
foods

Article

A Systematic Comparison of the Intrinsic Properties of Wheat
and Oat Bran Fractions and Their Effects on Dough and Bread
Properties: Elucidation of Chemical Mechanisms, Water
Binding, and Steric Hindrance

Stefano Renzetti 1,*, Mira Theunissen 2 and Karlijn Horrevorts 2

����������
�������

Citation: Renzetti, S.; Theunissen,

M.; Horrevorts, K. A Systematic

Comparison of the Intrinsic

Properties of Wheat and Oat Bran

Fractions and Their Effects on Dough

and Bread Properties: Elucidation of

Chemical Mechanisms, Water

Binding, and Steric Hindrance. Foods

2021, 10, 2311. https://doi.org/

10.3390/foods10102311

Academic Editors: Catrin Tyl and

Alessandra Marti

Received: 23 August 2021

Accepted: 24 September 2021

Published: 29 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Agrotechnology and Food Sciences Group, Wageningen University & Research, Bornse Weilanden 9,
6708 WG Wageningen, The Netherlands

2 Food Quality and Design Group, Wageningen University, Bornse Weilanden 9,
6708 WG Wageningen, The Netherlands; mira.theunissen@wur.nl (M.T.); karlijn.horrevorts@wur.nl (K.H.)

* Correspondence: stefano.renzetti@wur.nl

Abstract: This study aimed at elucidating the contribution of chemical interactions, water binding,
and steric hindrance on the effect of wheat and oat brans and of their fractions, i.e., soluble and
insoluble, on dough and bread properties. For such purpose, an inert filler, i.e., glass beads of
comparable particle size and with no water binding capacity and moisture sorption properties, was
also studied. The glass beads provided breads most similar to the control, indicating the limited role
of steric hindrance. Brans and bran fractions showed distinct compositional and physical properties.
The soluble fraction from oat bran, rich in β-glucan, was less hygroscopic than the wheat counterpart
and could bind more water, resulting in larger detrimental effects on bread quality. The β-glucan
content showed a prevalent role in affecting gluten development, the thermo-setting behaviour of the
dough, and crumb texture, i.e., cohesiveness and resilience. Overall, the comparison between the two
brans and their fractions indicated that the interplay between water binding, mainly provided by the
insoluble fraction, and the plasticizing properties of the soluble bran fraction controlled the effects on
bread volume and texture. From a compositional standpoint, β-glucan content was a determining
factor that discriminated the effects of wheat and oat brans.

Keywords: bran; bran fractions; water binding; moisture sorption; β-glucan; steric hindrance; bread-
making

1. Introduction

Enrichment of staple food such as bread with cereal brans, a co-product of the milling
industry, is raising interest due to consumers and policy makers paying increasing attention
to dietary fibre intake and reduction in food waste. Still, the average intake of dietary
fibres is generally below the recommended daily dosage [1]. Stimulating the consumption
of whole grain products and/or bran-enriched products by improving their perceived
attractiveness is the best way to promote higher dietary fibre intake. Cereal brans are rich
in dietary fibre, with wheat and oat bran being of particular interest for their nutritional
value. Wheat bran includes 37–53% dietary fibre, of which 95% is insoluble fibre, mainly
arabinoxylans, cellulose, and lignin [2]. Oat bran contains about 15–20% dietary fibre, of
which 61% is soluble fibre, including β-glucan (5–20%) [3]. The health benefits associated
with the consumption of wheat bran and oat β-glucan have been recognized by the Euro-
pean Food and Safety Authority in relation to promoting gut health and controlling blood
glucose and cholesterol levels [4].

The addition of bran has been associated with detrimental effects on dough and
bread properties. Besides the dilution of gluten upon incorporation of bran in bread [5],
intrinsic bran properties, as studied in wheat particularly, have been suggested to play a
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significant role due to interactions with gluten and flour constituents. Interactions between
bran and flour are believed to be either physical, chemical, or enzymatic in nature [6].
The mechanisms by which bran negatively impacts dough quality have been ascribed by
authors to physical hindrance [7,8], decreased gluten development due to bran competition
for water [6,9,10], and by chemical interactions between wheat bran components and gluten
proteins which affect gluten network formation [11]. Recently, ref. [10] also showed that
the addition of bran affects not only gluten structure but also the thermo-setting behaviour
of the dough during heating, shifting starch gelatinization temperatures.

Despite substantial evidence that water redistribution due to fibre addition plays a
major role in gluten development [10,12], a combination of mechanisms is most likely
to concomitantly act, which extends also to the effect of fibres on starch gelatinization
and swelling [13] and on proteins and gluten thermo-setting [14–16]. Furthermore, the
relationship between the molecular properties of fibres from the soluble and insoluble frac-
tions (SDF and IDF, respectively) and interactions with gluten are not fully elucidated [12].
Wang and co-workers [17–20] performed a systematic study on the effects of both soluble
arabinoxylans (WEAX) and water insoluble solids with a focus on the gluten network
and concluded that both fractions had similar effects, driven by the same physical and
chemical mechanisms. However, it should be taken into account that while IDF is mainly
responsible for water binding and redistribution among food constituents [21], SDF alters
the plasticizing properties of the water phase by changes in the volumetric density of
hydrogen bonds available for interaction with the biopolymers [13,16]. Hydrogen bonding
is also the suggested mechanisms for interactions between fibres and gluten [12,22]. The
hydrogen bonding ability of fibres is dependent on the molecular size and the effective
number of hydroxyl groups available for interactions [13,16].

While physical and chemical mechanisms largely dictate the effects of bran on dough
and bread quality, the specific contribution during different stages of the breadmaking
process could substantially vary depending on the bran source and their intrinsic prop-
erties [2,23,24]. To the best of our knowledge, there are no studies which addressed a
systematic comparison of the effect of wheat and oat bran on dough and bread properties
by elucidating the individual contribution of the soluble and insoluble fraction as related
to the whole bran. Considering the compositional differences, such comparison could
provide further insights into the underlying mechanisms behind bran functionality.

Against this background, the aim of this study was to elucidate the physical and
chemical mechanisms by which the soluble and insoluble fractions from wheat and oat
brans and their interplay in the whole bran affect dough and bread properties. For such
purpose, the physical and chemical properties of the brans and of their soluble and insoluble
fractions were characterized for their chemical composition, moisture sorption, and water
binding properties and particle size. To better elucidate the mechanisms affecting dough
rheology and bread quality, an inert filler, i.e., glass beads with no water sorption and
binding properties, was also used. The specific contribution of the bran fractions as
compared with the native brans was then studied by replacing the soluble or insoluble
fractions previously extracted with the inert filler. In such way, the total amount of “bran”
inclusion was kept constant within all variations. The effect of brans on the thermo-
mechanical behaviour of the dough and on gluten microstructure was studied by dynamic
mechanical thermal analysis and confocal laser scanning microscopy, respectively. These
data were then analysed against bread specific volume and crumb texture of the bran-
enriched breads.

