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resistance breeding.

1 | INTRODUCTION

Grass pea (Lathyrus sativus L.) is an annual legume crop
important for animal and human consumption in several
rainfed marginal regions of the world (Lambein et al., 2019).
In what concerns human consumption, grass pea may be
consumed dried, cooked in stews, as well as uncooked as
a green snack. This habit of eating grass pea in the green
state is particularly widespread in Spain, but also in India,
Bangladesh, and Pakistan, where the green pods and imma-
ture seeds are appreciated for the sweet and tasty flavor and
valorized for this feature (Campbell, 1997; Pefia-Chocarro
& Pefia, 1999). Grass pea accessions can be divided into
two ecotypes: one with accessions with light and large
seeds, typically from Europe and North Africa, and the other
with accessions with dark and small seeds, mainly from
Asia and Ethiopia (Hanbury et al., 1999; Przybylska et al.,
2000). Normally explored for their exceptional resistance
to drought, grass pea is also known for their resistance
to legume pests and diseases (Campbell, 1997). Being a
diploid species and predominantly self-pollinated, grass pea
is also characterized by a large genome size (approximately
6.3 Gb) (Emmrich et al., 2020). Because of its genome
complexity, together with the lack of economic relevance
in developed countries, few studies have been performed to
clarify grass pea genetic control of important traits such as
disease resistance, when compared with other legume crops.
This has hampered a more efficient development of resistant
cultivars.

Among grass pea natural variation, a diversity of phe-
notypic responses has been found to pathogens commonly
infecting pea (Pisum sativum L.), as Uromyces pisi (pea rust
causal agent), Erysiphe pisi (pea powdery mildew causal
agent) (Almeida et al., 2014; Vaz Patto et al., 2006), and more
recently also Fusarium oxysporum f. sp. pisi (pea fusarium
wilt causal agent) (Sampaio et al., 2021a).

Fusarium wilt, caused by the soil-borne pathogen Fusar-
ium oxysporum (Fo) promotes huge worldwide yield losses
in several plant species, including legumes (Sampaio et al.,

of a fully assembled grass pea reference genome, SNP markers’ genomic positions
were retrieved from the pea’s reference genome vla. In total, 17 genomic regions
were associated with three fusarium wilt response traits in grass pea, anticipating an
oligogenic control. Seven of these regions were located on pea chromosomes 1, 6,
and 7. The candidate genes underlying these regions were putatively involved in sec-
ondary and amino acid metabolism, RNA (regulation of transcription), transport, and
development. This study revealed important fusarium wilt resistance favorable grass

pea SNP alleles, allowing the development of molecular tools for precision disease

2020). Considered a specialist pathogen, Fo is characterized
by different formae speciales (ff. spp.) and races identified
based on their preferential host species (Di Pietro et al., 2003).
The genetic basis of resistance against fusarium wilt was
unraveled for some of the Fo ff. spp. infecting major legume
crops, such as chickpea (Cicer arietinum L.), common bean
(Phaseolus vulgaris L.), and pea (Sampaio et al., 2020).
Currently, the four different races identified as infecting pea
are known as Fo f. sp. pisi (Fop), being Fop races 1 and 2
the most frequent worldwide (Infantino et al., 2006). Pea
resistance to Fop race 1 was described as monogenic, with
a major resistance gene, Fw (Grajal-Martin & Muehlbauer,
2002; McClendon et al., 2002) located on chromosome 5
(Kreplak et al., 2019). Although resistance to Fop race 2
was also initially reported as monogenic (Infantino et al.,
2006), further analysis of a segregating pea recombinant
inbred line population revealed an oligogenic resistance
depending on three resistance genes (McPhee et al., 2012).
More specifically, a major gene, Fnw4.l, located on pea
chromosome 4, and two minor resistance genes, Fnw3.1 and
Fnw3.2, both on pea chromosome 5 (McPhee et al., 2012).

Besides pea, Fop race 2 was also virulent to the close phy-
logenetic relative, grass pea, although with lower virulence
when compared with pea (Sampaio, et al., 2021a). During a
phenotypic screening of a grass pea worldwide collection of
accessions to Fop race 2 infection, a wide range of responses
was detected. Different resistance mechanisms within grass
pea accessions contributed to the natural variation of phe-
notypes observed (Sampaio et al., 2021b). Nevertheless, the
genetic basis controlling that diversity of responses is still
unknown.

In precision breeding, the use of molecular markers tightly
associated with the genetic factors controlling resistance
allows a more efficient, faster, and affordable selection
approach compared with the conventional plant breeding pro-
grams on the development of resistant cultivars (Rubiales
et al., 2015; Sampaio et al., 2020). However, for a precision
breeding application, understanding the genetic basis of resis-
tance is essential.
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Genome-wide association studies (GWAS) are powerful
approaches to identify genomic regions responsible for certain
traits using the naturally occurring genetic diversity (Korte &
Farlow, 2013). In legumes with a fully assembled reference
genome, such as common bean and cowpea [Vigna unguicu-
lata (L.) Walp.], GWAS was successfully used to unravel the
genetic control of Fusarium wilt resistance, allowing the iden-
tification of several candidate resistant genes and confirming
an oligogenic control in both species (Leitao et al., 2020; Wu
etal., 2015). However, in species where a reference genome is
still not available or not fully assembled, such as in grass pea
(Emmrich et al., 2020), the interpretation of GWAS results
will be more challenging. The recently released pea reference
genome vla (Kreplak et al., 2019) was already used, through
comparative mapping, to propose candidate resistance genes
to Erysiphe pisi and E. trifolii within QTL regions located
originally in the related Lathyrus cicera (Santos et al., 2020).
In addition, pea genome was also used to enable comparative
mapping of the powdery mildew susceptibility gene MLOI
(Mildew Locus O 1) in L. sativus (Santos et al., 2021), further
highlighting its value as a promising tool to facilitate genetic
studies in Lathyrus spp.

The present study aims to clarify the genetic control of
grass pea resistance to Fop race 2 through GWAS. For that,
a high-throughput single nucleotide polymorphism (SNP)
screening of a worldwide collection of grass pea accessions,
previously evaluated for the response to Fop race 2 infec-
tion (Sampaio et al., 2021b), was conducted and SNP—trait
associations analyzed. To the best of our knowledge, this is
the first time a GWAS has been applied to grass pea and,
in particular, for grass pea—fusarium wilt resistance genetic
analysis.

2 | MATERIAL AND METHODS

2.1 | Phenotypic screening

The phenotypic data set used in the present association analy-
sis was retrieved from Sampaio et al. (202 1b). Data collection
will be briefly explained. For further details, please refer to
Sampaio et al. (2021b).

