerned with the driver of change of the use 

case, i.e. what the motivation was to apply big data technologies and 
data-driven analytics. From literature, we know that changes in farm 
practice with respect to decision making are likely to occur in response 
to ‘trigger events’, after which new options are considered and pursued 
(Sutherland et al., 2012). Push and pull mechanisms can serve as such 
triggers as well (Wolfert et al., 2017). 

We operationalized these motivations into four categories: (a) data- 
driven, meaning that more data sources or higher-quality data regarding 
the use case domain are available that form an opportunity to solve a 
problem. For example, higher resolution images can increase the quality 
of an image-based decision. (2) technology-driven, meaning that solving 
the problem becomes more efficient when more advanced techniques 
are applied. For example, involving parallelization or high-performance 
computing can speed up the execution of a required model which leads 
to a faster decision. (3) research-driven in the sense that involved aca-
demic researchers who have a strong link with the problem domain see a 
solution to a problem from the perspective of a research innovation or a 
funding opportunity. (4) commerce-driven, when parties involved see an 
opportunity to gain competitive advantage in offering an advantageous 
solution for a typical problem in a certain sector. 

There is not necessarily a single driver of change, instead it is likely 
that a combination of drivers of change is applicable. 

2.3.2. Big data characteristics 
As a second perspective, we analyzed each use case problem in terms 

of the big data characteristics (Laney, 2001). The complexity of handling 
big data is associated with its typical characteristics, the big data 4 Vs: 
volume, velocity, variety and veracity. For an extensive definition of 
each of them with examples from the agro-environmental domain, see 
Lokers et al. (2016). Characteristic Volume implies that the data needed 
to solve the problem is very large in size, and increasingly growing. 
Characteristic Velocity implies that decision-making has to happen in 

real time, so the data and models necessary to make that decision have to 
be processed very fast. Characteristic Variety implies that data of mul-
tiple formats needs to be processed together for decision-making. 
Characteristic Veracity implies that there is uncertainty involved in the 
data required for decision-making. With more data sources becoming 
available, the fidelity of the data is not always guaranteed. 

When more than one qualification applied, we assigned only the two 
most dominant ones, in which case we prioritized them as most 
important and second important. 

2.3.3. Maturity of the solution 
As a third perspective, we looked at the maturity of the proposed big 

data solution for the problem. A solution will be more likely to be 
adopted when it was the intention of the use case representatives to 
achieve a sufficient level of applicability. To assess the maturity of the 
solution, we applied a scheme originally developed by NASA and 
adopted by the European Commission to estimate the maturity of EU- 
funded research and innovation projects (EARTO, 2014). We used the 
technological readiness level (TRL) scheme to identify whether a solu-
tion is aimed to be at experimental level only, at prototype stage in a lab 
environment, to be deployed in a small-scale real-world environment, or 
to reach real-world large-scale deployment. 

In order to apply the TRL scale, running from 1 to 9 to assess how 
ready a certain technology is, it needs to be adapted for the intended 
application (EARTO, 2014). Our TRL interpretation is summarized in 
Table 1, where we group the scale levels into four ascending categories. 
The lowest category of TRL relates to applications that are merely 
experimental and have no other intention than to test a conceptual 
model or theory. The next TRL category indicates that the intended 
solution is to produce a proof of concept or a prototype, but not to take 
this out of the lab situation. The third TRL category consists of big data 
solutions that aim for deployment in the real world, but on a small scale, 
perhaps still in a controlled environment. The highest TRL category is 
reserved only for applications that are operating in real world envi-
ronments and have all potential to be adopted on a large scale. 

By means of this scale we assigned each use case a TRL level for the 
current technological maturity state of the proposed solution. We esti-
mated the technological maturity that is expected to be achieved in 2-3 
years, which is the duration of the CYBELE project. This 2-3 year 
ambition level may be lower than the ultimate ambition level of a use 
case, but that is considered outside the scope of CYBELE and this article. 
All use cases were assigned TRL scores that refer to the desired big data 
solution only. 

Fig. 1. Operationalization of our mixed method approach  
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2.3.4. Stakeholder considerations 
It is important to include the intended stakeholders of an information 

system in an early stage to be aware of their needs (Jayashankar et al., 
2019; Penn et al., 2019). Indeed, the CYBELE research project is set up in 
such a way that end users and stakeholders are consulted at regular 
intervals, while the components of the solutions are being developed. 

The survey that we used for this article was designed while we 
already had knowledge of the use case descriptions and interviewed the 
use case representatives, which tailored our questions. What interested 
us primarily was to see how the stakeholders’ view corresponded to or 
differed from what the use case representatives had indicated regarding 
the three other perspectives. 

2.4. CYBELE use cases 

The case study research is centered around the twelve CYBELE use 
cases related to precision agriculture and precision livestock farming 
applications. A short description of what each use case entails is pro-
vided in Table 2. More elaborate descriptions can be found in Appendix 
II. 

3. Results 

We present our results per perspective in four sub sections. 

3.1. Perspective 1: Drivers of change 

The twelve use cases are approximately equally driven by data, 
technology, research, and commercial interests, and most often a com-
bination of these (Table 3). Most use cases are at least motivated by a 
research interest. Noteworthy is that only three out of twelve use-cases 
are commerce-driven. 

