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ABSTRACT Microbial gene clusters encoding the biosynthesis of primary and sec-
ondary metabolites play key roles in shaping microbial ecosystems and driving
microbiome-associated phenotypes. Although effective approaches exist to evaluate
the metabolic potential of such bacteria through identification of these metabolic
gene clusters in their genomes, no automated pipelines exist to profile the abun-
dance and expression levels of such gene clusters in microbiome samples to gener-
ate hypotheses about their functional roles, and to find associations with pheno-
types of interest. Here, we describe BiG-MAP, a bioinformatic tool to profile
abundance and expression levels of gene clusters across metagenomic and meta-
transcriptomic data and evaluate their differential abundance and expression under
different conditions. To illustrate its usefulness, we analyzed 96 metagenomic sam-
ples from healthy and caries-associated human oral microbiome samples and identi-
fied 252 gene clusters, including unreported ones, that were significantly more abun-
dant in either phenotype. Among them, we found the muc operon, a gene cluster
known to be associated with tooth decay. Additionally, we found a putative reuterin
biosynthetic gene cluster from a Streptococcus strain to be enriched but not exclu-
sively found in healthy samples; metabolomic data from the same samples showed
masses with fragmentation patterns consistent with (poly)acrolein, which is known
to spontaneously form from the products of the reuterin pathway and has been pre-
viously shown to inhibit pathogenic Streptococcus mutans strains. Thus, we show
how BiG-MAP can be used to generate new hypotheses on potential drivers of
microbiome-associated phenotypes and prioritize the experimental characterization
of relevant gene clusters that may mediate them.

IMPORTANCE Microbes play an increasingly recognized role in determining host-asso-
ciated phenotypes by producing small molecules that interact with other microor-
ganisms or host cells. The production of these molecules is often encoded in syn-
tenic genomic regions, also known as gene clusters. With the increasing numbers of
(multi)omics data sets that can help in understanding complex ecosystems at a
much deeper level, there is a need to create tools that can automate the process of
analyzing these gene clusters across omics data sets. This report presents a new soft-
ware tool called BiG-MAP, which allows assessing gene cluster abundance and
expression in microbiome samples using metagenomic and metatranscriptomic data.
Here, we describe the tool and its functionalities, as well as its validation using a
mock community. Finally, using an oral microbiome data set, we show how it can
be used to generate hypotheses regarding the functional roles of gene clusters in
mediating host phenotypes.
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Bacteria can produce diverse sets of small molecules that interact with other microbes
or with their host. These metabolites include members of both primary and secondary

metabolism and cover a wide chemical diversity (1, 2). Importantly, the pathways responsi-
ble for their production are often specific to certain strains or species and help them to
compete for space and resources (3), e.g., through antimicrobial, nutrient-scavenging, or
immunomodulatory activities (4). The genes that encode these pathways are often physi-
cally clustered and are also known as biosynthetic gene clusters (BGCs) or metabolic gene
clusters (MGCs) (5, 6)—the latter having a broader definition that also includes catabolic
and energy-generating pathways. Several studies have indicated metabolites produced
from such gene clusters to be the major drivers of specific phenotypic traits; for instance,
pseudomonads in the rhizosphere of sugar beet plants were shown to produce the anti-
fungal nonribosomal peptide (NRP) thanamycin, which protects plants from fungal infec-
tions (7). Another example from primary metabolism is trimethylamine, a diet-derived mol-
ecule that is processed by bacteria harboring the cut gene cluster and that has been
associated with an increased risk of cardiovascular disease (8). Therefore, mining genomes
for MGCs enables a deeper understanding of function at the molecular level and can help
to determine the role a given microbe plays in the ecosystem (9).

Several tools have been developed to mine genomes for these gene clusters,
including antiSMASH (10), gutSMASH (11), and DeepBGC (12). In contrast to other tools
for functional profiling of microbial communities, such as HUMAnN2 (13), MetaPath
(14), FMAP (15), and Metatrans (16), these do not depend on pathways that are present
in reference databases like KEGG (17) or MetaCyc (18), which include only pathways for
which most or all enzymatic steps have been elucidated. In fact, the majority of gene
clusters identified by antiSMASH and many gene clusters predicted by gutSMASH
encode pathways for which the catalytic steps, intermediates, and final products are
unknown. However, known pathways that are encoded by gene clusters can also be
reliably detected. The detection of complete gene clusters instead of individual
enzyme-coding genes likely decreases false-positive detections of enzymes that show
sequence similarity to reference enzyme sequences but are part of different functional
contexts. For these reasons, identification of gene clusters of known and unknown
function provides a useful basis to look for functional explanations of microbiome-
associated phenotypes of interest. As phenotypes are often triggered by metabolites
at physiologically relevant concentrations, while samples without the phenotype lack
these metabolites or have them at lower concentrations, assessing gene cluster abun-
dance and expression levels across samples is crucial to predict associations with the
phenotype in question. Another significant advantage of profiling the community by
combining different omics data is to prioritize the characterization of putative gene
clusters that are highly abundant or expressed in samples of interest, in order to eluci-
date the structures and functions of the most relevant novel compounds and their bio-
synthetic pathways.