2.1.1 | Fungal material

The Fop race 2 strain R2F42 used in this study, was pro-
vided by Dr. W. Chen (USDA-ARS, Pullman, USA) and
stored as microconidial suspension at —80 °C in 30% glyc-
erol. For microconidia production, cultures were grown
in potato dextrose broth (Sigma-Aldrich) at 28 °C, in a
shake culture at 170 rpm for 3/4 d (Di Pietro & Roncero,
1998).

Core Ideas

* The first grass pea disease resistance genome-wide
association study was conducted.

* Grass pea revealed an oligogenic control to fusar-
ium wilt.

* 17 significantly fusarium wilt resistance associated
SNPs were detected.

* Candidate genes
ondary/amino acid metabolism, RNA, transport,
and development.

were involved in sec-

2.1.2 | Plant material and growth conditions
Data from 161 grass pea accessions belonging to the
germplasm collection characterized in Sampaio et al. (2021b)
was used in the present GWAS. From these 161 accessions, 79
had a European geographical origin, 54 Asian, 13 Ethiopian,
9 Northern African, 1 Brazilian, and 5 with unknown origin.
Of these 161 accessions, 78 presented light and 83 dark seed
color, 44 had large and 117 had small seed size. Details in
Supplemental Table S1. Seedlings were planted in individ-
ual pots containing sterile vermiculite and placed on a growth
chamber at 26 + 2 °C, 16 h (light)/8 h (dark) and 60% relative
humidity.

2.1.3 | Inoculation and disease assessment
Because of growth chamber space constraints, the grass pea
collection was mostly tested using an alpha-lattice experi-
mental design (Patterson & Williams, 1976) (129 accessions),
complemented with a smaller randomized complete block
design (RCBD, in 32 accessions) (Sampaio et al., 2021b).
Five grass pea accessions (P1220176, P1283582, P1283593,
P1283596, and P1426880), characterized by an intermediate
response to Fop, were repeatedly evaluated in all the blocks
of the two designs, to control for block effects. Three inde-
pendent inoculation experiments were conducted and three
to five plants per accession were evaluated per experiment.
Seven-day-old grass pea seedlings were inoculated following
a root dip technique with trimmed roots and then replanted in
pots under the same growth conditions.

For each plant, at every 3 d from the 7th to the 30th d after
infection (dai), disease intensity (DI) was evaluated by calcu-
lating the percentage of yellowing leaves per total leaves (Fig-
ure 1). This data was used to calculate AUDPC (area under
disease progress curve) and DIr (disease progress rate) (Sam-
paio et al., 2021b). In addition, maximum DI score observed
at 30 dai (DI30), in %, was also recorded.
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2.1.4 | Phenotypic data analysis

The alpha experimental design and RCBD data sets were ana-
lyzed separately. AUDPC data were subjected to a square root
transformation in both data sets (RCBD and alpha design) to
guarantee residuals normalization and variance stabilization
(Sampaio et al., 2021b).

Using the linear mixed models described by Sampaio et al.
(2021b), a restricted maximum likelihood procedure was con-
ducted, after an independent quality control of each trait,
to obtain the best linear unbiased estimates (BLUEs) for
each accession and for both data sets separately. Due to high
correlation, and similar values between the five grass pea
accessions repeatedly evaluated in both experimental designs
(Sampaio et al., 2021b), the two BLUEs vectors, from the
two different designs, were merged into a single data set. The
merged BLUE data set (Supplemental Table S2) was the input
phenotypic data in the subsequent association mapping anal-
ysis.

All analyses were performed with Genstat software, 20th
ed. (VSN).

2.2 | Genotypic screening

Total genomic DNA from one representative individual of
each grass pea accession was extracted from young leaves
using the DNeasy Plant Mini Kit (Qiagen), according to man-
ufacturer’s instructions. DNA quantification was performed
in a Qubit 2.0 Fluorometer (Invitrogen) using Qubit dsDNA
BR Assay Kit (Thermo Fisher Scientific). DNA purity was
assessed by wavelength ratios measurement at 260:280 and
260:230 nm using a Nanodrop ND-2000C spectrophotometer
(Thermo Fisher Scientific).

The extracted DNA samples were sent for SNP detec-
tion and calling to two high-throughput genotyping-by-
sequencing (GBS) providers: Diversity Arrays Technology
through DArT-Seq™ genotyping (Kilian et al., 2012) and BGI
(Beijing Genomic Institute).

100%

FIGURE 1 Fusarium oxysporum f. sp. pisi race 2
disease assessment in the grass pea collection. Numbers
below each photograph represent their respective disease
intensity (DI), estimated as the percentage of leaves
showing symptoms

2.2.1 | Genotypic data analysis

2.2.1.1 SNP data acquisition improvement

To improve SNP data acquisition obtained from BGI Tech
Solutions, a MOCK reference approach was used. In brief, the
clean and demultiplexed reads were submitted to GBS SNP-
Calling Reference Optional Pipeline version 4.0 (GBS-SNP-
CROP) for sequence analysis and genotyping (Melo et al.,
2016). The GBS-SNP-CROP was used for de novo SNP call-
ing. The GBS specific mock reference was provided from
the sample with the highest number of clean reads using
GBS-SNP-CROP-4.pl script to cluster reads and assemble the
mock reference. The mapping step was performed with GBS-
SNP-CROP-5.pl script, where clean reads were mapped to
the mock reference to produce standard alignment files using
BWA-mem (Li, 2013) and SAMtools (Li et al., 2009). The
SNP and genotype calling step was carried by GBS-SNP-
CROP-7.pl script. Finally, the SNP genotyping matrix was
converted into formats compatible with Tassel GUI (Glaub-
itz et al., 2014) for further analysis.

2.2.1.2 Quality control

Genotypic data quality control was performed by removing
SNP markers and accessions with more than 25% missing
data. SNP calls recorded as heterozygous were set as miss-
ing data. Markers with minor allele frequency smaller than
5% were removed.

2.2.1.3 SNP markers position

Because no fully assembled L. sativus reference genome
is publicly available, SNP markers physical positions were
assigned based on the pea reference genome vla (Kreplak
et al., 2019), the most phylogenetic closely related species
to grass pea, with a better assembled sequenced genome.
In addition, high synteny between grass pea recombinant
inbred line high-density linkage map and the pea genomes was
recently revealed (Santos et al., 2021). For that, a BLASTn
alignment (E-value < 1 X 107°; word size = 11) between
grass pea markers sequence without the initial adapters
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(“TGCAG” for DArT-Seq™ and “CAGC” for BGI sequence)
and the pea genome vla was performed at KnowPulse web
resource (https://knowpulse.usask.ca) (Sanderson et al., 2019)
database.

