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Abstract: This paper is focused on intervention scenarios for smallholder potato value chains in
Kenya that improve yields, reduce losses, minimize greenhouse gas (GHG) emissions and increase
economic performance and food security. For that, business models and GHG emission estimates
are developed, based on the existing data, combined with relevancy and time-to-impact analysis
using practical real-life information from stakeholders in the potato sector, which is the second
largest agricultural crop in Kenya after maize. The results show that profitability, environmental
improvement and food security can go hand in hand with realistic short-term interventions for potato
production at smallholder farms.

Keywords: potato; smallholder farming; food loss; Kenya; greenhouse gas emissions; sustainability

1. Introduction

In 2011, the food loss and waste (FLW) worldwide was estimated to be one-third of
all the food produced for human consumption [1]. Recently, the Food and Agriculture
Organization of the United Nations (FAO) proposed to split up the definition of FLW in
separate Food Loss and Food Waste indicators, and provided an estimate for worldwide
Food Losses of 14% of total production (Food Loss Index) [2]. Meanwhile, estimates for
the Food Waste Index are under preparation by the United Nations Environment Program.
In the context of the Sustainable Development Goals (SDGs), attention is increasing on
other outcomes of food production as well, including greenhouse gas (GHG) emissions,
resource depletion, food security and farmer livelihoods. Guo et al. [3] conducted a detailed
analysis of the relation between FLW and food loss-induced GHG emissions emitted in the
production and distribution of food that is ultimately lost or wasted. The general results
of this research show that the total global FLW in 2017 amounted to approximately 1.9 Gt
of food, and the associated food loss-induced GHG emissions were estimated at 2.5 Gt
CO,-equivalent, amounting to some 4% of total anthropogenic GHG emissions.

The relevance of the environmental impact of food supply chains is beyond dispute.
The indicators commonly used are resource use (land and water use), GHG emissions,
marine and terrestrial eutrophication, acidification and soil depletion [4]. However, there
are many possible extensions of this list of indicators [5,6]. It is worthwhile to note that
food waste itself is not commonly used as an indicator, but an input to calculate the
environmental impact [7]. In many scientific studies, food supply chains are analyzed with
respect to either economic or environmental impact [8-12]. Sometimes, their relevance,
impact or time to impact are also described, but rarely all of them together.

Roots, tubers and oil-bearing crops have the highest percentage of food loss (>25%) of
all commodity groups, and cassava and potato are the main drivers for this high amount [2].
Therefore, the potato is a relevant product to study with respect to FLW and the related
economic and environmental indicators.
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Kenya is one of the main producers of potatoes in Africa (after Algeria, Egypt and
South Africa) [13,14]. In Kenyan agriculture, potatoes are the second largest product in
terms of quantity produced, after maize. The national potato production in 2019 was
approximately 2.0 million tons [15]; public data on the more detailed county level were
most recently available for 2016, as shown in Table 1. Clearly, the southwestern part of
Kenya is the core production region for potatoes. The two main wholesale markets for
potatoes in Kenya are the Wakulima wholesale market in Nairobi and the Kongowea
wholesale market in Mombasa. The import and export of ware potatoes is absent or
negligible [15], and therefore, the entire potato supply chains are located in Kenya itself.

Table 1. Ware Potato Production in Metric Tons in Kenya per County (2016).

Production (MT) 2012 2013 2014 2015 2016 % 2016
Nyandarua 240,838 272,520 293,410 271,045 248,290 22%
Nakuru 154,530 313,716 361,027 212,235 225,479 20%
Kiambu 126,055 143,431 99,314 116,605 149,219 13%
Elgeyo Marakwet 208,883 212,558 196,305 90,400 130,891 11%
Meru 249,143 159,539 157,504 129,047 80,608 7%
Nyeri 27,553 24,949 27,765 93,927 77,533 7%
Narok 75,115 80,264 82,402 61,783 76,222 7%
Laikipia 2252 5300 5680 38,549 48,104 4%
Murang’a 27,553 24,949 27,765 48,032 26,963 2%
Bomet 28,470 39,240 12,089 26,107 15,175 1%
TOTAL Kenya 1,230,240 1,380,442 1,367,752 1,177,262 1,149,937 100%

To further illustrate the context of this research, a typical Kenyan potato supply chain,
from farm to sales outlet, is visualized in Figure 1.
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Figure 1. Potato Supply Chain in Kenya [14].

Of the fresh potatoes produced, some 80% ends up at smaller retailers in the local
market or in the main markets of the major cities, 1% is supplied to urban supermarkets,
10% is supplied to restaurants/institutions and 9% is used in processing (of which 5% is
used for the production of French fries, 3% for crisps and other snacks and the remaining
1% as a source of starch/potato flour/flakes) [14]. The flows from the production areas
to the cities are the largest in volume, where the following stakeholders are involved:
farmer—Ilocal trader—wholesaler—retailer /restaurants /supermarkets—consumer. In the
post-harvest part of this typical supply chain, transportation, food loss and food waste
induce GHG emissions—cold storage is generally not used. However, the largest share of
GHG emissions, as in most agricultural supply chains, occurs at the farm level (12.8%).
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Potato farming in Kenya constitutes an extreme case of smallholder-dominated agri-
culture. Of the approximately 800,000 potato farmers in Kenya, 90%are smallholders with
one hectare or less under cultivation [13]. Smallholder potato farms suffer considerably
from inefficiencies, leading to low yields, high losses and, as a result, limited economic
prospects for the smallholder farmers involved. First of all, the lack of certified seed has
a huge impact on the current yield. The yield for Shangi (the most popular variety in
Kenya) farm-saved seed is approximately 8 tons/ha, whereas Shangi-certified seed pro-
duces average yields of 16 tons/ha [14]. Due to persistent seed shortages, the certified
seed potato production currently covers only some 5% of the demand, with the other 95%
being fulfilled with potatoes grown with lower-yielding farm-saved seeds. The Kenyan
government has launched a potato seed multiplication program in six counties to address
the seed shortages that occur perennially [16]. The new seeds have been produced by
plant breeders at the Kenya Agricultural and Livestock Research Organization (KALRO).
Secondly, there are high losses at the farm level mainly due to poor harvest practices.
Manual harvesting with crude tools often leads to considerable mechanical damage to
the potatoes for various reasons. This problem can be solved by the use of appropriate
machinery, but this is considered financially out of reach for many farmers, although
economic analyses show that it is an economically viable business case [13,14]. Based on
earlier research, there seems to be a positive business case for smallholder farmers to adopt
these interventions, provided that they can cover the upfront costs with the benefit of the
interventions manifesting one harvest later. This research, however, is still confined to a
limited number of studies that do not address all the relevant dimensions of the issue. In
one study focusing on smallholder potato farming in Kenya [13], a multi-criteria analysis
is conducted, but principally on economic criteria. From an environmental point of view,
more work is conducted on FLW by GIZ [14,17]. None of these studies, however, address
the issue of GHG emissions as an important aspect of the sustainable development of small-
holder agriculture. Outside of the Kenyan context, one paper analyzed GHG emissions for
potato in Zimbabwe [18]. However, this study remains rather descriptive. Thus far, there
has not been a comprehensive analysis of the amount of GHG emissions related to potato
production, and the various scenarios for interventions in this sector and their associated
business cases.

