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Abstract
The Nasia catchment is the reservoir with significant surface water resources in Northern Ghana and home to numerous sub-
sistence farmers engaged in rainfed and dry season irrigation farming. Yet, there is little understanding of the hydro-climatic 
and land use/cover conditions of this basin. This study investigated trends, relationships and changes in hydro-climatic 
variables and land use/cover in addition to implications of the observable changes in the Nasia catchment over a period of 
50 years. Parameters used for the study were minimum (Tmin) and maximum temperature (Tmax), wind speed (WS), sun-
shine duration (S), rainfall (R), relative humidity (RH), discharge (D) and potential evapotranspiration (PET) data, 15 years 
of remotely sensed normalized difference vegetation index (NDVI) data and 30 years of land use/cover image data. Results 
show that Tmin, Tmax, WS and PET have increased significantly (p < 0.05) over time. RH and S significantly declined. R, 
D and NDVI have not decreased significantly (p > 0.05). A significant abrupt change in almost all hydro-climatic variables 
started in the 1980s, a period that coincides with the occurrence of drought events in the region, except WS in 2001, R in 
1968 and D in 1975, respectively. Also, D showed a positive significant correlation with RH, R and PET, but an insignificant 
positive relationship with S. D also showed a negative insignificant correlation with Tmin, Tmax and WS. Areas covered 
with shrubland and settlement/bare lands have increased to the disadvantage of cropland, forest, grassland and water bodies. 
It was concluded that climate change impact is quite noticeable in the basin, indicating water scarcity and possibilities of 
droughts. The analysis performed herein is a vital foundation for further studies to simulate and predict the effect of climate 
change on the water resources, agriculture and livelihoods in the Nasia catchment.

1  Introduction

Climate change presents the most pressing challenge of the 
twenty-first century, with extraordinary impact on natural 
ecosystems, economic sectors, society and water resources 
(Arnell 2004; Khaliq et al. 2009; Sabbaghi et al. 2020; de 
Hipt et al. 2018; Schilling et al. 2020; Baarsch et al. 2020). 
Climate change is unequivocal, manifested by rapid warming 

of the globe and increasing the frequency of extreme events, 
such as floods and droughts (IPCC 2014). Africa, for exam-
ple, is expected to experience negative climate change 
impacts, contributing to already present problems of wide-
spread poverty and low development (World Bank 2010; 
Mikulewicz and Taylor 2020). At the background of climate 
change is the variability of the hydro-climatic parameters, 
such as temperature, rainfall, relative humidity, discharge, 
potential evapotranspiration and radiation, both in their 
long-term average and by an increase over time. The already 
high temperatures and largely erratic rainfall are expected to 
increase in sub-Saharan Africa over the twenty-first century 
(Speranza 2010; IPCC 2014; Serdeczny et al. 2017; Codjoe 
and Atiglo 2020).

Variations in climatic conditions are important 
determinants of vegetation growth and density across 
the world and, especially, in tropical and subtropical 
Africa (Warburton et al. 2012; Schmidt et al. 2014). Also, 
feedbacks from land surface processes and vegetation 
dynamics influence local and regional climate variability 
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(Wang and Eltahir 2000), especially in West Africa and 
the Sahel Zone (Long et al. 2000; Nicholson et al. 2000; 
Los et al. 2006; Paeth et al. 2009). Changes in land cover, 
particularly vegetation, are likely to aggravate the climate 
change situation in a way that the hydrological cycle 
will be altered, resulting in an increase in frequency and 
severity of droughts and floods which in turn influences 
agriculture, water supply, environmental sustainability and 
protection from floods (Aduah et al. 2018). The combined 
effects of climate variability, land use/cover changes and 
unsustainable water management practices have led to 
a significant alteration in the water balance of the river 
basins (Buma et al. 2016). Land use/cover changes are 
caused by population pressure as well as expansion of 
agricultural lands through unplanned and inappropriate 
land management practices to meet the food demands of a 
rapidly growing population. Unsustainable land use/cover 
activities, therefore, affect soil structure, texture and fertility 
that play a key role in food production (Lal et al. 2015).

Analysing the direction and magnitude of the variation in 
the hydro-climatic variables is important for understanding 
climate change and providing a basis for determining future 
scenarios of climate impact (Chaouche et al. 2010; Reiter 
et al. 2012; Unal et al. 2012; Asfaw et al. 2018; Meshram 
et al. 2020). Detecting the historical trend of vegetation, 
often expressed in normalized difference vegetation index 
(NDVI) and land use/cover changes, particularly improves 
our understanding of the changing planet and provides a clue 
about the productivity of lands (Tian et al. 2015; Gichenje 
and Godinho 2018; Frédérique et al. 2019; Rezende et al. 
2020). Trend analysis of hydro-climatic variables and veg-
etation is particularly relevant for water resource decision-
makers as they prepare to deal with the possible effects of 
climate variability and change on water availability (Sahoo 
and Smith 2009; Oguntunde et al. 2006; Zhou et al., 2015a, 
b; Tehrani et al. 2019).