Here, we present BiG-MAP (the Biosynthetic Gene cluster Meta’omics Abundance
Profiler), which provides a streamlined and automated process to determine BGC/MGC
abundance and expression in bacterial communities by mapping metagenomic and
metatranscriptomic reads to gene cluster sequences from reference genomes or meta-
genomic assemblies. BiG-MAP uses MinHash-based redundancy filtering to avoid am-
biguous mapping, groups BGCs into gene cluster families (GCFs) with BiG-SCAPE (19),
and uses these to output and visualize profiles of MGC or GCF abundance or expres-
sion levels across samples. Additionally, it calculates differential abundance or expres-
sion using either parametric or nonparametric tests. We validated the tool using simu-
lated metagenomic data and show how MGC abundance and expression levels are
accurately recapitulated. Finally, to showcase its usefulness, we applied BiG-MAP on a
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large publicly available metagenome data set from the human oral microbiome and
describe how it successfully identified differential abundance of gene clusters related
to bacterial specialized primary and secondary metabolism that are (potentially) rele-
vant for caries development. Among others, this collection includes a pdu and cobala-
min gene cluster involved in reuterin biosynthesis and the muc operon involved in reu-
tericyclin/mutanocyclin biosynthesis. Thus, BiG-MAP yields novel insights into the
onset and development of oral cavities.

RESULTS AND DISCUSSION
An approach to map metagenomics and metatranscriptomic reads to gene

clusters. BiG-MAP maps shotgun sequencing reads onto gene clusters that have been
predicted by either antiSMASH (10) or gutSMASH (11). It is a Python-based pipeline,
which allows downloading data sets from the Sequence Read Archive (SRA), mapping
metagenomic or metatranscriptomic reads to gene clusters detected in reference ge-
nome collections or in a metagenomic assembly, providing normalized counts across
samples, performing differential analyses, and visualizing the results. It requires three
main inputs: (i) a gene cluster collection obtained from running any “SMASH-based”
algorithm, (ii) the meta-omic data set in FASTQ or FASTA format or, alternatively, the
SRA accession numbers to download it, and (iii) a metadata file with sample informa-
tion to segregate them into groups and compare their gene cluster contents. The mini-
mal requirements for the metagenomic and metatranscriptomic data sets for a mean-
ingful analysis using BiG-MAP depend on various factors. Naturally, at least three
samples (and ideally considerably more) for each phenotype are required when per-
forming a differential abundance analysis between phenotypes. The required sequenc-
ing depth per sample will depend on the research question: does one want to study
mainly expression patterns for MGCs from highly abundant community members or
also for those of rare members? The user should pay attention in the experimental
design that sufficient observations (i.e., mapped reads, which will depend on the cover-
age per MGC) are present across samples to test for significant differences between
conditions. When using BiG-MAP, the user has the choice to map metagenomic or
metatranscriptomic reads either to MGC sequences from a set of representative refer-
ence genomes or to MGCs detected in a metagenomic assembly originating from the
same data or the same biological samples. In the latter case, additional steps (quality
control and assembly) are required to assemble the data before using gutSMASH and/
or antiSMASH to detect MGCs and before using BiG-MAP to map reads against them.

BiG-MAP is composed of four different modules (Fig. 1): (i) BiG-MAP.family, which
performs redundancy filtering on the input collection of predicted gene clusters and
provides a set of representative gene clusters for the mapping process; (ii) BiG-
MAP.download, which uses a list of SRA accession numbers to download the shotgun
data if present in the SRA database (this step is optional); (iii) BiG-MAP.map, which
maps reads from the metagenomic or metatranscriptomic samples onto the set of rep-
resentative gene clusters obtained from BiG-MAP.family; and (iv) BiG-MAP.analyse,
which normalizes the counts for sparsity and sequencing depth, performs differential
abundance/expression analysis, and visualizes the output.

The BiG-MAP.family module performs a redundancy analysis on the gene cluster col-
lection to remove almost-identical sequences, in order to reduce the computing time
and avoid problems with ambiguous read mapping. To achieve this, the protein sequen-
ces encoded in each of the gene clusters are used as input for MASH (20), a MinHash-
based algorithm to estimate sequence distance. Next, a representative gene cluster is
selected based on a medoid calculation. The resulting representatives are then clustered
into GCFs using BiG-SCAPE (19), an algorithm that uses three different distance metrics
to group MGCs into families based on sequence and architectural similarity. This step
helps to group more distantly related homologous gene clusters that likely have the
same chemical products but that are encoded in more distantly related organisms. In
such cases, BiG-MAP maps reads to the family representatives separately, but it also
allows reporting combined abundance or expression levels per family to find
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associations with phenotypes at a higher level. In order to set an expression baseline
when using metatranscriptomic data, BiG-MAP screens bacterial genomes whose gene
clusters have been included in the nonredundant representative set of gene clusters for
five housekeeping genes known to have stable expression levels using HMMer (for
details, see Materials and Methods section titled “BiG-MAP.family: creating a nonredun-
dant MGC representative collection”). Next, the reads are mapped to the representative
gene clusters using the short-read aligner Bowtie2 (21). The obtained raw read counts
are then converted to RPKM (reads per kilobase per million) values, which are summed
across all representative MGCs within a GCF when reporting family abundances (raw
counts are also output for each representative MGC). In the last module, BiG-
MAP.analyse, RPKM values are then normalized using cumulative sum scaling (22) (CSS)
to account for sparsity. Moreover, for each aligned gene cluster, BiG-MAP assesses read
coverage to control for gene clusters that are only partially mapped to by meta-omic
reads. BiG-MAP reports two coverage values in the intermediate files, one for the whole
gene cluster and the other considering only the core genes of the BGC/MGC; both