This paper aims to fill this gap by taking a comprehensive approach to an environmen-
tal and economic assessment of pre-harvest interventions in smallholder potato farming
in Kenya. Starting from the current common practices in smallholder potato farming, the
authors specify several scenarios for intervention adoption on smallholder farms, including
the use of better seed, applying more appropriate fertilizer and crop protection and using
mechanized equipment for farming activities—and combinations of these interventions.
These intervention scenarios are evaluated relative to the current common practice sce-
nario on a wide range of criteria, including yields, losses, economic impact and extending
towards GHG emissions. For this evaluation, the authors use a novel calculation method
of yields and losses, relying on backward calculation from the volume available at the
market, allowing for a fair and balanced assessment of losses, yields, costs, benefits and
GHG emissions. Moreover, by taking the marketable volume of produce as the benchmark,
the issue of food security is explicitly made part of this evaluation.

The study presents an assessment of several interventions in smallholder potato farm-
ing and evaluates them from multiple perspectives—economic and environmental—to
obtain a more integral view on their impact. The findings serve to support the decision-
making of smallholder farmers, policymakers and other stakeholders in the food system
toward improved farming practices. This concerns the evaluation of different types of
possible interventions in a context of smallholder farmers with limited resources, but
also provides support for the development of financial services to smallholder farmers by
showing how—and by how much—the upfront investment in different types of interven-
tions can constitute a sustainable improvement of farmers’ productivity, yields and farmer
livelihoods, while at the same time reducing food losses and GHG emissions.
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The paper is structured as follows. Section 2 describes the case of the Kenyan potato
supply chain, presents different scenarios of interventions in smallholder potato production,
and outlines the approach used to quantify the outcomes related to yield, losses, financial
result and GHG emissions in these different scenarios. Section 3 presents the results of
these calculations, showing that the interventions have an overall positive impact on
smallholder potato farming by reducing losses and GHG emissions and improving yields,
farmer livelihoods and food security. Section 4 discusses the results and their implications.
Section 5 concludes.

2. Data and Method

This section describes the different production scenarios that will be considered and
outlines the method of analysis.

2.1. Potato Production Scenarios

Above, the main challenges for the potato sector were mentioned, including the lack
of certified seed, lack of appropriate inputs and bad harvesting practices that lead to sub-
optimal yields and high losses. In this study, different scenarios are explored with different
types of improved farming practices, for each of which, the outcome will be evaluated in
terms of yield, GHG emissions, food losses and economic impact for smallholder farmers.
The focus of interventions is specifically on potato smallholders in Kenya, assuming no
changes occur in the post-farm part of the supply chain from the main production area to
the Wakulima wholesale market in Nairobi. The average distance from the main production
areas in the southwest of Kenya to the Wakulima wholesale market in Nairobi is around
250 km. In this study, this specific supply chain to Nairobi is considered as the reference
situation (for another main supply chain, from the production areas in the southwest to the
Kongowea wholesale market in Mombasa, the average distance from production to market
is 700 km). In the reference situation, we focus on the supply chains for fresh potatoes,
since processed potato products are only a small part of the flow.

Starting certified seed production is not realistic for a smallholder, because of the
required economies of scale [13]. However, the Kenyan government is taking action on
increasing the production of certified seed through KALRO, making it a more obvious
scenario that smallholder farmers would shift toward buying certified seed (assuming an
increase in availability). Another option is using clean seeds: seeds produced outside of
the formal seed certification process but using Good Agricultural Practices (GAPs) with
quality assurance by Ministry of Agriculture extension officers.

Another challenge is the accessibility and availability of appropriate inputs such as
fertilizer and crop protection. Currently, many smallholders use diammonium phosphate
(DAP) fertilizer, since it is subsidized by the government. This fertilizer is meant for maize
production, the number one crop in Kenya, and hence is not fully suited for potato culti-
vation, leading to both suboptimal production yields and environmental pressure. DAP
is subsidized, and although other (more expensive) nitrogen, phosphorus and potassium
(NPK) fertilizers outperform DAP in yield and, therefore, might be financially more attrac-
tive, it is difficult to convince farmers to use these better alternatives, especially when the
result is a whole season away:.

A third challenge concerns the mechanical damage to the potatoes caused by poor
harvesting practices, often manual with crude tools. Using the proper machinery, losses
can be reduced. Due to the lack of scale and resources on smallholder farms, buying
mechanized equipment is often not a viable option for smallholders, whereas they can hire
equipment for on-farm activities.

Based on these issues, we identify four scenarios (see Table 2 for an overview). Scenario
1is the reference scenario, with standard practices used by the great majority of smallholder
potato farmers—manual labor, home-saved seed, relatively small amounts of the cheaper
DAP fertilizer and limited application of plant protection. In scenario 2, certified seed is
used, with an intensified application of (DAP) fertilizer and plant protection. In scenario 3,
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clean seed is used, and machinery is used for ploughing. Scenario 4 is the most technically
advanced, yet still realistic, scenario for smallholders: Certified seed is used, and ploughing,
planting and harvesting are all performed using machinery, more appropriate NPK fertilizer
is used instead of DAP, and plant protection is intensified. Likely values for fertilizer input
and plant protection were obtained from personal communications with the National
Potato Council Kenya [19] and secondary sources on potato production in Kenya [14,20].

