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Abstract

Although improving photosynthetic efficiency is widely recognized as an underutilized strategy to increase crop 
yields, research in this area is strongly biased towards species with C3 photosynthesis relative to C4 species. Here, 
we outline potential strategies for improving C4 photosynthesis to increase yields in crops by reviewing the major 
bottlenecks limiting the C4 NADP-malic enzyme pathway under optimal and suboptimal conditions. Recent experi-
mental results demonstrate that steady-state C4 photosynthesis under non-stressed conditions can be enhanced 
by increasing Rubisco content or electron transport capacity, both of which may also stimulate CO2 assimilation at 
supraoptimal temperatures. Several additional putative bottlenecks for photosynthetic performance under drought, 
heat, or chilling stress or during photosynthetic induction await further experimental verification. Based on source–
sink interactions in maize, sugarcane, and sorghum, alleviating these photosynthetic bottlenecks during establish-
ment and growth of the harvestable parts are likely to improve yield. The expected benefits are also shown to be 
augmented by the increasing trend in planting density, which increases the impact of photosynthetic source limita-
tion on crop yields.
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Introduction

The global human population has seen a staggering increase 
over the last century, and is currently estimated to be 7.8 bil-
lion people (United Nations, 2019). This signifies a tripling of 
the population compared with 2.6 billion people in 1950 and, 
although this explosive growth is projected to gradually taper 
off, substantial further population growth is still predicted (UN 
Population Division projections). Current projections suggest 

that by 2050, the global population will have grown to 9.6 
billion. Providing enough food for all these additional mouths 
will be challenging indeed. Historically, human population 
growth has often been a concern, as exemplified by Thomas 
Malthus’ two-century-old statement that ‘Population will al-
ways grow more rapidly than food supplies until numbers are 
reduced by war, disease or famine’ (Malthus, 1798). Malthus’ 
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prediction has often been used to emphasize the power of sci-
ence and technology, allowing human society to outpace his 
doomsday scenario. Indeed, most commodity crop yields have 
shown steady increases for many decades (e.g. Ray et al., 2013), 
and further increases may well be possible via improvements 
in farm management, plant breeding, as well as via utilization 
of transgenic (e.g. Pellegrino et  al., 2018) and gene editing 
technologies. Improvements in crop yields can be achieved via 
development of new higher yielding varieties or via closure 
of the so-called ‘yield-gap’ between attainable and realized 
yield (Foley et al., 2011). With regards to the former, the plant 
breeding strategies of the green revolution have led to spec-
tacular improvements in yield potential via increases in yield 
components such as harvest index and light capture efficiency, 
but less so for the conversion efficiency of captured solar en-
ergy to energy contained in plant biomass. Theoretical analyses 
of the maximum conversion efficiency (Zhu et al., 2010) have 
provided estimates for an upper limit of 4.6–6%. From the few 
existing measurements of this conversion efficiency in farmers’ 
fields (reviewed in Zhu et al., 2010), even the most productive 
crop canopies achieve less than one-third of the computed 
upper limit, mostly due to losses in photosynthetic efficiency. 
Thus, improving photosynthetic efficiency may have potential 
to increase crop yields, as demonstrated by a range of proof-
of-concept studies for this strategy in C3 species (reviewed by 
Simkin et al., 2019).

Increasing crop productivity via improving 
photosynthetic efficiency: a C3 story?

The vast majority of studies looking at photosynthetic effi-
ciency gains to improve crop yield focus on species with C3 
photosynthesis. In contrast to C3 photosynthesis, species with 
C4 photosynthesis drive a biochemical CO2-concentrating 
mechanism (CCM), which enhances the operating efficiency 
of Rubisco and competitively inhibits ribulose bisphosphate 
(RuBP) oxygenation and associated photorespiratory losses 
(Hatch, 1971; Dai et  al., 1993). The CCM also allows plants 
to function with limited stomatal opening, which reduces 
water loss through transpiration and consequently increases 
photosynthetic water-use efficiency (WUE). In addition, less 
Rubisco is needed, which accounts for most of the nitrogen 
invested in leaves, and thus increases nitrogen-use efficiency 
(Ghannoum et al., 2005). Although only ~3% of plant species 
use the C4 pathway (Sage et al., 2012), C4 species are strongly 
over-represented in our agricultural crops, and their import-
ance in supplying food, feed, and fuel is hard to overstate 
(USDA, 2020a; Fig. 1). As C4 photosynthetic species are top-
ping the list of the most highly produced commodities (USDA, 
2020a; Fig. 1), novel strategies to improve their productivity 
should be highly impactful. Despite this, analysis of the re-
search output of the last three decades suggests that only ~1% 
of research on improving photosynthetic efficiency is focusing 

on C4 photosynthesis (Fig. 2); and even this might be an over-
estimate, considering that out of the 104 references found with 
this search, 14 studies are focusing on C4 photosynthesis as a 
means to improve photosynthetic efficiency in C3 species.

So why is there less focus on improving the efficiency of 
C4 photosynthesis? The attributes of C4 photosynthesis provide 
an advantage over C3 photosynthesis at high light and high 
temperatures (Sage and Zhu, 2011) and theoretically even at 
mildly chilling temperatures (Long and Spence, 2013). Does 
this mean that the conversion efficiency of solar energy to bio-
mass is closer to its biological limit in C4 species? Based on 
the aforementioned theoretical analysis of potential conversion 
efficiency (Zhu et al., 2010), C4 species have an intrinsic ad-
vantage compared with C3 species but still fall short of the 
theoretical upper limit by a considerable margin. Thus, the 

Fig. 1. Annual global production of the 11 crops highest in production 
quantity. The C4 NADP-ME sugarcane and maize are at the top of the 
ranking. Data shown by the solid bars were extracted from the Food 
Agriculture Organization database (FAO, 2020). *Patterned bars show the 
approximate amount of different uses of the total production of sugarcane 
in Brazil (CONAB, 2018) and of maize in the USA (USDA, 2020a).

Fig. 2. Number of publications per year in subject area ‘Plant Sciences’. 
The topic ‘Improving photosynthesis’ is shown by the solid green bars, 
and the number of publications per year ‘C4 photosynthesis’ found within 
this group is shown by the patterned bars. Search results were generated 
using Web of Science on 19 February 2021.
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case for improving photosynthetic efficiency to increase crop 
yield may also hold promise for C4 photosynthesis (see also von 
Caemmerer and Furbank, 2016). Here we therefore review po-
tential strategies for improving C4 photosynthesis under op-
timal and suboptimal conditions.

How could C4 photosynthesis be improved 
under non-stressed conditions?