FIG 1 BiG-MAP workflow. BiG-MAP is composed of four different modules: (1) BiG-MAP.family, which, given a set of predicted gene clusters by either
gutSMASH or antiSMASH, returns a representative set of nonredundant gene clusters based on sequence similarity (this module also identifies the protein
sequences of 5 housekeeping genes from the bacterial genomes that encode the representative gene clusters when metatranscriptomes are used); (2) BiG-
MAP.download, to download a set of metagenomes/metatranscriptomes given their SRA accessions; (3) BiG-MAP.map, to align omics reads to the
representative set of gene clusters using Bowtie; and (4) BiG-MAP.analyse, to normalize and perform differential abundance/expression analysis of gene
clusters across different conditions and visualize the results (see Fig. S1 and S2 as an example).
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numbers are useful in cases where gene cluster boundaries called by antiSMASH or
gutSMASH are imprecise and reads may be mapped to regions flanking the actual gene
cluster. Subsequently, BiG-MAP detects differentially abundant or differentially expressed
gene clusters by using either zero-inflated Gaussian distribution mixture models (ZIG
models) or using a Kruskal-Wallis model. Finally, all the generated results are displayed in
a plot that includes a heatmap for the gene cluster abundance/expression values, a bar
plot for the log fold change, the coverage values, and, finally, another heatmap for the
housekeeping gene expression values when analyzing metatranscriptomes (see Fig. S1
to S3 in the supplemental material). The output folders contain various intermediate and
final results, including the BiG-SCAPE results, the resulting bedgraphs, the raw and nor-
malized RPKM counts for each sample (in BIOM format [23]), the results of the fitZIG and
Kruskal-Wallis tests in tab-separated tables, and mapping coverage values for each gene
cluster and sample. Altogether, this tool presents a streamlined method to functionally
profile meta-omics data by mapping reads to known or putative gene clusters.

Assessing and validating BiG-MAP performance using simulated data. In order
to evaluate the overall performance of BiG-MAP and, in particular, all the default pa-
rameters chosen as defaults, such as the Bowtie alignment mode and the MASH simi-
larity score cutoff, we designed a mock microbial community for metagenome simula-
tion. From the Culturable Genome Reference (CGR) genome collection (24), we
randomly chose 101 CGR genomes to simulate metagenome reads from and to use as
input for gutSMASH. To assess the impact of different sequencing depths (coverages
of 0.5� and 0.05� to account for low- and very-low-coverage scenarios) and commu-
nity structure (uniform, linear, power law, and exponential), we simulated eight differ-
ent metagenomic libraries. Since the gene cluster content and their abundance levels
in simulated data are known (ground truth), this allowed us to assess the recall and
precision of the BiG-MAP abundance calculations using MASH dissimilarity scores rang-
ing from 10 to 100 and the eight different alignment modes available in Bowtie across
the eight different simulated data libraries. From these results we computed the F1
score or harmonic mean of precision and recall (Fig. 2), which showed that the commu-
nity structure slightly affects BiG-MAP results. Moreover, since the highest F1 scores
were obtained when using a MASH score cutoff (similarity) of 0.8 and using the “fast”
alignment mode (end to end) of Bowtie2, we set these parameters as defaults. Still, the
user is able to change them as desired by indicating this with the appropriate flag.

For orientation on the requirements and resources needed to run BiG-MAP, the
time each BiG-MAP module took to run using the default settings was assessed when
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FIG 2 BiG-MAP validation using a mock community. Shown is an F1 score heatmap using eight different simulated metagnomes constructed to assess the
best MASH dissimilarity cutoff across four different community structures, two different sequencing depth values, and eight different Bowtie alignment modes.
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using as input the 3,793 gutSMASH-predicted MGCs from the 1,520 CGR collection
genomes and the 78 metagenomes of the data set of Schirmer et al. (25). These analy-
ses were run on a server with 750 GB RAM and 64 CPUs (Intel Xeon Gold 6242 CPU,
2.80GH). The details on the time and space needed to run each of the modules can be
found in Table 1.