Table 2. Overview of Scenarios.

Scen. Farming Seed Fertilizer Plant Protection
1 By hand Home-saved DAP at 150 kg/ha Ridomil /Mancozeb 3 x
2 By hand Certified seed DAP at 500 kg/ha Ridomil /Mancozeb 4 x
Hire equipment . .
3 for some farm Clean seed DAP at 500 kg/ha Karate, Ridomil gold, Revus,
. Mancozeb, 11 sprays
handling
Hire equipment
4 for some farm Certified seed NPK 16:8:22 at 500 kg/ha ~ Mixed spray (see Table A1)
handling

For a comprehensive calculation of costs, profit and GHG emissions, the variables in
the scenarios need to be specified further. In Table 3 below the activities are elaborated,
including the equipment, materials and transport means used. The details of the activ-
ities in the scenarios are taken from various secondary sources [13,14,21] and personal
communication with the National Potato Council Kenya [22], Bayer [23] and SNV [24].

Table 3. Activities per Scenario.

Activity Scenario 1 (Ref) Scenario 2 Scenario 3 Scenario 4
. Certified seeds,
» Clean seeds, mechanized X .
Certified seeds and loughing and intensified mechanized ploughing
Standard practice intensified fertilizer and ploughing a and harvesting, NPK
. fertilizer and e . iy,
plant protection . fertilizer and intensified
plant protection .
plant protection
Farm
-Obtaining seed Home-saved Buying certified seed Buying clean seed Buying certified seed
-Stubble cleaning By hand By hand By hand By hand
-Ploughing Ox plough Ox plough Mechanized (Hired) Mechanized (hired)
-Seedbed preparation By hand By hand By hand By hand
-Fertilizer DAP at 150 kg/ha DAP at 500 kg/ha DAP at 500 Kg/ha NPK 16:8:22
. » Certified seed,
-Planting Home seed, by hand Certified seed, by hand Clean seed, by hand mechanized (hired)
3 sprays of 4 sprays of 11 sprays at different
-Plant protection Ridomil /Mancozeb Ridomil /Mancozeb stages of the crop 8 weeks mixed sprays
development cycle
-Cultivation By hand By hand By hand By hand
-Harvesting Fork jembe/manual labor ~ Fork jembe/manual labor  Fork jembe/manual labor Mechanized (hired)
-Water supply Rainfed Rainfed Rainfed Rainfed
T t (broker/trader) Uncooled 10 T truck for Uncooled 10 T truck for Uncooled 10 T truck for Uncooled 10 T truck for
ransport fhrokertrader 250 km 250 km 250 km 250 km
Market Selling/no storage Selling/no storage Selling /no storage Selling/no storage

(retailer/wholesaler)

Note that although the post-harvest activities in the transport and market stages are
identical for each scenario, they are still taken into account, on the one hand to show
the relatively small share of GHG emitted in these stages compared to production, and
on the other hand to incorporate the impact of the post-farm losses/waste in the GHG
emission analysis.

2.2. Approach

Besides GHG emissions, FLW and economic factors are also included in the analysis.
For scenario 1 (the reference situation) and scenarios 2—4, calculations on FLW and economic
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impact are carried out in [13,14]. These results will be used in our methodology for
further calculations.

Crucial for this type of calculations is the product flow, since the size of this flow is
the basis for these quantitative analyses. There are several ways to calculate product flow,
and the chosen approach has a huge impact on the results for all indicators. Although
several indicators are relevant, the focus in this study is on a new indicator for the potato
supply chain in Kenya, namely GHG emissions’ calculations. The way GHG emissions
are calculated varies in the literature and depends on the purpose of the analysis. Com-
monly, lost or wasted produce is excluded from GHG emissions calculations, although it is
produced under the same conditions as the non-wasted part, requiring inputs and having
its own environmental footprint of production-stage GHG emissions up to the point of
loss or waste [25]. Another type of calculation is where the destination of the food waste is
included and the GHG emissions of the waste treatment are incorporated [26]. In many
cases, agricultural products are not completely edible (e.g., a cow or a pineapple), but
to obtain a complete overview of GHG emissions during production, the entire product,
including the inedible parts, should be considered. For example, for beef, only 55% of
the live animal weight is used as beef for human consumption [27], which is called the
carcass utilization rate. There are other edible parts of a cow such as offal, but for beef
production, 45% of the animal is irrelevant. For that purpose, GHG emissions can be
calculated starting from 1 kg of beef and going backwards through the chain to see how
much ‘cow’ you need for this amount of product at the point of sale. This again can be
linked to the total GHG emissions required to raise one cow for the slaughterhouse [27]. To
evaluate the four scenarios, neither one nor the other of these approaches suits the goal of
a fair comparison. The reason for that is the absence of a backward calculation for losses,
although the approach for scaling up GHG emissions from the edible quantities to the
entire product matches the way of thinking. When comparing two separate production
systems, losses and productivity are generally not taken into account—for example, a
comparison between a farmer harvesting 500 kg of potatoes from 1 ha and another farmer
producing 1000 kg from 1 ha (all else equal) would be unfair if it did not take into account
the losses and productivity differences. Therefore, it is desirable to calculate the GHG
emissions along the chain backwards from a specified quantity of product at the point
of sale. Using this approach in the example above would realistically show how the first
farmer produces less efficiently, requiring more inputs (land, water and others) and hence,
producing more GHG emissions for every kilogram of potatoes at the point of sale. The
following example (Figure 2) illustrates the way of thinking applied in this paper and
explains its relevance.