Many regions of the world are increasingly facing a 
decline in freshwater resources, due to both natural and man-
made causes. Climate and land use/cover change are likely to 
aggravate this situation in a way that the hydrological cycle 
will be intensified resulting in an increase in frequency and 
severity of droughts and floods which influences agriculture, 
water supply, environmental sustainability and protection 
from floods and infrastructure (Aduah et al. 2018). Depend-
ing on the severity, water deficits can result in catastrophic 
consequences (Amisigo, 2006).

The availability of freshwater in sub-Saharan Africa 
is fundamental to economic growth and social develop-
ment (Kankam-Yeboah et al., 2013). In the Volta basin of 
West Africa, where Ghana is situated, there are competing 
demands for water use both within and among the ripar-
ian countries of the basin. This is manifested in the numer-
ous dams and reservoirs constructed throughout the basin 

for various purposes including industrial, agricultural and 
domestic water supplies (Amisigo, 2006).

The Ghana Water Research Institute of the Council for 
Scientific and Industrial Research (CSIR-WRI) reports 
that all river basins in Ghana will be vulnerable and the 
whole country will face acute water shortage by the year 
2020 (Kankam-Yeboah et al., 2011). It also reported a gen-
eral reduction in annual river flows in Ghana by 15–20% 
for the year 2020 and 30–40% for the year 2050, due to an 
increased irrigation water demand of 40–150% for 2020 and 
150–1200% for 2050 (Kankam-Yeboah et al., 2011). Accord-
ing to Abdul-Ganiyu et al. (2011), the main surface water 
resources in Northern Ghana are concentrated in the White 
Volta and the Nasia River systems, which flows only 3 or 
4 months during the year, causing seasonal deficits across 
the region. This poses serious problems for traditional rain-
fed agriculture, especially as food demand grows, thus slow-
ing down rural development. Also, the authors mention that 
the seasonal shortage of water affects irrigation during the 
dry season for the Nasia Irrigation Project, which operates 
as a run-of-river scheme for all year-round crop production. 
The predominant land use is arable food production and 
widespread grazing of large numbers of cattle and other live-
stock. Plinthic ferralsols (groundwater laterites) and Eutric 
nitosols (savannah ochrosols) with their intergrades are the 
predominant soil types in this region (Addai et al., 2016).

Given the above situation and pressing issues, under-
standing the hydro-climatic variability and land use/cover 
changes in the Nasia River catchment is important in North-
ern Ghana, because the availability of water resources is 
a significant factor in this highly productive agricultural 
region. While the causes and the mechanisms of these 
changes are a matter for other studies, the relevant question 
for this case is how has climate change affected the trends 
of these hydro-climatic variables? Therefore, the objec-
tive of this study was to determine the historical trends in 
selected hydro-climatic variables (minimum and maximum 
temperature, wind speed, sunshine duration, rainfall, relative 
humidity, discharge and potential evapotranspiration), NDVI 
and land use cover/change in Nasia sub-basin of the White 
Volta and to establish the relationship between these param-
eters and discuss the possible implications of the observable 
changes in the Nasia catchment to agriculture in the region.

2 � Methodology

2.1 � The Nasia River catchment

The Nasia River (Fig. 1) is a tributary of the White Volta 
in the Northern Region of Ghana, with a catchment area 
of about 5,400 km2 and a mean annual runoff of 550 mil-
lion m3 (WRCG 2008). It is geographically positioned 
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between latitudes 9° 55′ and 10° 40′ N and longitudes 1° 
05′ W and 0° 15′ E (Adu, 1995). The area is characterized 
by unimodal rainfall, with an annual average between 1000 
and 1300 mm, which peaks between late August and early 
September (Elikplim et al., 2018). Temperatures in this 
region are consistently high. The hottest months in the year 
are March and April, just before the beginning of the rainy 
season, while the coolest months are July and August. The 
average maximum and minimum temperatures of 34 °C and 
23 °C, respectively, are recorded in the basin (Abdul-Ganiyu 
et al. 2011). The floodplain soils vary in texture, from very 
fine sands to heavy clays, and are developed over levees, old 
river beds, sloughs and low river terraces. Most of the Nasia 
catchment is very gently undulating. It has broad, poorly 
drained valleys and extensive floodplains adjacent to the 
Volta and Nasia rivers, where altitudes vary between 108 
and 138 m above mean sea level (Abdul-Ganiyu et al. 2011). 
It has a relatively short rainy period, stretching from May to 
October, with estimated reference evapotranspiration (ETo) 
above 1600 mm/annum (Kranjac-Berisavljevic, 1999). The 
remaining months of the year are very dry, posing challenges 

to domestic and agricultural activities, due to water unavail-
ability in the basin. The people of the area are engaged in 
subsistence agriculture mainly on “compound farms” which 
lie immediately around the houses and “bush farms”, which 
may border on the compound farm or are located several 
kilometres away from the main communities. Rice, maize, 
legumes and vegetables are cultivated in the rainy season, 
while tomatoes and onions are cultivated in the dry season 
under irrigation. Many householders rear sheep and goats, as 
well as chickens and guinea fowls, but few others keep cat-
tle. The animals are kept for security reasons or as a capital 
investment (Abdul-Ganiyu et al. 2011).