Analysis of the oral microbiome: revealing the presence of gene clusters
associated with health and disease. To illustrate the use of BiG-MAP in practice, we
used it to analyze a data set from the human oral microbiota. The oral cavity is a natural
habitat for many bacteria that reside in or on the gingival sulcus, tongue, teeth, and
cheeks, among other surfaces. These bacteria take part in important processes such as ini-
tial digestion of food, but they are also associated with several oral diseases such as caries
(26) and periodontitis (27). Certain oral colonists form biofilms, which can play a causal
role in the development of these diseases (28). There are different functional and meta-
bolic pathway alterations that have been associated with the onset of disease via the pro-
duction of small molecules (29–32). For instance, tetramic acids produced by the caries-
associated bacterium Streptococcus mutans have been linked to tooth decay (33). For this
reason, in order to functionally profile these oral communities and acquire further insights
into the MGCs that might be involved, we studied a data set of 47 oral microbiome sam-
ples (31) using BiG-MAP, for which paired metagenomics and metabolomics data are pub-
licly available (see Materials and Methods sections “Assessing the pdu operon abundance
by surveying different oral metagenomic samples” and “Evaluating the presence of the
muc operon in caries-associated metagenomes”).

To evaluate possible molecular mechanisms underpinning caries formation, we first
analyzed the available tandem mass spectrometry (MS/MS) data together with the
metabolite feature abundance table using Pathway Activity Level Scoring (PALS) (34),
which uses molecular families obtained using molecular networking (35) to group sim-
ilar metabolites, and Pathway Level Analysis of Gene Expression (PLAGE) (36) to find
differentially expressed metabolite groups between two conditions. PALS showed
consistent and strong differential abundances between healthy and caries subjects in
of a number of features in a metabolite group that we could annotate with polymer-
like structures based on their C3H4O mass differences. With Mass Spectrometry Search
Tool (MASST) searches (37) across all public data present in Global Natural Product
Social Molecular Networking-Mass Spectrometry Interactive Virtual Environment
(GNPS-MassIVE), we confirmed the occurrence of these differential features in various
microbial, human, and environment-derived public data sets (see Materials and
Methods and Text S1 for further information on the metabolomics data analysis).
Based on these observations, and the size of the mass shifts observed, we concluded
that these polymer-like structures could well represent molecules called polyacroleins
(metabolite identification level 3—annotated compound class), which are known to
spontaneously form from a component of the antimicrobial set of molecules called
reuterin (38). The formation of (poly)acrolein has previously been shown to contribute
strongly to the antimicrobial activity of reuterin (38). Reuterin is produced by lactoba-
cilli from a genomic island containing a pdu-like operon together with a cobalamin
biosynthetic gene cluster (39). Of note, acrolein is a ubiquitous compound that can
be found in the human body for various other reasons as well, such as endogenous
production, the ingestion of food sources, or exposure to certain environmental

TABLE 1 Time and resources needed to run each BiG-MAP module on an example data set
that consists of the 3,793 gutSMASH-predicted MGCs from 1,520 genomes and 78 paired-
end metagenomes

BiG-MAP module No. of CPUs Time (approx) Output folder size
download 1 1 day 2 h 17 min 491 GBa

family 6 4 h 2 min 4.8 GB
map 6 3 h 50 min 35 GB
analyse 1 2 min 11 s 9.3 MB
aContains both single-end and paired-end metagenomes. Paired-end metagenomes alone occupy 249 GB.
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conditions (40). There are various known routes that can converge into the formation
of acrolein, as it can be formed spontaneously from glycerol and 3-hydroxypropional-
dehyde (38). Furthermore, glycerol metabolism from gut bacteria has also been found
to produce this molecule (41). Typically, acrolein polymerization occurs under alkaline
conditions (42); it is more likely to accumulate in saliva from healthy samples, as caries
typically acidifies the oral cavity. Indeed, our results show that the possible polyacro-
leins are more abundant in samples of healthy volunteers. Interestingly, the presence
of acrolein has been linked to inhibition of Streptococcus mutans, a well-known species
of cariogenic bacteria (43, 44).

Based on these findings, we were motivated to look for the presence of the pdu op-
eron in the metagenomics samples, in order to identify candidate MGCs that might be
involved in acrolein formation. To this end, we ran gutSMASH on the 1,440 genomes
from the Human Microbiome Oral Database (HMOD; http://www.homd.org/) available
in April 2020. Interestingly, gutSMASH identified a pdu-like operon in the genome of
Streptococcus sp. strain F0442 that also includes a cobalamin (vitamin B12) biosynthetic
region and is architecturally similar (cumulative BLAST bit score of 13,271) to the
Lactobacillus reuteri one (Fig. 3A). Therefore, to assess the abundance of the predicted
gene clusters in the oral microbiome, we used our gutSMASH run, which had predicted
3,352 gene clusters, as input for the BiG-MAP.family module, to filter out redundant
MGCs. Next, the reads of 96 oral metagenomes (33 caries related, 34 healthy, 10