In the following paragraphs, we explore in which ways C4 
photosynthesis could be improved. Focusing on the NADP-
malic enzyme (ME) subtype (Box 1), in this section we will 
first look at factors that have control over the rate of CO2 as-
similation under non-stressed conditions. The interdependence 
of the C4 acid shuttle and Calvin–Benson–Bassham (CBB) 
cycle across two different photosynthetic cell types (mesophyll, 
M; and bundle sheath, BS) makes it more difficult to pinpoint 
specific control factors in C4 photosynthesis, compared with 
C3 photosynthesis. In addition, the demands for ATP and 
NADPH in M and BS cells are distinct, and balancing the 
energy (Bellasio and Griffiths, 2014; Kromdijk et  al., 2014) 
between both compartments is important for efficient func-
tioning of C4 photosynthesis. In addition, there is significant 
carbon exchange between the CBB and C4 cycle (Arrivault 
et al., 2017), which probably helps to maintain flexibility to re-
spond to variable environmental conditions. To account for this 
complexity, metabolic models which capture the kinetics of all 
the major reaction and diffusion steps in C4 photosynthesis can 
be used to identify the relative control exerted by any of the 
modelled factors over the rate of CO2 assimilation, by com-
puting control coefficients, defined as the relative change in 
net CO2 assimilation rate (An), as a result of a relative change in 
the control factor. Using their model for NADP-ME photo-
synthesis (Fig. 3) to simulate the control of individual factors 
over the rate of assimilation, Wang et al. (2021) computed that 
under high light, control over steady-state An is shared between 
Rubisco in the CBB cycle (dAn/dRubisco=0.46) and Jmax, 
namely the capacity for chloroplastic electron transport (dAn/
dJmax=0.38). Using the same model to simulate a step change 
in light intensity from darkness to 1800 μmol m−2 s−1 (Fig. 4), a 
strong transient control of pyruvate-orthophosphate di-kinase 
(PPDK) during the first minutes was predicted (Fig. 4B), to 
ramp up metabolic pools in the C4 cycle. Similarly, but less 
pronounced, sedoheptulose-1,7-bisphosphatase (SBPase) and 
phosphoribulokinase (PRK) share significant transient control, 
consistent with their role in the regeneration of CBB cycle 
substrate (Fig. 4C). The concomitant negative transient control 
of chloroplastic fructose-1.6-bisphosphatase (FBPase) can be 
explained by the role of fructose-6-phosphate in starch for-
mation (Raines, 2003), which would compete with the avail-
ability of substrate in the CBB cycle. After An is induced far 
enough to significantly deplete intercellular CO2 concentra-
tions, the control shifts transiently to stomatal conductance (gs) 

and phosphoenolpyruvate carboxylase (PEPC; Fig. 4A, B), be-
fore finally settling on the steady-state control by Rubisco and 
Jmax shown in Fig. 3.

CBB cycle control over C4 photosynthesis

It is well known that the Rubisco catalytic rate is relatively 
slow, and catalytic improvement may be constrained by 
a trade-off with its specificity for CO2 over O2 (Zhu et  al., 
2004b; Carmo-Silva et al., 2015). Lower abundance of Rubisco 
in C4 plants also affects the levels of CBB metabolites, in par-
ticular RuBP, which was significantly lower in four C4 species, 
relative to five C3 species (Arrivault et al., 2019). The high CO2 
environment around Rubisco in C4 plants seems to have re-
laxed the selective pressure for high specificity, resulting in a 
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Fig. 3. Simulated control coefficients of individual factors over net CO2 
assimilation rate (An) during steady-state conditions. Light reactions 
and stomatal diffusion (B), C4 (C) and CBB cycle (D) enzymes, in maize. 
The individual factors are numbered and indicated in the diagrammatic 
representation in (A). Control coefficients were computed as the first 
derivative of An normalized to each respective control factor X (dAn/dX). 
Environmental settings for the simulation were air temperature of 28 °C, 
photosynthetically active radiation of 1800 μmol m−2 s−1, ambient CO2 
concentration of 410 ppm, and air vapour pressure deficit (VPD) of 1.5 
kPa. For a full description of the model and parameters, see Wang et al. 
(2021).
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Box 1. The NADP-ME C4 photosynthesis subtype

Dual cell-type C4 photosynthesis can be classified into three biochemical subtypes, NADP-ME, NAD-ME, and 
PEPCK, based on the enzyme used to decarboxylate C4 acids (Hatch et al., 1975). Here, the main focus is on 
NADP-ME C4 grasses of the Andropogoneae clade which represent some of the most important cultivated plants 
with a large impact on food, feed, and fuel production (Christin et al., 2009; Fig. 1).

Chloroplast differentiation in NADP-ME C4

NADP-ME C4 grasses show classical ‘Kranz’ leaf 
anatomy (A). Low PSII abundance in BS thylakoids 
prevents high rates of whole-chain electron transfer. 
Instead, reductant is supplied via the malate shuttle, and 
ΔpH formation and ATP synthesis are predominantly 
driven by CET (Hatch, 1987; B and C). Chloroplasts 
in M cells retain the capacity to undergo aggregative 
movements in response to environmental stresses 
(Yamada et al., 2009), but in BS cells are more confined 

to their centrifugal position, which may facilitate metabolite transfer between M and BS (Maai et al., 2011).

Flexibility in the decarboxylation pathway

• Carbon fixation starts in the M cytosol (D). CO2 is converted into HCO3
− by CA and is used in the 

carboxylation of PEP (catalysed by PEPC) forming the C4 organic acid OAA. OAA is converted to malate 
by MDH in M chloroplasts and diffuses to the BS cells. Decarboxylation of malate by NADP-ME in 
BS chloroplasts elevates the CO2 concentration 
around Rubisco and provides NADPH.

• Pyruvate diffuses back to the M cells, where PEP 
is regenerated by PPDK at the expense of 2 ATP/
PEP (Kanai and Edwards, 1999).

• Significant activity of PEPCK (dotted arrows) can 
supplement the NADP-ME route (Furbank, 2011; 
Yin and Struik, 2021); up to 25% in maize (Hatch, 
1971); present in sugarcane (Calsa and Figueira, 
2007; Sales et al., 2018; Cacefo et al., 2019); but 
undetectable in sorghum (Gutierrez et al., 1974).

• Pyruvate can also be transaminated into alanine, 
before diffusing back to the M cell (Schlüter et al., 
2019; faded arrows), which may help to balance 
nitrogen metabolism (Wang et al., 2014).

Abbreviations: Ala, alanine; Ala-AT, alanine aminotransferase; Asp, aspartate; Asp-AT, aspartate 
aminotransferase; BS, bundle sheath; CA, carbonic anhydrase; CBB, Calvin–Benson–Bassham cycle; CET, 
cyclic electron transfer; M, mesophyll; Mal, malate; MDH, malate dehydrogenase; NAD-ME, NAD-malic en-
zyme; NADP-ME, NADP-malic enzyme; OAA, oxaloacetate; OEC, oxygen-evolving complex; PC, plastocyanin; 
PEP, phosphoenolpyruvate; PEPC, phosphoenolpyruvate carboxylase; PEPCK, PEP carboxykinase; PPDK, 
pyruvate-orthophosphate-dikinase; PQ, oxidized plastoquinone; PQH2, reduced plastoquinone; Pyr, pyruvate; 
RuBP, ribulose 1,5 bisphosphate. Schemes B and C were created with BioRender (https://biorender.com/).
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higher catalytic turnover rate (kcat) of C4 Rubisco compared 
with C3, at the expense of affinity for CO2 (kc) (Kapralov et al., 
2011). Substantial diversity in Rubisco activity and catalytic 
properties among C4 species is found (Hermida-Carrera et al., 
2016; Orr et al., 2016; Sharwood et al., 2016a, b; Kolbe et al., 
2018b), possibly reflecting differences in time since the evo-
lution of the C4 pathway between different lineages, as well 
as systematic differences between different decarboxylation 
types (Ghannoum et al., 2005). Swapping the nuclear-encoded 
Rubisco small subunit for transgenic or chimeric versions can 
be used to alter Rubisco kinetic properties (Ishikawa et  al., 
2011; Atkinson et al., 2017) and may offer a tractable route to 
manipulating kcat.