2.2 � Data collection and quality assurance

This study utilized climate, hydrological and land use/
cover (LULC) data (Table 1). Fifty years of daily hydro-
climatological data were collected from relevant government 
institutions. The hydrological data, i.e. river discharge, was 
obtained from the Ghana Hydrological Services Depart-
ment (HSD), while the climatic data, i.e. rainfall, minimum 

Fig. 1   Map of Nasia catchment (Authors’ design, 2020)
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temperature and maximum temperature, relative humidity, 
wind speed and sunshine, were collected from Ghana Mete-
orological Agency (GMET) for the Tamale synoptic station. 
Also, annual NDVI data was collected from NASA Giovanni 
website. Derived from red and near-infrared band reflec-
tance, NDVI is an efficient indicator for vegetation moni-
toring due to its simplicity and close relation to vegetation 
productivity (Tian et al. 2015). NDVI provides information 
about the quantity of vegetation present in a given area and 
its state of health or vigour of growth thus a good indica-
tor for degradation (Meneses-Tovar 2011). More than 20 
vegetation indices have been proposed and used at present, 
yet NDVI has been widely used with its values ranging 
from − 1.0 to 1.0, where higher values are for green veg-
etation and low values for other common surface materials 
such as bare soil represented with NDVI values close to 
0 and water bodies having negative NDVI values (Jasinski 
1990; Sader and Winne 1992; Lillesand et al. 2004; Sesnie 
et al. 2008).

LULC maps of 2000 and 2010 were obtained from the 
GlobeLand30 map generated by the Chinese Government 
and the 2020 LULC map generated from Landsat 8 image 
acquired from the US Geological Survey GLOVIS website.

2.3 � Data analysis

2.3.1 � Analysis of hydroclimate and NDVI variables

The hydro-climatic and NDVI data were analysed using 
the R statistical software. The datasets were first separately 
analysed to determine trends and subsequently together to 
describe the relationship between the variables. The analysis 
generally followed three main steps. First, analysis of basic 

statistical properties of the variables was determined using 
the mean, median, mode, skewness and kurtosis, variance 
and standard deviation.

Secondly, the Mann–Kendall trend test (Mann 1945), a 
non-parametric method, was used to investigate the trends 
in annual rainfall (mm), annual discharge (m3s−1), relative 
humidity (%) and minimum and maximum temperature (°C), 
wind speed (km/day), sunshine (h) and NDVI data. The pres-
ence of a breakpoint in the time series of annual averages of 
the variables was examined using the non-parametric test 
of Pettitt (Pettitt, 1979). Pettitt’s test allows the detection of 
abrupt changes, whether artificial or natural, in the mean of 
the time series (Mallakpour and Villarini 2016).

The null hypothesis was tested at a 95% confidence level 
(α = 0.05) for all the variables. The Mann–Kendall trend test 
was selected because it accommodates missing data and out-
liers and does not require the data to be normally distributed 
(Partal and Kahya, 2006). At the same time, it has low sen-
sitivity to abrupt breaks due to inhomogeneous time series 
(Tabari and Talaee 2011). This test has been extensively and 
successfully used to detect trends in hydro-climatic studies 
(Xu et al. 2010; Sun et al. 2013; Zhang et al. 2015; Mwangi 
et al. 2016) and NDVI (Forkel et al. 2013; Osunmadewa 
et al. 2014).

The null hypothesis H0 assumes that there is no signifi-
cant trend (the data is independent and randomly ordered) 
and this is tested against the alternative hypothesis H1, 
which assumes that there is a significant trend (Önöz and 
Bayazit 2012). The test statistic Zs is used as a measure of 
the significance of the trend. This test statistic is used to test 
the null hypothesis, H0. Kendall’s tau was used to measure 
the strength of the trend. In addition to the Mann–Kendall 
test, the results in linear trend lines were compared and plot-
ted for each variable. The Mann–Kendall test statistic (S) 
is given as follows (Gocic and Trajkovic 2013; Kambombe 
2018):

where

When S is greater than 0, it implies a positive trend, and 
a negative S indicates a decreasing trend. The S is approxi-
mately normally distributed for n ≥ 8, with the variance 
given as:

(1)S =

⎧⎪⎨⎪⎩

(S − 1∕
√
Var(S)

0

(s + 1∕
√
Var(S)

if S > 0

if S = 0

if S < 0

(2)sgn(xj − xk) =

⎧⎪⎨⎪⎩

1

0

−1

if
�
xj − xk

�
> 0

if
�
xj − xk

�
= 0

if
�
xj − xk

�
< 0

Table 1   Summary of data types, timesteps and sources

Missing values of the data were handled with the “na_interpolation” 
function in an R package called imputeS. The package estimates 
missing value by interpolation (Moritz and Bartz-Beielstein 2017).