2.2.1.4 Genetic structure analysis

A subset of 1,058 SNP was chosen by considering approxi-
mately 1 Mbp interval between SNPs within each pea chro-
mosome (Supplemental Table S3). This subset was used on a
model-based clustering method to infer genetic structure and
define the number of genetic clusters in the dataset using the
software STRUCTURE v2.3.4 (Pritchard et al., 2000). Thirty
runs per each cluster (K) ranging from 1 to 11 were conducted
on the Isabella computer cluster at the University of Zagreb,
University Computing Center (SRCE), Croatia. Each run was
comprised of a burn-in period of 20,000 steps, followed by
105 MCMC (Monte Carlo Markov Chain) replicates assuming
an admixture model and correlated allele frequencies. The AK
values were calculated using STRUCTURE HARVESTER
v0.6.94 (Earl & vonHoldt, 2012). Runs were clustered and
averaged using CLUMPAK (Kopelman et al., 2015). Acces-
sions were assigned to a particular cluster (A, B, or C) if their
proportion of membership (Q) in that cluster was greater than
75%, whereas those with a Q value below 75% were consid-
ered to be of “mixed origin” and were designated AM, BM,
or CM.

In addition, the same molecular data set was used to cal-
culate principal components as a complementary approach to
access population structure and to calculate a kinship matrix
to estimate pairwise genetic relatedness among the grass pea
accessions, as implemented in Genstat software. The obtained
SNP-based genetic structure was visually compared with seed
color, size, and geographical origin grouping.

2.3 | Association mapping analysis
Genome-wide association studies to detect grass pea AUDPC,
DI30, and DIr associated SNPs were conducted with Genstat
software in the mixed model framework, fitting markers as
fixed and accessions as random terms using restricted maxi-
mum likelihood (Malosetti et al., 2007).

Grass pea adjusted means (BLUES) of the three traits were
tested for association with the SNP markers fitting the quality
control parameters applied. To detect marker—trait associa-
tions, three different models were tested: a naive model [Phe-
notype = SNP + Error], which does not account for popu-
lation structure or family relatedness; a model accounting for
population structure (Q), using 15 principal components from
the principal component analysis [Phenotype = Q + SNP +
Error]; and a model accounting for familial relatedness (K),
using a kinship matrix K [Phenotype = SNP + Accession +
Error], with Accession random effects structured following a
kinship matrix K (Malosetti et al., 2007).

Inflation factor values near 1 and quantile-quantile (Q-Q)
plots of the respective p-values with lower deviations from the
expected uniform distribution under the null hypothesis were
the considered parameters to select the best model account-
ing for genetic structure/relatedness among accessions. The
observed association p-values (—log, scale) for each SNP
were plotted against their chromosomal pea position gener-
ating Manhattan plots. A threshold of —log; (p) = 4, control-
ling background noise, was used to detect significant marker—
trait associations. As in other association studies with similar
or slightly smaller panel sizes (Alves et al., 2019, 2020; Leitao
et al., 2020, 2021), the threshold was selected to remove the
background noise of the Manhattan plot, allowing at the same
time the detection of potentially interesting regions, which
would be lost using a more conservative type as Bonferroni-
corrected threshold of significance. The effect of the minor
frequency SNP allele was estimated in relation to the most
frequent reference allele.

2.4 | Allelic variant frequency and cluster
analysis based on the SNPs associated with the
traits of interest

Because the grass pea accessions under study were consid-
ered very homozygous due to several generations of single
seed descent, favorable allele frequencies were calculated by
counting the number of accessions with a given trait (dark,
light, small, or large) that had the favorable allele and divided
by the total number of accessions having the same trait.

For the grass pea accessions cluster analysis based on the
associated SNPs, seventeen SNPs associated with the traits
of interest (see Results section) were used to construct the
genetic distance matrix between pairs of grass pea acces-
sions using the proportion-of-shared-alleles distance (Dpgy;
Bowcock et al., 1994) in MICROSTAT (Minch et al., 1997).
The unweighted pair group method with arithmetic mean
(UPGMA) tree was constructed using PHYLIP v3.6b (Felsen-
stein, 2004).

2.5 | Local linkage disequilibrium and
putative candidate genes

Linkage disequilibrium (LD) was calculated per chromosome
as a measure of the recombination history, estimated by the
squared coefficient of correlation between markers pairs, 72,
after correction for population structure using the principal
component scores from Eigenanalysis, as implemented in
Genstat software. For this calculation, all grass pea markers
with an assigned position on pea reference genome vla
were used. Linkage disequilibrium decay per chromosome
was visualized by plotting 7° against the physical mapping
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distance in Mbp. To define a genomic window where to
search for candidate genes, the presence of adjacent SNP
markers in LD with the ones identified as significantly
associated with the trait was investigated. The r° of the
neighboring SNPs was inspected considering, right and left
to the associated SNP, a strict LD decay threshold of 2 >0.2.

Genes containing a significant associated SNP [—log;q(p)
> 4] or a SNP in LD with the significant associated SNP for
AUDPC, DI30, and DIr were considered putative candidate
genes for the disease response traits analyzed. Pea genome
(Kreplak et al., 2019) was used as the reference genome for
candidate genes investigation. Annotation of the genes under
the identified genomic regions was given by the JBrowse
tool at https://urgi.versailles.inra.fr/Species/Pisum. Candidate
genes’ functional characterization was obtained using the
MapMan web tools and Mercator4 v2.0 (https://www.plabipd.
de/portal/mercator4) (Schwacke et al., 2019). Cytoscape soft-
ware, version 3.8.2 (Shannon et al., 2003) was used to visu-
alize molecular interaction networks occurring between the
traits.

2.6 | Comparative mapping of
pea-unmapped associated SNPs

Associated SNPs without a known position in P. sativum ref-
erence genome vla were aligned against Lens culinaris CDC
Redberry genome v1.2 and Medicago truncatula genome
Mtv4.0 (Tang et al., 2014), using the BLASTn tool (E-
value < 1 x 1079) at KnowPulse web resource (https://
knowpulse.usask.ca) (Sanderson et al., 2019) database.
Santos et al. (2021) syntenic studies between L. sativus and
L. culinaris and/or M. truncatula, were considered to attribute
putative L. sativus linkage group (LG) locations of the pea-
unmapped associated SNPs through comparative mapping.

2.7 | Candidate genes relative expression
analysis by Reverse Transcribed quantitative
(real-time) PCR

2.7.1 | Plant material, RNA extraction, and
cDNA synthesis

Three highly Fop resistant accessions (low AUDPC, DI30,
and DIr: BGE19777, PI283593, and SITNICA) and three
highly susceptible (high AUDPC, DI30, and DIr: PI195998,
PI257589, and PI358601) were selected for the candidate
genes’ relative expression analysis based on responses char-
acterized by Sampaio et al. (2021b). Three individual plants
per accession (biological replicates) were used for each of two
treatments (inoculated/noninoculated) and plant inoculation
was conducted as previously described. Four time points after

infection were defined to collect root samples from both treat-
ments: 24 and 48 h after infection (hai) and 4 and 7 dai. Plants
were removed from the pots and washed under tap water to
remove vermiculite from the roots. Root samples were then
collected, immediately frozen in liquid nitrogen, and stored at
—-80 °C.