Data-driven use cases seek to incorporate new data streams, that were 
either (a) higher quality or higher resolution datasets (e.g. use case 5); 
(b) existing, but unexplored datasets, such as already measured sensory 
data (e.g. use cases 6 and 10); or (c) incorporating new data sources, as 
in the case of crowd-sourced data (e.g. use case 1) or by deploying new 
sensors (e.g. use case 4). Technology-driven use cases aim to solve 
problems more efficiently by employing more advanced technologies. 
Use cases 3, 9, and 11 employed technologies related to the real-time 
access and processing of voluminous data sources. A research drive is 

Table 1 
Interpretation of NASA’s Technology-Readiness Level (TRL) to indicate the technological maturity of each case study’s proposed big data solution.  

TRL Stage Explanation 

1-2 Theory; experimental stage 
No system at all, but problem has been explored theoretically 
TRL 1: there is a conceptual model 
TRL 2: there is a model ready to implement 

3-4-5 Lab environment; prototype stage 

There is a system, but so far only for scientific explorations 
TRL 3: system is a proof of concept 
TRL 4: system has been tested in controlled lab environment 
TRL 5: system has been simulated in a relevant but still controlled environment 

6-7 Real world; small scale deployment 
The system is deployed to the real world on a small scale 
TRL 6: small-scale experimental application in a controlled, but real world environment 
TRL 7: small-scale experimental application in a commercial real world environment (no longer controlled) 

8-9 Real world; large scale deployment 
The system is deployed in the real world on a large scale 
TRL 8: wide range commercial trial in the real world 
TRL 9: system is in full commercial use on a large scale  

Table 2 
A summary of the CYBELE use cases from agriculture and livestock domains  

Nr Short name Aim (within the project scope of 2 to 3 years) 

1 Organic soya yield prediction To develop methods to increase accurate soya yield prediction, including soil analysis and weather data. Use crowd-sourced datasets 
provided by soybean growers to develop advanced machine learning algorithms to predict the protein content. 

2 Prevent food safety incidents To demonstrate the capacity of HPC solutions for supporting complex deep learning and machine learning prediction models to estimate 
food safety risks for dairy products, nuts product, sugar, fruits and vegetables, in order to minimize risks and mistakes in future. 

3 Prevent frost/hail damage To develop an early warning system that can help farms to prevent damage on their grapes through protective methods for frost and hail. The 
farmers could benefit highly when they know such events will happen. 

4 Develop agro-robots To develop fleets of small, autonomous vehicles and carry out farmer tasks. The range of operations to be delivered include soil chemical 
analysis, identify soil/crop condition, (plant/weed) identification, individual plant harvest readiness assessment and plant level automated 
harvesting. 

5 Optimize crop yields forecast Improve the existing instrument for crop yield monitoring (e.g. early warning & anomaly detection), index-based insurance (index 
estimates) and farmer advisory services. Include parcel-specific data associated with advanced weather forecasts and computations and 
additional satellite imagery data. 

6 Pig weighing optimization An accurate estimate of the live weight of slaughter pigs is useful to the farmer, especially for knowing when to send the pigs to the 
slaughterhouse, and to more accurately diagnose and treat diseases. Goal is to infer the live weight of the pigs via video images with deep 
convolutional neural networks. 

7 Sustainable pork meat quality Sustainable pig production and global food challenges require producing with optimal productivity, health and welfare of the pigs. These 
can be obtained by on-farm data sources and data from slaughterhouses that are available but not yet fully utilized. By integrating and 
analyzing these data sources at a large scale, these goals can be easier obtained, resulting in higher meat quality and better conditions for the 
pigs. 

8 Improve health and welfare of 
pigs 

This case aims to improve the detection of health, welfare and performance problems at fattening pig farms through better use of available 
sensor and farm data. 

9 Integrate fish fleet data To utilize the potential of commercial fishing vessels, which can collect real time data with sensors and IT equipment on board, to improve 
ecosystem-based fisheries management to locate fish and to avoid overfishing. To this end, data from the digital logbooks from ships, 
satellite-based vessel monitoring systems, environmental data from satellite based imaginary systems, and more are used. 

10 Optimize fishing vessel on- 
board data 

This case aims to optimize the database system on board of a particular commercial Belgian fishing vessel which has advanced data 
collection systems but no integrated system to process these. 

11 Machine vision for fish catch 
detection 

This case is to support visual-based processing of the catch using an RGB camera instead of manual sorting, which is labour-intensive and 
gives no information on detection of species, undersized fish, non-commercial fish and non-commercial benthic animals. 

12 Aquaculture monitoring Optimize the process of fish feeding, because feed is a high cost factor, and wasted food is deposited in the seabed and generates an 
environmental impact on the surrounding area. Aerial images of fish farms taken from drones will be processed, combined with weather 
information and sensor measurements.  
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typical for use cases where innovation is still in an early stage and big 
data methods are explored for their potential, such as in use cases 4 and 
6. A commercial interest was manifested when a company was already 
involved, which is the case for use case 1, 7 and 12, or when there was 
potential in the asset value in e.g. the data collection of the use case. 