The basic idea is simple: to compare two (parts of) value chains on one of the indicators
(such as GHG emissions), take the last link in the value chain you consider and calculate
the GHG emission to obtain 1 ton of the product at the end of that link, including all
losses on the way. In this study, the ware potato chain is from the smallholder farm to
point of sale (retailer, supermarket, or restaurant). An example is provided in Figure 1.
Clearly, information on yield and losses are involved, and in fact, these factors will make
the difference. To determine the volume of the potato product flow per scenario, FLW will
be included in the backward calculation from 1 ton of potato that can be sold at a regular
price at the point of sale. The methodology applied in this paper is visualized in Figure 3.

This calculation method is explained as follows. First, a flow scheme is designed,
including FLW flows. Note that the flows are the same for all scenarios, but the volume
of the flows differs. The volume depends on the various scenario variables explained
above—choice of seed, inputs and the way activities take place at the farm level. The
scenarios, as presented in Table 2, are the basis for the calculation method. Variations
in farming practices between the scenarios determine differences in yields and losses.
Secondly, the impact of the scenario variables on the FLW data is determined. For example,
mechanized farming with the appropriate equipment has a different loss percentage than
non-mechanized farming (i.e., manually, often with crude hand tools). This study aims to
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add an important issue to the research in this area, namely the relation between economic
losses and FLW. In countries in Africa and Asia, wholesale markets and retailer markets are
the most important logistic and marketing hubs for food flows, where the balance between
supply and demand determines prices. Percentagewise, FLW is low since if products are
of less quality, with bruises or cuts, they are sold anyway for human consumption but at
a lower price. In FLW research, this is treated as an economic loss, but not added to the
weight of FLW. In this paper, this is taken into account by considering the economic loss as
an indicator (proxy) of the amount that is cut off the potato to obtain the remaining edible

part, and hence allocated to FLW.

Suppose asmallholder potato farm (farm A) in Kenya uses its home-grown seed from last harvest
and all activities are carried out by hand (e.g.. ploughing, seedbed preparation, harvesting), and
another smallholder farm (farm B) uses certified seeds and mechanization for these activities by
hiring the equipment. From a GHG emission point of view, the results per ha are very much in
favour of the hand-managed farm, because human respiration is excluded in LCAs, while GHG
emissions from equipment are included. However, the two farms will differ considerably in
losses and yield, as the mechanized production hashigher yields and lower losses. Therefore, the
GHG emissions per kg of edible product may be lower.

For the same reason, a comparison at supply chain level is not appropriate if you follow the
production volume of both farms. The volume per ha from farm A is smaller than from farm B;
hence, all post-harvest activities in the supply chain will induce higher GHG emissions for farm
B. This is mathematically correct, butintuitively, farm B should not be ‘punished’ for having less
losses by neglecting food loss-induced GHG emissions at Farm A.

An approach where transport GHG emissions are assumed constant per weight unit (tfon or kg)
also fails. For instance, comparing farm A and B on the transport of 1 ton of potatoes from A to B
will result in the same GHG emission, but farm A, which has lower yields and a higher loss
percentage than farm B, requires much more production volume (and, therefore, more GHG
emissions) to get 1 ton of potatoes on the truck. Therefore, adding up the GHG emissions per ton
(or kg) per supply chain link, is not a proper way to compare potato value chains on this
environmental indicator.

Figure 2. Illustrative Example of Calculation Method.

The yield (in kg per ha of farmland) per scenario is taken from the literature and
local experts from the National Potato Council Kenya (NPCK). From there, the scenario
characteristics, FLW data and the yield are applied as inputs for the backward calculation
of potato flows in the flow scheme from 1 ton of regular sales of potatoes at retail level for
all 4 scenarios, which closes the analysis. Finally, based on the quantification of the flows in
the last step, the results on the performance of the 4 scenarios are calculated. For FLW and
economic performance, this is derived from the results of earlier work on potato supply
chains in Kenya [13,14,17]. Note that FLW data are used as inputs as well as outputs. FLW
inputs are parameter values such as loss % related to certain activities, whereas the FLW
output is the result of applying these inputs to the various scenarios and corresponding
flows, which differ in size.

The sub-sections below explain in more detail the different elements used as inputs
for the backward calculations, namely the flow scheme, FLW data and yield data.
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Figure 3. Visualization of Calculation Method.

2.2.1. The Flow Scheme

A typical ware potato smallholder in Kenya not only produces for the market but
also for seed and home consumption, leading to flows that are not commonly presented in
food supply chain representations. Since FLW is included in the flow scheme, these uses
have to be incorporated as well. However, the studies that provide detailed analysis of
FLW in the potato supply chain in Kenya deal with FLW in a different way. In a study by
Kaguongo et al. [17], (slightly) damaged potatoes are brought to the market in large bags
mixed with good quality potatoes. They are sold at a somewhat lower price depending
on the share of the low-quality products. This practice we label ‘subscenario (a)’. Another
approach is to consider damaged potatoes as an immediate loss at the farm level, that does
not generate money along the chain anymore [13]. We label this practice ‘subscenario (b)’

(see Figure 4).
Subscenario a) ——+ Flow of damaged products Subscenario b)
production production

left in field left !n field loss
(temp) (final)

harvest home use harvest home use

\—~ seed \—» seed

storage 4» storage loss

=L} v=."_i
QO‘Q’ transport loss forl=gt transport loss

retail — loss retail — loss
p——

damaged potato sold damaged potato unsold

Figure 4. Flow Scheme with Subscenarios (a,b). Both Subscenarios Can Hold for All 4 Scenarios.
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Note that in the present paper, no attention is paid to what happens to the waste flows,
such as, for example, animal feed or composting. The reason to include both approaches
for dealing with FLW is that it is very likely that the real-world situation contains elements
of both. Not all damaged potatoes are taken to the market—but some are—and not all
damaged potatoes will be considered as loss—but some are. Maybe at the farm level,
damaged potatoes are considered a loss, but at retail level, these products might be sold
at a lower price anyway. By taking both flow schemes into account for volumes, the
subscenarios provide two extreme cases with a bandwidth in between in which the real-
world situation will fall. Later on, it turns out that the bandwidth is small enough to draw
clear conclusions, and the impact of taking either one of the FLW approaches is limited.