2. Materials and Methods
2.1. Materials

Wheat flour Edelweiss (15.5% moisture, 10.6% protein, and 71.2% carbohydrates (of
which 1.8% sugars, 2.8% dietary fibres and 95.4% starch)) was from Meneba (Rotterdam,
The Netherlands), yeast (Mauripan red) was from AB Mauri (Dordrecht, The Netherlands),
the bakery fat trio puur zacht was from CSM Benelux BV (Goes, The Netherlands), and
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coarse oat bran (5.7% moisture, 18% protein, 33% carbohydrates, 25% dietary fibres, 13.5%
β-glucans, 3.50% ash, 0.113% total phenolics as provided by the supplier) of average
particle size 300 µm was from ABS Food (Padova, Italy). Coarse wheat bran (13% moisture,
6.5% ash, 15.5% proteins, 38% starch, and 40% dietary fibre as provided by the supplier)
was provided by Barilla SpA (Parma, Italy). Glass beads (particle size 200–300 µm) were
obtained from HBM (Moordrecht, The Netherlands).

2.2. Preparation of Bran Fractions

Wheat and oat bran were first milled to achieve a similar particle size distribution
between 200–300 µm using a Cryo miller (6875D, freezer mill, Retsch, Haan, Germany)
with a pre-cooling period of 2 min followed by a run time of 2 min. The resulting milled
bran was used in the study as native wheat bran (NWB) and native oat bran (NOB). Soluble
and insoluble fractions of bran from wheat and oat were obtained according to [25], with
some modifications. Briefly, the bran was extracted with demi-water using a bran/water
ratio of 3:20 for wheat and 3:40 for oat at room temperature while stirred continuously
for 15 min. The samples were separated into a pellet and supernatant by centrifugation
at 16,000 rpm for 15 min at 7 ◦C using an Avanti J-26XP High-Speed Centrifuge from
Beckman Coulter (Indianapolis, IN, USA). Samples were freeze-dried, resulting in the
insoluble fractions (IWBF for wheat and IOBF for oat) and soluble bran fraction (SWBF for
wheat and SOBF for oat). A non-fractionated sample was also prepared by following the
same steps but without separation of the supernatant from the pellet. These samples were
named reconstituted bran (RWB for wheat and ROB for oat). These sample were included
as controls to determine the effect of soaking and freeze-drying on the bran functional
properties as compared with the soluble and insoluble fractions and native brans. These
samples were also freeze-dried. After freeze-drying, the particles were loosened using a
laboratory blender from Waring commercial (Stamford, CT, USA) for 15 s at high speed.

2.3. Chemical Characterization of Brans
2.3.1. Moisture Content

The moisture content of the brans and bran fractions was measured in duplicate by
drying overnight in aluminium dishes in an oven at 105 ◦C. The filled dishes were cooled
for 1 h in a desiccator before weight determination.

2.3.2. Proximate Analysis

The total dietary fibre (TDF) content was measured in duplicate using the Megazyme
Total Dietary Fibre Assay Kit25 (AOAC 991.43, AOAC 985.29, ref. [26]). The protein content
was measured in triplicate by combustion (Dumas method, AOAC method 990.03) using
a Flash EA 1112 protein analyser (Thermo Fisher Scientific, Waltham, MA, USA). The
detected nitrogen content was converted to protein content using 6.25 as conversion factor.
The starch content was determined in duplicate according to AOAC (Official Method
996.11) using a total starch assay kit (AA/AMG, Megazyme, Bray, Ireland) according to
manufacturer’s instructions.

2.3.3. Total Analysable Carbohydrate Content

Total analysable carbohydrate contents of bran and bran fractions was analysed as
follows: (i) free sugars from the water extract, (ii) after hydrolysis with 2 M trifluoracetic
acid (TFA) for 1 h at 100 ◦C (arabinoxylan) of water extract or of samples as such, and (iii)
the other carbohydrates were identified after hydrolysis according to [27]. For the water
extracts, about 1 g of sample was weighed in a 50 mL Greiner tube, and deionized water
was added to reach 25 mL in volume. The solution was then kept under stirring for 2 h at
room temperature. After stirring, the solution was centrifuged for 10 min at 16,000× g, and
the supernatant was recovered. For the WEAX contents, 1 mL of 2 M TFA was added to
1 mL of water extract. For the total arabinoxylans content, 50 mg of sample was weighed in
a 50 mL Greiner tube, and 10 mL 2 M TFA was then added. The obtained monosaccharides
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were determined by high-performance anion exchange chromatography (HPAEC) using
an ICS-3000 Ion Chromatography HPLC system equipped with a CarboPac PA-1 column
(250 × 2 mm) in combination with a CarboPac PA guard column (25 × 2 mm) and a pulsed
electrochemical detector in pulsed amperometric detection mode (Dionex, Sunnyvale, CA,
USA) at 20 ◦C, according to [28]. Analyses were performed in duplicates. Arabinoxylans
content was determined as the sum of the arabinose and xylose multiplied by the factor of
0.88 (after correcting for free arabinose and xylose in the water extract before hydrolysis).

2.3.4. β-Glucan Content

The β-glucan content of the wheat flour, of the wheat and oat brans, and of their
soluble and insoluble fractions was measured using a mixed-linkages assay kit (AOAC
Method 995.16, Megazyme, Bray, Ireland). Briefly, 100–120 mg of flour or bran were
treated sequentially with lichenase and β-glucosidase before determination of released
glucose by means of the GOPOD reagent. Quantification of glucose was carried out
spectrophotometrically (Varian Cary® 50 UV-Vis, Agilent Technologies, Santa Clara, CA,
USA).

2.3.5. Free-, Conjugated-, and Bound Phenolics Content

The free/soluble, conjugate soluble, and bound/insoluble phenolics content of the
bran samples were determined as follows: for the extraction of free/soluble phenolics,
100 mg of flour was added to 3.75 mL of 80% methanol and mixed for 5 min at 2000 rpm
on a vortex, incubated for 30 min at 25 ◦C at constant agitation of 900 rpm, and the
tubes centrifuged at 10,000 rpm for 10 min at 4 ◦C. The extraction was repeated several
times. For the determination of the soluble conjugated phenolic acids, 1.25 mL of the
methanolic extract was digested with 0.625 mL of 2 M NaOH for 1 h under nitrogen gas.
The hydrolysed samples were acidified with 0.625 mL of 2 M HCl to pH 2. To remove
lipid, 1.25 mL of n-hexane was added to the samples, followed by mixing by vortex for
5 min at 2500 rpm, incubation at 25 ◦C for 10 min with a constant agitation of 500 rpm, and
centrifugation for 10 min at 10,000 rpm. After removal of the hexane layer, 1.25 mL of ethyl
acetate was added, and the sample was mixed for 5 min at 2500 rpm, incubated at 25 ◦C for
10 min with a constant agitation of 500 rpm, and centrifuged for 10 min at 10,000 rpm. The
ethyl acetate layer (upper phase) was transferred into a 5 mL Eppendorf tube, ethyl acetate
evaporated overnight at room temperature, and the samples were resuspended with 1 mL
of 80% methanol. Finally, the bound phenolics were determined. Briefly, 1.25 mL of 2 M
NaOH in a 5 mL Eppendorf tube was added to the sediment obtained by the extraction of
free/soluble phenolics and kept at 90 ◦C for 30 min under nitrogen gas flush to prevent
oxygen degradation. The samples were then vortexed at 2500 rpm for 5 min and acidified
to pH 2 with 1.75 mL of 2 M HCl. To remove lipids, 1.25 mL of n-hexane was added to
the samples, followed by mixing by vortex for 5 min at 2500 rpm, incubation at 25 ◦C for
10 min with a constant agitation of 500 rpm, and centrifugation for 10 min at 10,000 rpm.
After removal of the hexane layer, 1.5 mL of ethyl acetate was added, and the sample was
mixed for 5 min at 2500 rpm, incubated at 25 ◦C for 10 min with a constant agitation of
5000 rpm, and centrifuged for 10 min at 10,000 rpm. The ethyl acetate layer (upper phase)
was transferred into a 5 mL Eppendorf tube, ethyl acetate evaporated overnight at room
temperature, and the samples were resuspended with 1 mL of 80% methanol. All the
samples were stored at −20 ◦C before spectrophotometric determination. This was carried
out as follows: 375 µL supernatant/standard was added to 300 µL of 25% Folin–Ciocalteu
reagent and allowed to react for 5 min. Then, 825 µL of 710 mM Na2CO3 was added, and
the tubes were vortexed at 800 rpm for 10–30 s. The tubes were then incubated at 25 ◦C for
1 h for colour development in the dark. The solution was then filtered (0.2 µm), and the
absorbance was measured at 765 nm against a methanol blank by means of a Varian Cary®