FIG 3 pdu and cobalamin operon abundance in healthy oral metagenomes. (A) MultiGeneBlast comparison between the pdu operon found in
Streptococcus sp. F0442 by gutSMASH and the characterized one from Lactobacillus reuteri (AP007281). (B) Read coverage of five randomly chosen healthy
metagenomes along the gutSMASH-predicted pdu gene cluster. The coverage graphs, which were plotted using the Sushi R package (version 3.5.1) (45),
show that some samples (3 and 4) contain reads that cover the whole gene cluster, while in other samples, reads hardly cover the cluster (1 and 2) or
cover only part of it (5).
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periodontitis related, and 19 involved in plaque development) were mapped onto the
resulting 1,544 representative gene clusters using BiG-MAP.map and the counts were
further normalized and parsed with BiG-MAP.analyse (see Materials and Methods sec-
tion titled “Assessing the pdu operon abundance by surveying different oral metage-
nomic samples”). From this run, we found 246 gene clusters differentially abundant
between groups (using a Kruskal-Wallis test) and 173 gene clusters when considering
only the core region encoding the key enzymes used to detect the MGC. Among the
significantly differentially abundant gene clusters observed when mapping reads to
the core region, we found the pdu operon. While healthy samples on average have
5.62 RPKM counts/sample mapping to this gene cluster, diseased ones have 3.38 (P
value = 0.00049 using the Kruskal-Wallis test). Of note, when using a smaller data set of
only 24 healthy and 23 caries-related samples (from a single study by Aleti et al. [31];
PRJNA478018), the Streptococcus sp. F0442 pdu operon did not show a statistically sig-
nificant differential abundance. We also evaluated the coverage of the read mapping
of the core genomic region within the expanded metagenomic data sets and found
that among healthy samples, not all contained this gene cluster. For instance, of 34
healthy samples in the extended data set, we found 13 that appeared not to have the
Streptococcus sp. F0442 pdu operon (coverage below 0.5), while the rest had fairly high
coverage scores, with a mean coverage value of 0.77 (selecting the samples with cover-
age values of at least 0.5), implying the presence of this operon or a close homologue
of it (Fig. 3B). While this MGC cannot explain the difference between healthy and dis-
eased phenotypes on its own, it might be involved in polyacrolein production and inhi-
bition of Streptococcus mutans growth under nonacidic conditions. Since expression of
the MGC would be required for metabolite production, metatranscriptomic analysis of
samples where polyacrolein accumulation is observed could be an interesting follow-
up analysis to test the hypothesis of the involvement of this MGC in its production.
Altogether, the results of our study illustrate how BiG-MAP analysis, especially when
combined with complementary omics data such as metabolomics, can generate con-
crete hypotheses about microbiome-associated phenotypes that can be tested in the
laboratory.

Another example of a gene cluster that has been found relevant in the oral cavity is
the muc operon, which has been shown to be responsible for the production of tetra-
mic acids, which are known to inhibit the colonization of commensal bacteria in the
oral cavity. This gene cluster encodes a hybrid between a polyketide synthase and non-
ribosomal peptide synthetase (PKS/NRPS) (33). In order to further test this association
and assess whether there is a difference in abundances of the muc operon in the oral
cavity between healthy and diseased samples, a collection of 170 Streptococcus mutans
genomes collected from Tang et al. (33) and Liu et al. (46) was run through antiSMASH
(10), which predicted a total of 1,849 BGCs. After obtaining 41 representative gene
clusters with the BiG-MAP.family module, reads from 96 oral microbiome metage-
nomes (the same as for pdu above) were mapped onto the predicted gene clusters
and further processed using BiG-MAP.map and BiG-MAP.analyse subsequently (see
“Evaluating the presence of the muc operon in caries-associated metagenomes” in
Materials and Methods). The muc operon from Streptococcus mutans 14D appeared dif-
ferentially abundant between healthy and disease samples when using the fitZIG
model (but not using the Kruskal-Wallis test), together with five other gene clusters.
The muc operon from this strain shows high similarity to the one characterized by
Tang et al. (33) (Fig. 4A). Notably, as before, when using only data from the smaller sub-
set of samples from the study of Aleti et al. (31) (PRJNA478018), no significant differ-
ence was seen. Also, the mean read coverages of the MGC core in both groups were
low, 0.274 in healthy and 0.161 in caries-associated samples, which implies a relatively
low abundance of the muc operon in many samples and/or partial coverage of the
muc gene cluster locus with reads mapping only to flanking regions (Fig. 4B).
Nonetheless, within both groups we did see that some samples had reads mapping to
the complete gene cluster, with coverage values close to 1. When filtering out samples
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with coverage values of , 0.5, leaving only 8 samples in the healthy group and 6 in the
disease group, where the MGC appears to be present, the mean coverages amount to
0.848 in healthy and 0.997 in disease. The fitZIG BiG-MAP output heatmap (Fig. S3)
shows that despite the fact that the muc operon is significantly more abundant in dis-
eased samples according to the test, the abundances of this gene cluster across all
samples look generally quite similar. In addition, the fold change between the averages
for the healthy and diseased phenotypic states is minimal, both with and without filter-
ing. Therefore, despite finding this operon to be slightly more abundant in caries-