3.2. Perspective 2: Big data characteristics 

Velocity and Variety were found to be two of the most essential big 
data characteristics for the use cases (Table 4). Velocity is a strong pre-
requisite for real-time decision-making and it is considered important 
for more than half of the use cases we investigated. For example, in use 
case 4 a robot on a tomato field needs to decide whether a tomato should 
be picked or not. This requires very fast processing of the data coming 
from the various robot sensors to make the right decisions. 

The ability to handle data variety is necessary when combining data 
from various sources. This prerequisite is important for use cases that 
have a research focus, such as use cases 2, 10 or 12. For example, in use 
case 12 (aquaculture monitoring), in-situ sensors are to be integrated 
with drone video footage, and feed management systems. This poses 
challenges on how to integrate and analyze data of multiple modalities. 

Volume was considered as important for only one use case, the same 
one that reported only data as the driver of change (use case 5). Despite 
not being the main characteristic, volume remains relevant for several 
other use cases. In use case 1, satellite images of ever increasing tem-
poral and spatial resolution are processed to increase the granularity of 
decision-making, which also increases the need for more storage 
capacity. 

Veracity was found relevant for use cases whose predictions depend 

on uncertain data, such as weather data or data coming from multiple 
sources, e.g. in use cases 1 and 3. For example, in use case 3 that aims to 
prevent frost and hail damage, it is very important to have accurate, 
local weather forecasts, since hail is very difficult to predict. 

3.3. Perspective 3: Maturity of the solution 

We measured the maturity of the use case solutions both at the 
beginning of the project and the intended one at the end of the project 
using the Technology Readiness Level (TRL) (EARTO, 2014). All use 
cases started from a low maturity level (experimental or prototype 
stage), and the majority aimed for a real-world small-scale deployment 
(Table 5). 

Three use cases aim for prototype-level deployment at the end of the 
project in a controlled lab environment. Two out of three were driven by 
a research interest. For example, use case 6 which aims to identify in-
dividual pigs in a pen and estimate their weight from streaming video 
data. 

Most of the use cases (n=7) aspire to small-scale real-world de-
ployments at the end of the project. They aim to make predictions out of 
real-world data, but do not consider all the potential uncertainties and 
vulnerabilities such as local adaptations or missing data that might occur 
in a large-scale deployment. 

Only two use cases aim for the highest TRL, that of large-scale real- 
world deployment. Both use cases 7 and 9 aim at improving existing 
systems for commercial practice, and the technical challenge lies in 
velocity. This ambition level fits well with the CYBELE project that offers 
state-of-the-art supercomputer infrastructure and support, which can 
facilitate to realize such objectives. 

Table 3 
The drivers of change for the 12 use cases. Most use cases report more than one driver, which are not prioritized  

Nr Use Case ID Data-driven Technology-driven Research-driven Commerce-driven 

1 Organic soya yield prediction √   √ 
2 Prevent food safety incidents √ √   
3 Prevent frost/hail damage  √ √  
4 Develop agro-robots √  √  
5 Optimize crop yields forecast √    
6 Pig weighing optimization   √  
7 Sustainable pork meat quality   √ √ 
8 Improve health and welfare of pigs   √  
9 Integrate fish fleet data √ √   
10 Optimize fishing vessel on-board data √    
11 Machine vision for fish catch detection  √   
12 Aquaculture monitoring   √ √  

Table 4 
The big data characteristics of the 12 use cases. More than one characteristic may be assigned to each use case, and the large-sized indicator represents the predominant 
one.  

Nr Use Case ID Volume Velocity Variety Veracity 

1 Organic soya yield prediction 

2 Prevent food safety incidents   

3 Prevent frost/hail damage    

4 Develop agro-robots  

5 Optimize crop yields forecast 

6 Pig weighing optimization   

7 Sustainable pork meat quality 

8 Improve health and welfare of pigs 

9 Integrate fish fleet data 

10 Optimize fishing vessel on-board data   

11 Machine vision for fish catch detection  

12 Aquaculture monitoring  
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3.4. Perspective 4: Stakeholder considerations 

The majority (61%) of the stakeholder survey respondents (n=56) 
have a background in agricultural farming; circa 20% have a research 
background; circa 7% are from technology and knowledge providers; 
the remaining respondents are policy makers, other companies, or 
public entities. Most respondents self-identified as being familiar with 
precision livestock and precision agriculture farming (circa 70%). 
Almost half of the respondents has no experience with big data in 
agriculture. The rest assess themselves as novice (25%), competent 
(18%) or expert (9%) in big data technologies. 

Stakeholders’ most important reason to opt for a big data solution 
was its commercial value (n=23). Data, technology, and research drivers 
of change seem to be equally important to them (n=18, 19, 18). They are 
least driven by research (n=4) when considering to adopt a big data 
solution for making better decisions for their organizations. 

When stakeholders consider whether a big data solution could 
improve productivity, they indicate that the most important factors to 
them are access to visualizations and data-analytics (n=22), instant 
delivery of notifications and alerts (n=20), very fast data processing 
capabilities (n=20), and out-of-the-box data availability (n=18). The 
least important factor is big data infrastructures (n=7). 

Most stakeholders (n=28) indicated that financial attractiveness is 
important for adopting a solution. Stakeholders are also concerned that 
big data solutions will not be easy to embed in their current workflow, 
that they lack staff, or that their staff is not skilled enough to work with 
big data solutions. 