Parameter Period Source of data

Rainfall 1961–2010 GMET
Minimum temperature 1961–2010 GMET
Maximum temperature 1961–2010 GMET
Wind speed 1961–2010 GMET
Sunshine 1961–2010 GMET
Relative humidity 1961–2010 GMET
Discharge 1961–2010 HSD
NDVI 2002–2017 NASA Giovanni
LULC map 1 2000 GlobeLand30
LULC map 2 2010 GlobeLand30
LULC map 3 2020 GLOVIS (Landsat 8 image)
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In case of tied ranks in the data, the statistic Zs = 0 and 
variance of S, Var(S) is calculated by:

where q is the number of tied groups and tp is the number of 
data values in the Pth group. The standardized Z value is used 
to determine the significance of any trend in the data set. The 
null hypothesis stating that there is no trend in the dataset 
is rejected | Zc | or > Z1−�∕2 or if the p-value is less than the 
level of significance (p < α = 0.05). Sen’s slope technique 
estimates the magnitude of monotonic trends in N pairs of 
data which was used in this study (Hirsch et al. 1982). A 
monotonic upward or downward trend for a variable implies 
that there is a consistent increase or decrease in the variable 
through time, but the trend may or may not be linear (Hirsch 
et al. 1982). Sen’s slope is given as:

in which Qi is Sen’s slope while xj and xk are data values in 
years j and i, where 1 < j < i < n. A positive Qi value indi-
cates an upward trend, while a negative value indicates a 
downward trend.

Thirdly, Pearson’s correlation analysis was used to deter-
mine the relationship between the variables.

(3)Var(S) =
1

18
[n(n − 1)(2n + 5)]

(4)

Var(S) =
1

18

[
n(n − 1)(2n + 5) −

q∑
p−1

tp(tp − 1)(2tp + 5)

]

(5)Qi =
xj − xk

j − k
fori =,… ,N,

in QGIS under the Semi-Automatic Classification Plugin 
(SCP). The random forest algorithm machine learning was 
used to classify the image in R software (Thanh Noi and 
Kappas 2018). The 2016 European Space Agency (ESA) 
Climate Change Initiative (CCI) S2 prototype land cover 
map at 20 m of Africa was acquired from ESA and combined 
with Google Earth image of 2020, and observation or knowl-
edge of the basin were references used for the classification 
(Forkuo and Frimpong, 2012). Both pixel-based and area-
based error matrix was done to assess the accuracy of the 
classification (Olofsson et al., 2013).

The overall accuracy of the 2000 and 2010 GlobeLand30 
is 78.6% and 80.33% respectively, which was validated by 
over 150,000 points in 80 out of 853 tiles for the 2010 land 
cover map (Chen et al. 2015). The overall accuracy for the 
2020 LULC maps was 90.53% and 77.15% for the pixel-
based and area-based error matrix assessment respectively 
(see Tables 5 and 6 in Appendix for details of the pixel-
based and area-based error matrix for 2020).

3 � Results

In this section, the findings of the analysis are presented in 
three main ways. Firstly, the descriptive statistics of the 8 
variables (climate, hydrological and NDVI data) are shown. 
Secondly, the results of the trends in the variables are also 
presented. Thirdly, the relationship between these variables 
and how they influence river discharge was established using 
a multivariate regression model.

3.1 � Temporal characteristics of the variables 
in Nasia catchment

Over 50 years (1961–2010), the Nasia catchment received an 
annual total rainfall (R) ranging from 695 to 1666 mm, with 
a mean value of 1093 mm. Discharge (D) of the Nasia River 
ranged from as low as 7.83 to 20,757.3 m3/s with a mean 
flow of 6931.6 m3/s. Also, within the 50 years, the catch-
ment recorded an average minimum (Tmin) and maximum 
(Tmax) temperature of 22.6 °C and 34.1 °C respectively, 
the average sunshine (Sun) in hours per day of 7.3, with 
relative humidity (RH) of 57.98%. The average wind speed 
(WS) over 50 years is 3.25 kt. Also, the average NDVI for 
the 16 years is 0.47. Table 2 provides descriptive statistics 
of the selected variables.

3.2 � Annual trends in the selected variables

The observed slope for D, R, S, RH and NDVI was negative, 
indicating a decreasing trend, while Tmin, Tmax, WS and 
PET showed an increasing trend. The decreasing trend in R 
and D was insignificant (p > 0.05) at a rate of − 0.086 mm/

2.3.2 � Image processing and land use land cover mapping

The LULC maps of 2000 and 2010 were extracted from the 
GlobeLand30 maps produced by the Chinese Government 
(global land cover map at a spatial resolution of 30 m) (Jun 
et al. 2014). Two scenes of the GlobeLand30 dataset cover-
ing Ghana, that is, N30_05 and N30_10, were mosaicked 
since the basin fell within both scenes. The 2020 map clas-
sification was performed by the authors. The classes in the 
2000 and 2010 maps were adopted for the 2020 classifica-
tion, i.e. cropland, forest, grassland, shrubland, water bodies 
and settlement/bare areas. Bare areas were combined with 
settlement due to the dryness of the basin located in the 
Guinea Savannah zones. Moreover, most of the settlements 
are farming communities with less reflective roofs (thatch 
roofs) to depict settlement.

Landsat 8 images at 30 m spatial resolution and cloud 
cover criterion of less than 10% acquired on 26 Febru-
ary 2020 from path 194 row 53 were acquired freely from 
the United States Geological Survey’s (USGS) GLOVIS. 
Atmospheric correction for temporal analysis was done 
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year and − 35.485 m3/year, respectively. S, RH and NDVI 
were, however, significant (p < 0.05) at a rate of − 0.007 h/
day/year, − 0.084% and − 0.002, respectively. A significant 
(p < 0.05) increasing trend was observed for the remain-
ing variables (Tmin (0.022 °C), Tmax (0.028 °C) and PET 
(4.233 mm)) except for WS which increased at an insignifi-
cant rate of 0.008 kt.