A different strategy to increase Rubisco capacity is via 
enhancing its content. Space constraints in the BS chloroplasts 
were initially thought to limit Rubisco content in C4 species 
(Sage and McKown, 2006). However, recent work shows that 
C4 BS chloroplasts may be able to house Rubisco amounts 
sufficient to alleviate its control over C4 photosynthesis 
(Pignon et al., 2019). Indeed, using combined overexpression 
of Rubisco large and small subunits together with the Rubisco 
assembly chaperone RUBISCO ASSEMBLY FACTOR 1 
(RAF1) in maize, Salesse-Smith et al. (2018) achieved a >30% 
increase in Rubisco content. The Rubisco-overexpressing 
maize plants showed significant increases in CO2 assimilation 
as well as plant growth. However, the gains were limited due 
to a decline in Rubisco activation state in the overexpression 
lines. Although Rubisco activase (Rca) content appears typic-
ally in excess in C4 species (von Caemmerer et al., 2005), it is 
possible that overexpression of Rca in parallel with increasing 
Rubisco content will further enhance the potential of this 
strategy (Salesse-Smith et al., 2018).

Electron transport capacity control over C4 
photosynthesis

In C4 species, electron transport occurs in both M and BS 
cells, but the energy supply and demand vary considerably 
between both photosynthetic cell types. In NADP-ME C4 
photosynthesis, which is simulated by the model, M cells per-
form whole-chain electron transport, whereas BS cells have 
low PSII activity. High rates of cyclic electron transport around 
PSI in BS chloroplasts drive ATP synthesis (see Box 1), whereas 
NADPH is instead supplied by the M cells via the malate 
shuttle. In an attempt to enhance cyclic electron transport in 
NADP-ME-type C4 plants, Tazoe et al. (2020) overexpressed 
PGR5 in Flaveria bidentis, an NADP-ME C4 dicot. Although 
this led to a higher electron sink downstream of PSI and alle-
viated acceptor-side limitation of PSI under fluctuating light, 
it did not impact CO2 assimilation.

Cyclic and linear electron flow are both subject to so-called 
‘photosynthetic control’ via the cytochrome b6f (Cyt-b6f) 
complex, which upon acidification of the thylakoid lumen 
causes deceleration of the oxidation of plastoquinol and limits 

electron flow towards plastocyanin (Foyer et al., 2012). A de-
crease in Cyt-b6f content and proportional decline in electron 
transfer rates was observed in antisense Rieske FeS mutants 
of the C3 species tobacco (Price et al., 1995). More recently, 
the opposite strategy, overexpression of Rieske FeS, was shown 
to be sufficient to elevate Cyt-b6f content in the NADP-ME 
model C4 grass Setaria viridis (Ermakova et al., 2019). The re-
sulting increase in Jmax also improved the rate of CO2 assimila-
tion, via enhanced quantum yields of both photosystems and a 
decrease in loss of energy via non-photochemical quenching 
(NPQ). Slow temporal kinetics of NPQ have also been pre-
dicted to decrease CO2 fixation (Murchie and Niyogi, 2011), 
and faster NPQ in transgenic tobacco plants was shown to 
significantly boost photosynthetic efficiency and productivity 
(Kromdijk et  al., 2016). Model simulations using maize PSII 
quantum yield recovery kinetics predict an even greater po-
tential impact than found in tobacco (Zhu et al., 2004a), sug-
gesting that the transgenic strategy by Kromdijk et al. (2016) 
may also have merit in C4 species.

C4 cycle control over C4 photosynthesis rates

None of the C4 cycle enzymes individually seems to have strong 
control (<0.07 dAn/dX in the model calculations) over the rate 
of photosynthesis under steady-state, highlight conditions (Fig. 
3C), which is consistent with the notion that the CCM has to 
operate at slightly higher rates than the CBB cycle in order to 
achieve the CO2-concentrating effects while accounting for 
overcycling due to retrodiffusion of CO2 (termed leakiness, 
Farquhar, 1983; reviewed by Kromdijk et  al., 2014). That is, 
when An is already saturated with CO2, any further increases in 
CO2 concentration should not affect the rate of photosynthesis 
and instead increase leakiness and concomitant energy loss. In 
addition, the C4 cycle rate also determines the rate of reduc-
tant shuttle from the M to BS chloroplasts. Although C4 acid 
transporters may also play a significant role (e.g. Weissmann 
et al., 2016), the C4 cycle rate is primarily controlled by the 
activity of NADP-malate dehydrogenase (NADP-MDH), the 
only thioredoxin-regulated enzyme in the C4 cycle (Leegood 
and Walker, 1999). However, activity of NADP-MDH under 
steady-state highlight conditions is typically in excess of the 
net assimilation rate (Usuda et al., 1984). Activity of NADP-
MDH in mutant lines of F. bidentis could be reduced to <50% 
before CO2 fixation capacity was affected (Trevanion et  al., 
1997), which led the authors to suggest that instead of a direct 
regulatory role in photosynthesis, the covalent regulation of 
NADP-MDH activity may function to keep the chloroplastic 
NADP pool largely reduced and to limit reductant transfer 
from the chloroplast under darkness.

In contrast to steady-state, under transient conditions strong 
control coefficients are predicted for C4 cycle enzymes. During 
photosynthetic induction due to a change in light intensity from 
0 to 1800 μmol m−2 s−1, PPDK exerts a strong control over An 
during the first minutes (Fig. 4). PPDK is an important enzyme 
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in C4 photosynthesis, controlling the regeneration of PEP, the 
substrate for the primary carboxylation event (Chastain et  al., 
2011). The importance of PPDK for non-steady state photosyn-
thesis is well known (Usuda et al., 1984). However, PPDK can be 
rapidly activated via dephosphorylation in response to changes 
in light intensity (Chen et al., 2014). Consequently, in response 
to a step increase in light, PPDK increases activity much faster 
than photosynthesis, which is consistent with the notion that 
the transient control coefficient of PPDK (Fig. 4B) is not as-
sociated with direct control over the carbon uptake flux, but 
rather with building up the large metabolic pools essential for 
C4 photosynthesis (Stitt and Zhu, 2014). PPDK corresponds to 
7–10% of the protein content of M cells (Edwards et al., 1985), 
and its activity was found to exceed the rate of photosynthesis 
only slightly in maize (Usuda et al., 1984). In addition, small re-
ductions in PPDK gene expression and amounts led to lower 
assimilation rates in F. bidentis (Trevanion et al., 1999). However, 
since a significant fraction of PPDK (up to one-third) remains 
phosphorylated under fully activated conditions (Edwards et al., 
1985), some overcapacity seems to exist.

As mentioned above, after An is induced far enough to 
significantly deplete Ci, the control over An shifts strongly 
to stomatal conductance and to some extent to PEPC. 
Extractable activity of PEPC is typically several-fold higher 
than in vivo activity (Laisk and Edwards, 1997) due to strong 
post-translational control by metabolites as well as revers-
ible phosphorylation. Reversible phosphorylation of a PEPC 
serine residue increases its activity, while at the same time it 
reduces the inhibitory effect of malate and aspartate and in-
creases the sensitivity to activation by sugar-phosphates (and 
glycine in monocots) (Doncaster and Leegood, 1987; Leegood 
and Walker, 1999; Gowik and Westhoff, 2011). Structural ana-
lysis of the homotetrameric PEPC showed that each monomer 
contains separate binding sites for the substrate PEP and the 
allosteric inhibitors malate and aspartate (Schlieper et al., 2014). 