4. Discussion 

We structure the discussion section as follows. In 4.1, we discuss our 
findings directly related to our perspectives. In 4.2, we state the added 
value of our work. In 4.3, we combine our insights into a list of lessons 
learned. Lastly, in 4.4, we discuss the limitations of the study. 

4.1. Findings related to our perspectives 

4.1.1. Perspective 1: Drivers of change 
Our findings suggest that most use cases were data-driven, triggered 

by the opportunities provided through the availability of new, high- 
quality or more diverse datasets. Also, they mainly had a research in-
terest, and were primarily concerned with developing the technological 
solution rather than making it available to end-users. In the literature we 
find confirmation that big data technology is mostly seen as a driving 
force for companies or organizations to create more value out of their 
data (Kuo and Kusiak, 2019; Saiz-Rubio and Rovira-Mas, 2020). At the 
same time, it is broadly recognized that data alone are not enough to 
make applications successful (Kamble et al., 2020; Lezoche et al., 2020; 
Saggi and Jain, 2018; Wysel et al., 2021). Wysel et al. (2021) summarize 
this requirement concisely as “Creating value from data requires a 

community of stakeholders, a faciliatory system, and data on, and for, 
the community”. Our findings show that end user or stakeholder 
involvement, although certainly accounted for in the project, was not 
yet a main priority for the use cases, at least not within the scope of this 
project. 

4.1.2. Perspective 2: Big data characteristics 
From our findings we learn that all four big data characteristics are 

relevant challenges for our use cases, and that the predominant ones are 
velocity and variety. This implies that working with big data still poses 
substantial technical challenges that cannot be overcome solely by 
scaling up technical infrastructure facilities and support, as is explained 
by Jagadish (2015). Especially the requirement to use the knowledge 
from a domain expert – in case of a variety or veracity challenge – is 
generally considered a bottleneck (Coleman et al., 2016). This is one of 
the key reasons reported in our interviews of why it remains a very big 
step to move from a real-world small-scale to a large-scale deployment – 
which also relates to our third perspective. Several of our case studies 
suffer from low quality or unbalanced datasets and it was a challenge for 
them to reproduce prototype results in controlled environments. 

Consider as an example an experimental farm. Data are generated in 
a very much controlled manner, yielding complete datasets. On the 
contrary, in a real-world deployment involving several farms, data 
sources can be expected to be incomplete, which essentially changes the 
type of problem to be solved. There are successful examples of scaling up 
data-driven solutions, like the Copernicus project that brings together 
huge amounts of detailed satellite imagery, together with services to 
disclose these data (EU Earth Observation programme, 2021). However, 
there are less successes of such magnitude in agriculture. Large-scale 
agricultural applications involve high data uncertainties, due to 
missing data, noise, mismatches in scales, scopes, and formats (Lezoche 
et al., 2020). Data are segregated in silos, that still need to be integrated, 
and linking these data requires further investments before getting any 
additional insights. 

4.1.3. Perspective 3: Maturity of the solution 
The research context of CYBELE gives rise to expectations. Given that 

CYBELE facilities and support are state-of-the-art, it may be expected 
that the ambition level of the use cases is of the highest level as well. 
From our results we observe that this is not the case. Apparently, the 
transition from a lab environment to a real-world environment is a very 
large step, even when close support from big data experts and data in-
frastructures are available (Lezoche et al., 2020; Wysel et al., 2021). It 
requires complementary expertise and additional skills and experience 
that most use cases do not have in-house. It also requires new partner-
ships that take long time to be effective (Wysel et al., 2021). 

On the other hand, the CYBELE research context may have a limiting 
effect as well. One limitation could be on the use case owners’ ambition 
level, because of the 2-3 year scope of the project. There are more 
generic pitfalls when it comes to limiting case studies to a funded 

Table 5 
Results of the analysis with respect to TRL; the starting point represents the TRL at the start of the project; the arrow indicates the ambition level for the duration of the 
project (3 years).  

Nr Case Study 1 2 3 4 5 6 7 8 9 

1 Organic soya yield prediction   |- - - - - - - - - ->
2 Prevent food safety incidents   |- - - - - - - - - ->
3 Prevent frost/hail damage   |- - - - - - - - - ->
4 Develop agro-robots  |- - - - - - - - - - ->
5 Optimize crop yields forecast    |- - - - - - - - - ->
6 Pig weighing optimization  |- - - - - - ->
7 Sustainable pork meat quality    |- - - - – - - - - - - ->
8 Improve health and welfare of pigs    |- - - - - - - - - ->
9 Integrate fish fleet data  |- - - - - - - - - - - - - - - - - - - ->
10 Optimize fishing vessel on-board data  |- - - - - - - - - - - - - - - - ->
11 Machine vision for fish catch detection  |- - - - - - - - - - ->
12 Aquaculture monitoring  |- - - - - - - - - - - - - ->
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project, for example the fact that there is inequality in research funding 
which is an intrinsic bias to the results (Li et al., 2017). On the other 
hand, if we had instead approached several companies to do our 
research, we would probably also have had biased results, because of the 
differences between them (application area, startup or established 
company, and so on). The CYBELE context was perhaps limited but well- 
defined and in a way equal for all use cases. Despite the limitations, and 
given that alternative ways could have been used to reach results, our 
approach gained valuable insights. 