50 UV-Vis (Agilent Technologies, Santa Clara, CA, USA). A calibration curve was prepared
in the range of 0–100 µg ferulic acid (FA) per ml, with intervals of 5 µg FA/mL. Results
were expressed as FA equivalents.
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2.4. Bran Physical Characterization
2.4.1. Particle Size Distribution

The particle size distribution of the bran samples (NWB, RWB, IWBF, NOB, ROB,
IOBF) was measured in duplicate with the dry powder method of the Malvern Mastersizer
300 from Malvern Panalytical (Malvern, UK). Approximately 2 g of bran was added, with
a feed rate of 60%. The air pressure was set to 2 bar, and the machine was set at Opaque
Particle type (Fraunhofer Approximation).

2.4.2. Water Binding Capacity

The water binding capacity (WBC) of the bran fractions was determined in triplicate
according to a modified version of the protocol of [10]. The bran was soaked in demi-
water with a bran/water weight ratio of 1:30. After mixing on a vortex, the samples
were left to shake at room temperature for 2 h on a Multi Reax Vortex from Heidolph
(Schwabach, Germany). Then, the samples were centrifuged for 60 min at 10,000 rpm using
an Avanti J-26XP High Speed Centrifuge from Beckman Coulter (Indianapolis, IN, USA).
After discarding the supernatant, the pellet was drained for 15 min at an angle of 45◦ and
then weighed. WBC was expressed as g water taken up per g bran on dry weight basis
(DW).

2.4.3. Moisture Sorption Behaviour

The moisture sorption behaviour of the different bran samples was determined in
duplicate according to [29], using an automatic multi-sample moisture sorption analyser
SPSx-11l from Projekt Messtechnik (Ulm, Germany).

2.5. Dough and Bread Preparation and Characterization
2.5.1. Definition of Dough Mixing Conditions

Doughs were prepared by adding 18 g of bran or bran fraction/glass beads mixture
or glass beads to 82 g of flour. The level of bran inclusion was chosen as indicative of
bran yield in wholemeal flour [30].The bran fraction/glass bead mixtures were prepared
following on the ratio of soluble/insoluble fractions determined for the wheat and oat
brans (12:88 and 16:84, respectively). Overall, ten different doughs were prepared: a control
dough with 100% wheat flour (CB), a control glass bead dough (GB) with 18% glass beads,
and the eight doughs containing NWB, RWB, NOB, ROB, SWBF, IWBF, SOBF, and IOBF. To
make up for the 18 g of total bran in SWBF, IWBF, SOBF, and IOBF doughs, glass beads
of a similar particle size as the milled bran (200–300 µm) were used. The required water
absorption for comparable dough consistencies in the bread-baking test was determined
in a Farinograph-E (Brabender, Duisburg, Germany) equipped with a 50 g mixing bowl.
The ICC standard method 115/1 (ICC-Standards, 2006) was used with few modifications.
Briefly, 1 g of sodium chloride (Merck, The Netherlands) was added to 50 g of wheat flour
or flour–bran mixtures and pre-mixed for 2 min. Water addition levels were defined by
running an appropriate number of replicates until the maximum dough development
was centred on the 420 FU (farinograph units), according to a previously established
method [10]. The water absorption on 100 g flour as determined by the tests and the
corresponding water content in the dough are reported in Table 1. Based on preliminary
baking trials, mixing time was kept constant at 9 min for all variations.
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Table 1. Water absorption from farinograph tests with corresponding dough water content for the
different doughs in the study.

Water Absorption Properties

Samples Water Absorption a

(Baker’s %)
Dough Water Content b

(%wb)

Control (CB) 55.9 44.9
Glass beads (GB) 46.6 39.8

Native wheat bran (NWB) 63.0 45.7
Reconstituted wheat bran (RWB) 64.6 46.4

Soluble wheat bran fraction (SWBF) 46.3 39.7
Insoluble wheat bran fraction (IWBF) 65.9 46.7

Native oat bran (NOB) 75.3 49.6
Reconstituted oat bran (ROB) 75.9 49.8

Soluble oat bran fraction (SOBF) 53.4 42.5
Insoluble oat bran fraction (IOBF) 68.8 47.7

a Water absorption from farinograph tests. b Dough water content calculated considering the initial moisture of
the flour/mixtures and the water added based on farinograph analysis.

2.5.2. Dynamic Mechanical Thermal Analysis (DMTA) of Dough

DMTA tests were conducted in duplicate according to [10] on freshly prepared doughs
without yeast. For this, a DHR-2 Rheometer from TA Instruments (New Castle, DE, USA)
was used with Peltier plates of parallel geometry and a diameter of 25 mm. Approximately
1 g of dough was placed between plates (loading gap: 20 mm) and compressed until
1.025 mm. Dough excess was removed, silicon oil was applied to prevent sample drying,
and dough was compressed until 1 mm. Before the measurement, the dough was rested for
5 min at 25 ◦C. Samples were oscillated at a frequency of 1 Hz and heated from 25 to 120 ◦C
with a ramp of 5 ◦C/min. Before analysis, an oscillation amplitude test was performed
from 10−4 to 10 to select the linear viscoelastic range. Thus, the strain amplitude was kept
at 0.5·10−3 for all samples. Key parameters related to physical transitions in the dough
were derived from the analysis of the G′ (Pa) and tan(δ) curves in the DMTA by using the
analysis functions in TA Trios v3.3 (TA Instruments, New Castle DE, USA): the G’ and
tanδ value at 25 ◦C; the onset temperature, Tonset, from the evolution of G′ during heating
(calculated as the intersection of the tangents of the baseline before the sudden increase
in G′ and the tangent of the steep G′ profile after Tonset); G′ at maximum (G′max); and the
temperature corresponding to G′max, i.e., Tpeak.