FIG 4 Muc operon overrepresentation in caries-related samples. (A) MultiGeneBlast comparison between the muc operon characterized from Streptococcus
mutans strain MT4653.1 and the antiSMASH-predicted one from Streptococcus mutans 14D. (B) Read coverage of five randomly chosen caries-related
metagenomes along the antiSMASH-predicted muc gene cluster. The coverage graphs, which were plotted using the Sushi R package (version 3.5.1) (45),
show that despite the fact that the muc operon is generally not very highly covered by reads from the randomly picked samples, some seem to truly
contain this operon, such as sample 4, where the core biosynthetic genes appear abundant at sufficient levels. Full data on all samples can be found in
Fig. S3. It is important to note that the results found in this study come from analyzing a large collection of metagenomes that may largely differ at the
community structure level. The 96 samples are not only healthy or caries-associated metagenomes but also metagenomes from patients suffering from
periodontitis and samples from a study that observes how a biofilm evolves over time. Therefore, it might be that all these samples differ quite a lot in
terms of MGC content but also regarding the presence of Streptococcus mutans, influencing the signal of significance reported here. All in all, our results
suggest that the abundance of the muc operon is not very predictive for a healthy or disease state of the microbiome by itself, and other factors likely
play (more) important roles.

BiG-MAP: Profiling Gene Clusters across Microbiomes
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prone samples when applying the fitZIG model, the oral microbiota from healthy
donors seem to also harbor this PKS/NRPS MGC at very similar levels. Hence, the micro-
biota from healthy samples may have a mechanism to counteract the inhibiting effect
of tetramic acids, or there might be a difference in expression of the gene cluster
between healthy and diseased subjects.

Conclusions. Overall, combining different omics data is a very useful approach to
understand which microbes are doing what and poses a promising avenue to better
understand complex biological processes. Here, we presented BiG-MAP, a command-
line tool that it is able to profile the abundance and expression of a collection of gene
clusters across metagenomic and metatranscriptomic data from any kind of biome,
including human, plant, animal, marine, and soil microbiomes. Each of the steps in the
BiG-MAP pipeline is robust, as demonstrated using a mock community. Indeed, BiG-
MAP can discover interesting and relevant potential associations between genomic
regions and phenotypes, which can guide experimental efforts to test MGC function. It
is worth noting the usefulness of the gene cluster mapping coverage values, since they
allow the user to discern between the real presence of predicted gene clusters of inter-
est and spurious read mapping; these should always be considered together with the
abundance/expression values for better interpretations of the results. Also, the associa-
tions that can be found using BiG-MAP strongly depend on the sample size and
sequencing depth of the metagenome or metatranscriptome datasets. For instance, in
the examples described in our study, we found that finding significant differences in
the abundances of both gene clusters (the pdu-like operon and muc) depended on the
size of the data set used. Both examples illustrate how users would do well to study
expression or abundance values of individual samples and should not draw conclu-
sions too quickly based on the results of a single statistical test, for which the power
also depends on the number of samples available.

In addition, there are several other caveats. It is important to note that even a statis-
tically significant difference may not be biologically important: a consistent difference
with a small fold change might have limited physiological relevance. It is also impor-
tant to note that differences in relative abundance may be misleading if absolute
abundances of the total microbiota are different between phenotypes. Also, differen-
ces in metatranscriptomic read abundances of an MGC may be caused by differences
in their (relative) metagenomic abundances (caused by differences in abundance of
underlying taxa). Therefore, differences in transcript abundances may not reflect differ-
ences in gene expression levels per se (besides being an average of multiple taxa and
cells that may act heterogeneously). If users are interested in transcriptional regulation
of MGCs instead of differences in overall transcript abundance, they may therefore
want to correct for this. In future versions of BiG-MAP, we hope to make it possible for
users to normalize their data by absolute abundances per sample and to allow optional
normalization of metatranscriptome data relative to parent taxon abundance levels
inferred from metagenome data from paired samples.

Depending on the research question to be answered, the user may also consider
different coverage thresholds depending on the scenario. For instance, lowering the
coverage values might be needed to detect pathways from lowly abundant bacteria.
Another limitation of BiG-MAP is that the family module is based on the MASH tool. In
certain extreme cases, the number of predicted MGCs may exceed the maximum num-
ber of sequences that MASH (“sketch” and “dist” functions) is able to compare, leading
to an error. In this scenario, the family module can be run in batches or the code can
be slightly modified to manually run the MASH analysis and MASH “paste” function
(more information is available in their documentation at https://mash.readthedocs.io/
en/latest/) and pick up the analysis again from that step onwards.

From the BiG-MAP output folders, which include raw and processed results, it is possi-
ble to extract valuable information that helps to carefully interpret the results and to feed
them into subsequent data analyses. These data include the differences within groups,
coverage distribution of reads across a gene cluster, etc. In combination with detailed
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sample metadata, this can help provide insights into microbially derived phenotypes.
Overall, we believe that BiG-MAP will help researchers solve biologically complex ques-
tions by integrative multiomics approaches, to obtain deeper insights into the relation-
ships between microbial metabolic capacities and microbiome-associated phenotypes.

MATERIALS AND METHODS
Code availability. BIG-MAP is implemented in Python 3 as a command line package. It consists of

four modules: BIG-MAP.download, BIG-MAP.family, BIG-MAP.map, and BIG-MAP.analyse. The code is
available at https://github.com/medema-group/BiG-MAP together with documentation on how to install
BiG-MAP and its dependencies and a short tutorial on how to run it.