2.2.2. Food Loss and Waste Data

For the backward calculation, a quantitative analysis of the flows in Figure 4 is
needed, including losses. The complexity of losses requires a closer look into this topic.
Worldwide initiatives are working on measurements and a reduction in FLW and there
are various definitions and interpretations of what should be called FLW, but this study
stays away from these details and applies results from detailed studies by Giencke [17]
and Technoserve [13]. Note that pre-harvest causes such as diseases as a cause of on-farm
losses are not considered in these studies. A reference value for harvest losses is taken
from Waudo [28]. The following data on the destination of potatoes (including losses) in
the Kenyan potato chain are found as shown in Table 4:

Table 4. Potato Use in Kenya Based on 3 Studies.

Potato Use Kaguongo (2014) Technoserve (2018) Waudo (2015)
Sold at market 55% 55%
Used for seed 14% 12%
On-farm consumption 12% 11%
Storage loss 1% 1%
Left in field 2%
Harvest loss 12% 13%
Transport loss (farm to market) 6% 8%
Market loss 1% 1%
Retail level damage 9%
TOTAL 100% 100%

As stated earlier, the first reference considers the damaged potatoes to be marketable
or part of doing business. The second reference considers the damaged potatoes as loss
for the farmer. As is shown in Figure A1, potato bags at the wholesale market still might
contain a lot of cut and bruised potatoes.

According to Table 4, the marketable part (after losses, home consumption and seed
use) from production is between 71% for reference [17] and 64% for reference [13]. A more
detailed description of losses and damages is available as well [17]:

The percentages in Tables 4 and 5 are not comparable, since in Table 4 it adds up all
destinations of the total production of 100%, whereas in Table 5 percentages of loss and
damages are part of the product weight at these stages of the supply chain. The sorting
process at the broker damages another 5%, leading to a total of 2.9% losses and 15.2%
damage by the farmer and sorter combined, before the potatoes reach the market. In
Ref. [14], losses are mentioned of 19%, but, since no distinction between loss and damage
is made in this study, the assumption is that the split is according to Table 5.
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Table 5. Losses and Damages in the Potato Value Chain in Kenya [17].

Supply Chain Link Average Losses Average Damages
Left in field 2.1%
Harvesting tool 4.0%
Farmer Harvesting in the rain 2.8%
Casual labor 3.4%
Storage loss 0.8%
Broker Sorting 5%

i 6.5% cut
Transport/packaging 2.3% green
Wholesaler /retailer 1.3% rotten 11(.)6 %o cut

2.8% green

Using Table 5 as an example, the following way of calculating FLW is introduced for
damaged products. Suppose a retailer has 1000 kg of potatoes and is responsible for the
transport to his site. Then, according to Table 5, of the 1000 kg, 13 kg is rotten, 181 kg is cut
and 51 kg is green. The amount of damaged potato equals 232 kg. The question is whether
the retailer can sell this, possibly at a lower price. According to previous research [17],
wholesalers/retailers still receive 50% of the market potato price for cut or bruised potatoes.
It is plausible that these potatoes are used for human consumption, and eventually bad
parts are cut off before preparing a meal. Hence, some part of these damaged potatoes
become waste, and another part is still consumed. It is assumed that the price paid for the
damaged potato reflects the percentage of edible parts of the potatoes. If the paid price is
50% of the regular price, then 116 kg of the 232 kg damaged potatoes are added to waste
and also 116 kg is incorporated in the availability of potato for human consumption in the
context of food security. This corresponds to subscenario (a). In subscenario (b), damaged
products are unsold and this approach, using the economic loss as a proxy for the volume
of FLW, is not necessary.

The data on losses in Tables 4 and 5 are applicable to the reference situation (scenario 1),
but the impact of losses in scenario 2—4 has to be determined as well. When switching to
certified or clean seed, no effects on losses are expected, since the causes, such as suboptimal
harvesting practices, harvesting in the rain, casual labor and storage losses are not taken
away. In case of mechanization, as described in scenario 3, the harvest losses reduce from
15.2 to 2% [29].

2.2.3. Yield

Another input for the backward calculation is the yield. Major diseases such as late
blight (LB), bacterial wilt (BW) and viruses can lead to yield losses of 20-80%, if the crop
is not well protected with fungicides and insecticides. The yield, corresponding to the
different characteristics per scenario in Table 3 is, in case of scenarios 1, 2 and 4, taken
from field trials with (among other varieties) Shangi in the Potato Initiative Project (PIA),
described in [14]. The yield data for the clean seed case (scenario 3) are sourced from SNV
Kenya [24] (see Table 6):

Table 6. Yield in t/ha per Scenario.

Scenario Yield in t/ha for Shangi Variety Seed Type

1 8.3 Home-saved
2 16.1 Certified seed
3 17.8 Clean seed

4 21.6 Certified seed
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3. Results
3.1. Backward Calculation of Yields

Calculating the GHG emissions for the selected scenarios not only depends on the
pre- and post-harvest activities, but also on the type and amount of the materials used
(e.g., fertilizer and plant protection material). In turn, they are related to the production
weight that is considered and that is, according to the methodology, calculated per scenario
backwards from 1000 kg at retail sales towards the farm. Additionally, two subscenarios are
provided, as explained before: one where 100% of them are sold at a reduced price, being a
small share of a potato bag with also good marketable potatoes (subscenario (a)), and one
where all the damaged potatoes are considered as loss and remain unsold (subscenario (b)).

Scenario 1a equals scenario 2a and 3a in flow; however, there will be a difference in the
effort to produce these amounts of potatoes, since certified and clean seeds have a higher
yield than home-saved seed. The same holds for 1b, 2b and 3b. The result of the backward
calculation is shown in Table 7.