The evolutionary co-opting of PEPC in C4 photosynthesis has 
led to different kinetic properties in the C4 isoform (Gowik 
and Westhoff, 2011) and several residues responsible for these 
changes have been discovered. Comparative analysis of crystal 
structures of C3 and C4 PEPC identified an arginine to glycine 
mutation in the C4 variant, leading to decreased inhibition by 
malate/aspartate (Paulus et al., 2013). Another single serine to 
alanine substitution decreases PEPC affinity for bicarbonate in 
the C4 isoform (DiMario and Cousins, 2019). Based on the 
balance between in vivo PEPC and Rubisco capacity in 49 
C4 species (Pignon and Long, 2020), it could be hypothesized 
that a strategy shifting leaf nitrogen (N) investment away from 
PEPC towards Jmax and Rubisco could be effective to achieve 
higher rates of photosynthesis. A  similar hypothesis was pro-
posed by Kromdijk and Long (2016) for C3 species, suggesting 
that leaf N investment for high An could be more effective 
by a shift from carboxylation towards regeneration capacity 
in the CBB cycle. However, considering the non-negligible 
control of PEPC over non-steady-state photosynthesis (Fig. 4), 
and the perceived importance of dynamic photosynthesis over 
total canopy CO2 fixation (Murchie et al., 2018; Slattery et al., 
2018), there could be significant drawbacks to this strategy.

How can C4 photosynthesis under 
suboptimal conditions be improved?

Whereas the factors above are important for C4 performance 
under optimal non-stressed conditions, factors controlling photo-
synthetic rates under suboptimal, stressed conditions are arguably 
more important for crop productivity. We used the model flux 
analysis by Wang et al. (2021) to account for short-term environ-
mental stresses (Fig. 5) simulating drought [vapour pressure deficit 
(VPD) changed from 1.5 kPa to 3.5 kPa], heat, and cold stress (air 
temperature changed between 10 °C and 40 °C). The simulated 
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drought conditions induce a shift from enzymatic factors to 
diffusional control of An by stomatal conductance (Fig 5A–C), 
which suggests that under these dry conditions, An becomes 
limited by CO2 supply despite the concentrating action of the 
C4 cycle. The shifts in the control coefficients in response to air 
temperature (Fig. 5D–F) are reflecting the differential responses 
of enzymatic activities which are strongly impacted by tempera-
ture, and the photosynthetic light reactions, which are much less 
affected. As a result, low temperatures dramatically increase the 
control coefficient of Rubisco, whereas under high temperatures, 
An is primarily controlled by electron transfer capacity. Notably, 
the co-limitation between Rubisco and Jmax at 30 °C is replaced 
at 20 °C by co-limitation between Rubisco and C4 cycle activity 
via PEPC, NADP-ME, and PPDK activities.

Chilling temperature effects on C4 photosynthesis

Due to their evolutionary origins from tropical and subtrop-
ical regions, most C4 species are maladapted to chilling tem-
peratures, in particular in combination with exposure to light 

which gives rise to chilling-induced photoinhibition (Taylor 
and Craig, 1971; Long et  al., 1983). The most extreme crop 
example is probably sugarcane, which is particularly chilling 
sensitive (Grantz, 1989; Głowacka et  al., 2016), and severely 
limited in its latitudinal range. However, even though maize 
has better chilling tolerance, it is still the most susceptible crop 
to chilling-induced photoinhibition amongst those grown 
in temperate regions (Hetherington et  al., 1989). Improving 
resilience to low-temperature conditions in C4 crops could 
have a strong economic impact by increasing latitudinal range, 
helping to reduce year by year yield variability and decreasing 
early season competition with weeds. The model predictions 
suggest that increasing Rubisco activity is key to maintaining 
photosynthetic capacity under chilling conditions (Fig. 5F). 
However, transgenic maize lines with increased Rubisco con-
tent did not show better performance during chilling condi-
tions, which suggests that Rubisco is not the primary limiting 
factor that causes maize susceptibility to low temperatures, al-
though Rubisco overexpression may help plants recover faster 
from chilling events (Salesse-Smith et al., 2020).
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Protein lability under low temperatures could play an im-
portant role in chilling tolerance. Several important proteins, 
most notably PEPC (Kingston-Smith et al., 1997; Chinthapalli 
et  al., 2003), PPDK (Du et  al., 1999), as well as Rubisco 
(Kingston-Smith et al., 1997; Du et al., 1999; Pittermann and 
Sage, 2001b; Chinthapalli et al., 2003), show increased rates of 
breakdown under chilling conditions. It is worth noting that 
the model calculations shown in Fig. 5 do not consider any ef-
fects of protein breakdown. In other words, the enhanced con-
trol coefficient which the model predicts for Rubisco activity 
under chilling temperatures is based purely on the kinetic 
properties of the enzyme, but in reality it will be compounded 
by the loss of activity due to protein disintegration. The effects 
of protein breakdown enhance the control of the cold-labile 
proteins PEPC and especially PPDK over An under cool con-
ditions. Indeed, comparisons between maize and its chilling-
tolerant distant relative Miscanthus×giganteus demonstrate that 
the latter responds to chilling with a strong transcriptional 
up-regulation of gene expression networks involved in photo-
synthesis and carbon assimilation, as well as protein synthesis 
and degradation (Spence et  al., 2014) to counteract the en-
hanced breakdown of proteins such as Rubisco, PEPC, and 
PPDK (Naidu et al., 2003; Wang et al., 2008; Serrano-Romero 
and Cousins, 2020), resulting in superior productivity under 
temperate climates (Dohleman and Long, 2009).

Experiments with chilling temperatures in the presence and 
absence of illumination show that light, although not a pre-
requisite for photoinhibition (Ortiz-Lopez et al., 1990), clearly 
has an exacerbating role in the extent of chilling damage in 
maize (Taylor and Craig 1971; Long et al., 1983). This is due 
to the fact that light-harvesting and electron transfer reac-
tions are much less perturbed by low temperature than down-
stream electron sinks. The resulting imbalance increases the 
probability of formation of reactive oxygen species (ROS), 
which are the primary cause of photodamage. Photoprotective 
and ROS-scavenging mechanisms are therefore important to 
maintain efficient C4 photosynthesis under suboptimal tem-
peratures. The differences between chloroplast populations in 
BS and M cells in NADP-ME C4 species (see Box 1) may 
need to be considered in this regard. In maize, BS and M cells 
have distinct antioxidant capacities (Doulis et  al., 1997) rela-
tive to the availability of reducing power in each compartment 
(reviewed in Turkan et al., 2018), with BS cells often lacking 
antioxidant capacity. Under optimal conditions, intracellular 
transport of reduced and oxidized forms of antioxidants al-
lows continued ROS scavenging in BS cells. However, under 
low temperatures, the transport between compartments may 
become impaired, exposing the BS cells to oxidative stress 
(Kingston-Smith and Foyer, 2000). In addition, although most 
work on chilling-induced photoinhibition has focused on PSII 
inhibition, PSI inhibition is particularly prominent under cool 
conditions combined with fluctuating light (Kono et al., 2014). 
PSI is especially sensitive to inhibition when PSI electron ac-
ceptors are limited and the lack of an efficient repair cycle 

leads to prolonged recovery times which can span several days 
(Sonoike, 2011). These characteristics are consistent with the 
hallmark signs of chilling-induced photoinhibition in maize 
and sugarcane (Pimentel et  al., 2005; Głowacka et  al., 2016). 
Indeed, PSI activity can be strongly reduced by chilling or 
photoinhibitory treatments (e.g. Baker and Nie, 1994; Savitch 
et al., 2011; Qiao et al., 2020), which would justify another look 
at a putative role for PSI in chilling-induced photoinhibition 
of C4 species.