Tonset and Tpeak from the DMTA analysis were plotted in the state diagram for
bread dough baking, as recently constructed by applying an adapted Flory–Huggins
model [13,30]. The volume fraction of water in each dough was calculated based on
the flour (or flour/bran mixtures) and water contents (Table 1) and mass densities, as
previously described [13,16].

2.5.3. Confocal Laser Scanning Microscopy of Dough

To visualize the gluten network in the dough matrix, confocal laser scanning mi-
croscopy (CLSM) was performed based on the method of [31], with slight modifications.
Doughs without yeast were prepared, in which water was partially substituted with a
filtered Rhodamine B solution in demi-water (0.1 g/L) to reach a concentration of 1 mg
Rhodamine B per 100 g flour. Per dough type (in duplicates), ten images were taken
with a LSM 510-META CLSM from Zeiss (Jena, Germany) using 20×magnification and
a resolution of 1024 × 1024 pixels. To get quantitative results, the images were analysed
with AngioTool64 version 0.6a from the National Cancer Institute (Maryland, MD, USA)
(low threshold: 15; high threshold: 255; vessel thickness: 9, 20; small particles: 10; fill holes:
0 and scaling factor: 0.0006640625). Parameters of interest included total protein area,
total number of junctions, average protein length, protein branching rate (total number of
junctions/total protein area), and average protein width (protein area/total protein length).
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2.5.4. Bread Baking and Baking Quality Evaluation

Breads were prepared in triplicate for each variation according to the method used
by [10]. In order to eliminate the effect of compositional variations on yeast metabolism,
the final fermentation time was defined as the time needed to produce 120 mL of CO2, as
measured in a Risograph from National Manufacturing (Lincoln, RI, USA). Baking took
place in a custom-made swing oven at 230 ◦C for 20 min. Steam was injected twice at the
start of each bake. The breads were cooled for 60 min, packed in plastic bags, and evaluated
the day after. Loaf volume was determined on 4 loaves for each variation, with a rapeseed
displacement according to the AACC method 10–05.01. Specific volume was calculated as
loaf volume divided by loaf weight (mL/g).

2.5.5. Crumb Texture and Moisture Content

Crumb texture was measured by means of Texture Profile Analysis using a TA-XT2i
Texture Analyser from Stable Micro Systems (Godalming, Surrey, UK) with a 5 kg load cell
and a 75 mm compression plate and performed as described by [10]. Twelve independent
measurements were performed per bread type. The moisture content of the bread crumbs
(5 g sample) was measured in triplicate in a similar way as for the brans.

2.6. Statistical Analysis

Statistical evaluation (analysis of variance, ANOVA, with Tukey’s test as the post hoc
test, at a significance level of p < 0.05) was performed with SPSS (IBM, version 25, Chicago,
IL, US); principal component analysis (PCA), correlation analysis, and regressions were
performed with RStudio (RStudio version 1.1.463, Inc., Boston, MA, USA).

3. Results
3.1. Chemical Composition and Physical Properties of Brans and Their Fractions

The chemical composition and physical properties of wheat and oat brans and their
fractions are reported in Table 2. The chemical composition of the NOB was similar to
the supplier’s specifications; while for NWB, lower TDF and starch contents and higher
protein content were measured compared with specifications. Oat bran (NOB, ROB)
was richer in starch and proteins compared with wheat bran (NWB, RWB) (p < 0.05).
NWB contained more TDF than NOB (p < 0.05). The chemical composition of brans after
hydration and freeze-drying (ROB and RWB) was similar to the native brans (NOB and
NWB, respectively), except for a significant increase in WEAX and reduction in starch
content for RWB as compared with NWB (p < 0.05).

For wheat bran, IWBF showed the highest TDF content, while for oat bran the highest
TDF was found in SOBF (p < 0.05). SWBF showed the lowest TDF content (p < 0.05). TDF
in SOBF was mainly β-glucans. Consequently, β-glucans were significantly lower in IOB
compared with NOB (p < 0.05). Wheat bran fractions were richer in AX compared with oat
bran fractions (p < 0.05). SWBF showed the highest amounts of WEAX (p < 0.05). Protein
content was found the highest in SWBF (p < 0.05). Starch content was the highest in IWBF
and IOBF as a result of the fractionation, while SWBF and SOBF had the lowest starch
content (p < 0.05).

The total phenolics content was higher in NWB and RWB than in NOB and ROB
(p < 0.05). For wheat bran, the highest amount of phenolics was found as bound phenolics.
On the contrary, the soluble fractions SWBF and SOBF showed the highest amounts of free
phenolics.

With regard to physical properties, the particle size distribution of brans showed a
similar profile, with a peak between 200 and 300 µm (Figure 1), although a small peak
of particles around 10 µm was observed for NOB. As intended, the particle size of the
brans was within the range of the glass beads. NWB showed the highest volume weighted
mean diameter, i.e., D[4,3], while NOB showed the lowest (p < 0.05) (Table 2). No significant
differences were detected for RWB, IWBF, and IOBF. The water binding and moisture
sorption behaviour of the brans and their fractions were also characterized, as they are an
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important aspect of their technological functionality. NOB showed a higher WBC compared
with NWB (p < 0.05). NOB and SOBF had the overall highest WBC. For SOBF, the observed
WBC resulted from a gel that formed after hydration and centrifugation. On the contrary,
the SWBF did not have any water binding ability, as no pellet could be observed after
centrifugation. Additionally, as expected, the glass beads were not able to bind any water.

Table 2. Chemical and physical properties of bran and bran fractions from wheat and oat (samples abbreviations are
reported in Table 1). Composition is expressed as grams of substance per grams of dry matter. Different letters in the same
row indicate statistically significant differences (p < 0.05).

NWB RWB SWBF IWBF NOB ROB SOBF IOBF

Chemical compositions

Starch 31.6 ± 0.6d 25.6 ± 0.5c 2.4 ± 0.0a 42.9 ± 1.6f 35.9 ± 0.8e 35.7 ± 0.5e 6.4 ± 0.1b 41.2 ± 0.6f
Protein 19.7 ± 0.3a 19.4 ± 0.4a 30.4 ± 2.0c 16.7 ± 0.7a 23.8 ± 0.4b 23.4 ± 0.1b 24.7 ± 0.2b 23.8 ± 0.6b

TDF 35.0 ± 0.4ef 32.4 ± 0.2de 20.6 ± 0.9a 38.4 ± 1.8g 28.2 ± 1.4bc 30.0 ± 1.2cd 36.9 ± 0.1fg 26.3 ± 0.3b
Total AX 14.7 ± 0.3c 15.0 ± 0.1c 3.25 ± 0.2ab 16.3 ± 0.0c 5.0 ± 0.9b 5.2 ± 0.9b 1.4 ± 0.0a 5.4 ± 1.2b
WEAX 0.65 ± 0.00c 0.89 ± 0.00d 3.25 ± 0.2e 0.12 ± 0.0a <0.1 <0.1 0.4 ± 0.0b <0.1
β-glucan 2.3 ± 0.1a 2.3 ± 0.1a 1.9 ± 0.2a 2.3 ± 0.2a 15.7 ± 0.2c 16.0 ± 0.3c 33.7 ± 0.2d 13.0 ± 0.6b