BiG-MAP.download: data collection. This module allows to retrieve sequencing data present in the
SRA database using the SRA toolkit (https://github.com/ncbi/sra-tools). To initially develop, test, and val-
idate this tool, we used an inflammatory bowel disease (IBD) cohort that contains metagenomic and
metatranscriptomic data from 78 individuals, 21 suffering from ulcerative colitis (UC), 46 individuals with
Crohn’s disease (CD), and 11 healthy subjects (25). These samples were retrieved using the SRA acces-
sion numbers under BioProject PRJNA389280.

BiG-MAP.family: creating a nonredundant MGC representative collection. The family module
uses as input a directory that contains GenBank files of gene clusters identified by the antiSMASH (47) or
gutSMASH (https://github.com/victoriapascal/gutsmash) algorithm. The predicted gene clusters are
then subjected to a redundancy filtering step based on their mutual sequence similarity. For that, the
protein sequences of the gene clusters are extracted and used as input for MASH (20), which creates
sketches from the raw sequences. The sketches are then used to calculate the distances between
sequences using MASH dist. The resulting tab-delimited file with the pairwise distance comparisons is
used to group gene clusters with above a 0.8 default similarity cutoff (Fig. 2). Next, to pick the best rep-
resentative of each group, medoids are computed (see formula below). For this, a distance matrix is cre-
ated comparing all distances between pairs of gene clusters; the one with minimal cumulative distance
value is picked as representative of that group. Additionally, the selected gene clusters are subjected to
another round of clustering using BiG-SCAPE (19), to cluster gene clusters into GCFs at a 0.3 distance cut-
off (default value), from which a random representative is picked.

xmedoid ¼ argminy2f x1; x2;... xng

Xn

i¼1

dðy; xiÞ

If metatranscriptomes are used in the BiG-MAP.map module, an additional step is performed to set
an expression baseline. For this, the protein sequences of the genomes whose gene clusters form the
nonredundant representative gene cluster collection are scanned using hmmsearch (hmmsearch version
3.1b2) for five housekeeping-coding proteins: DNA gyrase A (PF00521), DNA gyrase B (PF00204), recom-
binase A (PF00154), DNA-directed RNA polymerase A (PF01000), and DNA-directed RNA polymerase B
(PF00562). The selection of these Pfam domains was based on the findings by Rocha et al. (48) that the
genes for these housekeeping proteins show highly stable expression across samples. Next, the gath-
ered protein sequences are also used as queries in the mapping module to align metatranscriptomic
reads to gene clusters.

BiG-MAP.map: mapping reads to a nonredundant gene cluster collection. This module relies on
Bowtie2 (21) (version 2.3.4.3) to align reads to a given sequence. From the reference gene cluster
sequences selected by the medoid calculation, Bowtie index files are created. Next, Bowtie2 aligns reads
to these index files, using the fast alignment mode by default. The resulting alignment is stored in SAM
format and converted to BAM format to later be parsed by SAMtools (49) (version 1.9). The alignments
are then sorted by their leftmost coordinates; the aligned reads are counted and either summed by GCF
or averaged over the GCF size. Later, the corrected raw counts are converted to TPM (transcripts per kilo-
base million) counts and consecutively to RPKM (reads per kilobase million) counts to account for
sequencing depth.

Another functionality that was added in this module was to compute the read coverage of each
gene cluster using the coordinates in the sorted BAM files. To do so, the sorted alignment files are con-
verted to bedgraphs using BEDtools (50) (v2.28.0), which allow estimating the number of covered bases
for each cluster (coverage) by subtracting the number of noncovered bases (ncb) to the length of each
cluster (cl) as indicated in the formula below.

coverage¼
cl 2 ncb

cl

The same procedure is followed to compute the RPKM counts and the coverage of the core genes
within a gene cluster, which strictly considers the core metabolic genes within each gene cluster. This in-
formation is taken from the antiSMASH/gutSMASH (or any other SMASH-related algorithm) GenBank
output files that flag the key coding genes that are needed for the synthesis of a given molecule. Once
the core genes are identified, their alignment information is retrieved using SAMtools. Next, in the same
manner as RPKM values are computed for the whole gene clusters, reads aligned to the core region are
extracted, counted, and corrected to finally get the RPKM counts. To perform the coverage calculation,
the locations of the core genes are extracted from the bedgraph to evaluate the coverage.
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BiG-MAP.analyse: normalization of RPKM counts and � nding differentially expressed/
abundant MGCs. In order to account for sparse high-throughput sequencing, RPKM values are normal-
ized using cumulative sum scaling (CSS) from the R Bioconductor package MetagenomeSeq (22). BiG-
MAP offers two different statistics to account for differentially abundant/expressed gene clusters: the
parametric zero-inflated Gaussian distribution mixture model (ZIG model) and the nonparametric
Kruskal-Wallis test. ZIG model values are adjusted with log2 fold change that ultimately helps fitting the
model to a log-normal distribution; thus, when the abundance/expression values are expected to follow
normal distribution, the ZIG model is more appropriate to use. Alternatively, the Kruskal-Wallis test can
be run on the normalized RPKM counts, which allows assessing whether the distribution of ranks for one
group significantly differs from the distribution of ranks for the other group. Additionally, false-discovery
rate (FDR) correction is applied to correct for multiple hypothesis testing. Finally, heatmaps are pro-
duced to visualize the results using the Seaborn Python package (https://github.com/mwaskom/
seaborn).