R recorded an earlier but insignificant change in mean 
value in the year 1968, which was consistently followed by 
an insignificant change in D in 1975. Tmax and S observed 
abrupt changes in the years 1980 and 1981, respectively. 
Also, a close breakpoint in Tmin and PET was identified 
in the years 1986 and 1987, respectively. WS and NDVI 
recorded a breakpoint in the years 2001 and 2014, respec-
tively. Results of the trend and breakpoint year estimates 
are presented in Table 3. Annual time series, anomalies and 

correlations for all variables are shown in Figs. 2, 3, and 4 
respectively.

3.3 � Relationship of the hydro‑climatic variables

Results show that rainfall contributes significantly to 
relative humidity and discharge throughout the year, 
showing a positive relationship. Rainfall also has a 
positive but insignificant relationship with potential 
evapotranspiration and sunshine and an insignificant 
negative correlation with wind speed and minimum and 
maximum temperatures. Potential evapotranspiration 
has a significant positive relationship with minimum 
temperature, relative humidity and discharge but 
insignificantly increases with maximum temperature, 
sunshine and rainfall. Potential evapotranspiration also 

Table 2   Summary statistics of selected hydro, climate and vegetation variables in Nasia catchment

(Authors’ computations, 2020).

Statistic Tmin (°C) Tmax (°C) WS (kt) S (Hrs/day) R (mm/year) RH (%) D (m3/s) PET (mm) NDVI

No. of observations 50 50 50 50 50 50 50 50 16
Minimum 21.7 33.01 2.47 5.7 695.30 25.45 7.83 1111.10 0.43
Maximum 23.5 36.20 4.19 8.6 1579.80 65.67 20,757.3 2329.30 0.57
1st quartile 22.2 33.64 2.86 7.1 996.63 57.28 2785.5 1994.50 0.46
Median 22.6 34.11 3.16 7.4 1076.05 59.67 6869.5 2092.61 0.47
3rd quartile 22.9 34.44 3.49 7.6 1162.30 61.39 10,301.5 2187.93 0.48
Mean 22.6 34.10 3.25 7.3 1093.99 57.98 6931.6 2009.51 0.47
Standard deviation (n) 0.44 0.59 0.47 0.43 181.81 6.87 5312.2 317.43 0.03
Variation coefficient (n) 0.02 0.02 0.14 0.06 0.17 0.12 0.8 0.16 0.06
Skewness (Pearson) 0.13 0.67 0.32  − 0.92 0.43  − 2.76 0.5  − 2.05 2.31
Kurtosis (Pearson)  − 1.04 1.33  − 0.80 3.48 0.41 8.99  − 0.3 3.22 6.14

Table 3   Results of trend and 
breakpoint detection analysis for 
the selected variables

NB: At p-value > 0.0, the null hypothesis (H0) indicating that there is no significant trend in the series or 
data are homogeneous is rejected. At p-value < 0.05, the alternative hypothesis (Ha) indicating that there is 
a significant trend in the series or there is a date at which there is a change in the data is accepted (Authors’ 
computations, 2020).

Variables Mann–Kendall’s test for trend Pettitt’s test for breakpoint

Kendall’s tau p-value Kendall 
statistic 
(S)

Sen’s slope Trend direction Breakpoint year p-value

Tmin 0.508  < 0.0001 622 0.022 Up 1986  < 0.0001
Tmax 0.537  < 0.0001 658 0.028 Up 1980  < 0.0001
WS 0.174 0.075 213 0.008 Up 2001 0.024
S  − 0.232 0.018  − 283  − 0.007 Down 1981 0.009
R  − 0.004 0.967  − 5  − 0.086 Down 1968 0.117
RH  − 0.249 0.011  − 305  − 0.084 Down 1980 0.001
D  − 0.048 0.622  − 59  − 35.485 Down 1975 0.154
PET 0.278 0.004 341 4.233 Up 1987  < 0.0001
NDVI  − 0.417 0.026  − 50  − 0.002 Down 2014 0.226
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Fig. 2   Time series plots of D, total discharge (m3/s); S, sunshine (h/
days); Tmax, maximum temperature (°C); WS, wind speed (Km/h); 
RH, relative humidity (%); Tmin, minimum temperature (°C); R, 

rainfall (mm); PET, potential evapotranspiration (mm); and NDVI, 
normalized difference vegetation index (Authors’ design, 2020)

Fig. 3   Inter-annual anomalies of the hydro-climatic and NDVI vari-
ables: total discharge (m3/s); sunshine (h/days); maximum tempera-
ture (°C); wind speed (Km/h); relative humidity (%); mean minimum 

temperature (°C); rainfall (mm); PET, potential evapotranspiration 
(mm); and NDVI, normalized difference vegetation index) (Authors’ 
design, 2020)
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has an insignificant negative relationship with wind speed. 
When both minimum and maximum temperature increase, 
discharge, duration of sunshine, relative humidity and 
rainfall insignificantly decrease, meanwhile wind speed 
increased but insignificantly. Both maximum and minimum 
temperatures have a significantly positive relationship.