Total
phenolics * 0.47 ± 0.12b 0.67 ± 0.02bc 0.83 ± 0.06d 0.53 ± 0.01bc 0.22 ± 0.04a 0.25 ± 0.03a 0.68 ± 0.02cd 0.18 ± 0.01a

Free
phenolics 0.11 ± 0.01ab 0.26 ± 0.00bc 0.49 ± 0.03d 0.12 ± 0.00ab 0.12 ± 0.00ab 0.11 ± 0.00ab 0.41 ± 0.01cd 0.05 ± 0.00a

Bound
phenolics 0.32 ±0.03c 0.34 ±0.03c 0.06 ±0.00ab 0.39 ±0.00c 0.06 ± 0.05a 0.09 ± 0.01ab 0.14 ± 0.01b 0.11 ± 0.00ab

Conjugated
free

phenolics
0.05 ± 0.01ab 0.08 ± 0.01bc 0.27 ± 0.03d 0.02 ± 0.00a 0.05 ± 0.00ab 0.05 ± 0.01ab 0.13 ± 0.00c 0.02 ± 0.01a

Physical properties

D[4,3] ** (µm) 288.5 ± 6.0d 243.0 ± 1.4c - 254.5 ± 5.0c 134.0 ±1.4a 241.0 ±1.4b - 217.0 ± 4.9c
WBC

(g/g dm) 2.27 ± 0.16a 2.30 ± 0.01a - 2.74 ± 0.01a 4.79 ± 0.54b 2.39±0.42a 4.72 ± 1.14b 2.69 ± 0.18a
gwater/gsolids
at aw = 0.95 0.44 ± 0.00c 0.49 ± 0.00d 1.35 ± 0.00f 0.35 ± 0.00b 0.33 ± 0.00ab 0.34 ± 0.00ab 0.60 ± 0.00e 0.30 ± 0.00a

* Phenolics are expressed as ferulic acid equivalents. ** Volume weighted mean diameter from particle size analysis

Figure 1. Particle size distribution of native brans, reconstituted brans, and insoluble fractions from wheat (A) and oat (B).
Sample abbreviations are reported in Table 1.

The moisture sorption behaviour of the different brans as well as glass beads is shown
in Figure 2A,B. Overall, NWB was able to adsorb more water than NOB, as also shown
by the water which was adsorbed at an aw of 0.95 (Table 2). The different behaviour
between NWB and NOB, as well as their reconstituted fractions, could be largely related to
the differences among the soluble fractions of the two bran sources. Clearly, SWBF was
considerably more hygroscopic than SOBF (p < 0.05), while IWBF and IOBF were the two
fractions with the lowest adsorption behaviour (Table 2). The determining contribution
of the soluble fractions to the sorption behaviour of the wheat and oat brans was also
confirmed by computing the sorption behaviour of the native brans from the soluble and
insoluble fractions based on the mass fraction obtained during the fractionation experi-
ments (for NWB: SWBF = 0.12 and IWBF = 0.88, for NOB: SOBF = 0.16 and IOBF = 0.84).
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As shown in Figure 2C,D, the computed values were in good agreement with the measured
sorption isotherm.

Figure 2. Moisture sorption behaviour of wheat bran (A) and oat bran (B) and their fractions as compared with glass beads.
Moisture sorption computed from the isotherms of the soluble and insoluble bran fractions as compared with the native
wheat (C) and oat (D) brans. Sample abbreviations are reported in Table 1.

3.2. Dough Thermo-Mechanical Properties during Temperature Sweep

The thermo-mechanical behaviour of the different wheat doughs was investigated by
DMTA. The technique provides insights into the visco-elastic properties of the dough (G’
and tan δ) as affected by key phase transitions such as gluten thermosetting and starch
gelatinization. These transitions largely control the structure formation during baking of
dough and other cereal-based matrices [14,16,29,32]. In general, three main phases can
be observed with regard to the changes in G’ as a function of temperature (Figure 3). A
decrease in G’ going from 25 ◦C to 50 ◦C, approximately, is associated with softening of the
dough. A sharp increase in G’ in the temperature range between 50 and 60 ◦C is associated
with the beginning of structure setting, i.e., Tonset. A further increase in G′ is observed
beyond Tonset, reaching a maximum, i.e., G′max around 70–75 ◦C, after which a typical
decrease in the gel strength is observed with increasing temperature [33,34].

The addition of all wheat bran fractions resulted in a significant reduction in G’ at
25 ◦C compared with the control (p < 0.05) (Figure 3). This was opposite to the effect of
glass beads, which resulted in a significant increase in G’ at 25 ◦C (p < 0.05). Among the
oat bran fractions, only IOBF showed a significant increase in G’, which was similar to
the dough with glass beads. Overall, it should be noted that the addition of glass beads
and of wheat and oat brans (NWB, RWB, NOB, ROB) seemed to enhance more the viscous
behaviour over the elastic one compared with the control, as described by tanδ at 25 ºC,
despite finding that the effect was not significant (Figure 3). Distinct and significant effects
on tanδ could be observed when comparing the soluble and the insoluble fractions. While
SWBF and SOBF increased tanδ, IWFB and IOBF decreased it. These opposite effects for
soluble and insoluble fractions were significant for the tanδ at 25 ◦C (p < 0.05). For the
dough enriched with SWBF, the tanδ at 25 ◦C showed the overall highest values.
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Figure 3. Examples of DMTA profiles for wheat dough enriched with glass beads and native wheat (NWB) and oat (NOB)
brans showing the evolution of G’ and tanδ as a function of temperature. The table shows the parameters extracted from
the curves for all dough variations. Different letters in the same row indicate statistically significant differences (p < 0.05).
Sample abbreviations are reported in Table 1.

Glass beads and the wheat bran fractions did not have a significant effect on Tonset,
while all oat bran fractions significantly increased it (p < 0.05) (Figure 3). Overall, the
increase was within 2 ◦C. Larger effects were observed for Tpeak. SWBF showed a significant
increase in Tpeak, while IWFB, NOB, ROB, and IOBF decreased it (p < 0.05). The addition of
glass beads alone had no effects compared with the control dough. The Tonset has been often
associated with the onset of starch gelatinization [33,34], as a high correlation can be found
between the Tonset in DMTA and the onset of starch gelatinization from DSC analysis [10].
However, a contribution from gluten thermosetting cannot be ruled out, as these two
transitions occur at around similar temperatures, as recently reported [14,35,36]. The Tpeak
corresponding to the G′max has been associated with the peak gelatinization temperature
Tpeak [10]. To further elucidate what was controlling the structuring transitions, Tonset
and Tpeak were plotted in the state diagram for bread dough baking (Figure 4A). The
state diagram was constructed using the gluten thermosetting and starch melting curves
as a function of Φwater, which we previously reported based on applying an adapted
Flory–Huggins model [13,14]. As it can be observed, both Tonset and Tpeak were well in
agreement with the predictions from the supplemented state diagram. These transitions
were largely controlled by the amount of water present in the dough, as shown by the
correlation between the Tpeak and volume fraction of water in the dough Φwater (p < 0.05)
(Figure 4B).
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Figure 4. Tonset and Tpeak as determined for the different dough samples from DMTA plotted in the
supplemented state diagram for dough baking with phase transitions for gluten and starch (A). The
state diagram is adapted from [13,14]. Correlation between Tpeak and the volume fraction of water
Φwater in each dough (B). CB = control dough and GB = dough with glass beads.