4.1.4. Perspective 4: Stakeholder considerations 
The stakeholder survey emphasized the end user viewpoint: their 

main interest is to gain advantage by means of affordable solutions that 
can be embedded in practice. There is a gap between the level of most 
current technical solutions and the actual needs of potential end users. 
The more use cases diverge from similar developments in other fields of 
application, the bigger such a gap is. 

Often, stakeholders are not included at all in the development of 
agricultural decision-support systems, despite good intentions (Mir and 
Padma, 2017). But also if they are, apparently there is no ideal match yet 
between the project partners’ push solutions in the form of relevant, up- 
to-date scientific knowledge on the one hand, and the stakeholders’ 
knowledge on the other, as is recommended by Martin (2015). In part, 
we should attribute this discrepancy in our results to the way we pre-
sented the stakeholder survey. The survey was constructed after the case 
study and contained closed questions on adoption rather than more open 
questions to see how they would have expressed their needs themselves, 
which would have been a more participatory approach (Van Meensel 
et al., 2012). Also, the use case representatives’ goal was to achieve a big 
data solution for their own problem; they did not frame this goal to aim 
for large-scale adoption or to address stakeholders’ needs, a lack of 
conguency also described by (Bundy et al., 2018). 

However, this article puts emphasis on investigating the driving 
factors and conditions for the adoption of big data solutions from 
different perspectives. Our results mainly show where the use case 
representatives stand, and where the stakeholders stand. Despite the 
inherent limitations of the survey, we still observed that the stake-
holders had different perspectives and drivers from the use case 
representatives. 

4.1.5. Added value of this research 
Our research provides some useful insights mostly already known 

from literature, but its key strength is that our results rely on an 
empirical analysis of case studies. This practical, pragmatic approach is 
an added value to the theoretical body of knowledge. 

We highlight the kick-starting conditions for successful adoption of 
big data solutions rather than the solutions themselves, therefore we 
focus on the status quo. To do this, we use the CYBELE project as a 
laboratory, in which all variables are similar to the participants, like in a 
controlled environment. The partners have access to facilities, network, 
HPC capacity and funding, within which they develop their solutions. 
Even in these circumstances, we see that the solution developers are 
cautious: apparently, the adoption is not easy. 

Since big data solutions are not widely used, the use cases of CYBELE 
highlight the most important problems or challenges at hand. These 
challenges are often domain-specific. A generalized solution may be 
more difficult to achieve or less useful as a solution. These observations 
are practical and empirical rather than theoretical, and we can consider 
this an added value as well. 

4.2. Lessons learned 

4.2.1. Technology transfer is hard in the agricultural domain 
The adoption of big data solutions depends largely on the agricul-

tural domain. We can relate this to the concept of technology transfer: 
the process of applying known technologies to new and novel 

applications (Lane, 1999). It is possible to have a direct transfer of 
mature technological advancements from other fields to agriculture 
(Hayter et al., 2020). For example, consider computer vision that has 
been successfully applied in a variety of domains (Peregud and Zhar-
ovskikh, 2020), with production-level software libraries available: it has 
been relatively straightforward to employ this in agricultural use cases 
as well. 

However, the challenges reported by our twelve case studies are 
highly related to the agricultural subdomain they originate from. We 
observe that in most use cases further research is required to extend and 
adapt established big data technologies and make them useful in agri-
culture. Translating general big data and artificial intelligence technol-
ogy into meaningful applications in agriculture requires still further 
development. 

4.2.2. Domain-aware and customizable solutions are called for 
Another insight is that most use cases are highly specialized. The 

compartmentalization of the agricultural domain itself, as manifests 
from datasets, models and practice, hinders the widespread exploration 
of various big data and artificial intelligence advancements, and pro-
hibits technology transfer across applications with similar problems. 
Agricultural applications are too diverse and local to have universal 
solutions that can be applied across several systems (let them be fields, 
farms, or food chains). Solutions that work in one case are not easily 
transferrable to another one (Saggi and Jain, 2018). Further research is 
needed on how to customize solutions, and also how to transfer 
knowledge from one domain to another. 

4.2.3. Big data solutions require more than technology 
Literature suggests that advancing the maturity level of big data 

technology is a matter that goes beyond technological challenges (Ang 
and Seng, 2016; Lezoche et al., 2020; Saggi and Jain, 2018; Wysel et al., 
2021). The link between digital agriculture and economic, business and 
institutional arrangements has been highlighted by Klerkx et al. (2019). 
Similarly, socio-economic issues, organization and governance, suitable 
business models for data sharing, and attention for the entire supply 
chain have been suggested to have priority over developing big data 
technology itself (Wolfert et al., 2017). 

4.2.4. Stakeholders’ needs are difficult to identify 
When developing big data applications, it is important to take the 

expectations of the intended end users into account at an early stage 
(Jakku and Thorburn, 2010). In CYBELE, the end users (other than use 
case representatives) are scheduled to be heard regularly in various 
stages of the project. Even under these conditions, the stakeholder views 
appear to be different from the use case representatives’ views. This 
means that the adoption of solutions that match well with stakeholder 
needs is still a challenge. 