3.4 � Land use/cover changes over the last 3 decades

The landscape dynamics over 30 years in the Nasia catch-
ment was assessed from 2000 to 2020 at decadal inter-
vals (interval 1 (2000–2010) and interval 2 (2010–2020)) 
(Fig. 5). Table 4 presents the land use/cover class sizes in 
percentage and their changes during the two intervals.

The total land area of the Nasia catchment is 534,252 
hectares. From 2000 to 2010, water bodies decreased by 
0.34% and increased by 0.10% from 2010 to 2020. Forest 
coverage also decreased by 9.69% during the first interval 
and increased by 4.23% in the second interval.

Grassland and shrubland increased by about 5.05% and 
10.46%, respectively, in the first interval. During the second 
interval, grassland decreased at 14.76%, while shrubland 
again increased by 7.17%. Settlement/bare areas increased 
in both intervals with a higher increase from 2010 to 2020 
(3.04%). Cropland decreased by 5.55% in the first interval 
and marginally increased (0.22%) in the second interval. 
Over the entire 30-year period, shrubland and settlement/
bare lands have increased by 17.62% and 3.1%, respectively, 

Fig. 4   Correlation values of the hydro-climatic variables in the catch-
ment shown on the top of the diagonal with the significance level 
as stars (***, ** and * represent for p <  < 0.001, p = 0.001 to 0.01, 

p = 0.01 to 0.05). The distribution of each variable is shown on the 
diagonal. On the bottom of the diagonal: the bivariate scatter plots 
with a fitted line are displayed (Authors’ design, 2020)
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Fig. 5   Land use/cover changes 
in Nasia catchment for the years 
2000, 2010 and 2020 (Authors’ 
design, 2020)

Table 4   Land use/cover classes 
in the Nasia Basin (%)

(Authors’ computations, 2020).

LULC Year 2000 Year 2010 Year 2020 Interval 1 
(2010–2000)

Interval 2 
(2020–2010)

Cropland 32.72 27.17 27.40  − 5.55 0.22
Forest 11.61 1.92 6.15  − 9.69 4.23
Grassland 53.70 58.75 43.99 5.05  − 14.76
Shrubland 1.33 11.79 18.96 10.46 7.17
Water bodies 0.42 0.09 0.19  − 0.34 0.1
Settlement/bare areas 0.22 0.28 3.32 0.07 3.04
Total 100 100 100

Fig. 6   Changes in land use/
cover over the entire 20-year 
period expressed in percentages 
(Authors’ design, 2020)

-15 -10 -5 0 5 10 15 20

Cropland
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Shrubland
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while all other land covers have decreased (5.32% cropland, 
5.46% forest, 9.71% grassland and 0.24% water bodies) 
(Fig. 6).

4 � Discussion

This paper sets out to understand the trends and relation-
ship between the hydro-climatic variables and land use/
cover changes in the Nasia catchment. Here, we discussed 
the implications of the results, and their impacts on agricul-
ture and the livelihood of the people in the catchment are 
discussed.

4.1 � Trends and implications of hydro‑climatic 
factors in Nasia

4.1.1 � Maximum and minimum temperature and rainfall

The occurrence of a significant increasing trend in both 
maximum and minimum temperature over the study area 
highlights the existence of a warming climate in the Nasia 
catchment in the Northern region of Ghana. Rainfall 
within the basin shows a decreasing but insignificant 
trend. Similar trends of temperature and rainfall have been 
discussed in studies performed in Northern Ghana, where 
Nasia catchment is located (Amikuzino and Donkoh 2012; 
Frimpong et al. 2014; Issahaku et al. 2016; Nyadzi 2016; 
Awuni et al. 2018). Rainfall variability over West Africa 
is naturally high, with studies showing rainfall shortage 
of about 10–15% during the 1980s, relative to the 1950s 
(Mahe 2006). At the same time, temperature increased 
over Africa, with significant changes since the late 1970s 
(Hulme et al. 2001). The negative impact of increasing 
temperatures (minimum and maximum) and decreasing 
rainfall has implications for soil and water management 
and agriculture productivity in general. An increase in 
temperature coupled with warm nights and reduced rainfall 
will in particular affect crops and weed growth and also 
increase the prevalence of insects, pests and diseases 
(Hatfield et al. 2011).

4.1.2 � Sunshine hours

The duration of sunshine (hours) within the basin 
has significantly declined, perhaps due to increasing 
atmospheric aerosols and other air pollutants (Stanhill 
and Cohen 2001), and increased cloudiness (Cutforth and 

Judiesch (2007). Sunshine duration remains an important 
climatic factor driving crop productivity especially 
because it drives photosynthesis which greatly influences 
plant growth (Wu et al. 2006; Alemu and Henebry 2017). 
Agronomic studies have shown that sunshine plays a critical 
role in crop water demand (Baskerville and Emin 1969; 
Ritchie and Nesmith 1991). In a study conducted by Guo 
et al. (2020), the authors found that the impact of sunshine 
duration on agricultural water use is statistically significant 
and that a 1% increment of sunshine duration hours will 
partially lead to a 0.145% decrement in agricultural water 
use. Stanhill and Cohen (2001) also report that a decrease 
in solar radiation would impact crop water balance and 
evapotranspiration of crops with a limiting effect on crop 
productivity.