Drought stress effects on C4 photosynthesis

Increasing temperatures and fewer predictable precipitation 
events caused by global climatic change, are expected to in-
crease the frequency of high VPD conditions and reduced 
water availability during crop growth (Yuan et al., 2019). High 
WUE, defined as the amount of carbon fixed per unit of water 
lost, can help to conserve soil water content for critical mo-
ments during the growing season. Although C4 species typic-
ally have higher WUE than C3 plants, the differences diminish 
under drought conditions (Ripley et  al., 2010; Taylor et  al., 
2010). Under mild drought, a decrease in Ci can significantly 
affect saturation levels of CO2 around Rubisco. Consequently, 
An becomes limited by stomatal diffusion (Fig. 5A) as well as 
by PEPC. In addition, and consistent with the CO2 limita-
tion of An, work with Zea mays lines with strongly reduced 
carbonic anhydrase (CA) activity suggests that this may also 
become a minor limitation at low Ci (Studer et al., 2014; Kolbe 
et  al., 2018). Similarly, the leaf internal conductance to CO2 
from the intercellular airspaces to the sites of fixation (meso-
phyll conductance, gm) may also impact An and WUE at low Ci 
(e.g. Kolbe and Cousins, 2018), but the mechanism and role of 
gm in limiting An in C4 species under different environmental 
conditions are not very well understood. Native responses of 
PEPC in C4 species under water deficit do not show a clear 
picture, with some results indicating a decrease in activity 
(Becker and Fock, 1986; Du et al., 1996) and others showing 
little change or increased activities of PEPC (Saliendra et al., 
1996; Foyer et al., 1998; Carmo-Silva et al., 2007; Ghannoum, 
2009; Pissolato et al., 2020). Beneficial effects of overexpression 
of PEPC have been reported for maize plants grown under 
mild drought conditions, resulting in higher WUE and in-
creased biomass (Jeanneau et al., 2002), but these effects were 
suggested to stem from a pleiotropic negative effect on sto-
matal density of the PEPC overexpression, rather than from 
direct enhancement of the C4 cycle. Indeed, transgenic maize 
with reduced stomatal density (Liu et  al., 2015) or increased 
stomatal sensitivity to abscisic acid (Brugière et al., 2017) had 
lower gs and increased WUE when subjected to drought. In 
addition, reduced gs under high VPD was successfully used 
as a trait in breeding programmes to produce more drought-
tolerant maize (Messina et al., 2020).

After prolonged exposure, drought-induced reductions in 
An can no longer be rescued by high CO2, suggesting that 
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biochemical limitation replaces stomatal conductance as the 
dominant control factor (Ghannoum, 2009; Ripley et al., 2010; 
Bellasio et al., 2018). The exact biochemical bottlenecks are not 
easy to pin-point, but could be related to impaired activities 
of CBB or C4 cycle enzymes. Although effects of drought on 
different photosynthetic enzymes appear strongly species de-
pendent, impairment of Rubisco under drought conditions is 
often found (Du et al., 1996; Saliendra et al., 1996; Carmo-Silva 
et al., 2007; Ghannoum, 2009; Perdomo et al., 2017). However, 
maize with increased Rubisco content did not have a higher 
assimilation rate or plant growth under drought stress, and the 
overexpression was beneficial only for the recovery of photosyn-
thesis after rewatering (Doron et al., 2020). Prolonged drought 
stress and reduced leaf water content may also negatively affect 
the integrity of the chloroplastic ATPase, and the resulting de-
cline in ATP synthesis can decrease regeneration of substrates 
in CBB and C4 cycles (reviewed by Ghannoum, 2009). These 
phenomena are compounded by the enhanced build-up of ex-
cess excitation energy under stress conditions, when the ab-
sorbed light exceeds the energy requirements to drive C4 and 
CBB cycle activities. Whereas this is true for C3 and C4 species 
alike, the capacity for photoprotection under stressed conditions 
may be impaired in C4 plants in a cell type-specific manner. 
BS chloroplasts appear to have only limited capacity to undergo 
photoprotective movements. In addition, photorespiration is an 
important alternative electron sink to dissipate excessive exci-
tation energy in C3 plants (Takahashi et al., 2007) which may 
be impacted by the C4 pathway. Photorespiratory mutants are 

lethal in maize (Zelitch et al., 2009), demonstrating the required 
presence of the pathway; however, it seems plausible that the 
capacity of the photorespiratory pathway in C4 species may be 
less sufficient to offer photoprotection under drought and high 
light stress.

Heat stress effects on C4 photosynthesis

Consistent with the model simulation (Fig. 5), Jmax has been 
shown to limit C4 photosynthesis at superoptimal temperatures 
(Pittermann and Sage, 2001a; Kubien et al., 2003; Dwyer et al., 
2007), but the differences in electron transport characteristics be-
tween M and BS chloroplasts (Box 1) make it difficult to discern 
more specific bottlenecks from these data. Additional limita-
tions to C4 photosynthesis associated with high temperatures 
include reduction in Rubisco capacity, RuBP regeneration, and 
reductions in Rca activity (Crafts-Brandner and Salvucci, 2002; 
Kubien et al., 2003). Impairment of Rca activity can severely re-
duce photosynthesis at high temperature (Salvucci et  al., 2001; 
Carmo-Silva and Salvucci, 2012; Perdomo et al., 2017; Scafaro 
et  al., 2018; Degen et  al., 2021). Although reduced transcript 
levels of Rca at high temperature in the C4 species F.  bidentis 
appeared not to be directly related to Rca protein accumula-
tion (Hendrickson et al., 2008), intrinsic heat sensitivity of Rca in 
maize did explain decreased Rubisco activation (Perdomo et al., 
2017). Differential expression of Rca-α and Rca-β isoforms in 
response to temperature may contribute to heat tolerance. Rca-α 
expression in five C4 grasses was induced by high temperatures 

Table 1. Summary of strategies to improve C4 photosynthesis and presence/absence of evidence from simulation modelling (S) or 
experimental data (E) under non-stressed steady state conditions or photosynthetic induction, cool temperature, high temperature and 
drought stress

Factor Strategy for improve-
ment

Non-stressed Stressed

Steady-state Induction Cool  
temperature

High  
temperature

Drought

S (Fig. 3) E S (Fig. 4) E S (Fig. 5) E S (Fig. 5) E S (Fig. 5) E

gs  ✘ ? ✓ ? ✘ ? ✘ ? ✓ ✓(1) ✘(2)

Electron  
transport

Enhance CET ✘(3) ✓ ? ✘ ? ✓ ? ✘ ?

Increase Rieske  
FeS

✓ ✓(4) ? ? ? ?

Speed up NPQ ? ? ? ? ?