4.2.5. A systems-thinking approach is required to co-develop integrated 
solutions 

Neither the engineering, nor the end-user perspective alone are 
sufficient for real-world big data applications in agriculture. Rather a 
systems-thinking approach is required, able to co-develop integrated 
solutions. This is a long process, where progress happens in small steps. 
It requires agricultural and big data experts to engage in a holistic and 
interdisciplinary process, develop a common language to communicate 
effectively, and work together for better understanding the uncertainties 
of the multi-faceted agricultural systems. 

4.3. Limitations 

Our research concentrated on the analysis of twelve use cases. The 
selection of CYBELE partners and case studies involves some bias that 
limits this research. For example, the use case partners may have 
tailored their ambition level to what they could realistically deliver 
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within the scope of the project. Still, the use cases may serve as 
demonstrative examples of the status of big data in the agricultural 
domain. CYBELE is a collaborative project, funded by a competitive 
grant by the EU Horizon 2020 programme. Therefore, the selected use 
cases are at the forefront of state of the art in big data technology and the 
agriculture domain in Europe. The thorough selection procedure serves 
as a quality attribute of involved partners. Also, the breadth of the case 
studies topics, and the diversity of big data technologies involved, in-
crease our confidence that both the agriculture and big data domains 
have been representatively covered. 

Similarly, this work is also limited by the fact that survey re-
spondents were contacted through the CYBELE consortium network. 
However, from the survey results we can infer that the survey re-
spondents represent the agricultural domains well enough, as they 
include stakeholders from different backgrounds. 

5. Conclusion 

Having studied the use case problems, the solutions, and the stake-
holders viewpoint from all four perspectives leads us to the conclusion 
that the adoption of big data solutions is still modest. 

Despite the unencumbered access to top-notch infrastructure and 
support, most use cases pursue a relatively modest technological 
maturity level of the aspired big data solution. The distance of big data 
solutions to solve actual problems at large scale seems too far to bridge 
within a three year project. Use cases revealed that it is not easy to 
advance from middle to high technology readiness levels, but that this is 

rather a process that takes time, as new problems arise when scaling up. 
Big data technology has not sufficiently been conquered yet: the big 

data characteristics still pose substantial challenges, even when excel-
lent technological facilities and support are available. Big data solutions 
do not work out-of-the-box when changing application domains, and 
additional technology development is needed for addressing the idio-
syncrasies of agricultural applications. The adoption conditions of large- 
scale, agriculture-specific big data systems are emerging, and a systems- 
thinking approach is required to co-develop big data solutions for 
addressing agricultural systems uncertainties and food security 
challenges. 
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Appendix I – Stakeholder Survey Questions  

Nr Question 

1 
What is your domain? 
Agri-food industry / Agriculture farming / Livestock farming / Policy maker / Researcher / Insurance or Marketing / General public or consumer / Other 

2 
Are you familiar with Precision Agriculture/ Precision Livestock Farming? 
Yes / No / Other 

3 

What is your organization’s current position regarding the application of data analytics and machine learning techniques for agriculture and livestock farming? 
Aspirant: We have no experience with these applications but may wish to have in future 
Novice: We are experimenting with pilot applications that are not used in practice yet 
Competent: We have some applications running that are currently used in practice 
Expert: We have many applications running that are currently used in practice 

4 

Consider the following reasons to adopt a solution that involves analyzing information coming from installed sensors, cameras, satellite images etc. in order to make better 
predictions and analytics for your organization. How important do you think each of them is? 
Prioritize the following options 1- 4; 1 (most important) – 4 (least important) : 
1) Data orientation: there are additional data available that we don’t use yet 
2) Technology orientation: there are techniques available that we don’t use yet 
3) Research orientation: there is a research interest in finding a solution for this problem 
4) Commercial orientation: there is an opportunity to gain competitive advantage 

5 

How important do you think each of the below factors is for improved productivity/ profit? 
Rate each on a 5 point scale; 1 (not important) – 5 (very important) : 
1) Physical technical infrastructure (e.g. sensors for data collection) 
2) Data availability (to be able to find the data needed out-of-the-box) 
3) Data Storage infrastructure (to be able to store a very large amount of data) 
4) Very fast data processing capabilities 
5) Access to visualizations & data-analytics (turn available data in actionable information) 
6) Access to customizable data visualization & analytics (to have access to an earlier stage in the analysis) 
7) Instant delivery of notifications and alerts 

6 

How important do you think each of the below attribute is to adopt a technological solution relevant to Precision Agriculture/ Precision Livestock Farming? 
Rate each on a 5 point scale; 1 (not important) – 5 (very important) : 
Cost / Precision of results / Time / Number of functionalities / Customization / Interoperability 

7 
Other than the above, can you think any more factors that are critical for success of a technical out-of-the box solution? 
Open question 

8 

What would be a reason for your organization NOT to adopt practices related to Precision Agriculture/ Precision Livestock Farming? 
Multiple-answer checkbox : 
1) Lack of finance – We expect not to be able to afford this solution 
2) Limited scope – Big data analytics/ML probably solves our problem only partially 
3) Hard to embed – Our business processes are not suitable to work with this solution 

(continued on next page) 
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(continued ) 