4.1.3 � Potential evapotranspiration

The findings show that potential evapotranspiration in 
the Nasia basin has significantly increased over the last 
50 years. This implies that open water evaporation, bare 
soil evaporation, rainfall interception evaporation and 
vegetation transpiration could also be increasing within 
the basin (Zeng et al. 2018; Tadese et al. 2020). Potential 
evapotranspiration is an important constituent of the 
energy and hydrological cycles at the land surface and a 
vital regulating factor for agricultural water management 
and calculating crop water requirements (Pengli et  al. 
2006; Paparrizos et al. 2017; Han et al. 2018). Apart from 
sunshine duration as mentioned earlier, the significantly 
increasing wind speed and temperatures and decreasing in 
relative humidity at a significant rate might have contributed 
to the rapid increase in potential evapotranspiration which 
could impact ecological changes, the hydrological cycle and 
agriculture irrigation management in the basin (King et al. 
2015; Ning et al. 2016).

4.1.4 � Wind speed and relative humidity

The increase in wind speed and decrease in relative 
humidity will not only affect agriculture in the basin 
but also have harmful impacts on the health of the 
inhabitants (Csavina et al., 2014), and when breathed, 
this can have negative impacts on the human respiratory 
and cardiovascular systems, due to the spores and 
contaminants associated with dust and aerosols (Ghio 
and Devlin 2001; Low et  al. 2006; Quintero et  al. 
2010; Csavina et  al. 2011; Degobbi et  al. 2011). The 



Hydro‑climatic and land use/cover changes in Nasia catchment of the White Volta basin in Ghana﻿	

1 3

combination of wind speed and relative humidity could 
increase the presence of dust and aerosols in the basin. 
Wind speed remains the primary factor in dust generation 
with soil structure and vegetation cover also playing 
significant roles (Zobeck and Fryrear 1986; Zobeck 
1991; Yin et al. 2007). Also, the threshold velocity for 
aeolian erosion is dependent on relative humidity due to 
its impact on soil surface moisture content which, in turn, 
affects interparticle cohesion (Ravi and D'Odorico 2005; 
Ravi et al. 2006; Neuman and Sanderson 2008). Already, 
the North of Ghana is known to be very dusty, as a result 
of local and regional aeolian erosion due to the nature of 
the soil materials dominated by the clay mineral kaolinite 
(Tiessen et al. 1991; He et al. 2007). The concentration 
of dust and aerosols in the air gets worst during the 
harmattan where the dry dust-laden continental wind from 
the Bodélé Depression in the Chad basin blows over the 
West African countries along the Gulf of Guinea (Sunnu 
et al. 2008; Lyngsie et al. 2011).

4.1.5 � River discharge

The insignificant decrease in annual discharge of 
the Nasia River with the corresponding insignificant 
decrease in rainfall and significant rising temperatures 
and evapotranspiration is indicating water scarcity and 
possibilities of droughts in the basin (Sheffield and 
Wood 2008; Dai 2011; Seneviratne 2012). Some studies 
have shown that for almost all the rivers of West Africa, 
discharge has decreased after 1970. Yet the changes 
in the rainfall and discharge relationships are not 
proportional, presenting a paradoxical situation (Mahé 
et  al. 2000; Mahe 2006). The decreasing trend in the 
discharge of the Nasia River is bad news for inhabitants 
of the basin who depend on its water for both agriculture 
(irrigation) and domestic use. The water crisis in the 
basin will significantly impact the livelihood of people 
as rainfed agriculture remains the main economic activity 
challenged by a long period of dry season. Abdul-Ganiyu 
et al. (2011) however mention that the flow of the Nasia 
River may not be attributed to climatic factors alone but 
also influenced by the physical characteristics (such 
as topography, soil and vegetation) as well as human 
activities in the catchment. Adeyeri et al. (2020) however 
reported that the contribution of human activity to annual 
discharge variation can be remarkably larger than the 
contribution of rainfall variability in several regions of 
the world.

4.2 � Hydro‑climatic jumps and implication 
for agriculture in Nasia

Following the beginning of R reduction in 1968 and 
subsequently discharge in 1975, a significant breakpoint of 
Tmin, Tmax, S, RH and PET occurred within the 1980s a 
period that coincides with the occurrence of unprecedented 
drought events in the history of Ghana (Tan and Rockmore 
2019). The drought of 1968–1983 in West Africa, which 
started imperceptibly in the 1960s in the Sahel-Sahara-
Sudano-Guinea region, affected all meteorological stations 
in Ghana. The North of Ghana particularly recorded a long 
and pronounced drought years resulting in the destruction 
of farms, livestock and other forms of life and property 
by bush fires (Tandoh, 1985). Since the analysis reveals a 
breaking point and trends that coincide with past events, 
the reduction in R and D, in particular, has significant 
implications for agriculture in the area. Water availability 
is becoming a limiting factor for crop production. 
Planting drought-resistant crop varieties with low water 
requirements in addition to sustainable water management 
practices is a possible way to increase yields. Moreover, 
agriculture in the Nasia catchment is generally hindered 
by low soil quality which has limited the production of 
crops to mainly maize, sorghum and millet, which require 
relatively high levels of water during their growth periods 
(Antwi-Agyei et al. 2012).