C4 cycle PEPC ✘ ✘(5) ✓ ✓(5) ✘ ? ✘ ? ✘ ✓(6)

NADP-ME ✘ ? ✘ ? ✓ ? ✘ ? ✘ ?

PPDK ✘ ? ✓ ? ✓ ? ✘ ? ✘ ?

CBB cycle:  
Rubisco

Improve kcat ? ? ? ? ?

Change small  
subunit expression

? ? ? ? ?

Increase content ✓ ✓(7) ✓ ? ✓ ✘(8) ✓ ? ✘ ✘(9)

Increase Rca  
expression

? ? ? ? ?

Symbols denote no improvement of CO2 assimilation rate (✘), improvement of CO2 assimilation rate (✓) or unknown effect (?). 
References: 1, Liu et al. (2015); 2, Brugière et al. (2017); 3, Tazoe et al. (2020); 4, Ermakova et al. (2019); 5, Laisk and Edwards, 1997; 6, Jeanneau et al. 
(2002); 7, Salesse-Smith et al. (2018); 8, Salesse-Smith et al. (2020); 9, Doron et al. (2020). 
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(Kim et al., 2021) and appeared to be involved in Rca hexamer 
stability. These results are different from what has been seen in 
the C3 grass wheat, in which Rca1β is more thermostable among 
the three Rca isoforms Rca1β, Rca2β, and Rca1α (Scafaro 
et al., 2019; Degen et al., 2021), but similar to heat-treated rice 
(Wang et  al., 2010). Specific amino acid substitutions between 
thermosensitive and thermotolerant isoforms have been iden-
tified to act as thermal and regulatory switches in wheat Rca 
which strongly impact performance under high temperature in 
vitro (Scafaro et al., 2019; Degen et al., 2020). Transgenic expres-
sion of the thermostable Rca from Oryza australiensis improved 
yields in heat-stressed O. sativa (Scafaro et al., 2018), and a similar 
strategy based on overexpression of a transgenic or mutated ther-
mally stable Rca isoform may also hold promise for improving 
photosynthetic heat tolerance in C4 species.

Substantial natural genetic variation in 
photosynthesis of C4 crop species

The C4 photosynthetic bottlenecks discussed in the previous 
paragraphs are summarized in Table 1, which provides a list 
of key attributes that could have potential to improve photo-
synthesis. To find out whether these attributes could be im-
proved via breeding, the presence of existing genetic variation 
in a species germplasm is a prerequisite. Although some di-
versity has probably been lost during domestication (Doebley 
et al., 2006), there appears to be significant genetic variation 
for photosynthetic traits in the germplasm of several C3 crops 
(Driever et al., 2014; Gaju et al., 2016; Carmo-Silva et al., 2017; 
Pennacchi et al., 2018; Molero et al., 2019; Acevedo-Siaca et al., 
2020, 2021), with varying degrees of heritability, in some cases 
presenting clear opportunities for marker-assisted breeding of 
future cultivars (e.g. Adachi et al., 2017). In this section, we re-
view progress in using natural genetic variation to improve C4 
photosynthesis.

Chilling tolerance

Considerable variation in sensitivity to chilling-induced 
photoinhibition exists between accessions of different C4 spe-
cies, as shown for example in maize (e.g. Aguilera et al., 1999; 
Fracheboud et  al., 2004; Pimentel et  al., 2005) and sorghum 
(Ortiz et  al., 2017), but the mechanistic and genetic basis of 
this variation still remains largely undefined. The latter study 
with 304 sorghum accessions showed that there is significant 
natural variation in the photosynthetic response of sorghum 
lines to cold stress and their capacity to recover, and several 
putative genomic regions and candidate genes were iden-
tified. The understanding of allelic variants associated with 
these physiological traits could help identify key processes and 
genes to manipulate by breeding or engineering approaches 
(Ortiz et al., 2017). In maize, the replacement of landraces by 
hybrids has drastically reduced the allelic diversity utilized in 

elite germplasm. However, large-scale production of doubled-
haploid lines from promising landrace accessions coupled with 
genotyping and broad phenotypic characterization should 
help to make the allelic diversity of landrace collections more 
readily available for breeding programmes. This approach was 
recently applied to European flint maize (Hölker et al., 2019). 
As an early sign of their potential to improve chilling tolerance 
in maize, doubled-haploid lines from these European land-
races outperformed flint founder lines as well as commercial 
hybrids in early development across a range of 11 temperate 
environments.

An alternative strategy to improve chilling tolerance is 
via introgressions from closely related tolerant C4 species. 
The generation of intergeneric hybrids between chilling-
sensitive Saccharum and the chilling-tolerant Miscanthus which 
show high levels of chilling tolerance in F1 ‘miscanes’ (Kar 
et al., 2019) can be seen as a first step in this strategy, which 
could allow production of sugarcane and energy cane culti-
vars for more temperate climes. The recent publication of the 
Miscanthus sinensis genome (Mitros et  al., 2020) will help to 
accelerate the identification of genomic regions specifically 
relevant to its superior performance under low temperature.

Water-use efficiency

C4 plants are generally more efficient in water use than C3 
plants, but might be improved further by leveraging natural 
variation in WUE traits within crop germplasm (reviewed 
by Leakey et  al., 2019). Leaf-level WUE and its component 
traits An and gs show significant within-species variation in 
diversity or mapping populations of several C4 species, such 
as switchgrass (Taylor et  al., 2016), sorghum (Ferguson et  al., 
2020a Preprint), and maize (Xie et al., 2020). Sugarcane geno-
types with higher WUE, due to lower gs in combination 
with high photosynthetic capacity, were identified by Li et al. 
(2017), which may offer breeding potential for higher WUE. 
Similarly, Pignon et  al. (2021) identified significant variation 
in leaf WUE traits across a collection of contrasting sorghum 
lines. However, detailed analysis of steady-state and dynamic 
WUE and its component traits An and gs across these acces-
sions also identified inherent trade-offs between trait combin-
ations which may severely limit the potential for improvement. 
Because An and gs are positively correlated, the range of vari-
ation in their ratio (WUE) is typically smaller than for the 
individual component traits. In most of the aforementioned 
studies, the major source of variation in leaf-level WUE is gs. 
Using hierarchical grouping by gs classes, Jackson et al. (2016) 
identified leaf intercellular [CO2] as a major correlate with 
leaf-level and whole-plant metrics for WUE in sugarcane. In 
C3 plants, the normalized Ci/Ca metric and related isotopic 
proxy (∆ 13C) have been successfully applied to develop wheat 
lines with higher WUE (Condon et al., 2004), which may also 
be possible in C4 species (Ellsworth and Cousins, 2016; Eggels 
et al., 2021). ∆ 13C can be strongly genetically determined in C4 
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species such as maize (Gresset et al., 2014; Twohey et al., 2018). 
However, the theoretical slope of the correlation between ∆ 13C 
and Ci/Ca in C4 species can be negative or positive since the 
relationship is confounded by the impact of BS leakiness (i.e. 
the rate of retrodiffusion of CO2 from the BS cells relative to 
the rate of PEP carboxylation). Although BS leakiness is rela-
tively constant under most conditions, it can increase consider-
ably under drought or nutrient stress conditions (reviewed by 
Kromdijk et al., 2014) and in particular under low light inten-
sity (Kromdijk et al., 2008, 2010). Despite these complications, 
co-localized quantitative trait loci (QTLs) for ∆ 13C and several 
WUE-related traits have been found in maize (Avramova et al., 
2019) as well as in Setaria (Ellsworth et al., 2020).