For total RNA extraction, frozen roots were ground to a
fine powder in liquid nitrogen using a mortar and a pestle.
Total RNA was isolated from each plant sample and treat-
ment separately, using the GeneJET Plant RNA Purification
Kit (Thermo Scientific) following the manufacturer’s proto-
col. Isolated RNA was treated with TURBO DNase (Invitro-
gen by ThermoFisher Scientific) according to the manufac-
turer’s protocol. RNA quantification was conducted in a Qubit
2.0 Fluorometer (Invitrogen) with a Qubit RNA BR Assay
Kit (Thermo Fisher Scientific). RNA purity was assessed by
wavelength ratios measurement at 260:280 and 260:230 nm
using a Nanodrop ND-2000C spectrophotometer (Thermo
Fisher Scientific). RNA integrity was also checked by elec-
trophoresis in a 1% agarose gel stained with SYBR Safe
(Thermo Fisher Scientific).

cDNA was synthesized from 1 pg of total RNA from each
sample using the iScript cDNA Synthesis Kit (Biorad) accord-
ing to the manufacturer’s protocol.

2.7.2 | Primer design

Specific primers were designed for all the potential can-
didate genes using the gene sequence obtained from the
JBrowse tool at https://urgi.versailles.inra.fr/Species/Pisum
using the Primer3Plus online tool (https://primer3plus.com).
Primer specificity was checked using the Primer-BLAST
NCBI tool considering the M. truncatula genome. Primer
design parameters were defined using the default setting for
gPCR optimal conditions. Primers were designed in the 3’
intra-exonic region and synthesized by STABVida (Supple-
mental Table S4).

2.7.3 | Reverse Transcribed quantitative
(real-time) PCR

Relative expression of target genes among the selected
resistant and susceptible grass pea accessions was deter-
mined by Reverse Transcribed quantitative (real-time) PCR
(RT-gPCR). As reference genes, B-tubulin, photosystem I
P700 apoprotein A2, and y-tubulin, previously described as
reference genes in Lathyrus spp. (Almeida et al., 2014; Santos
et al., 2018), were tested. Using geNorm and NormFinder
software packages, from GenEx v.5 software (MultiD), the
first two were selected as reference genes for the following
analysis. RT-qPCR was performed for each of the three
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biological replicates per accession (resistant and susceptible)
and per treatment (noninoculated and Fop inoculated) at each
time point (24 and 48 hai, 4 and 7 dai). PCR reactions were
carried out in a PikoReal Real-Time PCR System (Thermo
Fisher Scientific) using PerfeCTa SYBR Green SuperMix
(Quantabio) following the described conditions: 5 min at
95 °C for initial denaturation, 40 cycles of denaturation
at 95 °C for 10 s and 60 °C for 30 s. For each reaction, a
melting curve (dissociation stage) was performed to detect
nonspecific PCR products or contaminants. A nontemplate
control without cDNA was also included for each primer mix
to detect possible contaminations.

The relative expression values of each gene were normal-
ized per accession to the respective 24 hai control sample and
to the two reference genes following the Pfaffl method (Pfaffl,
2001). A two-way ANOVA was conducted to investigate dif-
ferences between treatments and time points per candidate
gene and accession. Post-hoc Tukey multiple comparison tests
were used for means comparison at p < .05.

3 | RESULTS

3.1 | Genotypic screening

High-throughput SNP screening of the grass pea collec-
tion through DArT-Seq™ genotyping platform resulted in
the detection of 15,818 SNPs. From these, only 3,496
(22%) passed the quality control criteria. Moreover, after the
improvement of the original SNPs scoring by BGI (detect-
ing 206 SNPs) using a MOCK reference approach, a total of
11,058 SNPs were detected, of which 2,155 SNPs (19.5%)
passed the quality control criteria. Together these two GBS
approaches yielded 5,651 high-quality SNPs that were used
for the association mapping analysis. No common SNPs have
been detected between the two GBS approaches. SNP mark-
ers list and the marker scores per accession are available in
Supplemental Table S5.

From the 5,651 SNP markers, 3,180 presented a single
hit on pea chromosomes, whereas the remaining 2,471 were
considered unmapped due to lack of alignment with the pea
genome or due to the presence of more than a single hit with
the same E-value. The number of mapped markers per chro-
mosome ranged from 291 SNP markers in chromosome 3 to
624 in chromosome 5.

3.2 | Association panel genetic structure

The STRUCTURE analysis, based on the subset of 1,058
SNP markers (Supplemental Table S3), identified K = 2
as the most likely number of genetic clusters (highest
AK = 28,540.08), followed by K = 3 (AK = 1,865.93).

At K = 2, most large/light seeded, large/dark seeded, and
small/light seeded accessions belonged to cluster A, while
cluster B consisted of small/dark seeded accessions that
were predominantly of Asian origin (Figure 2). At K = 3,
small/dark seeded accessions of Ethiopian origin and partly
of Asian origin, which belonged to cluster A at K = 2,
were assigned to the newly formed cluster C (Supplemental
Table S6).

Based on the same subset of markers, principal components
were also calculated to access the population structure of the
grass pea collection. By visually comparing this structure with
different seed grouping characteristics, a stronger clustering
of lighter and larger seed accessions, mainly from Europe and
North Africa was observed, while darker and smaller seed
accessions were dispersed around the principal component
analysis biplot (Figure 3).

3.3 | Marker-trait associations

Due to the existence of a clear genetic structure within the
association panel, which can lead to the identification of
false—positive associations, GWAS was performed using a lin-
ear mixed model accounting for the genetic structure, by con-
sidering either population structure (Eigenanalysis) or kinship
relationship (K matrix).

The best model accounting for the grass pea collection
genetic structure, by presenting an inflation value closer to
1 (Supplemental Table S7) and Q-Q plots showing less p-
values deviating from the expected uniform distribution that
holds under the null hypothesis (Supplemental Figure S1),
was the linear mixed model accounting for the population
structure (Eigenanalysis). This was the selected model and
the results reported hereafter were obtained from this model.
Manhattan plots for the discarded models (kinship and naive)
are available in Supplemental Figure S2.

For the three disease response traits analyzed (AUDPC,
DI30, and DIr), previously identified as phenotypically highly
correlated (Sampaio et al., 2021b), significantly associated
SNPs were detected. In total, 17 SNPs were associated with
at least one of the traits of interest using a threshold of
—log;o(p) = 4. Of these, 13 were commonly associated with
all the traits measured. Seven of the associated SNPs had a
known position on the pea genome, being located on gene
coding regions of chromosomes 1, 6, and 7. The other 10
SNPs associated with resistance against fusarium wilt were
unmapped (Figure 4 and Table 1).