4) Long term maintenance – Not confident that we can use this solution for the long term 
5) Lack of realism – Our situation will always be more complicated 
6) Personnel/Skills – Our staff cannot work with this solution 
7) Security concerns / Potential privacy issues 
8) Other:  

Appendix II - CYBELE use cases detailed description 

1 Organic Soya yield prediction 
In the EU, soybean is the mostly used plant protein for animal husbandry. Currently, the EU imports most soybean from Brazil, Argentina and the 

US, but soybean cultivation within the EU is growing rapidly. Unlike the US and the rest of the world, GM (Genetically Modified) products are strongly 
regulated in the EU, meaning that the EU must rely on its own production and increase its efficiency. There is large room for technical improvement in 
cultivation and processing phases, aiming at increasing production efficiency and decreasing the environmental impact. One innovative way of doing 
this is to optimise the protein production instead of optimising the production of soybean in general. 

Soybean yield prediction is currently based on remote sensing technology by analyzing time series of spectral vegetation indices (NDVI). For 
CYBELE, the aim is to develop methods that include other parameters to increase accurate yield prediction, such as soil analysis and weather data. 
Using crowd-sourced datasets provided by soybean growers, advanced machine learning algorithms are developed to associate the available data with 
prediction of protein content. Consequently, insight will be gained in what the field conditions are to produce a high protein yield. The CYBELE 
solution intends to show the farmers per field heat maps for advice on which seeds to plant, when and which fertilizer to use and when to harvest. 

2 Prevent food safety incidents 
It is a common belief that Risk assessment is a very critical part of a food safety system in order to prevent food safety incidents in the supply chain. 

Today, Quality Assurance and Safety Experts that are working in food companies are using risk estimation approaches that are based on static data 
such as literature and guidelines published by National Authorities. Such risk estimation approaches are not taking into account the emerging and 
increasing risks of the global supply chain and cannot predict the risk. This results in several serious food safety incidents that may impact public 
health, can cause large financial loss for farmers and industries and can damage their “brand” and lose customers. 

For CYBELE, the intention is to demonstrate the capacity of the HPC solutions proposed in the project for supporting complex highly deep and 
machine learning prediction models for dairy products, nuts product, sugar, fruits and vegetables. Through data analytics and prediction models, 
farmers and food industries could minimize mistakes and future risk via good agriculture practices. 

3 Prevent frost/hail damage 
Horticultural crops, such as apple, citrus, peaches or persimmons trees, are sensitive to frost and hail events and protecting them from the effects of 

low temperature and hail damage is crucial. Climate conditions influence the probability of occurrence for these events, together with other issues 
such as vegetation present, topography and soil type with relevance at local scale. Therefore, early warning systems at local scale with a suitable 
spatial resolution on frost and hail occurrence and their associated risks are relevant for agriculture. Frost and hail forecasts may help farmers to 
reduce any possible injuries to their crops since protection methods can be used. 

CYBELE aims to establish an early warning system that can help farms to prevent damage effects through protective methods for frost and hail. In 
this case, the focus is on climate predictors that are either correlated with frost or hail occurrence and can then be used for planning risk prevention 
operations. Temporal series of instability indexes such as pressure, height, temperature, dew temperature, among others, will be analyzed. Models 
based on machine learning techniques, using as input data the climate instability indices are being built. Validations will be performed against data 
collected in the field where the fall of hail was verified. 

4 Develop agro-robots 
Dictated by the weather, farming tasks have often to be carried out within a short time window. Consequently, equipment has increased in size to 

complete the work rapidly. 
One alternative solution is for farmers to manage fleets of smaller, autonomous vehicles and carry out the tasks as required. The range of operations 

to be delivered include soil chemical analysis, hyperspectral imaging (HSI) of soil/crop condition, real time object level (plant/weed) identification, 
individual plant harvest readiness assessment (particularly for soft fruits) and plant level automated harvesting, currently not possible because it 
would be massively labor intensive. 

The ultimate goal is for minimally sized equipment like a small tractor or a scouting vehicle to carry the sensory devices. Such sensor ‘transporters’ 
will be combined with a network of ‘actuator’ devices such as plant level harvesters, precision soil enrichment vehicles or cultivation/planting 
equipment. It is envisaged that a pair (at least) of systems will operate in tandem on a given task with the sensory elements passing over the crop 
relaying measurement data to a central location. The data is then processed to identify plant, weed, readiness for harvest etc., generating the inputs for 
the actuator to harvest the appropriate plant. 

5 Optimize crop yields forecast 
Crop yield monitoring can be used as a tool for agricultural monitoring (e.g. early warning & anomaly detection), index-based insurance (index 

estimates) and farmer advisory services to facilitate precision agriculture and helping to provide greater yields and contributing to better food security. 
These forecasts are traditionally conducted over a consistent grid of 25 25km, or 10*10km grid, on which basis all data are at rest and already 
available. 

With the advance of the big data in agriculture, more data become available on a level of lower spatial resolution, i.e. farmer parcels. This poses big 
computational challenges, huge processing times and complex architectures for the productivity training model. In this use case the parcel specific 
data associated with advanced weather forecasts and computations (weather data interpolation, crop growth model) will be prepared for compu-
tations on an HPC enabled infrastructure. Also, with additional satellite imagery data, the added value of calculating farmer’s parcel-specific crop 
productivity estimates is explored. 