Table 7. Backward Calculation of Flows from Farm to Retailer (all in kg), Starting from 1000 kg of
Marketable Produce at the Point of Sale. Totals indicated in bold, losses in plain text.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Home-saved seed Certified seed Clean seed Certified seed
Subscenario a b a b a b a b
On-farm production 1871 1738 1871 1738 1871 1738 1492 1391
harvested 1786 1738 1786 1738 1786 1738 1424 1391
left in field 86 86 86 68
On-farm consumption 184 191 184 191 184 191 147 153
Left in field for home use 46 46 46 36
Harvest loss 209 209 209 28
Potatoes for seed 264 209 264 209 264 209 210 167
Losses in storage 16 17 16 17 16 17 13 14
Losses left over in field 40 40 40 32
Retail market 1323 1112 1323 1112 1323 1112 1056 1029
Transport/packing damage 116 * 98 116 * 98 116 * 98 16 * 16
Losses 17 14 17 14 17 14 14 13
Damage 189 * 189 * 189 * 26 *
Regular sales volume 1000 1000 1000 1000 1000 1000 1000 1000

* 50% lower price.

The cells for ‘damage’ in scenario (b) are empty, since the damaged products are al-
ready considered as lost at the farm level. The damage and losses from transport/packaging
occurs at the post-farm level, and therefore, is calculated for all the scenarios, (a) and (b).

3.2. GHG Emissions

The GHG emissions can be calculated by looking at the activities in Table 3 in relation
to the production and flows in Table 7. For example, for scenario 1a, 1871 kg of Shangi
potatoes has to be produced in order to obtain 1000 kg of potatoes at the point of sale.
Table 6 shows a yield of 8.3 t/ha and, therefore, 0.23 ha of production is sufficient for
1000 kg of product at the point of sale. Correspondingly, fertilizer use is only 23% of 150 kg
DAP, being 34 kg. GHG emissions are derived from the Cool Farm Tool for GHG [30] and
this amount of DAP corresponds to 181 kg CO,-eq of GHG emissions. Crop protection
is post-emergence and is calculated using the Cool Farm Tool also, amounting to 14 kg
COz-eq. The carbon footprint for seed is based on a 2000-kilogram harvest from 1 ha for
seed (for next season) [17] and equals 53 kg CO,-eq/ha. The diesel use of a 10T uncooled
truck is approximately 5 km/L [31], and therefore, transportation requires 50 L of diesel.
The carbon footprint for diesel is 2.64 kg CO,-eq/L [32]. The produce weight of 1871 kg is
only a part of the truck capacity of 10T, for which the total amount of GHG emissions is
corrected—assuming the truck’s full capacity is used. See Table 8.
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Table 8. Detailed Overview of GHG Emissions per ton of Marketable Product in Scenario 1a.

Activity

Scenario 1a

GHG Emissions (kg COz-eq)

Farm
Obtaining seed
Stubble cleaning
Plough
Seedbed preparation
Fertilizer
Planting
Plant protection
Cultivation
Harvest
Water supply
Transport (broker/trader)
Market (wholesaler/retailer)
Total

Home-saved
By hand
Ox plough
By hand
DAP at 150 kg/ha
Home seed, by hand
3 sprays of Ridomil/Mancozeb
By hand
Fork jembe/casual labor
Rainfed
Uncooled 10 T truck for 250 km
Selling /no storage

52

181

14

25

272

The Cool Farm Tool has many entries where choices have to be made, including

the of soil texture, organic matter, moisture average, drainage, pH, etc. These data vary
over Kenya and, therefore, the results might differ a little if these choices are altered. The
selection per entry is described in Table A2. The assumption is that the GHG emissions per
scenario will be in similar proportion to one another if different entries are selected.

In the same way, GHG emissions in scenarios 1b, 2a, 2b, 3a and 3b can be elaborated.
For scenario four, additional information is needed to account for the use of mechanized
equipment. The mechanization activities in scenario four are ploughing, planting and
harvesting, being the most important ones with respect to improving yield and reducing
food loss. From the existing research [33], details can be found about the time and power
use of mechanized equipment in potato production (Table 9 and Figure 5):

Table 9. Time and Fuel Requirements per ha for Mechanized Processes in Potato Production.

Mechanization Process Time Required in h/ha Diesel Required in L/ha
Ploughing 2% 6*
Planting 2.5 10.1
Harvesting 45 8.1
* Estimate by authors.
1200 1082
1000
< 800
=
o 575
Q600
2
>
o
T 400
249 238
214 185
200 100
2 3 0.6 9 6
O —_—
All Weeding Planting Fertilizer =~ Harvesting Bed/ridge
operations application
H Mechanized Manual

Figure 5. Time Spent in Manhours per ha on Different Activities during Potato Production in Kenya [17].
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Taking the amounts of diesel per mechanization process in combination with the
carbon footprint of 2.64 kg CO,-eq/L, the GHG emissions can be calculated for these
processes in scenario four.

An overview of the obtained GHG emissions for all the scenarios is shown in Table 10.

Table 10. Final Results on GHG Emissions (kg CO;-eq) per Scenario for Production of 1 ton of
Marketable Potatoes.

Activity Scenario 1 Scenario 2 Scenario 3 Scenario 4
a b a b a b a b
Farm
Obtaining seed 52 51 22 21 20 20 10 9
Stubble cleaning - - - - - -
Plough - - - - 2 2 1 1
Seedbed preparation - - - - - - -
Fertilizer 181 168 145 135 131 122 88 82
Planting - - - - - - 2 2
Plant protection 14 13 10 9 24 22 11 10
Cultivation - - - - - -
Harvest - - - - - - 1 1
Water supply - - - - - - -

Transport (broker/trader) 25 23 25 23 25 23 20 18
Market (wholesaler/retailer) - - - -
Total 272 255 202 188 201 188 133 123

3.3. Economic Impact

Increasing profit can be a driver for changes in agricultural practices. Hence, an eco-
nomic analysis is worthwhile to see whether there is a positive business case for switching
from business-as-usual to scenario two, three, or four. Although better seed and mecha-
nization ask for some investment, the payback turns out to be good in terms of increased
yield and reduced losses. Applying mechanized farming has proven to be cost effective in
various studies, since it increases the yield and decreases the losses. In general, for agri-
cultural crops, the mechanization level for ploughing is 75%, but only 5-20% for planting
and harvesting [13,14]. These three activities have the highest impact on the reduction in
labor cost and food losses, and yield increase. Note that mechanized harvesting is useful
only if planting was mechanized as well. Approximately 90% of the potato farmers would
mechanize if they had the financial means [13]. The cost for a tractor and the correspond-
ing implements (weeder, planter, harvester, etc.) is 10-11 million Kenyan shilling (USD
100,000-110,000, 1 USD ~ 100 KES at the time of writing) [14], which is out of reach for
almost all smallholder farmers, but hiring the tractor with the appropriate equipment is
only 3500 KES (USD 35) per day [29]. The feasibility of this option—based on the labor
cost savings when using mechanized equipment—can be seen by combining Figure 5
with the results on mechanization time per activity with the information in Table 9 on the
time required per hectare for farm activities with mechanized equipment. Switching from
manual planting and harvesting to mechanized planting and harvesting results in a total
saving of 519 h of labor.