From the 10 SNP markers with unknown position on
pea chromosomes, only two associated SNPs, SNP3824 and
SNP5205, revealed a physical position on L. culinaris (CDC
Redberry genome v1.2) and/or M. truncatula (Mtv4.0) chro-
mosomes. SNP3824 was located on L. culinaris chromosome
2, chromosome with high synteny with L. sativus LG I (Santos
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Genetic structure of the worldwide grass pea collection using STRUCTURE at K = 2 and K = 3. Accessions are grouped according

to seed color (dark or light) and size (large or small). Each accession is represented by a column, and the color corresponds to the proportions of

membership in each genetic cluster

etal., 2021), while SNP5205 was placed on L. culinaris chro-
mosome 7 and M. truncatula chromosome 8, chromosomes
characterized by high synteny with L. sativus LG IV (Santos
etal., 2021). Grass pea LG I and LG IV are on the other hand
mainly syntenic with pea chromosomes 1 and 4, respectively
(Santos et al., 2021).

A positive effect of the variant allele in relation to the most
frequent allele was observed in all the associated SNP, repre-
senting for the variant allele, an increase in Fop susceptibility
(Table 1). For all the traits, each identified SNP—trait associ-
ation explained only a part of the observed phenotypic vari-
ance. The associated SNP that explained the biggest portion
of genotypic variance was SNP3907, simultaneously associ-
ated with the three traits and explaining 24.5% of AUDPC,
26.9% of DI30, and 29.1% of DIr variance (Table 1).

3.4 | Allelic variant frequency and cluster
analysis based on the SNPs associated with the
traits of interest

Favorable alleles of the associated SNP, responsible for an
increase in resistance, were mainly the most frequent in both
seed color (light and dark) and seed size (large and small)

groups of our grass pea collection, with higher frequency
in the lighter and larger seed accessions group (Figure 5).
Although allele frequencies for lighter and larger seeds used
to match, as well as smaller and darker seeds, the frequency
differences between seed sizes tended to be higher than
differences between seed colors. The only exceptions to
this pattern were SNP2530, SNP2540, and SNP3824,
where almost no favorable allele frequency differ-
ences between seed color and seed size groups were
detected.

According to the accessions’ geographical origin, favorable
alleles were more frequent in European, Northern African,
and Brazilian accessions, while Asian and Ethiopian acces-
sions were shown to have a lower frequency of the allele
responsible for conferring resistance (Figure 6). A slightly
different pattern was observed for SNP3907, the SNP with
the biggest portion of genotypic variance explained, and for
SNP2530.

When focusing on grass pea accessions disease response
ranking, for most of the associated SNPs, favorable alleles,
conferring resistance, were no longer present in accessions
showing an AUDPC square-root-transformed mean value
>35, a DI30 mean value >80%, and a DIr mean value >3.0
(Supplemental Figure S3).
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FIGURE 3

First two component scores from Eigenanalysis using 1,058 single nucleotide polymorphisms (SNPs) in 161 grass pea accessions

organized according to (a) seed color, (b) seed size, and (c) geographical origin. The variance explained by each principal component is presented on

the axis heading

Cluster analysis based on 17 SNPs associated with the traits
of interest showed a clear separation of the grass pea acces-
sions originating from Ethiopia, characterized by darker and
smaller seeds and belonging to cluster C at K = 3 (Supple-
mental Figure S4).

3.5 | Candidate genes

The location of the SNPs significantly associated with fusar-
ium wilt response traits was used to search for putative can-
didate genes in the pea genome vla. Candidate genes could

only be proposed for mapped SNPs. From the seven SNP-trait
associations with a known pea map position, five candidate
genes were proposed, since three of the seven significantly
associated SNPs were mapped into the same gene. In this way,
the strongest associated SNP, SNP2428, was located within
the same candidate gene (Psar6gl142560) as SNP2424 and
SNP2427, a gene related with amino acid metabolism encod-
ing a threonine aldolase. SNP2530, previously highlighted for
the frequency of favorable allele among accessions with a dif-
ferent geographical origin, was located within Psat6g185920,
a gene involved in the regulation of transcription. Moreover,
SNP3540, highlighted due to the frequency of the favorable
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allele among accessions with different seed color and size,
was located within Psar6g189280, a gene involved in devel-
opment. SNP0375 and SNP2797 were each located within
a candidate gene, respectively within Psatl1g212920, a gene
involved in transport, and Psat7g059960, a gene involved in
secondary metabolism. Details on candidate gene function are
described in Table 2.

Most candidate genes proposed were common to the three
analyzed disease response traits, the only exception being,

FIGURE 4 Manhattan plots depicting
genome-wide association results for (a) area
under disease progress curve (AUDPC), (b)
disease intensity at 30 d after infection (DI30),
and (c) disease progress rate (DIr) using 161
grass pea accessions inoculated with Fusarium
. oxysporum f. sp. pisi (Fop). The y-axis

. i ) constitutes the —log,,(p) of 5,651 SNP markers,
and the x-axis exhibits their chromosome
position on the pea reference genome. The red
horizontal line represents the threshold —log,,

(p) = 4. The columns highlight the genomic
regions with commonly associated single
nucleotide polymorphisms (SNPs) for the three
traits

Unmapped

Psat6g185920, the gene involved in RNA (transcription reg-
ulation) that was only associated with DI30 (Supplemental
Figure S5).

The distance to which LD decayed to 7 = 0.2 per chromo-
some was graphically estimated, and varied from 0.008 Mbp
(on chromosomes 1, 3, 5, and 7) to 0.14 Mbp (on chromosome
6), with an average value of 0.043 Mbp. Supplemental Figure
S6 shows the LD decay, measured as 2 values versus marker
distance, and shade plots per chromosome exhibit the corre-
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TABLE 1 Single nucleotide polymorphism (SNP) associations (—log,,[p] > 4) with AUDPC, DI30, and DIr, their position within pea
chromosomes (or grass pea linkage group, LG), the effect of the allelic variant, and the proportion of genotypic variance explained by each SNP-trait

association using 161 grass pea accessions inoculated with Fusarium oxysporum f. sp. pisi (Fop)