With regard to G’max, only SWBF showed a significant effect as compared with the
control dough, enhancing the elastic modulus (p < 0.05). This effect was quite remarkable
considering that a small amount of the fraction was added.

3.3. Protein Network

CLSM was performed on all doughs in order to visualize changes in the gluten
network, as affected by addition of glass beads and bran fractions (Figure 5A–C). In
general, the addition of bran and bran fractions from wheat and oat seemed to affect the
typical protein strands observed in the control dough. Image analysis was performed
to quantify these differences using the Angiotool software, as previously reported [31].
Despite the large variations observed in the analysis of the network, significant differences
were observed on the impact of the bran sources (wheat, oat, or glass beads) on the average
protein length and branching rate (Figure 5D,E). In fact, the addition of oat bran and its
fractions resulted in a significant increase in protein length and branching rate as compared
with the control (p < 0.05). Similarly, substantial changes in the protein network were
recently observed with the addition of fibre-rich ingredients such as oat β-glucan [37], with
protein length and branching rate significantly increased in the presence of bran [38]. The
addition of glass beads and wheat bran fractions also caused an increase in protein length,
although the effect was not significant.
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Figure 5. Examples of gluten microstructure visualized for the control dough (A) NWB-enriched dough (B) and NOB-
enriched dough (C). The resulting analysis of the image using the Angiotool software is shown on the right for each sample.
Protein length (D) and branching rate (E) as determined for all dough samples using the Angiotool. The symbol (**) indicates
a significant (p < 0.05) effect of the bran source. The white scale bar in (A–C) indicates 100 µm. Sample abbreviations are
reported in Table 1.

3.4. Bread Quality

The addition of glass beads and bran fractions had significant effects on bread quality
(Figure 6). Specific volume was the highest for CB and SWBF, while the addition of glass
beads and the other bran fractions all resulted in a significant reduction in specific volume
compared with the control (p < 0.05). The addition of oat bran and its fractions showed the
largest detrimental effect on specific volume (p < 0.05), while the effects of glass beads and
wheat bran fractions were comparable.

With regard to texture, CB and GB breads showed the softest crumb (p < 0.05), while
wheat and oat bran fractions provided a significant increase in crumb hardness (p < 0.05).
Among the bran-enriched breads, only SOBF had a similar hardness as CB and GB breads.
Chewiness and gumminess showed similar trends as for hardness (data not shown). In
terms of cohesiveness, the breads enriched with wheat bran fractions showed a significant
reduction compared with the control (p < 0.05). On the contrary, the addition of glass beads
and oat bran fractions did not show significant effects on cohesiveness as compared with
the control. The SWBF bread showed a significantly lower resilience than CB (p < 0.05),
while that of IWBF, NOB, ROB, and IOBF breads was significantly higher (p < 0.05).
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Figure 6. Bread quality parameters for breads obtained with enrichment in bran and bran fractions and glass beads: specific
volume (A), crumb hardness (B), crumb cohesiveness (C), and crumb resilience (D). Sample abbreviations are reported in
Table 1. Different letters in the bar charts indicate statistically significant differences (p < 0.05).

3.5. Relation between Chemical and Physical Properties of Brans, Dough Properties, and
Bread Quality

A PCA analysis was performed on wheat and oat bran enriched breads to better
distinguish the effect of the bran sources and their fractions. For such purpose, the con-
tribution of the bran fraction to the dough composition was computed based on dough
recipe and chemical analysis of brans. The rheological properties of the dough, the gluten
microstructure data, and the properties of the resulting breads were also included in the
analysis. The sample variations (score plot) and the chemical, rheological, microstructural,
and bread quality parameters (loading plot) are shown in Figure 7A,B, respectively, on the
plane PC1–PC2. The first two principal components accounted for 75.2% of the variance,
with the other PCs contributing less than 14% each; therefore, it is possible to consider this
representation as very indicative of the differences between the bran-enriched samples.
Three distinct groups could be observed by their separation in the score plot of the PCA:
the soluble fractions SWBF and SOBF in the IV quadrant, the oat bran (NOB and ROB) and
its insoluble fraction (IOBF) in the I quadrant, the wheat bran (NWB and RWB), and its
insoluble fraction (IWBF) in between quadrant II and III. NOB, ROB, and IOBF were char-
acterized by a high β-glucan content in the dough, high protein length and branching rate
of the gluten network, high Tonset of structure setting, and high cohesiveness and resilience
of the crumb. Breads from NOB, ROB, and IOBF also showed the lowest specific volumes
of the breads. NWB, RWB, and IWBF were characterized by high phenolics contents in the
dough. SWBF and SOBF were characterized by the highest flour content in the dough (and
correspondingly the lowest volume fraction of water) and high Tpeak. The bread crumbs
from these fractions also had the lowest hardness.
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Figure 7. PCA analysis with loading plot of chemical, rheological, microstructural, and bread quality parameters (A) and
samples score plot (B). Map of correlations analysis between the different parameters (C). The table provides information
on the type of analysis, abbreviation, and description for each parameter. Additional details for protein network parameters
are provided in [31]. Sample abbreviations are reported in Table 1.

A correlation analysis among the variables was performed, as shown in Figure 7C.
Among the most relevant associations were the positive correlations of the β-glucan content
in the dough with crumb cohesiveness and resilience (R2 = 0.864 and 0.908, respectively,
p < 0.001) and between bread specific volume and flour content in the dough (R2 = 0.768,
p < 0.001). Inverse associations were instead found for specific volume with protein length
and β-glucan content in the dough (R2 = 0.582 with p < 0.05 and 0.836 with p < 0.001,
respectively). Furthermore, β-glucans content negatively correlated with the maximum
gel strength G′max of the dough during heating in the DMTA (R2 = 0.83, p < 0.05). The
predominant effect of β-glucan content on bread quality (i.e., specific volume, crumb
cohesiveness, and resilience) is clearly shown in Figure 8A–C as compared with CB and
GB breads. A further analysis of the data revealed that the specific volume showed distinct
dependence on flour content, depending on the source of bran fractions (wheat or oat), as
shown in Figure 9A. The oat bran fractions enhanced protein length as obtained from the
analysis of CLSM images, resulting in lower specific volume than their wheat counterparts
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(Figure 9B). A linear regression analysis indicated that the specific volume could be well
described for all variations by the combined effect of flour content and protein length
(Figure 9C), with both parameters having a significant contribution (p < 0.001).

Figure 8. Association between the β-glucan contents in the dough and some bread quality parameters:
specific volume (A), crumb cohesiveness (B), and crumb resilience (C). CB = control dough and GB =
dough with glass beads.
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Figure 9. Association of specific volume with flour content in the dough (A) and with protein length
as determined by analysis of CLSM images (B). Correlation between measured specific volume and
the one predicted from flour content and protein length (C). In figures (A,B), black circles indicate
wheat brans, and red circles indicate oat brans. Sample abbreviations are reported in Table 1.