In most cases, the labor on smallholder farms is a mix of family and external people,
leading to an average wage of 250-300 KES (USD 2.5-$3) per day [13,14], implying a total
difference in labor costs of 130-155 KES (USD 1300-$1550). This is equivalent to 5-6 days
of hiring the mechanized equipment, whereas mechanized planting and harvesting take
less than one day for the typical smallholder farm.

To analyze the profitability of the scenarios, economic data are used from [14]. The
upcoming use of clean seed is a recent development, and the reference data are from 2016.
Therefore, in the economic evaluation, scenario three is excluded.
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3.4. Overall Impact

With respect to food loss, the data per scenario are calculated as the average of the
subscenarios (a) and (b)—assuming that the real-world situation is a mix of these two
extremes, with some damaged potatoes being lost and some being sold at a discount. The
results are derived from the data in Table 7, noting that in subscenario (a), half of the
damaged products are considered as losses. These are data per ha, but for each of the four
scenarios, a different acreage is needed to end up with 1000 kg of marketable potatoes at the
point of sale—a more appropriate measure of the impact of interventions. Using the yield
information above (combining subscenarios (a) and (b)), the food losses, GHG emissions,
needed acreage, and profit per ton of marketable product can be calculated—here assuming
that the farmer selling the potatoes is the price taker at the prevailing market price. The
results are shown in Table 11.

Table 11. Losses, GHG emissions, Acreage needed and Profitability per ton of Product at point of
sale. Percentage Difference (positive (upward arrow) or negative (dlownward arrow)) with Reference
Scenario Shown in Parentheses.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Food losses (kg) 257 257 257 75 (71% |)
GHG emissions (kg CO»-eq) 263 195 (26% ) 195 (26% ) 128 (51% )
Acreage (ha) needed 0.22 0.12 (47% |) 0.07 (68% )
Profit (USD) 16.40 25.42 (55% 1) 91.79 (460% 1)

It is plausible that the profitability for the clean seed scenario (scenario 3) is somewhere
between scenarios two and four, i.e., between USD 25.42 and USD 91.79 per ton of product
at point of sale. Table 12 below lists the impact of the different intervention strategies on
yield, losses at farm level, losses until the consumer is reached and the quantity of potatoes
made available for human consumption.

Table 12. Results on Yield, Losses and Food Security. Losses are Calculated in the New Way, as
Introduced above.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Yield at farm (t/ha) 8.3 16.1 17.8 21.6
Losses at farm (%) 13.4% 13.4% 13.4% 4.3%
Losses until consumer (%) 14.3% 14.3% 14.3% 5.2%
Available for human 7.12 13.80 15.26 20.48

consumption (t/ha)

Having higher yields and lower losses (percentagewise) reinforces the feasibility of
the interventions discussed even more and in the case of certified seed calculations, shows
at least a 200% profit increase, which is significant [14]. Similar tremendous improvements
are reported for smallholders growing Agrico Certified seed, who saw their yields go up
from the national average of 7 tons to as high as 49 tons per hectare and income grow nine
times higher than for farmers using regular practices [34].

These findings show that the evaluated interventions lead to impressive improvements
on all the relevant criteria: reductions in GHG emissions and food losses and increases in
yields per hectare and farmers’ profits.

4. Discussion

The results show that enormous reductions in GHG emissions can be achieved by
relatively simple interventions, which, at the same time, significantly increase yield and
hence, farmer incomes. Note that the uncertainty about what is damaged and sold versus
what is lost (subscenario (a) versus subscenario (b)) is acceptable, and without a doubt, the
reductions in GHG emissions are huge, whatever mix of both subscenarios best represents
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reality. The crucial drivers behind these GHG emissions reductions are yield increase
and loss reduction. The yield increase is so high that the area one needs to produce 1 ton
of marketable potatoes at a regular price becomes very small, and hence the impact of
mechanization on GHG emissions is negligible. In fact, the improved efficiency opens up
new opportunities for the smallholder farmers involved.

Since the number of potatoes produced in scenarios 1-3 is the same, and because
diseases are not included in the loss analysis, the losses are the same. It is only in scenario
four, with mechanized ploughing and harvesting, that the losses are much lower. Note that
mechanized harvesting is useful only when the planting is mechanized as well, since the
depth at which the potatoes are in the soil is more constant when planting is performed in
a mechanized way:.

In this study, the scenarios were selected by balancing between, on the one hand,
staying as close as possible to the current situation and, on the other hand, achieving
enough economic profit to trigger the potato smallholder to change their production
process. Change is always considered as a risk and mostly extra money is required, which
smallholders typically do not have. Small steps are the only way to move this large group
of smallholders, implying that these steps can be suboptimal, but necessary to start a
positive development, since the impact on yield and profit is huge.

The GHG emission results were obtained by a backward calculation, which is a new
approach to this issue and shows to be a fair approach to compare (parts of) supply chains
on GHG emissions. The FLW is calculated in a new way as well, where the amount
of economic loss (lower price) is representative for the inedible part of the product at
hand. This new approach constitutes the most important methodological contribution of
this study. The main substantive contribution to existing research is the comprehensive
assessment of agricultural intervention strategies conducted with this new approach. The
study considered outcomes related to productivity, income, environmental impact and food
security—a wide range of outcomes not commonly seen in the literature, but necessary to
show that improvement on diverse outcomes often goes hand in hand, further solidifying
the case for these intervention strategies. The study findings show that there is no trade-off
between the desirable outcomes, but rather that—since the business case is obviously
there—the main challenge to address going forward is facilitating smallholder farmers to
implement these intervention strategies. There is an enormous potential for profit in this
sector, with opportunities not only for smallholders, but also agricultural input providers,
equipment manufacturers and associated businesses and financial service providers.