Marker name
SNP0375

SNP2424

SNP2427

SNP2428

SNP2530
SNP2540

SNP2797

SNP3254

SNP3401

SNP3486

SNP3701

SNP3824

SNP3907

SNP4197

SNP4964

SNP4976

Trait
AUDPCSR
DI30

DIr
AUDPCSR
DI30

DIr
AUDPCSR
DI30

DIr
AUDPCSR
DI30

DIr

DI30
AUDPCSR
DI30

DIr
AUDPCSR
DI30

DIr
AUPCSR
DI30

DIr
AUDPCSR
DIr

DI30
AUDPCSR
DI30

DIr

DIr

AUDPCSR
DI30

DIr
AUDPCSR
DI30

DIr
AUDPCSR
DI30

DIr
AUDPCSR
DI30

DIr

Pea chromosome/
grass pea LG

1

Unmapped

Unmapped
Unmapped

Unmapped

LG I (pea
chromosome 1 by
comparative

mapping‘)
Unmapped

Unmapped

Unmapped

Unmapped

Position (Mbp)
362.716539

282.733165

282.733287

282.733319

374.644821
381.67895

99.915993

6.53
7.20
5.85
6.83
7.70
7.63
7.00
8.25
7.80
7.04
8.29
7.85
4.45
4.38
5.39
4.72
5.05
5.79
5.89
4.90
4.84
5.10
4.40
4.07
4.37
6.68
7.64
7.82
443

6.56
6.89
7.13
4.03
4.39
4.23
4.27
4.40
4.85
5.46
5.08
6.26

Ref
—log;, (p) allele

A

Variant
allele

G

Freq®
0.055

0.062

0.058

0.058

0.110
0.103

0.104

0.083

0.070

0.120

0.133

0.1167

0.211

0.268

0.119

0.103

Effect”
6.06
14.33
0.48
7.28
17.27
0.63
7.40
17.99
0.64
7.42
18.04
0.65
8.01
4.15
10.42
0.36
4.14
9.98
0.37
5.45
12.04
0.45
5.41
0.42
8.40
4.15
10.02
0.37
0.28

5.38
12.32
0.46
3.32
1.76
0.28
3.98
9.09
0.35
4.19
9.07
0.37

Voru/V, ©
%
9.7
114
9.7
157
18.5
19.1
15.2
18.9
18.7
15.2
18.9
18.7
6.7
8
10.7
9.8
8.1
9.9
10.6
11.5
11.8
12.9
9.7
9.6
7.9
10.1
12.3
13.3
6.8

24.5
26.9
29.1
10.9
12.6
12.6
8.4
9.2
10.7
8.2
8.1
10.6

(Continues)
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TABLE 1 (Continued)

Pea chromosome/ Ref Variant Voru/Vy
Marker name  Trait grass pea LG Position (Mbp) —log;, (p) allele allele Freq® Effect” %
SNP5205 AUDPCSR LG IV (pea 6.62 T C 0.059 7.00 13.7
chromosome 4 by
comparative
mapping‘)
DI30 7.32 16.40 15.8
DIr 7.13 0.59 16

Note. AUDPC, area under disease progress curve; DI30, disease intensity at 30 d after infection; DIr, disease progress rate; SR, AUDPC values square-root-transformed.
“Frequency of the variant allele.

Effect of the variant allele.

“Proportion of genotypic variance explained by each SNP-trait association. V gy, = 2Freq(1-Freq)effect’ and V, = genotypic variance calculated from the alpha design
(Sampaio et al., 2021b).

dAs described in Santos et al.(2021).
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FIGURE 5 Frequency of the favorable (conferring resistance) allele of the 17 single nucleotide polymorphisms (SNPs) associated with
fusarium wilt area under disease progress curve (AUDPC), disease intensity at 30 d after infection (DI30), and disease progress rate (DIr) based on
the 161 grass pea accessions inoculated with Fusarium oxysporum f. sp. pisi (Fop) according to their morphological seed characteristics (color and
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FIGURE 6 Frequency of the favorable (conferring resistance) allele of the 17 single nucleotide polymorphisms (SNPs) associated with
fusarium wilt area under disease progress curve (AUDPC), disease intensity at 30 d after infection (DI30), and disease progress rate (DIr) based on

the 161 grass pea accessions inoculated with Fusarium oxysporum f. sp. pisi (Fop) according to their geographical origin
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TABLE 2 Candidate genes underlying the seven mapped-SNPs associated with grass pea AUDPC, DI30, and DIr after Fusarium oxysporum f.

sp. pisi (Fop)infection

Associated candidate

Candidate gene
functional category”

transport.unspecified

cations

amino acid

metabolism.degradation.s¢
glycine-cysteine
group.glycin

RNA . regulation of

chr6L.G2:374643039..374646582ranscription.C2H2

Marker Trait gene and location”
SNP0375 AUDPC, DI30, Psatlg212920 chr1LG6:
DIr 362713996..362719342
(bp)
SNP2424 AUDPC, DI30, Psat6g 142560 chr6LG2:
DIr 282731302..282735281
(bp)
SNP2427
SNP2428
SNP2530 DI30 Psat6g185920
(bp)
SNP2540 AUDPC, DI30, Psat6g189280
DIr chr6L.G2:381675809..3811
(bp)
SNP2797 AUDPC, DI30, Psat7g059960 chr7LG7:
DIr 99914774..99916577
(bp)

zinc finger family

development.unspecified

secondary

metabolism.wax;
misc.short chain
dehydroge-
nase/reductase
(SDR)

Details”

(at2g04305) Magnesium
transporter CorA-like
family protein

(at2g04305) Encodes a
threonine aldolase,
involved in threonine
degradation to glycine

(at1g34370) Encodes a
putative nuclear
Cys(2)His(2)-type
zinc finger protein
involved in H+ and
Al3+ rhizotoxicity

(at1g34190) NAC
domain containing
protein 17

(at1g24470) Encodes
one of the two
Arabidopsis
homologues to
YBR159w encoding a
S. cerevisiae

beta-ketoacyl
reductase (KCR)

Note. AUDPC, area under disease progress curve; DI30, disease intensity at 30 d after infection; DIr, disease progress rate; SNP, single nucleotide polymorphism.

2From pea reference genome vla (https://urgi.versailles.inra.fr/Species/Pisum).
"From Mercator4 v2.0 (https://www.plabipd.de/portal/mercator4).

lation between markers. Considering a LD decay threshold of
7 > 0.2 as the boundaries of a genomic window adjacent to
each significantly associated SNP location, none of the associ-
ated markers was in LD with any of the neighboring markers.

3.6 | Candidate genes relative expression
analysis

The relative expression of the five candidate genes proposed
directly through GWAS as genes involved in response to
Fop infection (Psatlg212920, Psa6g142560, Psa6gl185920,
Psat6g189280, and Psat7g059960) was analyzed by RT-
gPCR in disease response contrasting accessions. The rela-
tive expression was analyzed per accession by comparison
with the respective noninoculated treatment along time (24
and 48 hai, 4 and 7 dai). The expression patterns per candi-
date gene and accession along time, as well as the significant
differences detected, are shown in Supplemental Figure S7. In
the resistant accession BGE19777, a downregulation at 48 hai

was observed in the Fop inoculated plants in comparison with
the noninoculated plants for Psat1g212920 (0.78-fold change)
and Psat6g189280 (1.13-fold change). In the other resistant
accession, PI 283593, Psat7g059960 expression was upreg-
ulated at 48 hai in the Fop inoculated plants in comparison
with the noninoculated plants (2.63-fold change). Also, in this
resistant accession, Psat6g142560 was constitutively highly
expressed upon inoculation (1.68-fold change), with a down-
regulation just after 48 hai. For the other candidate genes, no
differences were identified among the analyzed resistant and
susceptible accessions at the studied time points after inocu-
lation (Supplemental Figure S7).