6 Pig Weighing Optimization 
An accurate estimate of the live weight of slaughter pigs is useful to the farmer, especially for knowing when to send the pigs to the slaughterhouse, 

which can save the farmer a lot of money. Another reason is that it helps to more accurately diagnose and treat diseases. The latter can potentially lead 
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to a lower use of antibiotics, which is important for combating the spread of multi-resistant bacterial strains in farm animals as well as humans. Some 
large pig producers have staff employed for the sole task of performing manual weightings. This practice is very laborious and time consuming, making 
it unfeasible for most. 

On these more common herds, being able to infer the live weight of the pigs indirectly via e.g. video images would be of great value. In traditional 
image processing, image features such as lines and edges are extracted based on e.g. sharp colour contrasts. This means that the image processing is 
very sensitive to variations in lighting conditions, making it less than ideal for applications in variable real-world environments. Deep convolutional 
neural networks (CNNs) can be used to achieve this goal with greater probability of success, a task however which is very computationally and 
memory intensive. This use case has as goals: (1) To estimate the mean and standard deviation of the live weight of grower/finisher pigs in a pen based 
on video images; (2) To track the weight of individual pigs in a pen based on video images; (3) To incorporate the growth curve estimated by the CNNs 
in previously developed models for early warning of diarrhea. 

7, 8 Sustainable pork meat quality; Improve health and welfare of pigs 
Sustainable pig production and global food challenges require producing with optimal productivity, health and welfare of the pigs. The pig farmer 

is becoming a manager of growing farms with several thousands of fattening pigs. The usage and fusion of all data generated throughout the lifetime 
and after slaughter is the future way to be able to improve the health and welfare of the pigs. To work on fulfilling the potential of each pig through its 
life also increases the quality of the end-product for the market and the consumers. 

For CYBELE, there are two main goals: (1) improve carcass and meat quality by using and linking on-farm related factors and slaughterhouse data 
at a large scale. In general, the use case representative aims to bring data and techniques together to enlarge the impact; (2) improve the detection of 
health, welfare and performance problems at fattening pig farms through better use of available sensor and farm data. 

9, 10, 11 Integrate fish fleet data; Optimize fishing vessel on-board data; Machine vision for fish catch detection 
During the last decade, fisheries management in the EU increasingly succeeded in rebuilding overfished stocks and preventing overfishing. These 

successes stem mainly from the increased availability of data and better analysis methods that enabled to assess, and thus provide more precise 
management for an increasing number of commercially exploited fish stocks. Despite this positive trend, the state of the largest part of the marine 
ecosystem, including most fish stocks, remains largely unknown causing that little ecosystem-based management has been put in place. Most marine 
data is collected by means of scientific surveys on research vessels, which is expensive and happens only on small scale. Commercial fishing vessels 
have a much wider spatiotemporal coverage of the seas, and the increased usage of sensors and IT equipment on board of commercial fishing vessels 
allow these vessels to collect many data. However, due to the lack of sufficient processing capacity and adequate database systems, fishers nor fisheries 
managers make optimal use of these data. 

Within the CYBELE project, three goals are aimed for, that make up the three use cases respectively: (1) Integrate the data from the digital logbooks 
of the entire fleet (research and commercial), that comprise daily landing data of commercial fish stocks and location data from the satellite-based 
vessel monitoring (VMS) system, with environmental data from satellite based imaginary systems and data collected specifically for fisheries man-
agement purposes. By means of data mining models that require training on appropriate computer hardware, managers can optimize the quota uptake 
of the fleet, and fishers can use more precise information about the location of hotspots of fish; (2) Optimize the database system on board of a 
particular commercial Belgian fishing vessel who has advanced data collection systems but no integrated system to process these data; (3) Visual-based 
processing of the catch using an RGB camera. Currently, catches are sorted out manually after being discharged on a conveyor belt. This is very labour- 
intensive sorting process causes that only the commercial part of the catch is reported while no information is collected on the part of the catch that is 
thrown back in sea. Detection of species, including undersized fish, non-commercial fish and non-commercial benthic animals, through implementing 
camera technology on the conveyor belt may fill this gap. 

12 Aquaculture monitoring 
Aquaculture is probably the fastest growing food-producing sector and now accounts for more than 50 percent of the world’s fish that is used for 

food. One of the main issues in commercial aquaculture is the lost food when the fish are fed. This not only increases the cost of the produced fish (feed 
cost is a major cost component that accounts for approximately 70% of the operational expenses of the farm) but furthermore, this wasted food is 
deposited in the seabed and generates an environmental impact on the surrounding area. It also causes failures to comply with EU legislation. Another 
challenge is maintaining the farm in a good condition. If the cages are not in the correct positions, have deformations, anti-bird nets not placed 
correctly, etc. this usually leads to damages, financial losses and uncontrolled escapes to the environment. 

The CYBELE project will optimize feeding, evaluate impact on the environment and evaluate the status of the infrastructure in open sea aqua-
culture. It will make use of image processing technology in order to process aerial images of fish farms taken from drones. This will be combined with 
other data such as weather information and sensor measurements (mainly related to Oxygen and current speed) and machine learning methods. 
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