Semi-automated pipelines to characterize leaf-level (e.g. 
Ferguson et al., 2020a, Xie et al., 2020) or whole-plant WUE (e.g. 
Feldman et al., 2018) can increase phenotyping throughput dra-
matically, which helps to alleviate the phenotyping bottleneck. 
Additional challenges associated with identification of genes or 
genomic loci underpinning differences in WUE are associated 
with the polygenic nature of the trait. To improve the reliability 
of genetic associations, several new approaches are being pion-
eered. Ferguson et al. (2020a) demonstrated that the integration 
of genome-wide and transcriptome-wide association studies 
(Kremling et al., 2019) can be used to identify candidate genes 
for WUE with enhanced confidence. Feldman et al. (2018) used 
their temporally rich dataset of whole-plant WUE in a Setaria 
italica×S. viridis recombinant inbred line population to develop 
function-valued QTL models based on the average log of the 
odds score across the time course of the experiment, yielding 
fewer, higher confidence QTL. Predictive models can also be 
used to speed up breeding efforts, by linking genomic variation 
with physiological trait variation, and simulate the impact across 
a wide range of environments (e.g. Inman-Bamber et al., 2016; 
Kadam et al., 2019; Wu et al., 2019).

Heat tolerance

Unfavourably high temperatures can severely impact crop 
yields. In sugarcane, high temperature induced significant de-
creases in net assimilation rate, maximal PSII efficiency, and 
activities of sucrose synthase and sucrose phosphate synthase, 
all of which were more strongly impacted in heat-sensitive 
compared with heat-tolerant genotypes (Kohila and Gomathi, 
2018). In grain crops, the temperature during reproductive de-
velopment is particularly critical, and temperatures >30  °C 
during flowering and seed set can negatively impact yield in 
maize and sorghum (reviewed by Kaushal et al., 2016). The C4 
photosynthetic temperature response peaks at a higher tem-
perature than the damage threshold temperature during repro-
ductive development, hence crop breeding programmes have 
mostly focused on traits associated with reproductive success, 
such as pollen viability, stigma receptivity, and seed set per-
centage (e.g. Alam et al., 2017) to improve crop heat tolerance. 
Substantial variation in heat tolerance is present in germplasm 

of C4 crops such as sorghum (e.g. Chopra et  al., 2017) and 
maize (Cairns et al., 2013; Naveed et al., 2016), but it is often 
unclear how much of this is underpinned by variation in 
photosynthetic, rather than reproductive, traits. Using different 
sowing dates to modulate exposure to moderate seasonal heat 
stress, Yadav et al. (2016) found a significant genotype-specific 
treatment response in photosynthesis rates across a panel of 21 
maize inbred lines, which was correlated with biomass prod-
uctivity. The genotypic differences in photosynthesis responses 
were not explained by dark-adapted PSII quantum yields, sug-
gesting that enzymatic inhibition, rather than PSII inactivation, 
explained the observed differences. Metabolic profiling of two 
contrasting maize genotypes in response to sudden heat stress 
identified that the levels of nine key metabolites were strongly 
predictive for the difference in leaf photosynthetic recovery 
between the two lines (Qu et al., 2018). If this approach is more 
generally applicable, it may offer potential for high-throughput 
screening of photosynthetic heat tolerance. ‘Heat tents’ were 
used by Sunoj et  al. (2017) to raise average temperature by 
8  °C during growth of a collection of sorghum genotypes, 
achieving quite severe heat stress, with daytime maximum 
temperatures kept at 45 °C. The net assimilation rate was de-
creased in a genotype-dependent manner, and fluorescence-
estimated thylakoid damage was weakly correlated with the 
heat stress inhibition, suggesting that this level of heat stress was 
sufficient to inactivate PSII. Considering that severe heat stress 
is particularly damaging to the oxygen-evolving complex of 
PSII (Murata et al., 2007), chlorophyll fluorescence measure-
ments of PSII efficiency can be used to screen photosynthetic 
responses to heat stress (Murchie et al., 2018). Ferguson et al. 
(2020b) developed high-throughput screening for heat toler-
ance in rice by combining visual (stay-green) responses with 
dark-adapted PSII quantum yields to rapidly increasing tem-
peratures in excised leaf material, which may be applicable to 
C4 species such as sorghum and maize.

Taken together, there appears to be substantial natural gen-
etic variation in photosynthesis within germplasm of C4 crops, 
but physiological interpretation is often too minimal to as-
sess how this variation is connected to the traits summarized 
in Table 1. Addressing this knowledge gap will require devel-
opment of high-throughput proxies that specifically inform 
about the attributes in Table 1.

How could increased photosynthetic 
efficiency enhance yield in C4 crops?

Whereas the previous paragraphs have reviewed the range of 
strategies to alleviate photosynthetic bottlenecks in C4 crops 
and the potential to utilize natural genetic variation to make 
improvements, in this final section, the potential impacts of 
photosynthetic efficiency gains on yield are reviewed by 
looking at source–sink interactions in three main C4 crops: 
maize, sugarcane, and sorghum.
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Photosynthetic source activity affects sink 
establishment and grain filling in major C4 crops

The constraints to growth and productivity can be formulated 
in terms of supply and demand, or source versus sink (for a 
detailed discussion of the source–sink concept, see White et al., 
2016; Chang and Zhu, 2017). Plants need a supply of carbo-
hydrates from photosynthesis, water, and mineral nutrients to 
provide the building blocks and energetic demands to produce 
new tissue. When supply is insufficient, the growth that is real-
ized will fall short of the potential growth. If so, growth would 
be source limited. Alternatively, growth can be constrained by 
the capacity of the growing parts to accumulate biomass. In this 
situation, an increase in resource availability would not stimu-
late growth, which is termed as being sink limited. The relative 
simplicity of this concept is deceptive, and sink and source limi-
tations are not mutually exclusive, but instead growth patterns 
continuously reflect a relative balance between source and sink 
constraints, termed the source–sink balance. The source–sink 
concept applied specifically to the plant’s carbon economy has 
been a popular framework for analysis of the interplay between 
photosynthetic activity and yield. For this purpose, the sink 
strength of the harvestable parts relative to the photosynthetic 
activity of the leaves reflects the source–sink balance. The plant 
parts that form the sink can, therefore, be markedly different 
between crop species.

For maize, the sink strength of the harvestable parts con-
stitutes the developing ears, which can be seen as a collec-
tion of competing kernels. Sink strength at the plant level 
is largely controlled by the crop growth rate around silking, 
which strongly determines the number of kernels that set and 
fill (Tollenaar et al., 1992; Vega et al., 2001). The utilization of 
hybrid technology in maize has led to increased light capture 
and utilization via enhanced growing season length, and in-
creased leaf area index and stay-green traits to maintain photo-
synthetic efficiency longer, jointly raising source capacity by 
an estimated 113% (Lee and Tollenaar, 2007). Since the harvest 
index in hybrids is maintained at ~50%, sink strength appears 
to have increased in proportion to source capacity, which can 
be explained by the strong relationship between dry matter 
accumulation around silking and establishment of sink size 
via kernel number (Echarte et al., 2004). Further evidence for 
the role of photosynthesis in seed set and grain filling comes 
from defoliation experiments. Defoliation in maize leads 
to a decrease in grain yield (Barnett and Pearce, 1983) and 
grain quality (Shekoofa et al., 2010), with the effect on kernel 
number and grain filling being dependent on the timing of 
defoliation. Leaf removal around silking has a strong impact 
on kernel number and yield, whereas leaf removal at later 
stages only impacts grain filling and has less impact on yield 
(Tollenaar and Daynard, 1978).