4. Discussion

Chemical and physical mechanisms have been suggested as the main factors control-
ling the functionality of bran in bread applications, although their impact on bread quality
is still not fully elucidated. For wheat bran, these mechanisms have been summarized
in physical hindrance, competition for water, and chemical interaction of gluten with
ferulic acid, arabinoxylans, and glutathione [6]—all of them resulting in detrimental effects.
However, there are limited studies which have systematically compared these mechanisms
between different bran sources and bran fractions, i.e., soluble and insoluble. In particular,
the interplay between the effect of the soluble and insoluble fractions as compared with
the whole bran have not been elucidated. In this study, we investigated the effect of two
bran sources with different compositions, i.e., wheat and oat, and of their fractions, i.e.,
soluble and insoluble, on dough and bread properties with the aim of further elucidating
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the interplay of chemical and physical mechanisms from the different bran fractions. For
such purpose, the effect of brans was also compared with that of an inert filler, i.e., glass
beads, of comparable particle size, which did not have any water binding capacity and
water adsorption properties (Figure 2) as compared with the brans and their fractions. The
glass beads were also used to compensate for the missing fraction of the brans when only
the soluble or insoluble extracts were added.

The compositional and physical characteristics of wheat and oat brans, and their corre-
sponding fractions, varied significantly (Table 2), in line with the ingredients specifications.
The proximate composition of NWB was in agreement with ranges recently reported for
regular bran [6]. Protein content in NOB was in agreement with ranges reported by [39],
while its TDF content was higher than the 19.7–20.6 (% of dry matter) reported by [40], with
a concomitant lower starch content. This can probably be due to differences in fractionation
procedures. The total AX and WEAX contents in NWB was according to ranges recently
reviewed by [41], while β-glucan content was within ranges reported by [6]. The total AX
content in NOB was similar to what was earlier reported [40,42]. Wetting and successive
freeze-drying of the native wheat and oat brans, NWB and NOB, respectively, did not alter
the chemical composition except for a significant increase in WEAX and reduction in starch
content for RWB as compared with NWB. The action of endogenous endo-xylanases and
α-amylases during wetting could explain such differences [43]. Indeed, total sugars in the
water extract (i.e., free sugars) and after TFA hydrolysis were higher for RWB than NWB,
with a particular increase in glucose contents (data not shown), which likely originated
from starch degradation. It should also be noted that not all material could be recovered
from the total sum of the proximate analysis, with largest deviations for the soluble frac-
tions and for RWB. As the TDF determination method employed did not account for the
low molecular weight dietary fibres [44] and because endogenous enzymatic activities
likely occurred during the wetting and extraction procedures, it can be suggested that
these factors contributed to the observed differences, with SWBF and RWB being the most
affected.

With regard to the physical properties, the WBC of NOB was the highest among all
bran fractions and in agreement with values previously reported [45]. Wetting and freeze-
drying significantly reduced the WBC of ROB as compared with NOB. Concomitantly,
SOBF showed a WBC similar to NOB. The ability of soluble dietary fibres from oats to
bind a high amount of water has been previously reported [46]. Since the water binding
ability of β-glucans is dependent on molecular weight, it can be suggested that endogenous
β-glucanase activity during preparation of ROB may have affected its WBC [47].

The moisture sorption behaviour differed significantly between wheat and oat brans.
Despite the fact that NWB had a lower soluble fraction content than NOB (SWBF being
12% and SOBF being 16% of the corresponding native brans), NWB and RWB showed a
more hygroscopic behaviour than NOB and ROB, in agreement with previous findings [48].
It has been previously reported that for many carbohydrates, including soluble fibres and
soluble polymeric glucose, and for proteins, the sorption behaviour is affected by the
average molecular weight [49–51]. The concept also applies to mixtures of carbohydrates
and proteins [52], as it did in the case of the brans and bran fractions in this study. Small
molecules are able to adsorb more water than larger ones. SWBF showed the highest
adsorption of water at 95% RH (p < 0.05), which was 2.25 times that of SOB and 3.85–
4.5 times that of the insoluble fractions IWBF and IOBF, respectively (Table 2). Hence, it
can be suggested that the SWBF was composed of polymers considerably lower in Mw
than SOBF, thus explaining the differences in sorption behaviour. These differences among
the soluble fractions largely impacted the sorption behaviour of the native brans (NWB
and NOB) and the reconstituted ones (RWB and ROB) (Figure 2). In fact, the differences
between NWB and NOB were larger than between IWBF and IOBF (Table 2).

In the attempt to distinguish the contribution of chemical and physical properties of
brans and bran fractions to dough and bread quality, glass beads were also used as inert
fillers. Since the results suggest that they are physically and chemically inert, their use
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elucidates the limited role of steric hindrance and gluten dilution on dough and bread
quality. In fact, their addition to dough showed the least detrimental effects regarding
SV and crumb texture. Specific volume of GB bread was reduced by only 10% when
compared with the control, while no differences were observed in terms of crumb hardness,
cohesiveness, and resilience. Using a synthetic bran with no water binding ability, ref. [7]
also showed a limited effect on the SV of bread, but its moisture sorption behaviour and
the impact on crumb texture was not elucidated. Considering that the glass beads and
the brans had a similar particle size distribution, it can be concluded that differences in
water binding and sorption properties and in chemical compositions among the brans
and bran fractions were mainly responsible for the observed differences in dough and
bread characteristics, rather than steric hindrance. The CLSM investigation of the gluten
network, showing the very similar characteristics of the control dough and the GB dough,
further supports this hypothesis. From such a standpoint, the use of the glass beads to
compensate for the missing fractions was a valid approach to systematically distinguish
the contribution of the soluble and insoluble fractions alone.

Recently, the adverse effects of bran addition to bread have been predominantly
related to its water binding capacity and hydration behaviour [7,43,53]. However, the
results of this study indicate that for a better understanding of bran functionality, it is
important to consider both the water binding properties (intended as the ability to retain
water) and the plasticizing properties of the soluble bran fractions (intended as the ability
to change the structure and properties of the water phase). In fact, RWB and ROB showed
similar WBC and average particle size (Table 2), but the amount of water required in the
dough to ensure proper development was considerably higher for the ROB-enriched one
(Table 1). The SV of ROB was also significantly lower than the RWB-enriched bread. On the
contrary, the insoluble fractions IWBF and IOBF provided breads which were close in SV
and in textural properties (Figure 6), while the differences between the whole wheat brans
(NWB and RWB) and whole oat brans (NOB and ROB) were significantly larger. These
results suggest an important contribution of the soluble bran fractions to the functionality
of the native and reconstituted brans with regard to the interplay between water binding
and plasticizing ability. This was also pointed out by the significant differences between the
soluble and the insoluble fractions on dough rheology. In fact, SWBF and SOBF enhanced
viscous behaviour (higher tanδ at 25 ◦C), while IWBF and IOBF enhanced elastic behaviour
(lower tanδ at 25 ◦C) (Figure 3), in agreement with what was recently reported [36]. Aside
from the water binding exerted by the insoluble bran fractions, the presence of solutes in the
water phase affects the structure of water, as hydrogen bond interactions between solutes
and water result in a reduction in bulk water and the formation of a hydration shell [54],
with the dynamics of water in the hydration shell being slower than in the bulk. When
looking at the soluble bran fractions, the SWBF-enriched dough required much less water
than the SOBF-enriched dough, even lower than the dough with glass beads only (Table 1).
The SWBF-enriched dough also had the highest tanδ at 25 ◦C, indicative of enhanced
viscous moduli compared with the elastic one. In view of the explained moisture sorption
behaviour of SWBF as compared with SOB, it can be suggested that the smaller molecules in
SWBF acted as better plasticizers than those in SOBF. We have recently reported that a wide
range of solutes (i.e., sugars, amino acids and small peptides, soluble fibres) can indeed act
as plasticizers for proteins, including gluten, and for starches [13,16,30,55]. Polysaccharides
with low Mw (and hence low molar volumes) and a high number of H-bonding sites act as
better plasticizer than larger ones. The lower plasticizing ability of SOBF compared with
SOBF, combined with the high water binding capacity, likely contributed to the significant
differences observed between wheat bran (NWB and RWB) and oat bran (NOB and ROB)
enriched breads (Figure 6).