Testing BiG-MAP performance using a mock community. To test BiG-MAP performance, 101 bac-
terial genomes were randomly chosen from the CGR collection (24) (BioProject number PRJNA482748).
Thus, the gutSMASH-predicted MGCs from each genome were used as ground truth (https://github
.com/victoriapascal/gutsmash, version 0.8; github commit stamp 569e860). Next, paired-end reads were
generated with a mean read length of 100 bp from the 101 CGR bacterial genomes using Grinder v0.5.3
(51). Two different read coverage thresholds were used (0.5� and 0.05� ) in combination with four dif-
ferent community structures: uniform, linear, power law, and exponential. Both the MGCs and the simu-
lated reads were used as input for BiG-MAP, which was run ranging the MASH similarity thresholds
between 10 and 100% in intervals of 10% along the eight different Bowtie2 alignment modes. From
each individual run, true-positive, false-positive, and false-negatives rates were calculated to evaluate
the precision and recall, which was ultimately used to compute the harmonic mean of precision and
recall, also known as the F1 score. The results were plotted in a heatmap using the ComplexHeatmap
package in R (52).

Assessing the pdu operon abundance by surveying different oral metagenomic samples. To
find possible leads on metabolic perturbances between healthy and caries-related samples, the proc-
essed mass spectra (MGF format) and metabolomics feature tables from Aleti et al. (31) were down-
loaded from GNPS-MassIVE (35) accession number MSV000081832 to perform reanalysis. Feature-based
Molecular Networks (53) were run using GNPS release version 21 (https://gnps.ucsd.edu/ProteoSAFe/
status.jsp?task=ef4f64542ab24a7fb0802ceacbcfa071, https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
9c95754d1fdc42b4a43b16919c398ecd). The resulting molecular family information together with the
metabolite feature tables and sample information (metadata) were loaded into PALS (https://pals
.glasgowcompbio.org/app/) (34) to identify metabolite families differing in activity between 25 healthy
and 24 caries-related samples. From the results, three out of seven candidate metabolites in one differ-
entially expressed molecular family showing clear different abundance patterns between healthy and
caries samples were further examined using GNPS MASST (https://masst.ucsd.edu) (37), the ChemCalc
MF finder (54), and PubChem (55), leading to the putative annotation of polyacrolein-related metabo-
lites in healthy samples, which may be produced from a pdu-like operon that requires the presence of
the cobalamin biosynthetic genes (see supplemental material for further information).

For the analysis of the pdu operon and its presence in the oral microbiome, 1,440 oral bacteria genomes
were downloaded from the HOMD collection (http://www.homd.org/?name=GenomeList&link=GenomeList&
type=all_oral). Next, these genomes were used as input for gutSMASH (version 0.8). The comparison between
the two pdu operons from Lactobacillus reuteri (AP007281) and Streptococcus sp. F0442 (GCA_000314795.2)
was done using MultiGeneBlast (56). Next, all predicted clusters were used as input for the BiG-MAP family
module. At the same time, the oral metagenomics data sets were downloaded using the BiG-MAP.download
module by providing the SRA accession numbers associated with BioProject numbers PRJNA478018,
PRJNA396840, and PRJNA398963. Once the metagenomes were downloaded, BiG-MAP.map was run using
the output of the family module and the metagenomic reads in FASTQ format. Finally, the RPKM counts were
normalized, processed, and visualized using BiG-MAP.analyse.

Evaluating the presence of the muc operon in caries-associated metagenomes. AntiSMASH was
used to predict BGCs from a total of 170 Streptococcus mutans genomes reported by Tang et al. (33) and
Liu et al. (46). Within the predicted BGCs, the muc operon was found and compared to the muc operon
characterized by Hao et al. (57) using MultiGeneBlast (56). The predicted BGCs were then used as input
for the BiG-MAP.family module. Both the representative BGCs and metagenomic reads were then used
as input in the subsequent BiG-MAP.map mapping module using the metagenomes from the following
three BioProjects: PRJNA478018, PRJNA396840, and PRJNA398963. Finally, the raw mapping counts
were normalized and further processed and visualized using BiG-MAP.analyse.

Data availability. The supporting information for this article can be found in the supplemental ma-
terial of this article and in the Zenodo repository (https://zenodo.org/record/5054950) with the following
doi: 10.5281/zenodo.5054950. The metabolomics data used for reanalysis are available from GNPS-
MassIVE accession number MSV000081832.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TEXT S1, DOCX file, 0.02 MB.
FIG S1, TIF file, 1.1 MB.
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FIG S2, TIF file, 1.1 MB.
FIG S3, TIF file, 0.8 MB.
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