In sugarcane, the sink constitutes the sugar-accumulating 
culms, composed of elongated internodes. The accumulation of 
sugar to high concentrations (~500 mM sucrose in internode 

juice; Wu and Birch, 2006) is facilitated by several specialized 
features in the sucrose loading and translocation pathway 
(Wang et al., 2013). It includes high expression of SWEET13 
sugar transporter genes in the photosynthetically mature leaf 
parts (Hu et al., 2018), a fine balance between soluble acid in-
vertase and sucrose phosphate synthase to control the rate of 
sucrose formation in internodes, and expression of a specific 
sucrose transporter gene ShSUT1 to prevent sucrose backflow 
into the apoplast (Rae et al., 2005). Despite these specialized 
features, accumulation of sucrose in leaves of sugarcane can 
have a strong negative feedback on photosynthetic capacity. 
Partial shading or intermittent darkening of leaves alleviates 
feedback inhibition of photosynthesis (McCormick et  al., 
2006, 2008a; Ribeiro et  al., 2017), whereas cold girdling or 
exogenous sucrose application promotes down-regulation of 
photosynthesis (McCormick et al., 2008b; Lobo et al., 2015). 
The inhibiting effect of sucrose accumulation seems to rely on 
signals derived from the concomitant accumulation of hexoses, 
trehalose-6-phosphate (T6P), and/or expression of hexokinase. 
The manipulation of these signals may allow decoupling of 
source activity from sink feedback and enable even greater su-
crose accumulation (McCormick et al., 2009; Chandra et al., 
2011).

In sorghum, the parts constituting the relevant sinks for yield 
are dependent on the variety, and can vary from the grains 
(grain sorghum) to the stem (sweet sorghum), or a combin-
ation of both in dual-purpose production systems. In sweet 
sorghum, the accumulation of sucrose in the stem internodes is 
facilitated by altered expression of several sucrose transporters 
(Milne et al., 2013) and vacuolar invertase isoforms (Chi et al., 
2020), compared with grain varieties. In grain sorghum, grain 
sink strength is strongly determined by seed set in the panicle, 
which in turn depends on the crop growth rate around an-
thesis. As a result, photosynthetic activity around this period 
is especially important for sink formation and yield, similar 
to the situation in maize. Consistently, leaf removal at booting 
and anthesis stages has a strong negative impact on grain sor-
ghum yield via reduction in seed number, as well as average 
seed weight (Stickler and Pauli, 1961; Legwaila et  al., 2013). 
In dual-purpose production systems, both stem and grain are 
important sinks for yield. While the elongating internodes are 
potent sinks during vegetative growth, the grains develop later. 
Panicle pruning in a range of tropical sorghum genotypes did 
not affect stem sugar content (Gutjahr et  al., 2013a, b), sug-
gesting that competition between both sinks is largely pre-
vented due to the temporal separation in development.

Crop management can have important implications for 
source–sink interactions. Strong source activity during the de-
velopment and filling of sinks is needed for stable and high 
yields, but can be affected by the timing of planting. For ex-
ample, late planting in sub-Saharan Sudan–Sahelian climates 
can expose sorghum to severe post-anthesis droughts, which 
negatively impacts grain filling (Tovignan et al., 2016). Longer 
maintenance of green leaf area during drought periods via 
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stay-green traits can mitigate some of this yield loss in both 
grain and sweet sorghum (Borrell et al., 2000; Tovignan et al., 
2016). Planting dates can also impact source–sink interactions 
at crucial developmental stages. For example, late plantings of 
summer maize to align crop growth with the timing of rain-
fall in rain-fed cropping systems of Argentina can push back 
the period of grain filling into weather with unfavourably low 
light levels, leading to low photosynthetic activity, decreased 
grain filling, and yield loss (Bonelli et al., 2016). A similar situ-
ation occurs in temperate monsoon climates in Northern 
China, where late plantings can confine maize grain filling to a 
period with suboptimal light levels, in this case caused instead 
by the onset of the rainy season (Gao et al., 2017).

Increasing plant density leads to a lower 
source–sink ratio

A major trend in crop production systems of grain crops is the 
steady increase in plant density. In species with only a few til-
lers such as sorghum, or with only a single stem such as maize, 
increasing plant density will increase the number of ears or 
panicles per unit land area. Taking maize as an example, plan-
ting density across nine US corn belt states has increased by 
0.07±0.01 plants m−2 year−1 since the 1990s (Assefa et al., 2018) 
and is seen as an important factor underlying the steady increase 
in maize yield. How attainable these yield gains are depends on 

other crop management factors such as the fertilization level 
(Ruffo et al., 2016), as well as the weather conditions during 
the growing season. Despite breeding efforts to facilitate high 
planting density, for example steeper leaf angles, under stressful 
conditions such as drought, increased plant density may en-
hance year-by-year yield variability, via increased competition 
between neighbouring plants (Lobell et al., 2014).

In addition, we reason that the increases in planting density 
have profound effects on source–sink balance by promoting 
sink strength, whereas photosynthetic activity is largely deter-
mined by the incident irradiance and much less impacted by 
plant density. To demonstrate the impact of planting density 
on source–sink balance further, we used a 3D functional–
structural model (previously described by Evers and Bastiaans, 
2016) to simulate a maize crop at different planting densities. 
The model simulations show that for the observed increase 
in average maize plant density from five to eight plants m−2 
between 1987 and 2016 (Assefa et al., 2018), productivity and 
yield per unit area marginally increase (Fig. 6A, B), but prod-
uctivity and yield per plant decline (Fig. 6C, D) while source–
sink balance approximately halves (Fig. 6E). These results are 
only weakly affected by more upright leaf angles (different 
symbols, Fig. 6), which favours canopy photosynthetic activity 
in modern maize hybrids via more uniform vertical light dis-
tribution across the canopy (Ort et al., 2015). Thus, crop yield 
becomes more strongly source limited with increasing plant 
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density, and the general trend of increasing plant density is 
likely to enhance the importance of photosynthetic efficiency 
for yield, especially in the grain crops sorghum and maize.

Conclusions

In this review we have explored the case for improvement of 
photosynthetic efficiency in C4 crops as a means to enhance 
productivity and yield. Despite the limited focus on improving 
photosynthetic efficiency in C4 compared with C3 species, 
there appears to be substantial evidence that this strategy may 
be achievable and beneficial for yield. Using model analysis 
and literature review, several tangible bottlenecks within the C4 
pathway could be identified which exert strong control under 
relevant conditions for crop productivity, some of which can 
be alleviated via leveraging natural genetic variation in crop 
breeding programmes, whereas others may only be improved 
successfully via transgenic or gene editing methods. The decline 
in source–sink balance due to increases in planting density is 
likely to enhance the importance of photosynthetic efficiency 
for yield. Considering the predicted magnitude of the shortfall 
between food supply and demand, the timelines involved in 
crop breeding programmes, and the importance of C4 crops for 
global food, feed, and fuel production, implementing photo-
synthetic improvement as part of the C4 crop improvement 
toolbox is both urgent and timely.
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