The interplay of water binding and plasticizing properties governed the water ad-
sorption determined by farinograph. This affected not only dough development but also
the baking behaviour of the dough. In fact, the volume fraction of water, Φwater, could
largely explain the structure setting behaviour of the dough during heating in the DMTA,
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as demonstrated by the good representation of Tonset and Tpeak in the supplemented state
diagram (Figure 3). Gluten thermosetting and starch gelatinization occurred at lower
temperatures with increasing Φwater, as was the case for the oat brans compared with their
wheat counterparts. An earlier structure setting can contribute to lower loaf volume, al-
though it is clearly not the only factor, with gluten development playing a determining role.

The differences in water absorption by the flour and flour/bran mixtures resulted in
differences in flour content in the dough. Variations in flour content could only partially
explain the effect on bread quality, as pointed out by the distinct trends for wheat and
oat fractions with regard to SV (Figure 8A). Compared with wheat, oat and oat bran
fractions had a larger effect on gluten microstructure, as pointed out by the differences
in protein length and branching rate (Figure 5). In particular, changes in protein length
significantly correlated with SV (Figure 9B). As recently reported [10], bran addition hinders
the development of a gluten secondary structure that is optimal for baking. The rheological
properties of the dough most relevant for breadmaking, particularly the strain hardening
behaviour, are negatively impacted by bran enrichment with significant changes in protein
length and branching rate in the gluten microstructure [38]. Overall, the combined changes
in flour content and gluten network structure best captured the observed variations in SV
(Figure 9C). The contribution from flour content may well relate to both the gluten and the
starch components, as both the gluten thermosetting and starch gelatinization and swelling
contribute to dough rheology during baking [56].

A PCA of bran-enriched dough/bread variations and a correlation analysis of dough
composition and dough and bread properties were performed to further elucidate the
contribution of chemical mechanisms. As earlier discussed, flour and water content,
thermo-mechanical transitions (i.e., Tonset, Tpeak and G’max), SV, and crumb texture were
relevant factors contributing to the differentiation among samples. From a compositional
standpoint, a determining role was observed for β-glucan contents in the dough on SV and
bread crumb texture (Figures 7 and 8). On the contrary, phenolics content (i.e., total pheno-
lics and bound phenolics) only contributed to the differentiation of wheat bran (NWB and
RWB)- and IWBF-enriched samples but did not show any direct contribution to bread qual-
ity, despite often being indicated as a main factor [11,57]. The negative correlation between
SV and β-glucan content supported the results observed on the effect of oat bran and its
fractions on gluten microstructure. Earlier, ref. [58] suggested that gluten aggregation dur-
ing mixing depends on the viscosity of the water phase as affected by WEAX, rather than
on interactions with ferulic acid. Gluten aggregation decreases with an increase in WEAX
concentration and/or Mw [58,59]. Similarly, the behaviour of β-glucan in dough systems is
governed by concentration and Mw, both affecting viscosity [60]. β-glucans are particularly
effective in increasing viscosity due to their linear structure, high Mw, and their large num-
ber of hydroxyl groups [61], thus changing water distribution patterns in dough with less
bulk water [37]. Overall, the viscosity of the water phase is a measure of solvent quality, as
it is inversely related to its plasticizing ability with respect to biopolymers such as proteins
and starches [13,16,62]. Consequently, an increase in β-glucans can negatively affect gluten
development and aggregation [37,63] due to reduced hydrogen bonding interactions with
the solvent. Additionally, direct hydrogen bond interactions between β-glucans and gluten
can also contribute to changes in structural rearrangements [12]. As these mechanisms may
be predominant for the soluble β-glucans, it can be suggested that the observed effects of
total β-glucans on bread quality are controlled by the hydrogen bonding interaction of the
soluble β-glucans and the water retention by the insoluble β-glucans, which hinder gluten
hydration and structural rearrangements optimal for breadmaking [10,38].

The increase in cohesiveness and resilience with β-glucans content suggested that
their effect may not be limited to gluten only. Crumb cohesiveness and resilience depend
more on starch gelatinization and swelling than on gluten aggregation [56]. Analysis
of DTMA and compositional data revealed that β-glucans content negatively correlated
with the maximum gel strength G′max at Tpeak (Figure 7; R2 = 0.83, p < 0.05), which has
been associated with the maximum in starch swelling [33,61]. In agreement with these
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observations, we have recently shown that the starch paste viscosity associated with
gelatinization and swelling decreases with an increase in Mw and/or concentration of the
fibres present [13]. However, cohesiveness and resilience should be negatively affected
by inhibition of starch swelling and amylose leaching [32,64]. Most likely, these adverse
effects were compensated for by the ability of the increasing β-glucans to form cross-links
with the starch via hydrogen bonding, thus reinforcing the elastic properties of the starch
gel network [65,66].

5. Conclusions

This study highlighted the effect of brans (wheat and oat) and bran fractions (soluble
and insoluble) with distinct chemical and physical characteristics on dough and bread
properties. By a systematic comparison of the properties of each fraction and the entire
brans, the study indicated that the interplay between water binding, mainly provided by
the insoluble fraction, and the plasticizing properties of the soluble bran fraction control
the detrimental effects on bread volume and texture. On the contrary, steric hindrance and
gluten dilution seemed to play a minor role, as indicated by the use of an inert filler (glass
beads). The soluble oat bran fraction (i.e., SOBF) reduced the plasticizing ability of the
water phase, as it was richer in β-glucans and in solutes of higher average Mw compared
with the soluble wheat fraction (i.e., SWBF), as indicated by chemical analysis and sorption
behaviour. Consequently, SOBF showed larger detrimental effects on SV than SWBF. The
β-glucan content was a determining factor that discriminated the effects of wheat and oat
brans and their fractions on dough and bread properties. Oat brans negatively impacted
gluten microstructure compared with wheat brans, and SV was significantly affected by β-
glucan content. The study also indicated that starch gelatinization and swelling is affected
by the bran fractions and their interactions with water, as suggested by DMTA data on
thermal transitions (Tonset and Tpeak) and dough elastic behaviour during setting (G’max).
Interactions between starch and β-glucans via cross-linking during cooling may explain the
observed increase in crumb cohesiveness and resilience with increasing β-glucan content.
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