4 | DISCUSSION

Fusarium wilt is a constraint to grass pea production and
there is no current information on the genetic basis of resis-
tance. A recent study showed that Fop, the causal agent of the
phylogenetic close species pea, is also virulent on grass pea
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(Sampaio et al., 2021a). By screening a grass pea world-
wide collection of accessions against this pathogen infec-
tion, different sources of resistance were identified (Sampaio
et al.,, 2021b). To unravel the genetic basis of the identified
grass pea resistances, we conducted a GWAS, adding high-
throughput genotypic information to this previously collected
disease response data. Seventeen SNPs were identified as sig-
nificantly associated with grass pea response to Fop race 2
(—logglp] = 4). From these, 13 SNPs were commonly asso-
ciated with the three disease response traits under analysis
(AUDPC, DI30, and DIr), as expected for highly correlated
traits (Sampaio et al., 2021b).

Each of the 17 significant SNP—trait associations explained
merely a portion of the total genotypic variance, ranging from
7 to 29%, with an average of 13%. These results disclosed a
grass pea oligogenic resistance to Fop race 2, corroborating
the evidence of a quantitative nature of resistance revealed by
the previous phenotypic characterization of this collection of
accessions (Sampaio et al., 2021b). As revised by Sampaio
et al. (2020) and Jha et al. (2020), an oligogenic resistance to
fusarium wilt has been described in several other legumes.
Examples are chickpea, for some races of Fo f. sp. ciceris
(races 0, 1A, and 4) (Upadhyaya, Haware, et al., 1983; Upad-
hyaya, Smithson, et al., 1983; Singh et al., 1987; Tullu et al.,
1999; Halila et al., 2009); lentil (Lens culinaris Medik.), for
Fo f. sp. lentis (Kamboj et al., 1990); common bean, for Fo
f. sp. phaseoli races 4 and 6 (Fall et al., 2001; Leitdo et al.,
2020); cowpea, for Fo f. sp. tracheiphilum (Wu et al., 2015);
and pea, for this same Fop race 2 (McPhee et al., 2012).
However, from the three known pea Fop race 2 resistance
genes, Fnw4.1 (located on pea chromosome 4) and Frnw3.1
and Fnw3.2 (on pea chromosome 5) (McPhee et al., 2012),
only one marker—trait associations detected (SNP5205) might
share the chromosomal location with a pea resistance gene.
SNP5205 was located on grass pea LG IV through com-
parative mapping with the L. culinaris and M. truncatula
genome, based on the existing macrosynteny among these
related legume species (Santos et al., 2021). Grass pea LG IV
is considered highly syntenic with pea chromosome 4 (Santos
etal.,2021). The other associated SNPs detected in the present
study, were located in pea chromosomes 1, 6 and 7 and grass
pea LG I (or pea chromosome 1). Still, almost 50% of the grass
pea markers significantly associated with resistance to Fop,
including some of the most significantly associated markers,
were considered “unmapped”. This was due to lack of align-
ment with the pea genome or to the presence of more than
a single hit with the same E-value, but they might also rep-
resent candidate genes with different chromosomic locations.
All these unmapped markers were DArT-Seq markers, mark-
ers with a nucleotide sequence length of about 65 bp, ham-
pering its accurate and specific location on the pea genome.
Nevertheless, following the results of Santos et al. (2021) that
observed higher linkage mapping synteny between grass pea

and pea, than between grass pea and lentil or barrel medic
(Medicago truncatula Gaertn.), pea seems to be the best phy-
logenetically related species to assembly grass pea markers
along chromosomes.

The use of the pea reference genome to map the SNP mark-
ers and the assumption of high synteny between grass pea and
pea genomes allowed the proposal of five candidate genes,
directly obtained through GWAS, implicated in transport,
amino acid metabolism, RNA (regulation of transcription),
development, and secondary metabolism. To a successful
host—pathogen colonization, several plant defense barriers
must be transposed. One of those barriers is the plant cell
wall. Cell wall integrity maintenance is important in prevent-
ing pathogen invasion, acting as a physical barrier but also as
an antimicrobial compound reservoir (Miedes et al., 2014).
Indeed, cell wall reinforcements were previously detected
by histological analysis of selected Fop inoculated grass pea
resistant accessions, from the same grass pea collection here
used for GWAS, blocking the pathogen at the outer-root area
(Sampaio et al., 2021b). Both magnesium transportation and
biosynthesis of secondary metabolites as waxes are somehow
related to the cell wall integrity maintenance but at different
layers. At the middle lamella, the outermost layer of the cell
wall, magnesium together with calcium makes pectin cell
wall substances resistant to degradation. When adequate
magnesium is available, fusarium wilt symptoms tend to be
less severe due to the increase of resistance to extracellular
pectin degrading enzymes of soil-borne fungi, as Fo (Huber
& Jones, 2013). Although magnesium is in part responsible
for cell wall integrity during Fo attacks, only through effi-
cient transport it can reach the cell wall and contribute to
the integrity. This may be one of the mechanisms present in
the resistant accession BGE19777, where the candidate gene
Psatlg212920, a magnesium transporter Cor-A-like family
protein located in the membrane, was found downregulated
48 hai. At the secondary cell wall, waxes, together with cutin
and lignins, are the major components allowing cell wall
integrity maintenance (Houston et al., 2016). In a tolerant
banana cultivar to Fo f. sp. cubense, genes related to wax
biosynthesis were detected as upregulated in early stages of
infection (Li et al., 2019). In this study, the proposed candi-
date gene involved in wax biosynthesis, Psat7g059960, was
also found upregulated upon infection (48 hai) in the resistant
accession PI283593, anticipating that wax biosynthesis may
be important for this accession resistance.

Although the resistance mechanisms involved in fungus
penetration inhibition are considered the main mechanisms
for a successful resistance (Jiménez-Fernandez et al., 2013),
other important resistance mechanisms could act not only
during penetration but also during pathogen progression.
This seems to be the case of the mechanisms associated with
Psat6g142560, constitutively highly expressed on the inoc-
ulated resistant accession PI283593 and downregulated just
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after 48 hai. This gene is involved in amino acid biosynthesis
and encodes for a threonine aldolase. During plant—pathogen
interaction, both as a first response to pathogen attack
and also during disease infection progression, amino acid
metabolism alterations occur (Fagard et al., 2014). Alter-
ations in amino acid metabolism were detected in chickpea
upon infection with Fo f. sp. ciceris, namely in the susceptible
cultivar (Rathod & Vakharia, 2011; Kumar et al., 2016). The
decrease in the levels of several amino acids in the susceptible
cultivars, suggests that Fo utilizes them for its establish-
ment, development, and proliferation (Kumar et al., 2016).
However, the exact role of such amino acid modifications
in pathogen defense remains unknown. Threonine aldolase
has been reported to play a role in seed nutritional quality
(Jander et al., 2004), but its involvement in plant-pathogen
defense was never reported so far. Nevertheless, its enzymatic
function is inducible by methyl jasmonate (Broeckling et al.,
2005), which plays an important regulatory role in plant
defense (Wasternack, 2007).