4.3 � Trend and implication of land use/cover change 
in Nasia

Over the last three decades, land use/cover are changing 
in the Nasia catchment; shrubland and settlement/bare 
lands have increased, while cropland, forest, grassland 
and water bodies have decreased. The land use/cover 
changes can allude to the changing hydro-climatic pattern, 
population growth and economic activities in the basin 
(Akpoti et al. 2016; Awotwi et al. 2018). The relationship 
between land use/cover changes and river discharge 
depends on the basin’s size and location, elevation, land 
management and LULC types (Li et  al. 2001). While 
this study could not establish the relationship between 
hydro-climatic variables and land use/cover changes, 
NDVI observed a similar declining trend as rainfall, river 
discharge, potential evapotranspiration, relative humidity 
and sunshine duration. Similarly, forests, water bodies, 
cropland and grassland also declined. Hao et al. (2004) 
concluded that a positive correlation exists between river 
discharge and forest cover over the Naoli Basin of China. 
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It is, therefore, speculated that the trend in hydro-climatic 
conditions of Nasia catchment in addition to human 
activities such as settlement development, agriculture and 
deforestation plays a critical role in the land use/cover 
pattern of the area.

Human impact on the environment is increasing the 
speed of land cover changes in the area. Generally, in 
Africa, people practice deforestation to increase croplands 
(Mahe 2006). Yet in this study, deforestation resulted in 
increased settlement and shrubland coverage, compared to 
croplands, signalling a reduction in farming activities in the 
basin. Excessive use of trees for charcoal and wood fires and 
uncontrolled bushfires are the main drivers of deforestation 
in sub-Saharan Africa (Obahoundje et al., 2018). Firewood 
or wood fuel accounts for 70% of sub-Saharan Africa total 
energy production, and due to the increase in population 
growth rate, and relative price changes of alternate energy 
sources for cooking, it is expected that the trend of using 
firewood will continue (Kebede et al., 2010).

4.4 � Limitations and relevance of the study

Climate variability could be a natural expression of 
atmospheric dynamics, yet temporary discontinuities in the 
data produced by non-climatic factors such as location of 
weather station, changes observation routine, recalibration 
or degradation of sensors are also possible (Wijngaard et al., 
2003). It is recognized that the major setback of the study is 
the inability to use robust methods to determine the impact 
of the changing hydro-climatic factors and land use/cover 
changes on agriculture and livelihood as a whole. However, 
the speculations made in the discussions are based on 
relevant existing literature. Also, another weakness of the 
study was that the hydro-climatic data used may not reflect 
the current trend of events as they ranged from 1961 to 
2010. However, the lack of data did not adversely affect 
the results obtained from this study. Therefore, further 
study to examine the current and future trends as well as 
to establish the impact on agriculture and livelihood using 
impact models is recommended. Assessing the long-term 
behaviour and relationship and detecting breakpoints of 
hydro-climatic factors and land use/ cover are important, 
not only to increase knowledge about climate variability 
but also to develop strategies and implement more adequate 
water management policies at regional and local scales 
for the planning of sustainable agricultural practices (de 
Carvalho et al. 2014; Huntington 2010).

5 � Conclusion and recommendations

This study examined the trends of hydro-climatic variables 
(minimum and maximum temperature, wind speed, 
sunshine duration, rainfall, relative humidity, discharge 
and potential evapotranspiration), NDVI and land use 
cover/change in the Nasia catchment. The relationship 
between these parameters was also analysed in addition to 
the possible implications of the observable changes in the 
Nasia catchment.

Generally, the results presented signal water scarcity 
and possibilities of droughts in the Nasia catchment. The 
impact of climate change on the overall hydro-climatic 
variables is quite noticeable. At a 95% confidence level, 
minimum and maximum temperatures, wind speed and 
potential evapotranspiration showed a significant upward 
trend. Relative humidity and sunshine duration showed a 
significant downward trend. Rainfall, river discharge and 
NDVI also showed a downward but insignificant trend. 
Almost all the trends in hydro-climatic variables started 
in the 1980s, except wind speed in 2001, rainfall in 1968 
and discharge in 1975. Discharge showed a positive 
significant correlation with relative humidity, rainfall 
and potential evapotranspiration, but an insignificant 
positive relationship with sunshine duration. The discharge 
also showed a negative insignificant correlation with 
temperature (minimum and maximum) and wind speed. 
Finally, over the entire 30-year period, shrubland and 
settlement/bare have increased to the disadvantage of 
cropland, forest, grassland and water bodies.

The limitation of this paper resides in the fact that the 
combined effect of the understudied variables on water 
resources, agriculture and livelihood of the inhabitants 
was speculated, based on literature. Also, the lack of data 
could not allow current analysis. However, the findings 
of this paper could help researchers understand the 
annual variability of hydro-climatic variables and land 
use/cover changes in the Nasia catchment and therefore 
become a foundation for further studies. There is a need 
for additional research to incorporate hydro-climatic 
variables, land use/cover and human activities into 
empirical models to identify specific cause and effect 
relationships, particularly on river discharge. Once these 
relationships are determined, impact models could be used 
to simulate and predict the effect of climate change on the 
water resources, agriculture and livelihood in the Nasia 
catchment.
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