Not only smallholders and other private sector actors, but also policymakers should
be enthused by these results. If 14.3% of the production in the mainstream potato value
chain (=reference situation) is lost and the production area of Kenyan smallholders (90%
of 800,000 farmers) equals 103,000 ha [13], then some 73,300 tons of edible potatoes is
marketed by the retailer. The GHG emissions in that case amount to 264 kg CO,-eq per
ton of product. Per ton, scenario four saves 135 kg CO;-eq, implying a potential 9.9 kt
(thousand metric tons) CO,-eq reduction in GHG emissions nationwide. Economically, in
this case, the increased supply of potatoes would entail a lower market price, somewhat
reducing the profitability per ton for individual farmers. However, in any case, the short-
term profits will increase a lot, and when price obeys the balance between demand and
supply, profit will still increase relative to the initial situation. More supply may reduce the
farmer’s margins, but income can still increase.

This paper shows that scenarios can be evaluated simultaneously on the different
goals specified in the SDG program [35], including reducing GHG emissions, mitigating
food loss and waste and improving food security and farmer livelihoods. In future research
and policy development, the findings from this study also need to extend toward other as-
pects of sustainable development in the local context, including education (SDG 4), gender
equality (SDG 5), work and economic growth (SDG 8) and reduced inequalities (SDG 10).
In smallholder potato farming specifically, this entails equitable access to loss-reducing
intervention, education for the youth and training for adults on good agricultural practices,
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and the diversification of rural economies with activities related to input and equipment
provision and maintenance and economic opportunities for those who see their opportu-
nities limited by labor-saving interventions on farms. Apart from broadening the scope
towards other dimensions of sustainable development, future research should also address
some aspects that were left out of the scope of this study. For example, one limitation of this
study is that we did not address the life cycle impact of agricultural equipment. Though
not specifically relevant for food loss-induced emissions, a full evaluation of the impact of
using mechanized equipment should include its life cycle impact.

It is not easy to change practices on smallholder potato farms, but this paper showed
that minor interventions lead to a significant improvement in the dimensions of GHG
emissions, farmer profit, FLW reduction and food security. The availability of certified
seed and mechanization for hire should be a focal point of policy. At present, the Kenyan
government is working on making certified seed available. A second major recommen-
dation for policymakers is to support the mechanization of potato farming and facilitate
farmers and mechanization service providers with, for example, demonstrations at the
farm level, and/or vouchers for farmers to hire machinery. In parallel, the development
of a financial services system that is accessible to smallholder farmers and allows them
to access financing to procure more appropriate inputs and hire machinery should be
stimulated, even if the result of their investment manifests only one harvest later. This
study shows that the business case is there, with clear benefits after one crop. Therefore,
it is imperative to ensure that smallholder farmers can financially bridge this relatively
limited period between the investment and the return. Once groups of smallholders start to
professionalize, their example and competition in the market will stimulate other farmers
to do the same. After that, next steps such as storage or irrigation (preferably solar) may
follow to upgrade the position of the Kenyan potato smallholder and the country as a
whole with respect to less GHG emissions and less FLW, and more food security and
improved livelihoods for smallholder farmers.

5. Conclusions

This study was conducted with the aim of providing a comprehensive evaluation
of different intervention scenarios in smallholder potato farming in Kenya, considering
productivity, economic and environmental outcomes. The findings show that using better
inputs such as certified or cleaned seed and a more appropriate fertilizer and pest protec-
tion regime considerably reduces losses, improves yield (and hence farmer income) and
entails less food-loss-induced GHG emissions per ton of marketable produce. Even more
significant improvements on all the outcomes—yield, losses, GHG emissions and farmer
income—can be realized by mechanizing farm operations. With these proven benefits
of these intervention strategies, the next challenge is to stimulate their adoption. This
challenge entails an opportunity for business, as smallholder farmers are shown to be a
vast untapped market for inputs and equipment. The current absence of financial services
for the necessary credit impedes adoption, but the positive business cases outlined in this
paper show there to be an opportunity for financial service providers in this space. Aside
from these business considerations, the government also has a major role to play. First of all,
this involves directly simulating the adoption of better farming practices and stimulating
the creation of a market for credit provision. Beyond this lies the broader task to ensure
that progress on the outcomes considered here (income, emissions and food security) is
accompanied by progress on other important environmental and socio-economic outcomes
in the food system.
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Abbreviations

DAP Diammonium Phosphate (fertilizer)

FAO Food and Agriculture Organization of the United Nations
FLW Food Loss and Waste

GAP Good Agricultural Practice

GHG Greenhouse Gas
NPCK National Potato Council Kenya

NPK Nitrogen, Phosphorus and Potassium (fertilizer)
PIA Potato Initiative Project

SDGs Sustainable Development Goals

UN United Nations

KALRO Kenya Agricultural and Livestock Research Organization

Appendix A

Table Al. Spray regime in scenario 4 [14]: it lasts for 8 weeks starting 2 weeks after emergence of the disease.

Week 2 3 4 5 6 7 8 9

Fungicide FL, Propa FL, Propa Fen, Propa  Fen, Propa FL, Propa FL, Propa  Propi,Cym Propi, Cym
Foliar feed NPK +T NPK+T
Insecticide Deltam Deltam

FL: Fluopicolide; Propa: Propamocarb hydrochloride; Fen: Fenamidone; Propi: Propineb; Cym: Cymoxanil (Infinito); NPK+T: NPK and
trace elements; Deltam: Deltamethrin.

Appendix B

Table A2. The entries for the Cool Farm Tool as applied for the GHG emissions are as follows.

Soil Settings

texture clay (fine)
organic matter 5.16 < SOM < 10.32
moisture average dry
drainage poor
pH 55<pH <73

field name clay (fine), dry
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Appendix C

Figure A1. Opening a potato bag after transport.
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