When Fop is already growing in the upper part of the vas-
cular vessels, resistance mechanisms to avoid dramatic wilt-
ing can still operate. One possible candidate gene involved in
the later stages of Fop resistance is the Psat6g189280 gene,
downregulated at 48 hai on the resistant accession BGE19777
in the present study and encoding a NAC domain-containing
protein 17 (NACO017) known to be involved in development. In
Arabidopsis, a single mutant of nac017 accelerates cell death
and leaf senescence, indicating that NACO17 (together with
NACO082 and NAC090) governs positive-to-negative regula-
tory shift in leaf senescence (Kim et al., 2018). Although
NACO17 is not involved directly in Fo resistance, leaf senesce
is one of the symptoms caused by Fo infection. This sug-
gests that although never reported in fusarium wilt resistance,
NACO17 can be somehow related to it by maintaining plant
integrity.

Psat6g185920, another candidate gene, encodes a
Cys(2)His(2)-type zinc finger protein. Although in Arabidop-
sis thaliana this protein is involved in proton and aluminum
rhizotoxicity response (Sawaki et al., 2009), in Nicotiana
benthamiana it has been related with plant defense, acting as
aregulator of SSCut, a plant elicitor that induces plant immu-
nity through cell death during infection of the soil-borne
oomycete Phytophthora nicotianae (Zhang et al., 2016).
Nevertheless, no significant differences were detected on
this candidate gene expression. Different resistant accessions
may have different genetic basis of resistance, resulting into
different candidate gene expression patterns across time,
and so we do not exclude that differences in the candidate
genes expression could be higher by analyzing different time
points after infection or different resistant accessions. Indeed,
the phenotypic characterization was performed until 30 dai,
offering a wide range of time points where these genes
can be differentially expressed. Furthermore, the resistant

accessions used for RT-qPCR analysis were characterized
by low AUDPC and DIr (Sampaio et al., 2021b) suggesting
that in these accessions the infection started early but have
progressed very slow. If accessions with different resistance
mechanisms, where disease symptoms start late although
progressing fast (low AUDPC and high DIr) have been
included, perhaps different gene expression patterns could
have been observed.

The assembly and annotation of the grass pea full refer-
ence genome are still ongoing (Emmrich et al., 2020), impos-
ing extra challenges on the interpretation of grass pea GWAS
results. If a complete assembled genome would be available,
a higher percentage of the screened SNP markers would have
been allocated to a grass pea chromosome physical posi-
tion, allowing higher identification of candidate genes. In this
study, nucleotide-binding, leucine-rich-repeat genes, one of
the major disease resistance gene types, were not detected.
Nevertheless, this result is in line with the ones obtained in
other legume species, where no nucleotide-binding, leucine-
rich-repeat genes have been reported as involved in fusarium
wilt resistance (Gupta et al., 2017; Chang et al., 2019; Leitao
et al., 2020).

In all associated SNPs, the favorable allele (conferring
increased resistance) was the most frequent in both seed color
(light and dark) and seed size (large and small) groups of
accessions, suggesting that most accessions have many favor-
able alleles, although lighter and larger accessions presented
higher frequency levels of favorable alleles. These results con-
cur with what was observed during the grass pea accessions
phenotypic characterization, with lighter and larger acces-
sions looking consistently more resistant to Fop (Sampaio
et al., 2021b). Asian and Ethiopian accessions, characterized
by darker and smaller seeds (Przybylska et al., 2000), pre-
sented in general the lower SNP beneficial alleles frequency.
Ethiopian grass pea accessions were also considered the most
susceptible in the previous phenotypic characterization to Fop
infection, whereas Asian accessions revealed a considerable
range of responses, including resistance and susceptibility
(Sampaio et al., 2021b). Our results suggest that it might be
possible to increase the resistance levels of Ethiopian and
Asian accessions by introgression of the present identified
resistant alleles in these grass pea populations. European and
especially Northern African accessions revealed to be promis-
ing sources of resistance alleles, with high frequencies of
the favorable allele in almost all the associated SNPs. How-
ever, to improve Asian and Ethiopian grass pea populations,
frequently characterized by dark and smaller seeds, acces-
sions with the same morphological seed types would be opti-
mal to integrate into cross-breeding programs. Interestingly,
by principal component analysis and STRUCTURE analyses,
smaller and darker seeded grass pea accessions were char-
acterized by higher diversity and higher genetic admixtures,
besides a wider range of disease responses (Sampaio et al.,
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2021b), when compared with the lighter and larger seeded
accessions. This higher diversity makes this particular eco-
type of smaller and darker seeds a very promising source of
interesting trait combinations for future breeding. Indeed, sev-
eral dark and small seed accessions have been identified as
resistant to fusarium wilt and good candidates for resistance
breeding within this ecotype. Examples may be the Asian
accession PI426897 (belonging to genetic cluster B) and the
Ethiopian accession PI226948 (belonging to genetic cluster
A with admixture). These are both characterized by darker
and smaller seeds, lower disease symptoms (Sampaio et al.,
2021b), and the presence of the favorable allele for almost
all the associated SNPs, being considered valuable sources of
resistance to be included in the dark, smaller seed breeding
programs. Only by considering the associated SNP with the
highest effect (SNP3907) on Fop resistance, selection in favor
of the beneficial allelic variant “G”, will substantially reduce
susceptibility for all the traits measured (24.5% in AUDPC,
26.9% in DI30, and 29.1% in DIr).

Phenotypic field evaluation of the grass pea worldwide col-
lection to fusarium wilt is also needed in the future to con-
firm the maintenance at field level of the marker—trait associa-
tions here revealed under controlled environmental conditions
using a trimmed-root inoculation approach.

With the present study, by exploring the natural variation
present in a worldwide grass pea collection, several genomic
regions controlling resistance to Fop race 2 were unraveled
reinforcing the usefulness of this association panel and the
comparative mapping approach here applied. The favorable
SNP alleles and putative candidate genes here identified con-
stitute important tools to assist precision breeding for fusar-
ium wilt resistance in grass pea. These might be potentially
also valuable for pea breeding if crossability barriers are over-
come. Special efforts should focus on SNPs with the strongest
associations and/or SNPs, which alleles confer higher resis-
tance levels.
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